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Abstract

We derive non-asymptotic bounds for the minimax risk of variable selection under

expected Hamming loss in the Gaussian mean model in R
d for classes of s-sparse vectors

separated from 0 by a constant a > 0. In some cases, we get exact expressions for the non-

asymptotic minimax risk as a function of d, s, a and find explicitly the minimax selectors.

Analogous results are obtained for the probability of wrong recovery of the sparsity pattern.

As corollaries, we derive necessary and sufficient conditions for such asymptotic properties

as almost full recovery and exact recovery. Moreover, we propose data-driven selectors

that provide almost full and exact recovery adaptive to the parameters of the classes.

Keywords: adaptive variable selection, almost full recovery, exact recovery, Hamming loss,

minimax selectors, nonasymptotic minimax selection bounds, phase transitions

1 Introduction

In recent years, the problem of variable selection in high-dimensional regression models has

been extensively studied from the theoretical and computational viewpoints. In making effec-

tive high-dimensional inference, sparsity plays a key role. With regard to variable selection in

sparse high-dimensional regression, the Lasso, Dantzig selector, other penalized techniques as

well as marginal regression were analyzed in detail; see, for example, [11, 18, 15, 10, 14, 16,

12, 5, 7] and the references cited therein. Several other recent papers deal with sparse variable

selection in nonparametric regression; see, for example, [9, 2, 4, 6, 3].

In this paper, we study the problem of variable selection in the Gaussian sequence model

Xj = θj + σξj, j = 1, . . . , d, (1)
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where ξ1, . . . , ξd are i.i.d. standard Gaussian random variables, σ > 0 is the noise level, and

θ = (θ1, . . . , θd) is an unknown vector of parameters to be estimated. We assume that θ is

(s, a)-sparse, which is understood in the sense that θ belongs to one of the following sets:

Θd(s, a) =
{
θ ∈ R

d : there exists a set S ⊆ {1, . . . , d} with s elements

such that |θj| ≥ a for all j ∈ S, and θj = 0 for all j 6∈ S}

or

Θ+
d (s, a) =

{
θ ∈ R

d : there exists a set S ⊆ {1, . . . , d} with s elements

such that θj ≥ a for all j ∈ S, and θj = 0 for all j 6∈ S} .

Here, a > 0 and s ∈ {1, . . . , d} are given constants.

We study the problem of selecting the relevant components of θ, that is, of estimating the

vector

η = η(θ) = (I(θj 6= 0))j=1,...,d,

where I(·) is the indicator function. As estimators of η, we consider any measurable functions

η̂ = η̂(X1, . . . ,Xn) of (X1, . . . ,Xn) taking values in {0, 1}d. Such estimators will be called

selectors. We characterize the loss of a selector η̂ as an estimator of η by the Hamming

distance between η̂ and η, that is, by the number of positions at which η̂ and η differ:

|η̂ − η| ,
d∑

j=1

|η̂j − ηj| =
d∑

j=1

I(η̂j 6= ηj).

Here, η̂j and ηj = ηj(θ) are the jth components of η̂ and η = η(θ), respectively. The expected

Hamming loss of a selector η̂ is defined as Eθ|η̂ − η|, where Eθ denotes the expectation with

respect to the distribution Pθ of (X1, . . . ,Xn) satisfying (1). Another well-known risk measure

is the probability of wrong recovery Pθ(Ŝ 6= S(θ)), where Ŝ = {j : η̂j = 1} and S(θ) = {j :

ηj(θ) = 1}. It can be viewed as the Hamming distance with an indicator loss and is related to

the expected Hamming loss as follows:

Pθ(Ŝ 6= S(θ)) = Pθ(|η̂ − η| ≥ 1) ≤ Eθ|η̂ − η|. (2)

In view of the last inequality, bounding the expected Hamming loss provides a stronger result

than bounding the probability of wrong recovery.

Most of the literature on variable selection in high dimensions focuses on the recovery of the

sparsity pattern, that is, on constructing selectors such that the probability Pθ(Ŝ 6= S(θ)) is

close to 0 in some asymptotic sense (see, for example, [11, 18, 15, 10, 14, 16, 12]). These papers

consider high-dimensional linear regression settings with deterministic or random covariates.

