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Robust Analysis of the Martingale Hypothesis

Abstract

The martingale hypothesis is commonly tested in various time series, including
the financial and economic data. In practice, there exists a variety of martingale
processes and not all of them are nonstationary like the random walks. In par-
ticular, some martingales are stationary processes with heavy-tailed marginal
distributions. These martingales display local trends and bubbles, and can fea-
ture volatility induced ”mean-reversion”. The aim of our paper is to develop
tests of the martingale hypothesis, which are robust to the type of martingale
process that generated the data, and are valid for nonstationary as well as
stationary martingales.

Keywords: Martingale Hypothesis, Recurrence, Noncausal Process, Station-
ary Martingale, Nadaraya-Watson Estimator, Market Efficiency.

JEL number: C52, C13, C16.



THIS VERSION: April 13, 2016 2

1 Introduction

The class of martingale processes is very large and includes the well-known nonstationary

processes, such as the random walks as well as specific stationary processes. All these

processes display trends, which can be either global, or local, including the short-lived

bubbles. In practice, a number of economic and financial time series display these features.

For example, the time series of retail price indexes display global explosive behavior due to

nonstationarity, while the exchange rates series tend to have local trends without taking on

extreme values. Loosely speaking, the martingale property is a kind of ”mean reverting”

behavior 1, although that ”mean reversion” can occur very infrequently. This implies

that trends in the trajectories of martingale processes can be perceived as global or local

depending on the length of the sampling period and the type of observed martingale.

Therefore, visual inspection of a time series and traditional methods of analysis may

suggest nonstationarity in martingale processes that are stationary.

This paper explores nonparametric tests of the martingale hypothesis under the main-

tained hypothesis of homogenous (recurrent) Markov process. Let us consider discrete

time observations y0, y1, ...yT on a scalar process (yt). The two above hypotheses concern

the form of the transition density of yt given the past values yt−1 = {yt−1, ..., y0}. The

maintained hypothesis of the process being a homogenous Markov is written in terms of

the transition probability density function (p.d.f) denoted f(yt|yt−1) as:

H =
{
f(yt|yt−1) = f(yt|yt−1), ∀yt

}
. (1.1)

Under H, the null hypothesis of martingale can be written either in terms of the process(yt),

or of its first difference, i.e. the martingale difference sequence (MDS): ∆yt = yt− yt−1 as

follows:

H0 = {E(Yt|Yt−1) = yt−1, ∀yt−1} (1.2)

= {E(Yt − Yt−1|Yt−1 = yt−1) = 0, ∀yt−1} .

with respect to the same conditioning set 2 yt−1.

1The mean reversion is rather meant as median reversion as many martingales have no finite mean.
2The set yt−1 differs from the set ∆yt−1 due to the effect of the initial value y0.
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The tests of the Markov and martingale hypotheses appear commonly in financial

applications in the context of market efficiency 3. The Markov hypothesis represents the

”informational efficiency”. More specifically, if a market is informationally efficient, then

all available information on a future of a stock price is ”fully reflected” in the current

market price [Fama (1965), (1970), (1991)].

The martingale hypothesis corresponds to another type of market efficiency, which is

the impossibility to beat the market. It can be summarized by considering market with

two assets: a riskfree asset with zero interest rate and a risky asset with price yt at date

t. A well-known property of a martingale is the Doob’s optional stopping time theorem

that implies:

E(Yt+ν |Yt = yt) = yt, ∀yt, (1.3)

for any upper bounded stopping time ν 4.

If an investor buys a unit of the risky asset at date t and price yt, then, no matter how

sophisticated is his/her strategy of chosing the best random date to sell, his/her expected

gain will be the same as if he/she had invested in the riskfree asset only 5.

Therefore it is common to test the martingale hypothesis in various price series (pos-

sibly discounted) such as stock prices, market prices, commodity prices, exchange rates,

retail price indexes, or zero-coupon prices with given maturity. Some of these processes,

such as the commodity prices or exchange rates can be stationary, while satisfying the

martingale condition.

This paper introduces test statistics for testing the null hypothesis of martingale that

includes all possible martingales, which can be either stationary, or nonstationary. Our

purpose is to fill a gap in the literature on martingale hypothesis tests, resulting from

the fact that the existing tests do not include the stationary martingales under the null

hypothesis.

3Other interpretations have been provided for macroeconomic applications [see e.g. Hall (1978)].
4A stopping time is a discrete random variable such that {ν = h} is a function of (yt+h−1), for any

h ≥ 1.
5When the riskfree interest rate is not equal to 0 and varies stochastically in time, the same reasoning

applies to the compoundly discounted stock price:

yt = B(0, 1)B(1, 2), ..., B(t− 1, t)pt, (1.4)

where B(τ, τ + 1) denotes the price at τ of the short-term zero coupon bond (with time to maturity 1).
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More specifically, the null martingale hypothesis H0, examined in this paper, concerns

the function m(y) = E(Yt+1|Yt−1 = y), which under the null is equal to y 6. As m(y)

is a functional parameter, it has to be tested through a functional statistic that depends

on state y. We follow Karlsen, Tjostheim (2001) and consider the nonparametric kernel

estimator of the autoregression y → m(y) = E(Yt+1|Yt = y), that is the Nadaraya-

Watson (NW) estimator. Karlsen, Tjostheim (2001) show that such kernel estimator with

appropriately chosen kernel and bandwidth is consistent of function m and provides a

consistent confidence interval of m as well. While these results are independent of the

stationarity or nonstationarity of the process, they depend on the recurrence property, a

condition that is often satisfied by the data (see Section 3 for the recurrence condition).

We observe that the convergence of the NW estimator is not uniform in y, especially in

the extremes. Therefore, any scalar statistic based on this estimator can lead to spurious

results if the extremes are given too much weight. Therefore, our proposed scalar test

statistics of the martingale hypothesis based on the NW estimator of m are adjusted for

the extremes to avoid the effects of the lack of uniformity.

The paper is organized as follows.

Section 2 summarizes the main tests of the martingale hypothesis that exist in the

literature, and distinguishes the implicit null and alternative hypotheses considered.

Section 3 provides various examples of martingales, such as random walks, time dis-

cretized scalar diffusions, double autoregressive processes, and the noncausal Cauchy pro-

cesses. We discuss their properties of stationarity and their properties of recurrence, such

as the frequency at which those processes return in a neighborhood of a given value. As

an illustration simulated paths of the processes are provided 7.

Section 4 considers the nonparametric kernel estimation of the autoregression y →

m(y) = E(Yt+1|Yt = y), and illustrates the properties of the NW estimator in different

types of martingales described in Section 2.

Section 5 introduces the test of the martingale hypothesis for stationary and nonsta-

tionary processes. As an example, the effect of the lack of uniformity on the nonconver-

gence of the OLS estimator of regression coefficient is illustrated.

Section 6 provides the Monte Carlo results and illustrates the properties of the pro-

6Under continuity conditions introduced in Section 3.
7See also the Complementary Material available on-line at www.jjstats.com
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posed tests in finite sample. Section 6 concludes. Appendix 1 provides a summary of

the literature on martingale tests. Appendix 2 outlines the assumptions for the asymp-

totic properties of the NW estimator. The aforementioned Complementary Material at

jjstats.com discusses the properties of the tests based on the mean squared error (MSE)

of m̂T (yt) proposed in [Gao, King, Lu, Tjostheim (2009)].

