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Abstract: Several new estimation methods have been recently proposed for the linear regres-
sion model with observation errors in the design. Different assumptions on the data generating
process have motivated different estimators and analysis. In particular, the literature considered
(1) observation errors in the design uniformly bounded by some δ̄, and (2) zero-mean indepen-
dent observation errors. Under the first assumption, the rates of convergence of the proposed
estimators depend explicitly on δ̄, while the second assumption has been essentially applied
when an estimator for the second moment of the observational error is available. This work
proposes and studies two new estimators which, compared to other procedures for regression
models with errors in the design, exploit an additional `∞-norm regularization. The first esti-
mator is applicable when both (1) and (2) hold but does not require an estimator for the second
moment of the observational error. The second estimator is applicable under (2) and requires an
estimator for the second moment of the observation error. Importantly, we impose no assump-
tion on the accuracy of this pilot estimator, in contrast to the previously known procedures.
As the recent proposals, we allow the number of covariates to be much larger than the sample
size. We establish the rates of convergence of the estimators and compare them with the bounds
obtained for related estimators in the literature. These comparisons show interesting insights on
the interplay of the assumptions and the achievable rates of convergence.

1. Introduction

Several new estimation methods have been recently proposed for the linear regression model with
observation errors in the design. Such problems arise in a variety of applications, see [7, 8, 10, 11]. In
this work we consider the following regression model with observation errors in the design:

y = Xθ∗ + ξ,

Z = X +W.

Here the random vector y ∈ Rn and the random n× p matrix Z are observed, the n× p matrix X is
unknown, W is an n × p random noise matrix, and ξ ∈ Rn is a random noise vector. The vector of
unknown parameters of interest is θ∗ which is assumed to belong to a given convex subset Θ of Rp
characterizing some prior knowledge about θ∗ (potentially Θ = Rp). Similarly to the recent literature
on this topic, we consider the setting where the dimension p can be much larger than the sample size

0
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n and the vector θ∗ is s-sparse, which means that it has no more than s non-zero components.

The need for new estimators under errors in the design arises from the fact that standard estimators
(e.g. Lasso and Dantzig selector) might become unstable, see [8]. To deal with this framework, various
assumptions have been considered, leading to different estimators.

A classical assumption in the literature is a uniform boundedness condition on the errors in the design,
namely,

|W |∞ ≤ δ̄ almost surely, (1)

where |·|q denotes the `q-norm for 1 ≤ q ≤ ∞. Note that this assumption allows for various dependences
between the errors in the design. In this setting, the Matrix Uncertainty selector (MU selector), which
is robust to the presence of errors in the design, is proposed in [8]. The MU selector θ̂MU is defined
as a solution of the minimization problem

min{|θ|1 : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ)
∣∣
∞ ≤ τ1|θ|1 + τ}, (2)

where the parameters τ1 and τ depend on the level of the noises of W and ξ respectively. Under
appropriate choices of these parameters and suitable assumptions on X, it was shown in [8] that with
probability close to 1,

|θ̂MU − θ∗|q ≤ Cs1/q{δ̄ + δ̄2}|θ∗|1 + Cs1/q

√
log p
n

, 1 ≤ q ≤ ∞. (3)

Here and in what follows we denote by the same symbol C (or c′) different positive constants that do
not depend on θ∗, s, n, p, δ̄, but only on the variance parameters σ2 and σ2

∗ (defined later). The result
(3) implies consistency as the sample size n tends to infinity provided that the error in the design goes
to zero sufficiently fast to offset s1/q|θ∗|1, and the number of variables p and the sparsity s of θ∗ do
not grow too fast relative to the sample size n.

An alternative assumption considered in the literature is that the entries of the random matrix W are
independent with zero mean, the values

σ2
j =

1
n

n∑
i=1

E(W 2
ij), j = 1, . . . , p,

are finite, and data-driven estimators σ̂2
j of σ2

j are available converging with an appropriate rate. This
assumption motivated the idea to compensate the bias of using the observable ZTZ instead of the
unobservable XTX in (2) thanks to the estimates of σ2

j . This compensated MU selector, introduced
in [9] and denoted as θ̂C , is defined as a solution of the minimization problem

min{|θ|1 : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ) + D̂θ
∣∣
∞ ≤ τ1|θ|1 + τ},

where D̂ is the diagonal matrix with entries σ̂2
j and τ1 > 0 and τ > 0 are constants chosen according

to the level of the noises and the accuracy of the σ̂2
j .

Rates of convergence of the compensated MU selector were established in [9]. Importantly, the com-
pensated MU selector can be consistent as the sample size n increases even if the error in the design
does not vanish. This is in contrast to the case of the MU selector, where the bounds are small only
if the bound on the design error δ̄ is small. In particular, under regularity conditions, when θ∗ is
s-sparse, it is shown in [9] that with probability close to 1,

|θ̂C − θ∗|q ≤ Cs1/q

√
log p
n

(|θ∗|1 + 1), 1 ≤ q ≤ ∞. (4)
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Under the same alternative assumption, a conic programming based estimator θ̂Conic has been recently
proposed and analyzed in [1]. The estimator θ̂Conic is defined as the first component of any solution
of the optimization problem

min
(θ,t)∈Rp×R+

{|θ|1 + λ2t : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ) + D̂θ
∣∣
∞ ≤ τ2t+ τ, |θ|2 ≤ t}, (5)

where λ2, τ2 and τ are some positive tuning constants. Akin to θ̂C , this estimator compensates
for the bias by using the estimators σ̂2

j of σ2
j . However, it exploits a combination of `1 and `2-norm

regularization to be more adaptive. It was shown to attain a bound as in (4) and to be computationally
feasible since it is cast as a tractable convex optimization problem (a second order cone programming
problem). Moreover, under mild additional conditions, with probability close to 1, the estimator (5)
achieves improved bounds of the form

|θ̂Conic − θ∗|q ≤ Cs1/q

√
log p
n

(|θ∗|2 + 1), 1 ≤ q ≤ ∞, (6)

provided that D̂ converges to D in sup-norm with the rate
√

(log p)/n. It is shown in [1] that the rate
of convergence in (6) is minimax optimal in the considered model.

There have been other approaches to the errors-in-variables model, usually exploiting some knowledge
about the vector θ∗, see [2, 3, 7, 10]. Assuming |θ∗|1 is known, [7] proposed an estimator θ̂′ defined
as the solution of a non-convex program which can be well approximated by an iterative relaxation
procedure. In the case where the entries of the regression matrix X are zero-mean subgaussian and
θ∗ is s-sparse, under appropriate assumptions, it is proved that for the error in `2-norm (q = 2),

|θ̂′ − θ∗|2 ≤ C(θ∗)s1/2

√
log p
n

(|θ∗|2 + 1), (7)

with probability close to 1. Here, the value C(θ∗) depends on θ∗, so that there is no guarantee that
the estimator attains the optimal bound as in (6). Assuming that the sparsity s of θ∗ is known and
the non-zero components of θ∗ are separated from zero in so that

|θ∗j | ≥ C
√

log p
n

(|θ∗|2 + 1),

an orthogonal matching pursuit algorithm to estimate θ∗ is introduced in [2, 3]. Focusing as in [7] on
the particular case where the entries of the regression matrix X are zero-mean subgaussian, it is shown
in [2, 3] that this last estimator satisfies a bound analogous to (6), as well as a consistent support
recovery result, without requiring estimates of σ2

j .