In particular, for the sequence model (1), one gets that if a > Cσ
√
log d for some C > 0 large
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enough, then there exist selectors such that Pθ(Ŝ 6= S(θ)) tends to 0, while this is not the case

if a < cσ
√
log d for some c > 0 small enough. More insight into variable selection was provided

in [5, 7] by considering a Hamming risk close to the one we have defined above. Assuming that

s ∼ d1−β for some β ∈ (0, 1), the papers [5, 7] establish an asymptotic in d “phase diagram”

that partitions the parameter space into three regions called the exact recovery, almost full

recovery, and no recovery regions. This is done in a Bayesian setup for the linear regression

model with i.i.d. Gaussian covariates and random θ. Note also that in [5, 7] the knowledge of

β is required to construct the selectors, so that in this sense the methods are not adaptive. The

selectors are of the form η̂j = I(|Xj | ≥ t) with threshold t = τ(β)σ
√
log d for some function

τ(·) > 0. More recently, these asymptotic results were extended to a combined minimax -

Bayes Hamming risk on a certain class of vectors θ in [8].

The present paper makes further steps in the analysis of variable selection with a Hamming

loss initiated in [5, 7]. Unlike [5, 7], we study the sequence model (1) rather than Gaussian

regression and analyze the behavior of the minimax risk rather than that of the Bayes risk with

a specific prior. Furthermore, we consider not only s ∼ d1−β but general s and derive non-

asymptotic results that are valid for any sample size. Remarkably, we get an exact expression

for the non-asymptotic minimax risk and find explicitly the minimax selectors. Finally, we

construct data-driven selectors that are simultaneously adaptive to the parameters a and s.

Specifically, we consider the minimax risk

inf
η̃
sup
θ∈Θ

1

s
Eθ|η̃ − η| (3)

for Θ = Θd(s, a) and Θ = Θ+
d (s, a), where inf η̃ denotes the infimum over all selectors η̃. For the

class Θ = Θ+
d (s, a) we find the exact value of the minimax risk and derive a minimax selector

for any fixed d, s, a > 0 such that s < d, whereas for Θ = Θd(s, a) we propose a selector

attaining the minimax risk up to the factor 2. Interestingly, the thresholds that correspond to

the minimax optimal selectors do not have the classical form Aσ
√
log d for some A > 0; the

optimal threshold is a function of a and s. Analogous minimax results are obtained for the

risk measured by the probability of wrong recovery Pθ(Ŝ 6= S(θ)). In Section 3, as asymptotic

corollaries of these results, we establish sharp conditions under which exact and almost full

recovery are achievable. Section 4 is devoted to the construction of adaptive selectors that

achieve almost full and exact recovery without the knowledge of the parameters a and s.

Finally, note that quite recently several papers have studied the expected Hamming loss

in other problems of variable selection. Asymptotic behavior of the minimax risk analogous

to (3) for classes Θ different from the sparsity classes that we consider here was analyzed in

[3] and without the normalizing factor 1/s in [6]. Oracle inequalities for Hamming risks in

the problem of multiple classification under sparsity constraints are established in [13]. The

paper [17] introduces an asymptotically minimax approach based on the Hamming loss in the
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problem of community detection in networks.

2 Non-asymptotic minimax selectors

In what follows, we assume that s < d. We first consider minimax variable selection for the

class Θd(s, a). For this class, we will use a selector η̂ with the components

η̂j = I(|Xj | ≥ t), j = 1, . . . , d, (4)

where the threshold is defined by

t =
a

2
+

σ2

a
log

(
d

s
− 1

)
. (5)

Set

Ψ(d, s, a) =

(
d

s
− 1

)
Φ

(
− a

2σ
− σ

a
log
(d
s
− 1
))

+Φ

(
−
( a

2σ
− σ

a
log
(d
s
− 1
))

+

)
,

where Φ(·) denotes the standard Gaussian cumulative distribution function, and x+ = max(x, 0).

Theorem 2.1. For any a > 0 and s < d the selector η̂ in (4) with the threshold t defined in

(5) satisfies

sup
θ∈Θd(s,a)

1

s
Eθ|η̂ − η| ≤ 2Ψ(d, s, a). (6)

Proof. We have, for any t > 0,

|η̂ − η| =
∑

j:ηj=0

η̂j +
∑

j:ηj=1

(1− η̂j)

=
∑

j:ηj=0

I(|σξj | ≥ t) +
∑

j:ηj=1

I(|σξj + θj | < t).