2 Martingale Hypothesis Tests in the Literature

There exists a large body of literature on the tests of the martingale hypothesis, which

is summarized in Appendix 1. Table 1 distinguishes the main types of tests and provides

the implicit null hypothesis H̄0 and the implicit alternative hypothesis H̄A. The implicit

null hypothesis (resp. implicit alternative hypothesis) includes all the dynamics which

are asymptotically ( for T large) accepted by that test procedure (resp. rejected by the

test procedure). A test procedure is expected to be such that the implicit null hypothesis

coincides with the null hypothesis of interest: H̄0 = H0. Among the tests outlined in

Table 1 are tests such that : H0 ∩ H̄A 6= ∅, so that the implicit null hypothesis can be

rejected in some martingale processes. Table 1 also includes tests such that H0 ⊂ H̄0 ,

but H̄0 −H0 6= ∅. These tests accept the implicit null hypothesis in processes which are

not martingales. In both cases, the testing procedures are not properly designed.

Given this observation, let us now comment on selected tests displayed in Table 1

[see Escanciano, Lobato (2009)b for another survey]. Historically, the first procedures are

based on the analysis of the sequence of estimated autocorrelations of the differenced series

∆yt = yt − yt−1. This sequence can be examined in terms of its autocorrelations by the

well-known Box-Pierce tests, the Ljung Box tests, the portmanteau statistics, or by means

of its spectral density [see e.g. Durlauf (1991), and Deo (2000), Lobato, Nankervis, Savin

(2001) for extensions]. These test procedures have the two drawbacks mentioned above

and can accept non-martingale dynamics, as only the absence of linear serial dependence

is accounted for, as well as they can reject martingales when the difference ∆yt has no

second-order moment, due to fat tails. The same remark applies to all procedures based

on autocovariances, such as the variance ratio test introduced in Lo, MacKinlay (1988)

[see also Chen, Deo (2006)].

Some other procedures proposed in the literature rely on testing if the autoregressive
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coefficient in a dynamic model of the process (yt) is equal to one [see e.g. White (1958),

(1959), Dickey, Fuller (1979), Phillips (1987)a, Phillips, Perron (1988), Chan, Wei (1988)].

In general, these procedures test the null of nonstationarity of the process against the

alternative of stationarity. Thus, the implicit null hypothesis can be rejected if the process

is a stationary martingale.

The null martingale hypothesis H0, examined in this paper, concerns the nonpara-

metric autoregression function m(y) = E(Yt|Yt−1 = y). In this respect, four types of

(functional) test procedures have been recently suggested in the literature:

i) Tests based on a functional estimator of function a(w) = E[∆Ytexp(iw∆Yt−1)] [Hong

(1999), Escanciano, Velasio (2006)].

ii) Tests based on the kernel estimator of the autoregressive function: g(u) = E(∆Yt|∆Yt−1 =

u). These tests involve an implicit Markov assumption of (∆yt) instead of the Markov

assumption on the process (yt), the only Markov assumption with economic interpretation.

iii) Tests based on a nonparametric estimator of the function:

c(y) = E(∆Yt1Yt−1≤y),

[see, Park, Whang (2005), Phillips, Jin (2014)].

iv) Tests based on a kernel estimator m̂T of function m [Park, Phillips (1998), Gao,

King, Lu, Tjostheim (2009), Myklebust, Karlsen, Tjosheim (2012)].

The two latter tests focus on the dependence between yt and yt−1 under the maintained

Markov hypothesis. The difference between them is as follows. The first approach is global,

as function c is defined by an unconditional expectation, while the second test based on the

nonlinear autoregression is local. This has an important consequence for the outcome of

the test. While under the local approach one can find an asymptotically pivotal statistic for

H0, that is a statistic based on a nonparametric m̂T with a fixed asymptotic distribution

under H0 [Karlsen, Tjostheim (2001)], this is not the case under the global approach,

as the derivation of such an asymptotic pivotal statistic requires additional assumptions

under the null,such as weak conditional heteroscedasticity (WCH, see Appendix 1) and

the existence of the second-order moment of the differenced series ∆yt. Thus, the implicit

alternative hypothesis contains martingales whose first difference ∆yt has no second-order

moment and is characterized by strong conditional heteroscedasticity.
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3 The Martingales

This section defines the martingale process (yt) that satisfies the maintained Markov hy-

pothesis. As an illustration, examples of nonstationary martingales, such as the random

walk, and stationary martingales, such as the double autoregressive process and the non-

causal Cauchy AR(1) are discussed.

3.1 Definition

Let y = (yt, t = 0, 1, 2, ...) denote a scalar process in discrete time. We assume that it is

a homogenous Markov process of order one that takes values in the interval (−∞ +∞),

and has a continuous transition density function denoted by:

f(yt+1|yt) = limdy→0
1

dy
P [Yt+1 ∈ (yt+1, yt+1 + dy)|Yt = yt].

Let us introduce the following assumptions :

Assumption A.1

i) For any value yt+1, the transition density is a continuous function of yt.

ii) The transition density is strictly positive for any yt, yt+1.

The continuity assumption is needed to determine the density without ambiguity. It is

also needed for the local analysis of the transition density and its kernel estimation. The

strict positivity (with the recurrence condition) ensures that the process takes its values

from any open interval.

The Markov process is recurrent 8 if for any y and any interval (a, b), b > a, we have

P [S(a,b) < ∞|Yt = y] = 1, where S(a,b) = inf{t : Yt ∈ (a, b)} is the first time of entry in

(a, b).

Assumption A.2 For any value of yt, the integral
∫
|yt+1|pf(yt+1|yt)dyt+1 exists and is

a continuous function of yt.

When p = 1, the conditional expectation is:

m(y) = E(Yt+1|Yt = y). (3.1)

8This is a condition of Harris recurrence with the associated Lebesgue measure λ. The exact condition
is : ”if for any y, λ a.e.”, but the a.e. can be omitted due to the assumption of continuity on the transition
p.d.f.
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When p = 2, the conditional variance is defined as:

η2(y) = V (Yt+1|Yt = y). (3.2)

Definition 1: Suppose that assumptions A.1 and A.2 hold with p = 1. Process (yt)

is a martingale if and only if E(Yt+1|Yt = y) = y, ∀y ⇐⇒ m(y) = y, ∀y.

The martingale has finite first-order conditional moments for h=1 and more generally

for any fixed h = 1, 2, ..:

E[Yt+h|Yt = yt] = E[E[Yt+h|Yt+1]|Yt = yt] = E[Yt+1|Yt = yt] = yt.

In general, a martingale does not have finite unconditional moments, that is, it can be

such that E|Yt| =∞.

An integrable martingale, which is not conditionally equal to a constant (a consequence

of Assumption A.1.) is necessarily a nonstationary process. Indeed, by the convexity

inequality, we have:

E(|Yt||Yt−1) > |E(Yt|Yt−1)| = |Yt−1|,

and by taking the expectation on both sides:

E(|Yt|) > E(|Yt−1|).

Thus, the nonstationarity results from the bahavior of E|Yt|.

As a consequence, a stationary martingale cannot be integrable and therefore has

unconditional fat tails.

Let us now provide the examples of martingales, which are commonly examined in the

literature.

3.2 Random Walk

A random walk is a process defined as:

Yt = Yt−1 + ut, t ≥ 1, (3.3)
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where (ut) is a sequence of independent, identically distributed (i.i.d.) variables, and the

initial value Y0 is assumed to be independent of this sequence.