The main purpose of this work is to show that an additional regularization term based on the `∞-
norm leads to improved rates of convergence in several situations. We propose two new estimators for
θ∗. The first proposal is applicable under a new combination of the assumptions mentioned above.
Namely, we assume that the components of the errors in the design are uniformly bounded by δ̄ as in
(1), and that the rows of W are independent and with zero mean. However, we will neither assume that
a data-driven estimator D̂ is available, nor that specific features of θ∗ are known (e.g. s or |θ∗|1). The
estimator is defined as a solution of a regularized optimization problem which uses simultaneously `1,
`2 and `∞ regularization functions. It can be cast as a convex optimization problem and the solution
can be easily computed. We study its rates of convergence in various norms in Section 3. One of the
conclusions is that for δ̄ � {(log p)/n}1/2, the new estimator has improved rates of convergence com-
pared to the MU selector. Furthermore, note that the conic estimator θ̂Conic studied in [1] can also be
applied. Indeed, our setting can be embedded into that of [1] with D̂ being the identically zero p× p
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matrix, which means that we have an estimator of each σ2
j with an error bounded by δ̄2. Comparing

the bounds yields that the conic estimator θ̂Conic achieves the same rate as our new estimator if δ̄
is smaller than or of the order {(log p)/n}1/4. However, there is no bound for θ̂Conic available when
δ̄ � {(log p)/n}1/4.

The second estimator we propose applies to the same setting as in [1]. The idea of taking advantage
of an additional `∞-norm regularization can be used to improve the conic estimator θ̂Conic of [1]
whenever the rate of convergence of the estimator D̂ for σ2

j , j = 1, . . . , p, is slower than {(log p)/n}1/2.
This motivated us to propose and analyze a modification of the conic estimator. We derive new rates
of convergence that can lead to improvements. However, we acknowledge that in the case considered
in [1], where the rate of convergence of D̂ is {(log p)/n}1/2, there is no gain in the rates of convergence
when using the additional `∞-norm regularization. Therefore the proposed estimator is of particular
interest in applications where it is costly and disruptive to generate precise measurements of Xi (the
i-th row of X: the couple (Xi, Zi) is observed in that case, and yi is unobserved), while observations on
(yk, Zk) are readily available. For example, interventions in experiments can be used to precisely mea-
sure a particular covariate of subjects but such interventions can invalidate the use of the outcome yi
for that particular subject. This is relevant in epidemiological research, where accurate measurements
are commonly difficult to achieve without expensive interviews and tests which tend to impact the
future behavior of the subject invalidating the associated outcome, see [4]. In such settings, we observe
n observations of (yk, Zk) and n∗ observations of the pair (Xi, Zi). When the (Xi, Zi) are iid, the later
can be typically used to construct estimates σ̂2

j for σ̂2
j so that |D̂ −D|∞ = b(ε) ≤ C

√
{log(p/ε)}/n∗

with probability 1−ε. Nonetheless, given the sampling cost structure, it is often the case that n∗ � n
and b(ε)�

√
(log p)/n.

We emphasize that the new use of the `∞-norm in the first order condition is precisely what drives
our new rates of convergence. In the settings we are concerned with, the rates of convergence are dom-
inated by the “crude” estimators D̂ of D. The impact of using D̂ instead of D is well controlled by
|(D̂−D)θ∗|∞ ≤ b(ε)|θ∗|∞ since D is diagonal. Previous estimators that rely on `1 or `2-regularization
terms would not be able to fully exploit this structure and would not be sharp if b(ε)�

√
(log p)/n.

Furthermore, the `∞-regularization allows us to achieve a convex formulation for the problem. We
view the use of the `∞-regularization as a new way to increase the adaptivity of an estimator that
can be of independent interest in other applications.

The paper is organized as follows. Section 2 contains the notation, main assumptions and some prelim-
inary lemmas needed to determine threshold constants in the algorithms. The definition and properties
of our first estimator are given in Section 3 whereas those of our second procedure can be found in
Section 4. Section 5 contains simulation results. Some auxiliary lemmas are relegated to an appendix.

2. Notation, assumptions, and preliminary lemmas

In this section, we introduce the assumptions which will be required to derive the rates of convergence
of the proposed estimators. One set of conditions pertains to the design matrix and the second to the
errors in the model. We also state preliminary lemmas related to the stochastic error terms. We start
by introducing some notation.

2.1. Notation

Let J ⊂ {1, . . . , p} be a set of integers. We denote by |J | the cardinality of J . For a vector θ =
(θ1, . . . , θp) in Rp, we denote by θJ the vector in Rp whose j-th component satisfies (θJ)j = θj if
j ∈ J , and (θJ)j = 0 otherwise. For γ > 0, the random variable η is said to be sub-gaussian with
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variance parameter γ2 (or shortly γ-sub-gaussian) if, for all t ∈ R,

E[exp(tη)] ≤ exp(γ2t2/2).

A random vector ζ ∈ Rp is said to be sub-gaussian with variance parameter γ2 if the inner products
(ζ, v) are γ-sub-gaussian for any v ∈ Rp with |v|2 = 1.

2.2. Design matrix

The performance of the estimators that we consider below is influenced by the properties of the Gram
matrix

Ψ =
1
n
XTX.

We will assume that:

(A1) The matrix X is deterministic.

In order to characterize the behavior of the design matrix, we set

m2 = max
j=1,...,p

1
n

n∑
i=1

X2
ij ,

where Xij are the elements of matrix X and we consider the sensitivity characteristics related to the
Gram matrix Ψ. For u > 0, define the cone

CJ(u) =
{

∆ ∈ Rp : |∆Jc |1 ≤ u|∆J |1
}
,

where J is a subset of {1, . . . , p}. For q ∈ [1,∞] and an integer s ∈ [1, p], the `q-sensitivity (cf. [5]) is
defined as follows:

κq(s, u) = min
J: |J|≤s

(
min

∆∈CJ (u): |∆|q=1
|Ψ∆|∞

)
.

Like in [5], we use here the sensitivities to derive the rates of convergence of estimators under sparsity.
Importantly, as shown in [5], the approach based on sensitivities is more general than that based
on the restricted eigenvalue or the coherence condition, see also [1, 6, 9]. In particular, under those
conditions, we have κq(s, u) ≥ c s−1/q for some constant c > 0, which implies the usual optimal bounds
for the errors.

2.3. Disturbances

Next we turn to the error W in the design and the error ξ in the regression equation. We will make
the following assumptions:

(A2) The elements of the random vector ξ are independent zero-mean sub-gaussian random variables
with variance parameter σ2.

(A3) The rows of the noise matrix W are independent zero-mean subgaussian random vectors with
variance parameter σ2

∗, and E[WijWik] = 0 for all 1 ≤ j < k ≤ p. Furthermore, W is independent
of ξ.
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2.4. Bounds on the stochastic error terms

We now state some useful lemmas from [1] and [9] that provide bounds to various stochastic error
terms that play a role in our analysis. We state them here because they introduce the thresholds δi, δ′i
that will be used in the definition of the estimators. In what follows, D is the diagonal matrix with
diagonal elements σ2

j , j = 1, . . . , p, and for a square matrix A, we denote by Diag{A} the matrix with
the same dimensions as A, the same diagonal elements, and all off-diagonal elements equal to zero.

Lemma 1. Let 0 < ε < 1 and assume (A1)-(A3). Then, with probability at least 1 − ε (for each
event), ∣∣ 1

nX
TW

∣∣
∞ ≤ δ1(ε),

∣∣ 1
nX

T ξ
∣∣
∞ ≤ δ2(ε),

∣∣ 1
nW

T ξ
∣∣
∞ ≤ δ3(ε),∣∣ 1

n (WTW −Diag{WTW})
∣∣
∞ ≤ δ4(ε),

∣∣ 1
nDiag{WTW} −D

∣∣
∞ ≤ δ5(ε),

where

δ1(ε) = σ∗

√
2m2 log(2p2/ε)

n
, δ2(ε) = σ

√
2m2 log(2p/ε)

n
,

δ3(ε) = δ5(ε) = $(ε, 2p), δ4(ε) = $(ε, p(p− 1)),

and for an integer N ,

$(ε,N) = max

(
γ0

√
2 log(N/ε)

n
,

2 log(N/ε)
t0n

)
,

where γ0, t0 are positive constants depending only on σ, σ∗.