Now, for any θ ∈ Θd(s, a) and any t > 0,

E (I (|σξj + θj| < t)) ≤ P(|θj | − |σξj | < t) ≤ P(|ξ| > (a− t)/σ) = P(|ξ| > ((a− t)+)/σ),

where ξ denotes a standard Gaussian random variable. Thus, for any θ ∈ Θd(s, a),

1

s
Eθ|η̂ − η| ≤

(
d

s
− 1

)
P(|ξ| ≥ t/σ) +P(|ξ| > ((a− t)+)/σ) = 2Ψ(d, s, a). (7)

Note that the inequality here is valid for any t > 0, not necessarily for t defined in (5).

We now turn to the class Θ+
d (s, a). Consider a selector η̂+ with the components

η̂+j = I(Xj ≥ t), j = 1, . . . , d. (8)
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Set

Ψ+(d, s, a) =

(
d

s
− 1

)
Φ

(
− a

2σ
− σ

a
log
(d
s
− 1
))

+Φ

(
− a

2σ
+

σ

a
log
(d
s
− 1
))

.

Note that

Ψ(d, s, a) ≤ Ψ+(d, s, a). (9)

Theorem 2.2. For any a > 0 and s < d the selector η̂+ in (8) with the threshold t defined in

(5) satisfies

sup
θ∈Θ+

d
(s,a)

1

s
Eθ|η̂+ − η| ≤ Ψ+(d, s, a). (10)

Proof. Arguing as in the proof of Theorem 2.1, we obtain

|η̂+ − η| =
∑

j:ηj=0

I(ξj ≥ t) +
∑

j:ηj=1

I(σξj + θj < t),

and E (I (σξj + θj < t)) ≤ P(ξ < (t− a)/σ). Thus, for any θ ∈ Θ+
d (s, a),

1

s
Eθ|η̂+ − η| ≤

(
d

s
− 1

)
P(ξ ≥ t/σ) +P(ξ < (t− a)/σ) = Ψ+(d, s, a).

We now establish the lower bound on the minimax risk showing that the upper bound in

Theorem 2.2 is sharp.

Theorem 2.3. For any a > 0 and s < d we have

inf
η̃

sup
θ∈Θ+

d
(s,a)

1

s
Eθ|η̃ − η| ≥ Ψ+(d, s, a),

where inf η̃ denotes the infimum over all selectors η̃.

Proof. An estimator η̄ = (η̄1, . . . , η̄d) of η (not necessarily a selector) will be called separable if

η̄j depends only on Xj for all j = 1, . . . , d. First note that instead of considering all selectors,

it suffices to prove the lower bound for the class of separable estimators η̄ with components

η̄j ∈ [0, 1]. Indeed, for any selector η̃, using Jensen’s inequality, we obtain

Eθ|η̃ − η| =
d∑

j=1

Eθ|η̃j − ηj | =
d∑

j=1

Ej,θjE{θi,i 6=j}|η̃j − ηj| ≥
d∑

j=1

Ej,θj |η̄j − ηj|

where η̄j = E{θi,i 6=j}(η̃j), and the symbols Ej,θj and E{θi,i 6=j} stand for the expectations over

the distributions of Xj and (X1, . . . ,Xj−1,Xj+1, . . . ,Xd), respectively. Clearly, η̄j depends

only on Xj and takes on values in [0, 1]. Thus,

inf
η̃

sup
θ∈Θ+

d
(s,a)

1

s
Eθ|η̃ − η| ≥ inf

η̄∈T[0,1]
sup

θ∈Θ+
d
(s,a)

1

s

d∑

j=1

Ej,θj |η̄j − ηj | (11)
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where T[0,1] is the class of all separable estimators η̄ with components η̄j ∈ [0, 1].

Let Θ′ be the set of all θ in Θ+
d (s, a) such that s components θj of θ are equal to a and the

remaining d− s components are 0. Denote by |Θ′| =
(d
s

)
the cardinality of Θ′. Then, for any

η̄ ∈ T[0,1] we have

sup
θ∈Θ+

d
(s,a)

1

s

d∑

j=1

Ej,θj |η̄j − ηj | ≥ 1

s|Θ′|
∑

θ∈Θ′

d∑

j=1

Ej,θj |η̄j − ηj | (12)

=
1

s|Θ′|

d∑

j=1

( ∑

θ∈Θ′:θj=0

Ej,0(η̄j) +
∑

θ∈Θ′:θj=a

Ej,a(1− η̄j)
)