A random walk satisfies the martingale definition if the first moment of ut exists:

E|ut| < ∞, and is equal to Eut = 0. When the p.d.f. of ut is strictly positive, a random

walk satisfies the recurrence condition.

3.3 Time discretized diffusion process

Let us consider a diffusion process {Yt, t ∈ (0,∞)} that satisfies:

dYt = µ(Yt)dt+ σ(Yt)dWt, t ≥ 0, (3.4)

where (Wt) is a Brownian motion, µ and σ are the drift and volatility functions, respec-

tively:

µ(yt) = lim
dt→0

1

dt
E[Yt+dt − Yt|Yt = yt], σ2(yt) = lim

dt→0

1

dt
V [Yt+dt|Yt = yt],

and the initial value Y0 of this process is independent of the evolution of the Brownian

motion Wt, t ≥ 0.

The standard local Lipschitz conditions are assumed to hold, which ensures the exis-

tence of this diffusion process. We also assume that σ(y) > 0, ∀y ∈ (−∞,+∞). Due to

this positivity condition the diffusion process takes any value in (−∞,+∞) [see Revuz,

Yor (1991), Section IX, paragraph 2].

We have:

E(dYt|Yt) = E(Yt+dt|Yt)− Yt = µ(Yt)dt.

Hence, at an infinitesimal horizon dt, the diffusion process satisfies the martingale condi-

tion if and only if the drift is zero. From the iterated expectation theorem, it follows that

the time discretized diffusion:

dYt = σ(Yt)dWt, (3.5)

is martingale in discrete time.

The recurrence property of a scalar diffusion process depends on the asymptotic be-

havior of its scale function S which has to be such that [see e.g. Khasminskii (1980),

Karatzas, Shreve (1991), Ex. 7.13.]:
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limy→−∞S(y) = −∞, limy→+∞S(y) = +∞.

For a scalar diffusion, the scale function is:

S(y) =

∫ y

0
exp[

∫ x

0
−2µ(x)

σ2(x)
dx]dy,

which becomes S(y) = y for a martingale diffusion process 9. Therefore all martingale

diffusions taking values on R satisfy the recurrence property.

The martingale process (3.5) can be stationary as well as nonstationary. From [Kutoy-

ants (2013), Th.1.16 and condition (2.1), Karatzas, Shreve (1991), p221], this martingale

process is stationary, if
∫+∞
−∞

dy
σ2(y)

< ∞, and is nonstationary, otherwise. If σ(y) is equal

to |y|γ for large y, the stationarity condition is satisfied for γ > 0.5. Thus, for a stationary

martingale, the ”mean reversion” effect is not due to the drift, but rather to the volatility

function. To satisfy the stationarity condition, the volatility increases for large values of

y, and allows the process to revert to its median. Conley et al. (1997) refer to this effect

as the volatility induced mean-reversion 10.

Let us point out that the above discussion has to be considered with caution. In general,

the solution of a diffusion equation exists up to a random time, called the explosion time

that is not necessarily in [0,∞]. For a martingale diffusion, the explosion time is a.s.

infinite (resp. a.s. finite) if and only if k(−∞) = k(+∞) =∞, where:

k(y) =

∫ y

0
[2

∫ z

0

1

σ2(z)
dz]dy,

(resp. otherwise) [see, Revuz, Yor (1991), p.357, ex.2.15]. It follows directly that a

martingale diffusion always satisfies the condition for infinite explosion time.

3.4 The Double Autoregressive Process

An analogue of the martingale diffusion process (3.5) written in discrete time is:

Yt = Yt−1 + η(Yt−1)εt, (3.6)

9This process is said to be in its natural scale.
10Note that this terminology can be misleading in processes with no finite mean.



THIS VERSION: April 13, 2016 11

where (εt) is a sequence of i.i.d. variables, with mean 0 11. This process does not always

satisfy the recurrence property. For example, when η(Yt−1) = Yt−1, we have:

|Yt| = |Yt−1| |1 + εt|,

and, by taking the logarithm on both sides:

log|Yt| = log|Yt−1|+ log |1 + εt| = log|Yt−1|+ Elog|1 + εt|+ ut,

where the sequence (ut) = (log|1+εt|−E(log|1+εt|)) is i.i.d. with mean 0. Thus log|Yt| is

a random walk with drift, which is explosive 12 and non-recurrent [see, e.g. Bandi, Phillips

(2009), Example 2, and references therein]. As the recurrence property is invariant with

respect to scale transformations, (|Yt|) and (Yt) do not satisfy the recurrence property

either.

Depending on the pattern of the volatility function, the martingale (3.6) can be either

nonstationary, or stationary. If η(Yt−1) = η, than (yt) is the nonstationary random walk

of Section 3.2. A stationary martingale (3.6) follows the model below examined in Ling

(2004):

Yt = Yt−1 +
√
c+ aY 2

t−1εt, c ≥ 0, a > 0, (3.7)

where εt is i.i.d. with a symmetric distribution and mean zero. This process is stationary

if:

Elog|1 + εt
√
a| < 0,

[Borkovec, Kluppelberg (1998), Th. 3.3]. This type of stationary martingale is another

process with volatility induced ”mean-reversion”. This example shows that in the class of

simple autoregressive processes, a unit root alone does not imply nonstationarity.

3.5 Noncausal Process

Noncausal processes are processes defined in the reversed time [see Rosenblatt (2000) for

noncausal linear processes.]. A Markov noncausal process is also Markov in the calendar

11A time discretized diffusion process satisfying (3.5) does not generally satisfy condition (3.6) due to
the effect of time aggregation. When η = σ, equation (3.6) is the Euler approximation of the continuous
diffusion.

12to +∞, if Elog|εt| > 0, to −∞, if Elog|εt| < 0.
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time [Cambanis, Fakhre-Zakeri (1994)] 13, and its transition density in the calendar time

can be inferred from its transition density in the reversed time. Among the noncausal

linear processes, the noncausal autoregressive Cauchy process of order one is of special

interest [see, Gourieroux, Zakoian(2015)] 14 and defined as:

Yt = ρ∗Yt+1 + σ∗ε∗t , (3.8)

where 0 < ρ∗ < 1 and (ε∗t ) is a sequence of i.i.d. Cauchy variables.

As the first-order moment of a Cauchy variable does not exist, it follows that both

the unconditional first-order moment and the noncausal conditional first-order moment

do not exist, that is :

E|Yt| =∞, E(|Yt| |Yt+1) =∞.

Let us now consider the causal transition density function. The marginal density of

(Yt) is Cauchy with scale 1/(1− ρ∗) and the causal conditional density is:

f(yt|yt−1) =
1

πσ∗
1

1 + (yt−1 − ρ∗yt)2/σ∗2
σ∗2 + (1− ρ∗)2y2t−1
σ∗2 + (1− ρ∗)2y2t

.

Thus, in the calendar time, the process has conditional moments up to any order p,

p < 4. The first and second causal conditional moments are:

E(Yt|Yt−1) = Yt−1, E(Y 2
t |Yt−1) =

1

ρ∗
Y 2
t−1 +

σ∗2

ρ∗(1− ρ∗)
.

Hence, the noncausal autoregressive Cauchy process is a stationary martingale in the

calendar time although its first two marginal moments do not exist. The trajectory of the

process features recurrent bubbles with a rate of explosion of about 1/ρ∗.

The noncausal Cauchy AR(1) is Markov and recurrent. It is recurrent in reversed time

and the number of visits in any given interval of the calendar and the reversed time are

equal.