Lemma 2. Let 0 < ε < 1, θ∗ ∈ Rp and assume (A1)-(A3). Then, with probability at least 1− ε,∣∣ 1
nX

TWθ∗
∣∣
∞ ≤ δ

′
1(ε)|θ∗|2,

where δ′1(ε) = σ∗

√
2m2 log(2p/ε)

n . In addition, with probability at least 1− ε,∣∣ 1
n (WTW −Diag{WTW})θ∗

∣∣
∞ ≤ δ

′
4(ε)|θ∗|2,

where

δ′4(ε) = max

(
γ2

√
2 log(2p/ε)

n
,

2 log(2p/ε)
t2n

)
,

and γ2, t2 are positive constants depending only on σ∗.

The proofs of Lemmas 1 and 2 can be found in [9] and [1] respectively.

3. {`1, `2, `∞}-MU selector

In this section, we define and analyze our first estimator. It can be seen as a compromise between the
MU selector (2) and the conic estimator (5) achieved thanks to an additional `∞-norm regularization.
In the setting that we consider now, the estimate D̂ is not available but the rows of the design error
matrix W are independent with mean 0, and its entries are uniformly bounded. Formally, in this
section we make the following assumption:

(A4) Almost surely, |W |∞ ≤ δ̄.
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Assumptions (A1)-(A4) imply the assumptions in [8]. However, they neither imply or are implied by
the assumptions in [9]. That is, it is an intermediary set of conditions relative to the original assump-
tions for the MU selector in [8] and to those for the compensated MU selector in [9]. Importantly, we
do not assume that there are some accurate estimators of σ2

j .

Similar to [8], consistent estimates require δ̄ → 0 as the sample size grows. The bound δ̄ does not
necessarily scale with p as δ̄ is not derived from (A3). Assumption (A4) is motivated from sampling
schemes where the precision with which the covariate Xij is measured can be controlled by the practi-
tioner to some degree and the technology allows |Zij −Xij | ≤ δ̄; in principle δ̄ could be made smaller
if more expensive measurements were performed. Our finite sample analysis keeps track of the de-
pendence of δ̄ explicitly allowing to capture its impact as a potential function of the sample size. A
simple illustrative example is when the Wij , i = 1, . . . , n, j = 1, . . . , p are independent zero-mean ran-
dom variables that are a.s. bounded by δ̄. Then the vector Wi is sub-gaussian with parameter σ̄2

∗ = δ̄2.

We consider the estimator θ̂ such that (θ̂, t̂, û) ∈ Rp × R+ × R+ is a solution of the following mini-
mization problem:

min
θ,t,u
{|θ|1 + λ2t+ λ∞u : (θ, t, u) ∈ Θ,

∣∣ 1
nZ

T (y − Zθ)
∣∣
∞ ≤ τ2t+ δ̄2u+ τ, |θ|2 ≤ t, |θ|∞ ≤ u}, (8)

where λ2 > 0 and λ∞ > 0 are tuning constants and we allow for (θ, t, u) ∈ Θ where Θ is a pre-specified
convex set that contains (θ∗, |θ∗|2, |θ∗|∞) and characterizes some prior knowledge (a trivial choice is
Θ = Rp × R+ × R+). This estimator θ̂ will be further referred to as the {`1, `2, `∞}-MU selector.

Remark 1 (Safeguard constraints). In order to further bound t and u, we can add constraints that
exploit that | · |q ≤ | · |1 for q ≥ 1. Therefore, the constraints

θ = θ+ − θ−, θ+ ≥ 0, θ− ≥ 0, w =
p∑
j=1

{θ+
j + θ−j }, u ≤ t, and t ≤ w

preserve the convexity of the optimization problem and can potentially yield additional performance.
We note that our theoretical results allow for such safeguard constraints to be included in the estima-
tion.

The estimator above attempts to mimic the conic estimator (5) without estimators σ̂2
j for σ2

j , j =
1, . . . , p. In order to make θ∗ feasible for (8), the contribution of the unknown term 1

nDiag(WTW )θ∗

needs to be bounded. This is precisely the role of the extra term δ̄2u in the constraint since |θ|∞ ≤ u
and | 1nDiag(WTW )|∞ ≤ δ̄2 almost surely. Note that the use of u and t instead of |θ|∞ and |θ|2 in the
constraint makes (8) a convex programming problem.

This new estimator exploits Assumptions (A2)-(A4) to achieve a rate of convergence that is interme-
diary relative to the rate of the MU selector and to that of the conic estimator.

Set τ2 = δ′1(ε) + δ′4(ε) and τ = δ2(ε) + δ3(ε). Note that τ2 and τ are of the order
√

(log p)/n. The next
theorem summarizes the performance of the estimator defined by solving (8).

Theorem 1. Let Assumptions (A1)-(A4) hold. Assume that the true parameter θ∗ is s-sparse and
(θ∗, |θ∗|2, |θ∗|∞) belongs to Θ. Let 0 < ε < 1, 1 ≤ q ≤ ∞ and 0 < λ2, λ∞ < ∞. Let θ̂ be the
{`1, `2, `∞}-MU selector. If κq(s, 1 +λ2 +λ∞) ≥ cs−1/q for some constant c > 0, then with probability
at least 1− 7ε,

|θ̂ − θ∗|q ≤ Cs1/q

√
log(c′p/ε)

n
(|θ∗|1 + 1) + Cs1/q δ̄2|θ∗|1, (9)
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for some constants C > 0 and c′ > 0 (here we set s1/∞ = 1).
If in addition, (1+λ2 +λ∞){δ̄2λ−1

∞ +λ−1
2

√
log(p/ε)/n} ≤ c1κ1(s, 1+λ2 +λ∞) for some small enough

constant c1, then, with the same probability, we have

|θ̂ − θ∗|q ≤ Cs1/q

√
log(c′p/ε)

n
(|θ∗|2 + 1) + Cs1/q δ̄2|θ∗|∞ (10)

for some constants C > 0 and c′ > 0.

Proof. We proceed in three steps. Step 1 establishes initial relations and the fact that ∆ = θ̂ − θ∗
belongs to CJ(1 + λ2 + λ∞). Step 2 provides a bound on | 1nX

TX∆|∞. Step 3 establishes the rates of
convergence stated in the theorem. We work on the event of probability at least 1− 7ε where all the
inequalities in Lemmas 1 and 2 are realized. Throughout the proof, J = {j : θ∗j 6= 0}. We often make
use of the inequalities |θ|∞ ≤ |θ|2 ≤ |θ|1, ∀θ ∈ Rp.

Step 1. We first note that

| 1nZ
T (y − Zθ∗)|∞ ≤ | 1nZ

T ξ|∞ + | 1nZ
TWθ∗|∞

≤ δ2(ε) + δ3(ε) + | 1nZ
TWθ∗|∞

(11)

with probability at least 1 − 2ε by Lemma 1. Next, Lemma 2 and the fact that, due to (1), we have
| 1nDiag(WTW )|∞ ≤ δ̄2 imply

| 1nZ
TWθ∗|∞ ≤ | 1nX

TWθ∗|∞ + | 1nW
TWθ∗|∞

≤ | 1nX
TWθ∗|∞ + | 1n (WTW −Diag(WTW ))θ∗|∞ + | 1nDiag(WTW )θ∗|∞

≤ δ′1(ε)|θ∗|2 + δ′4(ε)|θ∗|2 + δ̄2|θ∗|∞.
(12)

Combining (11) and (12) we get that (θ, t, u) = (θ∗, |θ∗|2, |θ∗|∞) is feasible for the problem (8), so that

|θ̂|1 + λ2|θ̂|2 + λ∞|θ̂|∞ ≤ |θ̂|1 + λ2t̂+ λ∞û ≤ |θ∗|1 + λ2|θ∗|2 + λ∞|θ∗|∞. (13)

From (13) we easily obtain
|θ̂Jc |1 ≤ (1 + λ2 + λ∞)|θ̂J − θ∗|1.