=
1

s

d∑

j=1

((
1− s

d

)
Ej,0(η̄j) +

s

d
Ej,a(1− η̄j)

)

≥ d

s
inf

T∈[0,1]

((
1− s

d

)
E0(T ) +

s

d
Ea(1− T )

)
,

where we have used that |{θ ∈ Θ′ : θj = a}| =
(d−1
s−1

)
= s|Θ′|/d. In the last line of display (12),

Eu is understood as the expectation with respect to the distribution of X = u + σξ, where

ξ ∼ N (0, 1) and infT∈[0,1] denotes the infimum over all [0, 1]-valued statistics T (X). Set

L∗ = inf
T∈[0,1]

((
1− s

d

)
E0(T ) +

s

d
Ea(1− T )

)

By the Bayesian version of the Neyman-Pearson lemma, the infimum here is attained for

T = T ∗ given by

T ∗(X) = I

(
(s/d)ϕσ(X − a)

(1− s/d)ϕσ(X)
> 1

)

where ϕσ(·) is the density of an N (0, σ2) distribution. Thus,

L∗ =
(
1− s

d

)
P

(
ϕσ(σξ − a)

ϕσ(σξ)
>

d

s
− 1

)
+

s

d
P

(
ϕσ(σξ)

ϕσ(σξ + a)
≤ d

s
− 1

)
.

Combining this with (11) and (12), we get

inf
η̃

sup
θ∈Θ+

d
(s,a)

1

s
Eθ|η̃ − η|

≥
(
d

s
− 1

)
P

(
exp

(aξ
σ

− a2

2σ2

)
>

d

s
− 1

)
+P

(
exp

(aξ
σ

+
a2

2σ2

)
≤ d

s
− 1

)

=

(
d

s
− 1

)
P

(
ξ >

a

2σ
+

σ

a
log
(d
s
− 1
))

+P

(
ξ ≤ − a

2σ
+

σ

a
log
(d
s
− 1
))

= Ψ+(d, s, a).

As a straightforward corollary of Theorems 2.2 and 2.3, we obtain that the estimator η̂+

is minimax in the exact sense for the class Θ+
d (s, a) and the minimax risk satisfies

inf
η̃

sup
θ∈Θ+

d
(s,a)

1

s
Eθ|η̃ − η| = sup

θ∈Θ+
d
(s,a)

1

s
Eθ|η̂+ − η| = Ψ+(d, s, a).
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Remarkably, this holds under no assumptions on d, s, a except for, of course, some minimal

conditions under which the problem ever makes sense: a > 0 and s < d. Analogous non-

asymptotic minimax result is valid for the class

Θ−
d (s, a) =

{
θ ∈ R

d : there exists a set S ⊆ {1, . . . , d} with s elements

such that θj ≤ −a for all j ∈ S, and θj = 0 for all j 6∈ S} .

We omit the details here. Finally, the following corollary is an immediate consequence of

Theorems 2.1, 2.3, and inequality (9).

Corollary 2.1. For any a > 0 and s < d the selector η̂ in (4) with the threshold t defined in

(5) satisfies

sup
θ∈Θd(s,a)

1

s
Eθ|η̂ − η| ≤ 2 inf

η̃
sup

θ∈Θd(s,a)

1

s
Eθ|η̃ − η|. (13)

Thus, the risk of the thresholding estimator (4) cannot be greater than the minimax risk

over the class Θd(s, a) multiplied by 2.

Remark 2.1. From the proof of Theorem 2.3 we see that, for each j, the minimax optimal

selector η̂+j coincides with the Bayes test of the null hypothesis H0 : θj = 0 against the

alternative H0 : θj = a with prior probabilities 1− s/d and s/d, respectively.

We now show that the above non-asymptotic minimax results can be extended to the

probability of wrong recovery. For any selector η̃, we denote by Sη̃ the selected set of indices:

Sη̃ = {j : η̃j = 1}. Let T be the set of all separable selectors η̃, that is, the set of selectors η̃

such that the jth component η̃j depends only on Xj for all j = 1, . . . , d.