Let us now consider the associated martingale difference sequence:

∆Yt = Yt − Yt−1,
13see, Revuz, Yor (1991), Section III, paragraph 4, for a similar result for processes in continuous time.
14The existence and uniqueness of the strictly stationary solution are proven in Gourieroux, Zakoian

(2015).
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with the conditional variance:

V (∆Yt|Yt−1) = V (Yt|Yt−1)

= E(Y 2
t |Yt−1)− [E(Yt|Yt−1)]2

= (
1

ρ∗
− 1)Y 2

t−1 +
σ∗2

ρ∗(1− ρ∗)
.

It follows directly that (∆Yt) cannot satisfy the weak conditional heteroscedasticity (WCH)

assumption (see Appendix 1), because the time averaged volatility:

1

T

T∑
t=1

V (∆Yt|Yt−1) = (
1

ρ∗
− 1)

1

T

T∑
t=1

Y 2
t−1 +

σ∗2

ρ∗(1− ρ∗)
,

does not converge when T tends to infinity, as the marginal second-order moment does

not exist E|Yt|2 = +∞.

3.6 Trajectories

As shown in the previous sections, the class of martingales includes stationary as well

as nonstationary processes, with linear or nonlinear dynamics. In order to illustrate the

behavior of the processes discussed in the previous sections, we show below the simulated

trajectories of the following processes:

a) random walk with i) Gaussian errors N(0, 1), ii) t-Student errors with 3 degrees of

freedom

b) time-discretized diffusion process with i) σ(y) =
√

1 + |y|0.6, ii) σ(y) =
√

1 + |y|.

c) noncausal autoregressive Cauchy process with i) ρ∗ = 0.5, ii) ρ∗ = 0.8.

[Insert Figure 1 : Trajectories of Random Walks]

[Insert Figure 2 : Trajectories of Time Discretized Diffusions]

[Insert Figure 3 : Trajectories of NonCausal Cauchy AR(1)]

All the simulated trajectories have the same length T = 200.

These processes satisfy all the recurrence property although the time to recurr can

be large in random walks and time discretized diffusions with volatility induced ”mean

reversion”. Figures 1 and 2 show trajectories that take mostly positive values. The
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Noncausal AR(1) is recurring quite often as it displays short-lived bubbles and takes value

0 also quite often 15.

The difference between the trajectories of the two types of stationary martingales is in

the duration of their departures from the most commonly observed value. In noncausal

Cauchy AR(1) processes, the rate of growth of a local trend depends on the persistence of

the series, and ends with a sudden drop. In the discretized diffusion processes, the local

trends are longer lasting and end due to the volatility-induced reversion to the median.

4 Asymptotic Results

This section discusses the kernel-based estimation of a nonparametric autoregression from

recurrent Markov processes. Karlsen, Tjostheim (2001)(see Appendix 2) show that the

Nadaraya-Watson (NW) estimator with appropriately chosen kernel and bandwidth leads

to consistent estimation of function m and its confidence interval. Although this result

is independent of the stationarity or nonstationarity of the process, it depends on the

recurrence condition being satisfied by the data.

We show how the asymptotic behavior of the kernel-based density estimator and of

the NW autoregression estimator may change, depending on whether the data generating

process is stationary or not.

4.1 Nonparametric estimators

(a) Stationary mixing processes

Let us consider kernel estimators of the stationary density f(y), of the autoregression

function m(y) and of the local volatility η2(y) for stationary mixing and ergodic processes,

defined below:

f̂T (y) =
1

ThT

T∑
t=1

K

(
yt − y
hT

)
, (4.1)

m̂T (y) = [
T∑
t=1

yt+1K

(
yt − y
hT

)
]/[

T∑
t=1

K

(
yt − y
hT

)
], (4.2)

15A noncausal Cauchy with a positive drift can be used to represent positive price processes, as the
martingale condition is invariant with respect to the drift.
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η̂2T (y) = {
T∑
t=1

[yt+1 − m̂T (y)]2K

(
yt − y
hT

)
}/{

T∑
t=1

K

(
yt − y
hT

)
}, (4.3)

where K is a kernel such that

∫
K(y)dy = 1,

∫
yK(y)dy = 0,

∫
K2(y)dy ≡ k2 > 0, (4.4)

and hT is a bandwith that tends to 0 when the number of observations T tends to infinity.

If the bandwith tends to zero at an appropriate rate, the estimators f̂T (y), m̂T (y), η̂2T (y)

tend to their theoretical counterparts:

f̂T (y)→ f(y), and m̂T (y)→ m(y) and η̂2T (y)→ η2(y) (4.5)

that are assumed to exist. Their speed of convergence is equal to 1/
√
ThT and is smaller

than the speed of convergence of the parametric estimators. Their limiting distributions

are Gaussian. For example, we have:

√
ThT [m̂T (y)−m(y)]

d→ N [0,
k2η

2(y)

f(y)
]. (4.6)

(b) Nonstationary Random Walk

As shown in Park, Phillips (1998), these results are modified for a random walk, which

has no stationary density. The kernel estimator of the ”density” has still some asymptotic

convergence properties. More precisely:

limT→∞f̂T (y) = 0, and limT→∞
√
T f̂T (y) = L a.s., (4.7)

where L is a stochastic limit function of the local time of the Brownian motion and on the

assumption on the initial value Y0. In fact, f̂T (y) measures the frequency of sejourn in the

interval (y, y + dy). This frequency is asymptotically close to zero due to the long-lasting

explosions of the process.

The Nadaraya-Watson estimator of the autoregression is still consistent:

limT→∞m̂T (y) = m(y)(= y), (4.8)

and, upon an appropriate standardization, we have:
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√
Tht

4
[m̂T (y)−m(y)]

d→

√
k2η2

L
U, (4.9)

where U is a standard normal variable, independent of L, and we take into consideration

that η2(y) = η2 is constant in a random walk. Thus, the limiting distribution of m̂T (y) is

a mixture of Gaussian distributions.

From conditions (4.7) and (4.9), it follows that the asymptotic confidence interval (CI)

estimator for m(y) = y at 95% is:

m̂T (y)± 1.96

[
k2η̂

2
T

ThT f̂T (y)

]0.5 , (4.10)

where η̂2T is a consistent estimator of η2. This is the standard CI estimator used in the

analysis of stationary mixing processes (with conditional homoscedasticity).

4.2 The consistency

Karlsen, Tjostheim (2001) followed a different approach to show the consistency of the

kernel estimator in a large class of Markov processes that satisfy a recurrence property 16.

Their findings can be summarized as follows:

i) Upon an appropriate standardization, the kernel estimator of the density tends to

a nonzero limit, which can be either deterministic (in a stationary mixing process), or

stochastic (in a nonstationary random walk).

ii) The Nadaraya-Watson autoregression estimator is consistent, and, when standard-

ized, it tends in distribution to a variable which is a mixture of Gaussian variables.

iii) The standard estimator of the asymptotic confidence interval (4.9) remains valid,

m̂T (y)± 1.96

[
k2η̂

2
T (y)

ThT f̂T (y)

]0.5 , (4.11)

taking into account a possible conditional heteroscedasticity.

The regularity conditions that ensure the validity of the above results are given in

Appendix 2 and discussed in Section 5. These include the existence of the conditional first-

order moment for the convergence of m̂T , the existence of the conditional second-order

16Athreya, Atuncar (1998) were the first authors to use the property of recurrent Markov chain for
derivation of the asymptotic behavior of kernel estimators.
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moments of the estimated confidence intervals, and conditions on the speed of convergence

of the bandwith to zero, explained in the next section. Neither stationarity conditions,

nor (strong) mixing conditions are needed, once a recurrence condition is satisfied.