Arguments similar to (13) lead to

t̂− |θ∗|2 ≤
|∆|1 + λ∞|∆|∞

λ2
≤ (1 + λ∞)

λ2
|∆|1 and û− |θ∗|∞ ≤

|∆|1 + λ2|∆|2
λ∞

≤ (1 + λ2)
λ∞

|∆|1.

Step 2. We have

| 1nX
TX∆|∞ ≤ | 1nZ

TX∆|∞ + | 1nW
TX∆|∞

≤ | 1nZ
TZ∆|∞ + | 1nZ

TW∆|∞ + | 1nW
TX∆|∞

≤ | 1nZ
T (y − Zθ∗)|∞ + | 1nZ

T (y − Zθ̂)|∞ + | 1nZ
TW∆|∞ + | 1nW

TX∆|∞.

The results of Step 1 and of Lemmas 1 and 2 imply the following bounds

| 1nZ
T (y − Zθ∗)|∞ ≤ τ2|θ∗|2 + δ̄2|θ∗|∞ + τ,

| 1nZ
T (y − Zθ̂)|∞ ≤ τ2t̂+ δ̄2û+ τ

≤ τ2|θ∗|2 + δ̄2|θ∗|∞ + τ + {τ2(1 + λ∞)/λ2 + δ̄2(1 + λ2)/λ∞}|∆|1,
| 1nW

TX∆|∞ ≤ δ1|∆|1,
| 1nZ

TW∆|∞ ≤ | 1nX
TW∆|∞ + | 1n (WTW −Diag(WTW ))∆|∞ + | 1nDiag(WTW )∆|∞

≤ δ1|∆|1 + δ4|∆|1 + δ̄2|∆|∞.

These relations and the inequality |∆|∞ ≤ |∆|1 yield that

| 1nX
TX∆|∞ ≤ 2τ2|θ∗|2 + 2δ̄2|θ∗|∞+ 2τ + (δ̄2{(1 + λ2 + λ∞)/λ∞}+ {(1 + λ∞)/λ2}τ2 + 2δ1 + δ4)|∆|1.
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Step 3. Next note that |∆|1 ≤ |θ̂|1 + |θ∗|1 ≤ (2 + λ2 + λ∞)|θ∗|1. Letting

η = δ̄2{(1 + λ2 + λ∞)/λ∞}+ {(1 + λ∞)/λ2}τ2 + 2δ1 + δ4,

we have
| 1nX

TX∆|∞ ≤ 2τ + (2τ2 + 2δ̄2 + (2 + λ2 + λ∞)η)|θ∗|1.

By the definition of the `q-sensitivity,

| 1nX
TX∆|∞ ≥ κq(s, 1 + λ2 + λ∞)|∆|q.

Now, (9) follows by combining the last two displays and the assumption on κq(s, 1 + λ2 + λ∞). To
prove (10), we use that

| 1nX
TX∆|∞ ≤ 2τ2|θ∗|2 + 2δ̄2|θ∗|∞ + 2τ + η|∆|1

≤ 2τ2|θ∗|2 + 2δ̄2|θ∗|∞ + 2τ + η| 1nX
TX∆|∞/κ1(s, 1 + λ2 + λ∞).

Under the condition that (1+λ2 +λ∞){δ̄2λ−1
∞ +λ−1

2

√
log(p/ε)/n} ≤ c1κ1(s, 1+λ2 +λ∞) for c1 small

enough, by definition of η we have η/κ1(s, 1 + λ2 + λ∞) ≤ c′ for some 0 < c′ < 1. Thus, we have

| 1nX
TX∆|∞ ≤ c

(
τ2|θ∗|2 + δ̄2|θ∗|∞ + τ

)
,

which implies (10) in view of the definition of the `q-sensitivity and the assumption on κq(s, 1 + λ2 +
λ∞). �

Remark 2 (Relaxation of Assumption (A4)). We have stated Theorem 1 under Assumption (A4) to
make the analysis streamlined with the previous literature, see [8]. However, inspection of the proofs
shows that a more general condition can be used. The results of Theorem 1 hold with probability at
least 1− 7ε− ε′ if instead of Assumption (A4) we require W to satisfy:∣∣ 1

nDiag(WTW )
∣∣
∞ ≤ δ̄

2,

with probability at least 1− ε′, for some ε′ > 0.

Compared to [8], the results in Theorem 1 exploit the zero-mean condition on the noise matrix W . As
in [8], the estimator is consistent as δ̄ goes to zero. In order to compare the rates in Theorem 1 with
those for the MU selector, we recall that, by Theorem 3 in [8], the MU selector satisfies

|θ̂MU − θ∗|q ≤ Cs1/q

√
log(c′p/ε)

n
+ Cs1/q(δ̄ + δ̄2)|θ∗|1

with probability close to 1. While both rates share some terms, a term of the order s1/q δ̄|θ∗|1 appears
only in the rate for the MU selector whereas a term of the order s1/q

√
log(c′p/ε)/n|θ∗|1 appears only

for the {`1, `2, `∞}-MU selector. Therefore, the improvement upon the original MU selector can be
achieved when δ̄ �

√
log(c′p/ε)/n.

If the additional condition in the second part of Theorem 1 holds, we can use the bound (10) and a
better accuracy is achieved by the proposed estimator. In particular, |θ∗|1 no longer drives the rate of
convergence. The impact of δ̄ on this rate is in the term

s1/q δ̄2|θ∗|∞ instead of s1/q(δ̄ + δ̄2)|θ∗|1 (14)

for the MU selector. Furthermore, the rate of convergence of the new estimator also has a term of
the form |θ∗|2s1/q

√
log(c′p/ε)/n. Thus the new estimator obtains a better accuracy by exploiting

additional assumptions together with the fact that δ̄|θ∗|1 is of larger order than
√

log(c′p/ε)/n|θ∗|2,
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which holds whenever δ̄ �
√

log(c′p/ε)/n. Finally, the impact of going from the `1-norm to the `2-
or `∞-norms is not negligible neither. For example, if all non-zero components of θ∗ are equal to the
same constant a > 0, we have |θ∗|1 = sa while |θ∗|2 = a

√
s and |θ∗|∞ = a. Then, the comparison in

(14) is reduces to comparing
s1/q δ̄2 versus s1+1/q(δ̄ + δ̄2),

featuring the maximum contrast between the two rates.

Finally, note that the conic estimator θ̂Conic studied in [1] can be also applied under the assumptions
of this section. Indeed, our setting can be embedded into that of [1] with D̂ being the identically zero
p× p matrix, which means that we have an estimator of each σ2

j with an error bounded by b = δ̄2.
The results in [1] assume b ≤ C

√
(log p)/n but they do not apply to designs with b of larger order.

Comparing the bound (10) in Theorem 1 to the bound (6) yields that the conic estimator θ̂Conic

achieves the same rate as our new estimator whenever δ̄ is smaller than or of the order {(log p)/n}1/4.
However, there is no bound for θ̂Conic available when δ̄ � {(log p)/n}1/4.

4. {`1, `2, `∞}-compensated MU selector

In this section, we discuss a modification of the conic estimator proposed in [1]. We introduce an
additional `∞-norm regularization to better adapt to the estimation error in D̂. As discussed in the
introduction, this is beneficial when the rate of convergence of D̂ to D is slower than

√
(log p)/n,

which is not covered by [1]. Here we consider the same assumptions as in [1] with the only difference
that now we allow for any rate of convergence of D̂ to D. Thus, we replace Assumption (A4) by the
following assumption on the availability of estimators for σ2

j , j = 1, . . . , p:

(A5) There exist statistics σ̂2
j and positive numbers b(ε) such that for any 0 < ε < 1, we have

P
(

max
j=1,...,p

|σ̂2
j − σ2

j | ≥ b(ε)
)
≤ ε.

In what follows, we fix ε and set

τ2 = δ′1(ε) + δ′4(ε), τ = δ2(ε) + δ3(ε) and τ∞ = b(ε) + δ5(ε).