Theorem 2.4. For any a > 0 and s < d the selectors η̂ in (4) and η̂+ in (8) with the threshold

t defined in (5) satisfy

sup
θ∈Θ+

d
(s,a)

Pθ(Sη̂+ 6= S(θ)) ≤ sΨ+(d, s, a), (14)

and

sup
θ∈Θd(s,a)

Pθ(Sη̂ 6= S(θ)) ≤ 2sΨ(d, s, a). (15)

Furthermore,

inf
η̃∈T

sup
θ∈Θ+

d
(s,a)

Pθ(Sη̃ 6= S(θ)) ≥ sΨ+(d, s, a)

1 + sΨ+(d, s, a)
. (16)

Proof. The upper bounds (14) and (15) follow immediately from (2) and Theorems 2.1 and 2.2.

We now prove the lower bound (16). To this end, first note that for any θ ∈ Θ+
d (s, a) and any

η̃ ∈ T we have

Pθ(Sη̃ 6= S(θ)) = Pθ(∪d
j=1{η̃j 6= ηj}) = 1−

d∏

j=1

pj(θ)

7



where pj(θ) , Pθ(η̃j = ηj). Hence, for any η̃ ∈ T ,

sup
θ∈Θ+

d
(s,a)

Pθ(Sη̃ 6= S(θ)) ≥ max
θ∈Θ′

Pθ(Sη̃ 6= S(θ)) = 1− p∗ (17)

where Θ′ is the subset of Θ+
d (s, a) defined in the proof of Theorem 2.3, and p∗ = minθ∈Θ′

∏d
j=1 pj(θ).

Next, for any selector η̃ we have Pθ(Sη̃ 6= S(θ)) ≥ Pθ(|η̃ − η| = 1). Therefore,

sup
θ∈Θ+

d
(s,a)

Pθ(Sη̃ 6= S(θ)) ≥ 1

|Θ′|
∑

θ∈Θ′

Pθ(|η̃ − η| = 1). (18)

Here, Pθ(|η̃ − η| = 1) = Pθ(∪d
j=1Bj) with the random events Bj = {|η̃j − ηj | = 1, and η̃i =

ηi, ∀ i 6= j}. Since the events Bj are disjoint, for any η̃ ∈ T we get

1

|Θ′|
∑

θ∈Θ′

Pθ(|η̃ − η| = 1) =
1

|Θ′|
∑

θ∈Θ′

d∑

j=1

Pθ(Bj)

=
1

|Θ′|

d∑

j=1

( ∑

θ∈Θ′:θj=0

Pj,0(η̃j = 1)
∏

i 6=j

pi(θ) +
∑

θ∈Θ′:θj=a

Pj,a(η̃j = 0)
∏

i 6=j

pi(θ)
)

≥ p∗
|Θ′|

d∑

j=1

( ∑

θ∈Θ′:θj=0

Pj,0(η̃j = 1) +
∑

θ∈Θ′:θj=a

Pj,a(η̃j = 0)
)

=
p∗
|Θ′|

d∑

j=1

( ∑

θ∈Θ′:θj=0

Ej,0(η̃j) +
∑

θ∈Θ′:θj=a

Ej,a(1− η̃j)
)

(19)

where Pj,u denotes the distribution of Xj when θj = u. We now bound the right-hand side

of (19) by following the argument from the last three lines of (12) to the end of the proof of

Theorem 2.3. Applying this argument yields that, for any η̃ ∈ T ,

1

|Θ′|
∑

θ∈Θ′

Pθ(|η̃ − η| = 1) ≥ p∗dL∗ ≥ p∗sΨ+(d, s, a). (20)

Combining (17), (18), and (20), we find that, for any η̃ ∈ T ,

sup
θ∈Θ+

d
(s,a)

Pθ(Sη̃ 6= S(θ)) ≥ min
0≤p∗≤1

max{1− p∗, p∗sΨ+(d, s, a)} =
sΨ+(d, s, a)

1 + sΨ+(d, s, a)
.

Although Theorem 2.4 does not provide the exact minimax solution, it implies sharp

asymptotic minimaxity. Indeed, an interesting case is when the minimax risk in Theorem 2.4

goes to 0 as d → ∞. Assuming that s and a depend on d in some way, this corresponds to

sΨ+(d, s, a) → 0. In this natural asymptotic setup, the upper and lower bounds of Theorem 2.4

for the class Θ+
d (s, a) are sharp. We discuss this issue in more detail in the next section, cf.