4.3 The recurrence assumption

Let us consider the recurrence condition for Markov processes given in Section 3. As

the Markov chain with continuous state space can be well approximated by a chain with

discrete state space, let us first consider the effect of the recurrence assumption on such

a discrete state space chain (Ỹt) such that P (Ỹt = y|Ỹt−1 = x) denotes the elementary

transition probability with P (Ỹt = x|Ỹt−1 = x) = 0, ∀x. Let S1,y denote the first time

of entry in {y}. Under the recurrence condition, P (S1,y < ∞|Y0 = x) = 1, ∀x, we can

construct the sequence S1,y < S2,y < · · ·Sk,y · · · of successive entry times in {y}. Since the

process is Markov with a time homogenous transition, it regenerates itself at each entry

time. As a consequence, the variables:

[Sk+1,y − Sk,y, ỸSk,y+1, · · · , ỸSk+1,y−1], k ≥ 1, (4.12)

are independent, identically distributed [Nummelin (1978),(1984), p. 76]. In this discrete

state space framework, the estimated autoregression is:

m̂T (y) =
T∑
t=1

(Ỹt+11Ỹt=y)/
T∑
t=1

1Ỹt=y, (4.13)

that is the crude discrete state counterpart of the Nadaraya-Watson estimator.

Let KT = sup{k : Sk,y ≤ T} − 1 denote the number of total regenerations over the

sampling period. Up to the effect of the first and last observed values, we have:

m̂T (y) ≈ 1

KT

KT∑
k=1

ỸSk,y+1. (4.14)

As variables ỸSk,y+1 are i.i.d. and KT is large when T tends to infinity, we can apply

the standard limit theorems for i.i.d. variables conditional on KT . Thus, for T large, i.e.

KT large, we have approximately:

m̂T (y)
d∼ N [E(ỸSk,y+1),

1

KT
V (ỸSk,y+1)]
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= N [E[Ỹt+1|Yt = y],
1

KT
V (Ỹt+1|Yt = y)],

or √
KT [m̂T (y)−m(y)] ≈ η(y)U, (4.15)

where U is a standard normal variable independent of KT . This result provides the

asymptotic confidence interval estimator:

[m̂T (y)± 1.96
η̂T (y)√
KT

], (4.16)

which is valid regardless of the stationarity and the mixing conditions being satisfied.

The confidence interval estimator (4.16) is the analogue of confidence interval estima-

tor (4.11) that includes a kernel because of the continuous state-space. This CI estimator

is also equivalent to the one used commonly for stationary processes. The speed of con-

vergence of the estimator m̂T depends on how frequent are the visits in a vicinity of y.

The asymptotic distribution of m̂T , upon a deterministic standardization, depends on the

distribution of the standardized number of visits.

This speed of convergence is directly linked to the tail behavior of the distribution of

Sk+1,y − Sk,y. Also, an appropriately chosen bandwith has to tend to zero at a rate that

is a function of the tail behavior, to ensure the validity of these asymptotic results(see

Appendix 2).

4.4 Illustration

To illustrate the estimation of the autoregression function in a martingale process, we con-

sider below the three types of martingales presented in Section 3.6. We use an Epanech-

nikov kernel to satisfy the condition of kernel with compact support (see Assumption a

in Appendix 2) and a basic bandwidth of order hT = ct T−0.22 (see the discussion on the

choice of the bandwidth in Appendix 2). The nonparametric kernel estimates are rather

sensitive to the choice of the kernel, especially to the remaining constant ct. For each

series, we fix the bandwidth proportionally to the range computed from the difference

between the 10th and 90th percentiles of the series, so that there are about KT = 10 ob-

servations in the associated equiweighted kernel. This bandwidth is used in the estimation

of f(y) and η2(y). That bandwidth is divided by two when it is used for the estimation

of m(y) in order to avoid excess smoothing.
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The theory suggests the following differences between the results for nonstationary and

stationary martingales.

i) The speed of convergence of m̂(y) is higher in stationary processes, as they recurr

more frequently.

ii) This effect can be compensated by its components that are estimators of the condi-

tional variance η2(y) and of the ”invariant” density π(y) 17, respectively. For the stationary

martingales (that are the time discretized diffusion and the noncausal Cauchy AR(1) pro-

cess) η2(y) tends to infinity when y tends to ±∞, and this effect is cumulated with the

fact that the stationary density π(y) = f(y) tends to zero at infinity. This explains the

poor accuracy of the functional estimator of m(y)− y in the extremes.

For the Gaussian random walk, the theoretical volatility η2(y) = η2 and the theoretical

stationary density π(y) = 1 (the Lebesgue measure is invariant) are constant 18.

[Insert Figure 4 : Estimation of m(y)− y; Gaussian Random Walk]

[Insert Figure 5 : Estimation of m(y)− y; Time Discretized Diffusion σ2(y) = 1 + |y|0.6]

[Insert Figure 6 : Estimation of m(y)− y; Noncausal AR Cauchy ρ∗ = 0.8]

Figures 4 to 6 provide the kernel estimates of m(y) − y, along with their asymptotic

confidence intervals. We observe that:

i) The set of values from which the nonparametric estimate is computed varies accross

the series.

ii) Over the set of most commonly observed values of the series, zero is inside the

confidence interval. That means that, locally, the test of the martingale will not reject the

null hypothesis.

iii) The estimator of m(y) − y is different from zero over the set of extreme values of

the series, where the confidence interval widens up. This is due to the lack of uniformity

in y that slows down the convergence of m̂(y). This effect is noticeable in the noncausal

Cauchy AR(1) process due to infrequently observed large bubbles.

17A recurrent process admits an invariant nonnegative density, but that density does not necessarily sum
up to one. In other words, the invariant measure is not necessarily a probability.

18The nonparametric confidence intervals are computed locally without taking into account the fact that
they are constant.
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5 Scalar Test Statistics of the Martingale Hypothesis

The weak convergence of the NW estimator derived in Karlsen, Tjostheim (2001) is not

uniform in y. As noted in Section 4.4, the effect of the lack of uniformity is visible in the

Figures, where the accuracy of the estimator in the extremes can be rather poor, especially

for the stationary discretized diffusion or for the noncausal autoregressive Cauchy process.

This is mainly a consequence of strong conditional heteroscedasticity in the extremes.19

This explains why standard parametric test statistics can have unexpected asymptotic be-

havior under the null hypothesis H0. First, we discuss this effect for the OLS estimator of

the autoregressive coefficient. Next, we propose alternative estimators for the autoregres-

sive coefficient assumed to be constant, and not necessarily equal to 1. Next, we introduce

scalar test statistics of the martingale hypothesis based on the NW estimator and on its

standardized version.

5.1 OLS estimator of the autoregressive coefficient

Let us consider the standard analysis of the unit root hypothesis based on the OLS esti-

mator of the autoregressive coefficient:

ρ̂T =
T∑
t=1

Yt+1Yt/
T∑
t=1

Y 2
t . (5.1)

This estimator is close to the quantity ρ̃T =
∑T
t=1[

(m̂T (Yt)
Yt

Y 2
t )/

∑T
t=1 Y

2
t , that is a weighted

sum of the ratio m̂T (y)/y evaluated at the observed values. If the process is stationary,

we expect ρ̂T to be close to
∫ m(y)

y π(y)dy, where π is the stationary distribution of the

process, that is close to
∫

1π(y)dy = 1.