We are particularly interested in cases where τ∞ is of larger order than
√

(log p)/n. To define the
estimator, we consider the following minimization problem:

min
θ,t,u
{|θ|1 +λ2t+λ∞u : (θ, t, u) ∈ Θ,

∣∣ 1
nZ

T (y−Zθ)+D̂θ
∣∣
∞ ≤ τ2t+τ∞u+τ, |θ|2 ≤ t, |θ|∞ ≤ u}, (15)

where λ2 > 0 and λ∞ > 0 are tuning constants and we allow for (θ, t, u) ∈ Θ where Θ is a pre-specified
convex set that contains (θ∗, |θ∗|2, |θ∗|∞), see Remark 1.

Let (θ̂, t̂, û) be a solution of (15). We take θ̂ as estimator of θ∗ and we call it the {`1, `2, `∞}-
compensated MU selector. The rates of convergence of this estimator are given in the next theorem.

Theorem 2. Let Assumptions (A1)-(A3), and (A5) hold. Assume that the true parameter θ∗ is
s-sparse and (θ∗, |θ∗|2, |θ∗|∞) belongs to Θ. Let 0 < ε < 1 and 1 ≤ q ≤ ∞. Suppose also that

κq(s, 1 + λ2 + λ∞) ≥ cs−1/q (16)
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for some constant c > 0 and that

s ≤ c1 min
{

λ2λ∞
(1 + λ2 + λ∞)3

√
n

log(p/ε)
,

λ∞
(1 + λ2 + λ∞)2

1
b(ε)

}
, (17)

for some small enough constant c1 > 0. Let θ̂ be the {`1, `2, `∞}-compensated MU selector. Then, with
probability at least 1− 8ε,

|θ̂ − θ∗|q ≤ Cs1/q

√
log(c′p/ε)

n
(|θ∗|2 + 1) + Cs1/qb(ε)|θ∗|∞, (18)

for some constants C > 0 and c′ > 0 (here we set s1/∞ = 1).
Under the same assumptions with q = 1, the prediction error admits the following bound, with the
same probability:

1
n

∣∣X(θ̂ − θ∗)
∣∣2
2
≤ Cs

log(c′p/ε)
n

(|θ∗|2 + 1)2 + Csb2(ε)|θ∗|2∞ . (19)

Proof. Throughout the proof, we assume that we are on the event of probability at least 1− 8ε where
the results of Lemmas 3, 4 and 5 in the Appendix hold. Property (26) in Lemma 4 implies that
∆ = θ̂ − θ∗ is in the cone CJ(1 + λ2 + λ∞), where J = {j : θ∗j 6= 0}. Therefore, by the definition of
the `q-sensitivity and Lemma 5, we have

κq(s, 1 + λ2 + λ∞)|∆|q ≤
∣∣ 1
nX

TX∆
∣∣
∞ ≤ µ0 + µ1|θ̂ − θ∗|1 + µ2|θ∗|2 + µ∞|θ∗|∞,

where µ0 and µ2 are of the order
√

1
n log(c′p/ε), and µ1 and µ∞ are of the order

√
1
n log(c′p/ε)+ b(ε).

Using again (26), we have

|∆|1 = |∆Jc |1 + |∆J |1 ≤ (2 + λ2 + λ∞)|∆J |1
≤ (2 + λ2 + λ∞)s1−1/q|∆J |q ≤ (2 + λ2 + λ∞)s1−1/q|∆|q.

It follows that

(κq(s, 1 + λ2 + λ∞)− (2 + λ2 + λ∞)µ1s
1−1/q)|∆|q ≤ µ0 + µ2|θ∗|2 + µ∞|θ∗|∞,

which implies, by (16),

(c− (2 + λ2 + λ∞)µ1s)s−1/q|∆|q ≤ µ0 + µ2|θ∗|2 + µ∞|θ∗|∞,

in view of the assumptions of the theorem. Recall that

µ1 ≤ a
√

log(c′p/ε)/n{1 + (1 + λ2)λ−1
∞ + (1 + λ∞)λ−1

2 }+ ab(ε){1 + λ∞ + λ2}/λ∞,

where a > 0 is a constant. Therefore, since we assume (17), and {1 + (1 + λ2)λ−1
∞ + (1 + λ∞)λ−1

2 } ≤
(1 + λ∞ + λ2)2/(λ∞λ2), relation (18) follows if c1 is small enough.
To prove (19), write first

1
n |X∆|22 ≤

1
n

∣∣XTX∆
∣∣
∞ |∆|1.

Next remark that from (18) with q = 1, we have

|∆|1 ≤ Cs
√

log(c′p/ε)
n

(|θ∗|2 + 1) + Csb(ε)|θ∗|∞.

Lemma 5 in the Appendix yields∣∣ 1
nX

TX∆
∣∣
∞ ≤ µ0 + µ1|θ̂ − θ∗|1 + µ2|θ∗|2 + µ∞|θ∗|∞. (20)
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Combining the above bound for |∆|1 and (20), we get

1
n |X∆|22 ≤ C

s log(c′p/ε)
n

(|θ∗|2 + 1)2 + Csb2(ε)|θ∗|2∞

since µ1s ≤ C ′′ for some constant C ′′ > 0 under our assumptions. This proves (19). �

Theorem 2 generalizes the results in [1] to estimators D̂ that converge with rate b(ε) of larger order
than

√
(log p)/n. At the same time, if b(ε) is smaller than

√
(log p)/n, both the conic estimator θ̂Conic

of [1] and the {`1, `2, `∞}-compensated MU selector achieve the same rate of convergence.

For such designs that condition (17) does not hold, the conclusions of Theorem 2 need to be slightly
modified as shown in the next theorem.

Theorem 3. Let Assumptions (A1)-(A3), and (A5) hold. Assume that the true parameter θ∗ is
s-sparse and (θ∗, |θ∗|2, |θ∗|∞) belongs to Θ. Let 0 < ε < 1 and 1 ≤ q ≤ ∞. Let θ̂ be the {`1, `2, `∞}-
compensated MU selector. Then, with probability at least 1− 8ε,

|θ̂ − θ∗|q ≤ C

κq(s, 1 + λ2 + λ∞)

{√
log(c′p/ε)

n
(|θ∗|1 + 1) + b(ε)|θ∗|1

}
,

for some constants C > 0 and c′ > 0.

Proof. Again, throughout the proof, we assume that we are on the event of probability at least 1− 8ε
where the results of Lemmas 3, 4 and 5 in the Appendix hold. Property (26) in Lemma 4 implies that
∆ = θ̂ − θ∗ is in the cone CJ(1 + λ2 + λ∞), where J = {j : θ∗j 6= 0}. Since

|∆|1 ≤ |θ̂|1 + |θ∗|1 ≤ {|θ∗|1 + λ2|θ∗|2 + λ∞|θ∗|∞}+ |θ∗|1 ≤ (2 + λ2 + λ∞)|θ∗|1,

we obtain∣∣ 1
nX

TX∆
∣∣
∞ ≤ µ0 + µ1|∆|1 + µ2|θ∗|2 + µ∞|θ∗|∞ ≤ µ0 + (µ1 + µ2 + µ∞)(2 + λ2 + λ∞)|θ∗|1.

Therefore
κq(s, 1 + λ2 + λ∞)|∆|q ≤ µ0 + (µ1 + µ2 + µ∞)(2 + λ2 + λ∞)|θ∗|1,

which implies the result.
�

The result in Theorem 3 parallels the result for generic designs for the conic estimator [1]. Indeed, this
result states that the additional `∞-regularization does not worsen the guarantees obtained in [1]. For
generic designs, our bounds do not achieve the previous dependence on |θ∗|2 and |θ∗|∞ and, instead,
the final dependence is on |θ∗|1.

5. Simulations

This section aims to illustrate the finite sample performance of the proposed estimators. We will focus
on the {`1, `2, `∞}-compensated MU selector only. We consider the following data generating process

yi = xTi θ
∗ + ξi, zi = xi + wi.