The example of the noncausal Cauchy AR(1) process contradicts that expected result.

That process is a martingale and satisfies the regularity conditions for the convergence

of the Nadaraya-Watson estimator, that is m̂T (y) → y for any y. Davis, Resnick (1986)

have shown that the OLS estimator ρ̂T converges to the value ρ∗, 0 < ρ∗ < 1, of the

autoregressive coefficient in the reversed time representation (4.7), rather than to 1.

19This effect can be eliminated from the test of the martingale hypothesis by introducing additional
assumptions of either i.i.d. errors, or conditional homoscedasticity, or weak conditional homoscedasticity
(see Appendix 1).
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The convergence of m̂T (y) to m(y) is not uniform in y and the standard parametric

OLS estimator of the autoregressive coefficient is strongly influenced by large observations.

More precisely, in the noncausal AR Cauchy framework, the asymptotic variance of

m̂T (y)/y is proportional to η2(y)
y2f(y)

, up to a factor that depends on T (and hT ). The OLS

estimator is a combination of the ratios m̂T (y)/y with weights α(y) ≈ y2f(y). Therefore

the ”variance” of this OLS estimator is proportional to :

∫
α2(y)

η2(y)

y2f(y)
dy =

∫
y2f(y)η2(y)dy.

From Section 3.5, it follows that η2(y) is of order y2 and f(y) of order 1/y4 at infinity.

Therefore y2f(y)η2(y) is of order 1, and the ”variance” of the OLS estimator does not

exist. This explains the result on the convergence of the OLS estimator of ρ reported by

Davis, Resnick (1986) [see also Figures 7-8].

5.2 Robust estimation of the autoregressive coefficient

Let us now consider the robust estimation of the autoregressive parameter. For this

purpose, we introduce the parametric hypothesis ARH0 = {m(y) = ρy} nested in the

maintained hypothesis H of recurrent Markov process. The three hypotheses are nested

as follows :

H0 = {m(y) = y} ⊂ ARH0 = {m(y) = ρy} ⊂ H.

Next, we search for estimators of ρ, which are consistent for any process in H, station-

ary as well as nonstationary.

Consistent estimators can be obtained by fixing a grid of values of the state yj , j =

1, . . . , J, and using the asymptotic distributions :

m̂T (yj)/yj ' ρ+

[
k2η̂

2
T (yj)

(yj)2ThT f̂T (yj)

]1/2
· Uj , j = 1, . . . , J, (5.2)

where Uj , j = 1, . . . , J are standard normal independent variables, and are asymptotically

independent of the f̂T (yj), j = 1, . . . , J . Expression (5.2) is a linear model in ρ with con-

ditional heteroscedasticiy. Thus parameter ρ can be estimated by the feasible Generalized

Least Squares as :
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ρ̃T =
J∑
j=1

[
m̂T (yj)f̂T (yj)

η̂2T (yj)

]
/

J∑
j=1

(
y2j f̂T (yj)

η̂2T (yj)

)
, (5.3)

which corresponds to a weighted average of m̂T (yj)/yj , with weights proportional to

α(yj) = y2j f̂T (yj)/η̂
2
T (yj). This estimator has a complicated asymptotic distribution and

leads to a straightforward confidence interval estimator:

ρ̃T ± 1.96

 J∑
j=1

y2j f̂T (yj)

η̂2T (yj)

0.5 . (5.4)

This clarifies why the OLS estimator is the benchmark in the unit root literature. It is

conceived for processes such that the variables yt−ρyt−1 are i.i.d., that is, for the random

walk with ρ = 1. The weights of the OLS estimator have been selected accordingly and

are not appropriate for other types of recurrent Markov processes.

Other consistent estimators can also be constructed from a random grid based on ob-

servations y1, . . . , yT . In the case of stationary martingales, we have to avoid too much

weight being assigned to the extremes. This can be accomplished by using more appro-

priate weighting. For instance, we can consider estimator such as :

ρ∗T =
T∑
t=1

m̂T (Yt)wT (Yt), (5.5)

where the weighting function wT (y) ≥ 0,
∫+∞
−∞ wT (y)dy = 1, decreases to zero when y

tends to infinity at an appropriate rate in the spirit of the approach proposed by Collomb,

Hardle (1986) to robustify a nonparametric regression 20. Let us just suggest to use the

following shrinkaged OLS estimator instead of an OLS estimator :

ρ̂sT =
T∑
t=1

(Yt+1Yt1lYt∈A)/(
T∑
t=1

(Y 2
t 1lYt∈A)), (5.6)

where A is a given finite interval. Such a shrinkage might allow to recover the consistency,

but clearly this approach will be subefficient since it has not estimated the right weights

as in the feasible GLS approach proposed above. The analysis of the asymptotic property

of such an estimator ρ̂sT , with possibly an interval AT increasing with T , will require other

tools than the functional Central Limit Theorem from Karlsen, Tjostheim (2001), such as

20A detailed discussion of the weighting scheme is beyond the scope of this paper.
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limit theorems for U -statistics [see e.g. Dedecker, Prieur (2007), Elharfaoui, Harel (2008)].

This analysis is also out of the scope of the present paper.

To illustrate the properties of the shrinkaged OLS estimators, we show in Figures 7-8

below, the OLS estimators computed from observations that fall between the percentiles

(100-a) and a. Each OLS estimator is computed from a regression without an intercept

in Figure 7 and with an intercept in Figure 8. The three series used in the estimation:

the random walk, the discretized diffusion and the noncausal Cauchy AR(1) are of length

T=1000.

For all three series, the shrinkaged OLS estimates are closer to 1 in the regression

without intercept. As expected, ρ̂T is close to 1 in the random walk, for any value of a.

In the discretized diffusion process, the estimates are close to 1 when computed from a

sufficiently large range of observation values. The results from the OLS estimation of the

noncausal Cauchy AR(1) are twofold. As suggested by the result by Davis, Resnick (1986),

the OLS estimator computed from all observations is close to 0.8. More surprisingly, when

it is computed from observations close to the median, it is far from 1. This implies that

the lack of uniform convergence of m̂(y) may concern not only the extremes, but also the

observations close to the center of the distribution.

[Insert Figure 7 : Shrinkaged OLS Estimate as a Function of a ]

[Insert Figure 8 : Shrinkaged OLS Estimate as a Function of a with Intercept ]

We observe that the OLS estimator is unreliable in stationary martingales, and so are any

test statistics involving that estimator.

5.3 Scalar test statistics of the Martingale Hypothesis

Let us now introduce scalar test statistics that are suitable for testing the null hypothesis

of martingale in nonstationary and stationary processes. A natural idea is to base the test

on a measure of difference between the estimated autoregression m̂T (y) and the identity

function y. This is a robust approach involving the pivotal functional statistic :

ξ̂T (y) = [m̂T (y)− y]/

[
k2η̂

2
T (y)

ThT f̂T (y)

]0.5
. (5.7)

We consider scalar test statistics that are the analogues of quantities of the type
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∫+∞
−∞ [ξ̂T (y)]2wj(y)dy, where w is a weighting function. For a given grid yj , j = 1, . . . , J ,

with associated weights wj , j = 1, . . . , J , we consider the scalar statistic :

ξ̂T =
J∑
j=1

wj [ξ̂T (yj)]
2, (5.8)

where wj > 0,
∑J
j=1wj = 1.

If J is large and
∑J
j=1w

2
j close to zero, we have by the standard Central Limit Theo-

rem :

ξ̂T ∼ 1 + [
J∑
j=1

w2
j ]

0.5U, (5.9)

where U is a standard normal variable. We reject the null hypothesis of martingale if
[ξ̂T−1]

[
∑J

j=1
w2
j ]

0.5
> 2, and accept it, otherwise.

By construction, we get an asymptotically similar test, where the asymptotic size of

the test (i.e. 5%) does not depend on the type of martingale in the null hypothesis.

To illustrate the application of the above test, we consider the three series introduced

in Section 4.4 of length T = 200 and compute the test statistics evaluated at the percentiles

given in Table 2 below:

Table 2 : Percentile Grid

percentile 30 % 40% 50 % 60 % 70 %

Random Walk -4.94 -3.72 1.10 5.13 7.12
Discr. Diffusion -0.20 0.49 1.27 2.02 3.58
Noncausal AR(1) -2.35 -1.10 -0.10 2.59 4.77

From each series, we calculate:

ξ̂3 = ξ̂T (40%)2 + ξ̂T (50%)2 + ξ̂T (60%)2,

ξ̂5 = ξ̂T (30%)2 + ξ̂T (40%)2 + ξ̂T (50%)2 + ξ̂T (60%)2 + ξ̂T (70%)2.

These statistics take the following values:
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Table 3 : Chi-Square Test Statistics

Random Walk Discr. Diffusion Noncausal AR(1)

ξ̂3 0.461 0.690 0.021

ξ̂5 0.896 1.506 0.137

These values need to be compared with the critical values of χ2(3) and χ2(5) distribu-

tions at α = 0.95, which are 7.81 and 11.07, respectively.

In order to examine the finite sample behavior of the test statistics, we simulate 100

trajectories of the noncausal Cauchy AR(1), Gaussian Random Walk and the diffusion

process from Section 4.4. of length T=200 and T=400. In the test statistics computed

from these three processes, we use the bandwith equal to the interpercentile range between

the 10th and 90th precentiles divided by either 2 or 5.

The choice of the bandwith has a strong impact on the finite-sample distribution of

the test statistic. Table 4 below and Figure 9 illustrate that problem.

Table 4 : Critical values of test statistics

T=200 T=400

/5 /2 /5 /2
(34) (80) (68) (160)

Cauchy AR(1) ν=3 0.57 0.95 3.17 7.28

Cauchy AR(1) ν=5 1.58 3.40 4.35 10.63

R.Walk ν=3 2.12 3.88 4.04 8.53

R. Walk ν=5 2.85 4.37 4.75 12.25

Diffus. ν=3 1.35 1.74 2.41 5.65

Diffus. ν=5 2.04 3.40 3.52 8.44

We observe that the quantiles of the test statistics at 95 % differ from the quantiles of the

limiting χ2(3) and χ2(5) distributions. Also, the finite sample critical values of the test

statistics vary accross the processes. Figure 9 below compares the densities of various test

statistics.

medskip [Insert Figure 9: Finite Sample Density of Test Statistics T=400 ]

Figure 9 provides the densities of ξ̂3 and ξ̂5. They are computed from the noncausal

AR(1) and random walk processes with bandwith equal to the interpercentile range be-

tween the 10th and 90th precentiles divided by 5 and from the diffusion process with

bandwith divided by 2. We observe that the densities of the test statistics depend on the
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process. Also, as suggested in Table 4, their quantiles do not overlap with the quantiles of

the χ2(3) and χ2(5) distributions. A similar problem is encountered in the test proposed

in Gao, King, Lu, Tjostheim (2004) (See, Complementary Materials at jjstats.com).

6 Concluding Remark

The martingale processes can display trends that are long-lasting or short, such as the local

trends due to volatillity induced ”mean reversion” and bubbles. As various types of trends

can be associated with either nonstationary or stationary martingales, it is important to

develop tests statistics that are applicable to both types of processes. We found that the

traditional testing procedures based on global test statistics are unable to handle both

types of these processes, while the local analysis provides promissing results. We proposed

a kernel based test statistic for testing the martingale hypothesis and applied that test to

various martingale processes. The questions for further research are i) how to solve the

problem of the lack of uniformity in y of the kernel estimator in the extremes as well as

in the centre of the distribution that is relevant for the noncausal Cauchy AR(1), and ii)

what are the properties of the test statistics calculated from a function of percentiles along

the path of the process instead of being calculated at fixed points.
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APPENDIX 1

A Survey of the Literature on the Tests of the Martingale Hypothesis

This Appendix provides a survey of the literature on the tests of the martingale hy-

pothesis and describes the implicit null and alternative hypotheses, including the possibly

restrictive regularity conditions, such as the existence of moments, the independence and

mixing conditions introduced in order to derive the asymptotic distributions.

In Table 1, we focus on the tests where the process is a martingale under the null.

Hence, we are not interested in tests where under the null there exists an additional

effect such as a deterministic trend, other autoregressive effects, effects of other exogenous

variables, seasonalities, or structural breaks. This extensive literature has been developed

rather for macroeconomic applications than for Finance and underlies the cointegration

theory. These extensions are not suitable for testing the form of market efficiency, we

are interested in. We refer to Stock (1994), Chapter 3, Hamilton (1994), Chapter 17 for

surveys on such extensions.

Table 1 shows three types of procedures:

1) the so-called tests of the difference of martingale hypothesis, which check white

noise properties of the process ∆yt = yt− yt−1, and lead to portmanteau-type tests. They

use implicitly ∆yt−1 instead of yt−1 as the information set.

2) the test of the value of the autoregressive coefficient, often called the unit root tests.

They are based on parametric methods and usually require strong additional assumptions

to derive the asymptotic distribution of the parametric estimator.

3) the test of the pattern of the autoregressive function, not assumed to be linear a

priori.
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A number of test procedures assume that the changes in process ∆yt = ut satisfy an

assumption of weak conditional heteroscedasticity ( denoted WCH). A typical example is

the assumption that:

E[ut|yt−1] = 0, E[u2t |yt−1] <∞,

and limT→∞
1
T

∑T
t=1E[u2t |yt−1] = σ2 (a.1).

Similarly, we encounter in the literature a condition of weak conditional correlation

(WCC), which is the analogue of (a.1) for correlations. Typically it is written as:

limT→∞
1

T

T∑
t=1

ut−rut−sE(u2t |ut−1) = σ4γ(r, s). (a.2)

This assumption is in particular implied by the conditional homoscedasticity:

E[u2t |yt−1] = σ2, ∀t, and by the condition of ut i.i.d. (0, σ2).

Let us now explain why such additional assumptions implicitly imply the nonstation-

arity of the martingale of interest. Indeed, under such a WCH condition, we have:

V (yt+H |yt) = V (yt+H − yt|yt) = V (
H∑
h=1

ut+h|yt)

=
H∑
h=1

E[E(u2t+h|yt+h−1)|yt]

= E[E(
H∑
h=1

u2t+h|yt+h−1)|yt].

Therefore for H large, we get:

V (yt+H |yt) ∼ E(Hσ2|y0) = Hσ2,

and process (yt) is nonstationary in variance. In particular, its variance is equal to the

variance of a random walk.
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APPENDIX 2

The Functional Central Limit Theorem for Kernel Estimators

Let us briefly describe the assumptions required for derivation of a functional central

limit theorem (FCLT) for the process [f̂T (y), m̂T (y)], where f̂T (resp. m̂T ) is the standard

kernel estimator of the ”stationary” density (resp. the Nadaraya-Watson estimator of

the autoregression function). This functional central limit theorem has been derived in

Karlsen, Tjostheim (2001) [see also Guerre (2004), Bandi, Phillips (2008)]. It relies on

the assumption of recurrence of the Markov process (yt), that follows from the idea of

Athreya, Atuncar (1998) that appeared early in the literature on kernel estimation.