Here, ξi, wi, xi are independent and ξi ∼ N (0, σ2), wi ∼ N (0, σ2
∗Ip×p), xi ∼ N (0,Σ) where Ip×p is the

identity matrix and Σ is p× p matrix with elements Σij = ρ|i−j|. We consider the vector of unknown
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parameters θ∗ = 1.25(1, 1, 1, 1, 1, 0, . . . , 0)T . We set σ = 0.128, σ2
∗ = 0.5, and ρ = 0.25. We assume

that σ is known and we set D̂ = D = σ2
∗Ip×p. The penalty parameters are set as τ = σ

√
log(p/ε)/n,

b(ε) = σ2
∗
√

log(p/ε)/n, for ε = 0.05.

In our first set of simulations, we illustrate the finite sample performance of the proposed estimator
by setting λ2 = λ∞ ∈ {0.25, 0.5, 0.75, 1}. The {`1, `2, `∞}-compensated MU selector will be denoted
by {`1, `2, `∞}. We compare its performance with other recent proposals in the literature, namely the
conic estimator (denoted as Conic (λ2) for λ2 = 0.25, 0.5, 0.75, 1), and the Compensated MU selector
(cMU). We also provide the (infeasible) Dantzig selector which knows X (Dantzig X) and the Dantzig
selector that uses only Z (Dantzig Z) as additional benchmark for the performance.

n = 300 and p = 10 n = 300 and p = 50
Method (λ2 = λ∞) Bias RMSE PR Bias RMSE PR
Dantzig X 0.0265486 0.0321528 0.0349530 0.0301636 0.0349420 0.0386731
Dantzig Z 0.5892699 0.6218173 0.7118256 0.6032541 0.7246990 0.7526539
cMU 0.6002801 0.6526144 0.7375240 0.6684987 0.7074681 0.8148175
Conic (.25) 1.9261733 1.9567318 2.3165088 1.9952936 2.0190105 2.4085353
{`1, `2, `∞}(.25) 1.7922416 1.8349666 2.1453927 1.9035308 1.9325326 2.2875796
Conic (.5) 0.3184083 0.4161670 0.4326569 0.3668194 0.4395404 0.4781078
{`1, `2, `∞} (.5) 0.2137347 0.3505829 0.3382480 0.3489980 0.4491837 0.4605638
Conic (.75) 0.3179691 0.4158134 0.4322128 0.3668194 0.4395404 0.4781078
{`1, `2, `∞} (.75) 0.2085334 0.3459298 0.3330411 0.2699453 0.3786945 0.3896168
Conic (1) 0.3179691 0.4158134 0.4322128 0.3661721 0.4390614 0.4773173
{`1, `2, `∞} (1) 0.2078373 0.3455287 0.3324356 0.2483137 0.3691060 0.3736929

Table 1
Simulation results for 100 replications. For each estimator we provide average bias (Bias), average root-mean squared

error (RMSE), and average prediction risk (PR).

n = 300 and p = 100 n = 300 and p = 300
Method (λ2 = λ∞) Bias RMSE PR Bias RMSE PR
Dantzig X 0.0317776 0.0366155 0.0403419 0.0344617 0.0387848 0.0436396
Dantzig Z 0.6039890 0.8364059 0.7910512 0.6334052 1.0775665 0.8824695
cMU 0.6908240 0.7359536 0.8472447 0.7228791 0.7653174 0.8843476
Conic (.25) 2.0196204 2.0428152 2.4429977 2.0833543 2.0985979 2.5281871
{`1, `2, `∞}(.25) 1.9363225 1.9646153 2.3321286 2.0016163 2.0247679 2.4181903
Conic (.5) 0.5032353 0.6479385 0.6390150 0.6809176 0.8886359 0.8367831
{`1, `2, `∞} (.5) 0.4170439 0.5207218 0.5436218 0.4694103 0.5507253 0.5975351
Conic (.75) 0.3849631 0.4699933 0.5082582 0.4195124 0.4964321 0.5428568
{`1, `2, `∞} (.75) 0.3250997 0.4312186 0.4512656 0.3869566 0.4747343 0.5104562
Conic(1) 0.3811186 0.4673239 0.5043246 0.4047078 0.4846393 0.5271225
{`1, `2, `∞} (1) 0.2907918 0.4155573 0.4242000 0.3573025 0.4569624 0.4819208

Table 2
Simulation results for 100 replications. For each estimator we provide average bias (Bias), average root-mean squared

error (RMSE), and average prediction risk (PR).

Tables 1 and 2 provide the performance of the proposed estimator when λ2 = λ∞ and the perfor-
mance of various benchmarks. As discussed in the literature, ignoring the error-in-variables issue can
lead to worse performance as seen from the performance of Dantzig Z compared to the (infeasible)
Dantzig X. The conic compensated estimator performes better than the compensated MU selector
(cMU) when λ2 ∈ {0.5, 0.75, 1}. The comparison of the proposed estimator and the conic estimator
is easier to establish as we can parametrize them by λ2 (as we set λ2 = λ∞). In this case the conic
estimator penalizes more aggressively the uncertainty of not knowing σ2

j . In essentially all cases1 the
proposed estimator yields improvements. The introduction of `∞-norm regularization seems to allevi-
ate regularization bias. Nonetheless, when setting λ2 = 0.25 both the conic estimator and the proposed

1The conic compensated estimator performes slightly better only with respect to RMSE in the case of λ2 = 0.5. For
all other parameters and metrics, the proposed estimator performed slightly better or substantially better.
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estimator fail in the experiment. This failure occurs by not having enough penalty to control t− |θ|2
and u− |θ|∞ which leads to a large right hand side τ2t+ τ∞u+ τ in the constraint∣∣ 1

nZ
T (y − Zθ) + D̂θ

∣∣
∞ ≤ τ2t+ τ∞u+ τ

in (15) and similarly the right hand side τ2t+ τ in (5). In turn, this leads to substantial regularization
bias and therefore underfitting. In fact, detailed inspection of estimators in that case reveals that
coefficients are very close to zero for both conic and the proposed estimator.

In the second set of simulations, we explore the performance of the proposed estimator for the case
λ2 6= λ∞. Moreover, we also study a modified estimator that contains safeguard constraints. These
constraints aim to mitigate the problem discussed above. The safeguard constraints are described in
Remark 1. We denote by {`1, `2, `∞}∗ the estimator computed with the safeguards.

We consider the same design as before and we explore some combinations of values (λ2, λ∞) ∈
{0.25, 0.5, 0.75, 1} × {0.25, 0.5, 0.75, 1} for both proposed estimators (with and without the safeguard
constraints).

n = 300 and p = 10 n = 300 and p = 50
Method (λ2, λ∞) Bias RMSE PR Bias RMSE PR
{`1, `2, `∞} (1,1) 0.2078373 0.3455287 0.3324356 0.2483137 0.3691060 0.3736929
{`1, `2, `∞}∗ (1,1) 0.2078373 0.3455287 0.3324356 0.2483137 0.3691060 0.3736929
{`1, `2, `∞} (1,.5) 0.2534465 0.3997941 0.3725479 0.5214272 0.7086267 0.6514348
{`1, `2, `∞}∗ (1,.5) 0.2392491 0.3623416 0.3569492 0.3980543 0.4729990 0.5112310
{`1, `2, `∞} (.5,1) 0.2077228 0.3455690 0.3322088 0.2448911 0.3690180 0.3723095
{`1, `2, `∞}∗ (.5,1) 0.2077228 0.3455690 0.3322088 0.2448911 0.3690180 0.3723095
{`1, `2, `∞} (.75,.75) 0.2085334 0.3459298 0.3330411 0.2699453 0.3786945 0.3896168
{`1, `2, `∞}∗ (.75,.75) 0.2085334 0.3459297 0.3330411 0.2699453 0.3786945 0.3896168
{`1, `2, `∞} (.25,1) 0.2078663 0.3458796 0.3322444 0.2439496 0.3684173 0.3715836
{`1, `2, `∞}∗ (.25,1) 0.2078663 0.3458796 0.3322444 0.2439496 0.3684173 0.3715836
{`1, `2, `∞} (.5,.5) 0.2137347 0.3505829 0.3382480 0.3489980 0.4491837 0.4605638
{`1, `2, `∞}∗ (.5,.5) 0.2137347 0.3505827 0.3382479 0.3382218 0.4225007 0.4490958
{`1, `2, `∞} (.25,.5) 0.2114159 0.3502938 0.3369809 0.3188151 0.4086438 0.4313163
{`1, `2, `∞}∗ (.25,.5) 0.2114159 0.3502938 0.3369809 0.3188151 0.4086438 0.4313163
{`1, `2, `∞} (.25,.25) 1.7922416 1.8349666 2.1453927 1.9035308 1.9325326 2.2875796
{`1, `2, `∞}∗ (.25,.25) 0.5477221 0.6050091 0.6780050 0.6151622 0.6574460 0.7535672