In this Appendix, we use an assumption of positive Harris recurrence associated with

the Lebesgue measure λ [see Meyn, Tweedie (1993) for additional discussion on the notion

of recurrence].

Assumption a.1 : The process (Yt) is a Markov process and is positive λ-Harris

recurrent, that is :

Px[S(a.b) <∞] = 1, ∀x, λ. a.e., ∀a < b.

The advantage of the recurrence property is that it is satisfied by stationary Markov

processes, as well as by a large class of nonstationary Markov processes.

Under Assumption a.1, the process will visit any interval (a, b) infinitely many times.

We denote by KT (a, b) the number of visits in (a,b) included between 0 and T . Moreover

the process admits an invariant measure π, say. This measure is defined up to a scale factor.

If the invariant measure is finite, then π∗ = π/π(−∞,+∞) is a probability distribution,

the process is stationary and π∗ is its marginal distribution. Otherwise, π is σ−finite, but

not finite. This problem arises in nonstationary processes, for which no time independent

marginal distribution exist. The numbers of visits in two given intervals (a,b) and (c,d)

are closely related as follows:

lim
T→∞

KT (a, b)

KT (c, d)
=
π(a, b)

π(c, d)
a.s.

Intuitively, the rates of divergence of these numbers of visits are of the same order.

The assumption below concerns that (common) rate of divergence.
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Assumption a.2 : KT (a, b) behaves approximately as T β, with β ∈ (0, 1). More

precisely, T β−ε � KT (., b)� T β+ε a.s., for all ε, where aT � bT means aT = o(bT ).

Under Assumptions a.1. and a.2., it is possible to derive a functional limit theorem for

the number of visits. The notation
d⇒ means the weak convergence in the space of cadlag

functions defined on (0,∞),D(0,∞), say.

Let us consider the process of standardized numbers of visits :

K̃T (a, b) = {K[zT ](a, b)/T
β, z ∈ (0,∞)}, where [.] denotes the integer part. This is a

process indexed by z ∈ (0,∞). Then we have [see Karlsen, Tjostheim (2001), Th 3.2 and

Lemma 3.6] :

Functional Central Limit Theorem for K̃T .

Under Assumptions a.1-a.2, we have :

K̃T (a, b)/π(a, b)
d⇒Mβ,

where Mβ is the Mittag-Leffler process with parameter β, that is the inverse Mβ = S−1β of

the one-sided stable Levy process with marginal characteristic function : E[exp ivSβ(z)] =

exp(ivβz).

In order to derive a FCLT that is suitable for kernel estimation, the following three

steps need to be completed:

i) Check that the FCLT for K̃T remains valid for a standardized local number of visits

in a neighbourhood of y, that corresponds to the behaviour of the kernel estimator of the

invariant density. That condition is satisfied under a set of assumptions concerning the

kernel and the bandwidth. The limiting distribution of process Mβ remains the same, i.e.

independent of the interval and/or of the state chosen for local analysis.

ii) Check for independence between these numbers of global and local visits and the

average evolution of the process between the regeneration points. This independence prop-

erty is expected to hold for stationary processes, where β = 1 and the limit is deterministic,

and therefore independent of anything else.

iii) It would be nice to get a FCLT not only with respect to the ”proportion” z of

observations which is considered, but also with respect to the state y of localisation.
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Below, we adapt Theorem 4.1 in KT. (2001) to our kernel estimation framework and

write workable conditions 21.

The main additional assumptions are as follows:

Assumption a.3 : There exists a continuous version of the conditional mean m(y) =

E(Yt|Yt−1 = y) and of the conditional variance η2(y) = V (Yt[Yt−1 = y).

In particular, functions m and η2 are integrable on any bounded interval with respect to

the invariant measure. However, in the case of stationary martingale where E|Yt| = +∞,

they are not integrable on (semi)-infinite intervals.

Assumption a.4 : The kernel K is positive, with
∫
K(u)du = 1,

∫
uK(u)du = u,

k2 ≡
∫
K2(u)du <∞. The support of the kernel is contained in a compact interval.

Assumption a.5 : The bandwidth is such that T β/2−ε � 1
hT
� T β/5+ε.

This condition cannot be satisfied for all β values in (0, 1) and as noted in [Karlsen,

Tjostheim (2001), Lemma 3.4 and 3.7], it might be necessary to estimate β, for instance

by β̂ = logKT (a, b)/ log T , for a given interval (a, b). However such an estimator should

not be very accurate.

We follow another approach that is focused on stationary martingales (β = 1), and on

nonstationary martingales with ”explosive patterns” that are small or equal to those of a

Gaussian random walk (β = 0.5).22. Then we find that:

1/hT = cT 0.22, where c is a constant, satisfies Assumption a.5 for all β ∈ (0.5, 1).

Note that the condition of β null-recurrence can be eliminated by introducing a data

driven adaptive bandwidth [see e.g. Delattre, Hoffmann, Kessler (2002), Guerre (2004),

Guay, Guerre (2006)].

The result below follows from Theorem 4.1 in Karlsen, Tjostheim (2001) (see also

21We only introduce the main regularity conditions.
22This is a consequence of the reflection principle for Brownian motion [see e.g. Revuz, Yor (1991),

p100, Prop.3.7]. Loosely speaking, let us consider a Brownian motion (Bt), and denote by Lt the local
time. Then the distribution of (Bt) and Lt are the same. In particular the p.d.f. of Zt = Lt/T

0.5 is
2√
2π

exp
(
−z2

2

)
. This provides the value β = 0.5.
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Corollary 4.2 and Th. 5.4).

Asymptotic behaviour of f̂T (y), m̂T (y)

Let us consider J values y1 < . . . < yJ . Then, under Assumptions a.1-a.5, we have the

following weak convergences :

T 1−β f̂T (yj)/π(yj)
d→Mβ(1), ∀j = 1, . . . , J , (with an appropriately standardized invariant

density),

(
[ThT f̂T (yj)]

1/2[m̂T (yj)−m(yj)]
)

d→ [k2diag(η2(yj))]
1/2U,

where U is a standard J-dimensional Gaussian vector independent of Mβ(1).

This result is not a FCLT with respect to state y. However, this multidimensional weak

convergence is sufficient to develop in practice interpretable scalar statistics for testing the

martingale hypothesis.

The above property highlights the role of quantities ξ̂T (y) = [ThT f̂T (y)/η2T (y)]1/2(m̂T (y)−

y) as the statistics with a fixed distribution under the martingale hypothesis. That distri-

bution is also independent of β.
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Figure 2: Time Discretized Diffusion
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Figure 3: Noncausal Cauchy AR(1)
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Figure 4: Estimated m(y)− y, Gaussian Random Walk
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Figure 6: Estimated m(y)− y, Noncausal Cauchy AR(1)
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Figure 7: Shrinkaged OLS Estimate as a Function of a



THIS VERSION: April 13, 2016 46

60 70 80 90 100

0.
2

0.
4

0.
6

0.
8

1.
0

random walk
diffusion
noncausal AR(1)

Figure 8: Shrinkaged OLS with Constant as a Function of a
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Figure 9: Finite Sample Density of Test Statistics, T=400
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