Table 3
Simulation results for 100 replications. For each estimator we provide average bias (Bias), average root-mean squared

error (RMSE), and average prediction risk (PR).

Tables 3 and 4 show the performance for different values of λ2 and λ∞. We note that these parameters
seem to have different impact on the finite sample performance even if λ2+λ∞ is kept constant. Impor-
tantly, we observe that the addition of safeguard constraints virtually always leads to improvements
although small (even zero sometimes) for most of the tested parameter values. In the case λ2 < λ∞
using safeguard constraints makes almost no difference and overall performance of both estimators is
better. In contrast, the estimators perform worse when λ2 > λ∞ and the safeguard constraints lead to
improvements. Finally, as expected, the safeguard constraints improve substantially the performance
when λ2 = λ∞ = 0.25. In that case, the performance becomes comparable to that of the cMU esti-
mator. Essentially, the safeguard constraints help to avoid severe underfitting. They are very helpful
when the performance is below of what can be achieved. Nonetheless, we recommend to keep them
in all cases as it does not impact negatively the estimator and the additional computational burden
seems minimal.

In our third set of simulations, we consider a situation with a “crude” estimator of D. The design
is the same as in our first set of simulations, however, in order to compute the estimator of D, we
have independent observations of (Xi, Zi), i = 1, . . . , n∗ where n∗ ≤ n. We consider p ∈ {50, 100} and
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n = 300 and p = 100 n = 300 and p = 300
Method (λ2, λ∞) Bias RMSE PR Bias RMSE PR
{`1, `2, `∞} (1,1) 0.2907918 0.4155573 0.4242000 0.3573025 0.4569624 0.4819208
{`1, `2, `∞}∗ (1,1) 0.2907918 0.4155573 0.4242000 0.3573084 0.4569653 0.4819268
{`1, `2, `∞} (1,.5) 0.6707248 0.8687948 0.8260765 1.0995021 1.2843061 1.3224733
{`1, `2, `∞}∗ (1,.5) 0.4713115 0.5469680 0.5998890 0.5813572 0.6440090 0.7214057
{`1, `2, `∞} (.5,1) 0.2813842 0.4123716 0.4183949 0.3434854 0.4501870 0.4705890
{`1, `2, `∞}∗ (.5,1) 0.2813842 0.4123716 0.4183949 0.3434113 0.4501763 0.4705578
{`1, `2, `∞} (.75,.75) 0.3250997 0.4312186 0.4512656 0.3869566 0.4747343 0.5104562
{`1, `2, `∞}∗ (.75,.75) 0.3250997 0.4312186 0.4512656 0.3869382 0.4747230 0.5104387
{`1, `2, `∞} (.25,1) 0.2791982 0.4113275 0.4166136 0.3392525 0.4482318 0.4674070
{`1, `2, `∞}∗ (.25,1) 0.2790174 0.4111578 0.4163974 0.3386830 0.4478506 0.4667958
{`1, `2, `∞} (.5,.5) 0.4170439 0.5207218 0.5436218 0.4694103 0.5507253 0.5975351
{`1, `2, `∞}∗ (.5,.5) 0.3977208 0.4819926 0.5218939 0.4590288 0.5311414 0.5863702
{`1, `2, `∞} (.25,.5) 0.3726889 0.4645454 0.4983916 0.4324230 0.5082528 0.5569916
{`1, `2, `∞}∗ (.25,.5) 0.3718829 0.4639374 0.497499 0.4357035 0.5115011 0.5608083
{`1, `2, `∞} (.25,.25) 1.9363225 1.9646153 2.3321286 2.0016163 2.0247679 2.4181903
{`1, `2, `∞}∗ (.25,.25) 0.6365329 0.6854681 0.7851421 0.6669880 0.7127657 0.8198798

Table 4
Simulation results for 100 replications. For each estimator we provide average bias (Bias), average root-mean squared

error (RMSE), and average prediction risk (PR).

n∗ = {100, 250, 500} and n = 500. Table 5 shows how the performance of the estimators change as
less precise estimates of D are used. For example, consider the average prediction risk (PR) for p = 50
as n∗ goes from 500 to 100 so that the quality of the estimator worsens. Table 5 shows that the cMU
deteriorates by 0.51 (from 1.23 to 0.72), the conic deteriorates by 0.41 (from 0.82 to 0.41), and the
proposed estimator deteriorates by 0.24 (from 0.55 to 0.31). Similarly when p = 100, we observe that
cMU deteriorates by 0.52, the conic deteriorates by 0.47, and the proposed estimator deteriorates by
0.35. In both cases the findings are aligned with the theoretical results that the {`1, `2, `∞}-based
estimator is less sensitive to the use of a crude estimator for D.

n = 500, n∗ = 100, p = 50 n = 500, n∗ = 100, p = 100
Method Bias RMSE PR Bias RMSE PR
cMU 1.0175038 1.0400870 1.2283635 1.0641008 1.0909776 1.2845535
Conic (1) 0.6660582 0.7467607 0.8159505 0.7490445 0.8519112 0.9150378
{`1, `2, `∞} (.5,1) 0.4275867 0.5005111 0.5477009 0.5451567 0.6207584 0.6824172

n = 500, n∗ = 250, p = 50 n = 500, n∗ = 250, p = 100
Method Bias RMSE PR Bias RMSE PR
cMU 0.7520123 0.7795984 0.9150986 0.7884387 0.8152334 0.9568734
Conic (1) 0.4173097 0.4716240 0.5327973 0.4446488 0.4962641 0.5623790
{`1, `2, `∞} (.5,1) 0.2615103 0.3503973 0.3697514 0.2847444 0.3699376 0.3937119

n = 500, n∗ = 500, p = 50 n = 500, n∗ = 500, p = 100
Method Bias RMSE PR Bias RMSE PR
cMU 0.5922077 0.6226468 0.7269638 0.6258117 0.6564809 0.7636137
Conic (1) 0.3137644 0.3762319 0.4162300 0.3391774 0.3977718 0.4393967
{`1, `2, `∞} (.5,1) 0.1966452 0.3024311 0.3091859 0.2219782 0.3219536 0.3296119

Table 5
Simulation results for 100 replications. For each estimator we provide average bias (Bias), average root-mean squared

error (RMSE), and average prediction risk (PR).

Appendix: Auxiliary lemmas

In what follows, we write for brevity δi = δi(ε), δ′i = δ′i(ε), and we set ∆ = θ̂ − θ∗, J = {j : θ∗j 6= 0}.

Lemma 3. Assume (A1)-(A3) and (A5). Then with probability at least 1 − 6ε, the pair (θ, t, u) =
(θ∗, |θ∗|2, |θ∗|∞) belongs to the feasible set of the minimization problem (15).
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Proof. First, note that ZT (y − Zθ∗) + nD̂θ∗ is equal to

−XTWθ∗ +XT ξ +WT ξ − (WTW −Diag{WTW})θ∗

− (Diag{WTW} − nD)θ∗ + n(D̂ −D)θ∗.

By definition of δi and b, with probability at least 1− 4ε, we have

| 1nX
T ξ|∞ + | 1nW

T ξ|∞ ≤ δ2 + δ3 (21)

|( 1
nDiag{WTW} −D)θ∗|∞ ≤ | 1nDiag{WTW} −D|∞|θ∗|∞ ≤ δ5|θ∗|∞ (22)

|(D̂ −D)θ∗|∞ ≤ b(ε)|θ∗|∞, (23)

where in (22) and (23) we have used that the considered matrices are diagonal. Also, by Lemma 2,
with probability at least 1− 2ε, we have

| 1nX
TWθ∗|∞ ≤ δ′1|θ∗|2 (24)

| 1n (WTW −Diag{WTW})θ∗|∞ ≤ δ′4|θ∗|2. (25)

Combining the decomposition of ZT (y − Zθ∗) + nD̂θ∗ together with (21)-(25), we find that∣∣ 1
nZ

T (y − Zθ∗) + D̂θ∗
∣∣
∞ ≤ τ2|θ

∗|2 + τ∞|θ∗|∞ + τ,

with probability at least 1− 6ε, which implies the lemma. �

Lemma 4. Let θ̂ be the {`1, `2, `∞}-compensated MU-selector. Assume (A1)-(A3) and (A5). Then
with probability at least 1− 6ε (on the same event as in Lemma 3), we have

|(θ̂ − θ∗)Jc |1 ≤ (1 + λ2 + λ∞)|(θ̂ − θ∗)J |1, (26)

t̂− |θ∗|2 ≤ {(1 + λ∞)/λ2}|θ̂ − θ∗|1 and û− |θ∗|∞ ≤ {(1 + λ2)/λ∞}|θ̂ − θ∗|1. (27)

Proof. Set ∆ = θ̂ − θ∗. On the event of Lemma 3, (θ∗, |θ∗|2, |θ∗|∞) belongs to the feasible set of the
minimization problem (5). Consequently,

|θ̂|1 + λ2|θ̂|2 + λ∞|θ̂|∞ ≤ |θ̂|1 + λ2t̂+ λ∞û ≤ |θ∗|1 + λ2|θ∗|2 + λ∞|θ∗|∞. (28)

This implies

|∆Jc |1 + λ2|∆Jc |2 + λ∞|∆Jc |∞ ≤ |∆J |1 + λ2|∆J |2 + λ∞|∆J |∞ ≤ (1 + λ2 + λ∞)|∆J |1,

and so
|∆Jc |1 ≤ (1 + λ2 + λ∞)|∆J |1.

and (26) follows. To prove (27), it suffices to note that (28) implies

λ2t̂ ≤ |θ∗|1 − |θ̂|1 + λ2|θ∗|2 + λ∞|θ∗|∞ − λ∞û ≤ |θ̂ − θ∗|1 + λ2|θ∗|2 + λ∞|θ̂ − θ∗|∞

and the result follows since |θ̂|∞ ≤ û and |θ̂ − θ∗|∞ ≤ |θ̂ − θ∗|1. Similar calculations yield the bound
for û. �

Lemma 5. Let θ̂ be the {`1, `2, `∞}-compensated MU-selector. Assume (A1)-(A3) and (A5). Then,
on a subset of the event of Lemma 3 having probability at least 1− 8ε, we have∣∣ 1

nX
TX(θ̂ − θ∗)

∣∣
∞ ≤ µ0 + µ1|θ̂ − θ∗|1 + µ2|θ∗|2 + µ∞|θ∗|∞,

where µ0 = τ + δ2 + δ3, µ1 = 2δ1 + δ4 + δ5 + b(ε) + {(1 +λ∞)/λ2}τ2 + {(1 +λ2)/λ∞}τ∞, µ2 = τ2 + δ′1,
µ∞ = τ∞ + b(ε) + δ′4 + δ5.
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Note that µ0 and µ2 are of the order
√

1
n log(c′p/ε), and µ1 and µ∞ are of the order

√
1
n log(c′p/ε) +

b(ε).

Proof. Throughout the proof, we assume that we are on the event of probability at least 1 − 6ε
where inequalities (21) – (25) hold and (θ∗, |θ∗|2, |θ∗|∞) belongs to the feasible set of the minimization
problem (15). We have

| 1nX
TX∆|∞ ≤| 1nZ

T (Zθ̂ − y)− D̂θ̂|∞ + |( 1
nZ

TW −D)θ̂|∞
+|(D̂ −D)θ̂|∞ + | 1nZ

T ξ|∞ + | 1nW
TX∆|∞.

Using the fact that (θ̂, t̂, û) belongs to the feasible set of the minimization problem (5) together with
(27), we obtain

| 1nZ
T (Zθ̂ − y)− D̂θ̂|∞ ≤ τ2t̂+ τ∞û+ τ

≤ {(1 + λ∞)/λ2}τ2|∆|1 + τ2|θ∗|2 + {(1 + λ2)/λ∞}τ∞|∆|1 + τ∞|θ∗|∞ + τ.

Using that θ̂ = θ∗ + ∆, Assumption (A5) together with (23) yields that

| 1nX
TX∆|∞ ≤{(1 + λ∞)/λ2}τ2|∆|1 + τ2|θ∗|2 + {(1 + λ2)/λ∞}τ∞|∆|1 + τ∞|θ∗|∞ + τ

+ |( 1
nZ

TW −D)θ̂|∞ + |(D̂ −D)θ̂|∞ + | 1nZ
T ξ|∞ + | 1nW

TX∆|∞
≤{(1 + λ∞)/λ2}τ2|∆|1 + τ2|θ∗|2 + {(1 + λ2)/λ∞}τ∞|∆|1 + τ∞|θ∗|∞ + τ

+ |( 1
nZ

TW −D)θ̂|∞ + b(ε)|θ∗|∞ + b(ε)|∆|1 + δ2 + δ3 + | 1nW
TX∆|∞.

Now remark that |( 1
nZ

TW −D)θ̂|∞ ≤ |( 1
nZ

TW −D)∆|∞ + |( 1
nZ

TW −D)θ∗|∞. In view of Lemma 2
and (22), on the initial event of probability at least 1− 6ε,

|( 1
nZ

TW −D)θ∗|∞
≤| 1n (WTW −Diag{WTW})θ∗|∞ + |( 1

nDiag{WTW} −D)θ∗|∞ + | 1nX
TWθ∗|∞

≤(δ′4 + δ5)|θ∗|∞ + δ′1|θ∗|2. (29)

Moreover, we have

|( 1
nZ

TW −D)∆|∞ ≤ | 1nZ
TW −D|∞|∆|1

≤
(
| 1n (WTW −Diag{WTW})|∞ + | 1nDiag{WTW} −D|∞ + | 1nX

TW |∞
)
|∆|1.

Therefore,
|( 1
nZ

TW −D)∆|∞ ≤ (δ1 + δ4 + δ5)|∆|1, (30)

with probability at least 1− 8ε (since we intersect the initial event of probability at least 1− 6ε with
the event of probability at least 1− 2ε where the bounds δ1 and δ4 hold for the corresponding terms).
Next, on the same event of probability at least 1− 8ε,

| 1nW
TX∆|∞ ≤ | 1nX

TW |∞|∆|1 ≤ δ1|∆|1. (31)

To complete the proof, it suffices to plug (29) – (31) in the last inequality for | 1nX
TX∆|∞ and to

obtain

| 1nX
TX∆|∞ ≤[2δ1 + δ4 + δ5 + b(ε) + {(1 + λ∞)/λ2}τ2 + {(1 + λ2)/λ∞}τ∞]|∆|1

+ {τ2 + δ′1}|θ∗|2 + {τ∞ + b(ε) + δ′4 + δ5}|θ∗|∞ + τ + δ2 + δ3.

�
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