Theorem 3.5.
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Remark 2.2. In papers [5, 7, 8], a different Hamming loss defined in terms of the vectors of

signs is used. In our setting, this would mean considering not |η̂ − η| but the following loss:
∑d

j=1 I(sign(θ̂j) 6= sign(θj)), where θ̂j is an estimator of θj and sign(x) = I(x > 0)− I(x < 0).

Theorems of this section are easily adapted to such a loss, but in this case the corresponding

expressions for the non-asymptotic risk contain additional terms and we do not obtain exact

minimax solutions as above. On the other hand, these additional terms are smaller than

Ψ(d, s, a) and Ψ+(d, s, a), and in the asymptotic analysis, such as the one performed in the

next two sections, can often be neglected. Thus, in many cases, one gets the same asymptotic

results for both losses. We do not discuss this issue in more detail here.

3 Asymptotic analysis. Phase transitions

In this section, we conduct the asymptotic analysis of the problem of variable selection. The

results are derived as corollaries of the minimax bounds of Section 2. We will assume that

d → ∞ and that parameters a = ad and s = sd depend on d.

The first two asymptotic properties we study here are exact recovery and almost full re-

covery. We use this terminology following [5, 7] but we define these properties in a different

way, as asymptotic minimax properties for classes of vectors θ. The papers [5, 7] considered

a Bayesian setup with random θ and studied a linear regression model with i.i.d. Gaussian

regressors rather than the sequence model (1).

The study of exact recovery and almost full recovery will be done here only for the classes

Θd(sd, ad). The corresponding results for the classes Θ+
d (sd, ad) or Θ

−
d (sd, ad) are completely

analogous. We do not state them here for the sake of brevity.

Definition 3.1. Let (Θd(sd, ad))d≥1 be a sequence of classes of sparse vectors.

• We say that exact recovery is possible for (Θd(sd, ad))d≥1 if there exists a selector η̂

such that

lim
d→∞

sup
θ∈Θd(sd,ad)

Eθ|η̂ − η| = 0. (21)

In this case, we say that η̂ achieves exact recovery.

• We say that almost full recovery is possible for (Θd(sd, ad))d≥1 if there exists a

selector η̂ such that

lim
d→∞

sup
θ∈Θd(sd,ad)

1

sd
Eθ|η̂ − η| = 0. (22)

In this case, we say that η̂ achieves almost full recovery.

9



It is of interest to characterize the sequences (sd, ad)d≥1, for which exact recovery and

almost full recovery are possible. To describe the impossibility of exact or almost full recovery,

we need the following definition.

Definition 3.2. Let (Θd(sd, ad))d≥1 be a sequence of classes of sparse vectors.

• We say that exact recovery is impossible for (Θd(sd, ad))d≥1 if

lim inf
d→∞

inf
η̃

sup
θ∈Θd(sd,ad)

Eθ|η̃ − η| > 0, (23)

• We say that almost full recovery is impossible for (Θd(sd, ad))d≥1 if

lim inf
d→∞

inf
η̃

sup
θ∈Θd(sd,ad)

1

sd
Eθ|η̃ − η| > 0, (24)

where inf η̃ denotes the infimum over all selectors.

The following general characterization theorem is a straightforward corollary of the results

of Section 2.

Theorem 3.1. (i) Almost full recovery is possible for (Θd(sd, ad))d≥1 if and only if

Ψ+(d, sd, ad) → 0 as d → ∞. (25)

In this case, the selector η̂ defined in (4) with threshold (5) achieves almost full recovery.

(ii) Exact recovery is possible for (Θd(sd, ad))d≥1 if and only if

sdΨ+(d, sd, ad) → 0 as d → ∞. (26)

In this case, the selector η̂ defined in (4) with threshold (5) achieves exact recovery.

Although this theorem gives a complete solution to the problem, conditions (25) and (26)

are not quite explicit. Intuitively, we would like to get a “phase transition” values a∗d such

that exact (or almost full) recovery is possible for ad greater than a∗d and is impossible for ad

smaller than a∗d. Our aim now is to find such “phase transition” values. We first do it in the

almost full recovery framework.

The following bounds for the tails of Gaussian distribution will be useful:
√

2

π

e−y2/2

y +
√

y2 + 4
≤ 1√

2π

∫ ∞

y
e−u2/2du ≤

√
2

π

e−y2/2

y +
√

y2 + 8/π
, ∀y > 0. (27)

These bounds are an immediate consequence of formula 7.1.13. in [1] with x = y/
√
2.

Furthermore, we will need some non-asymptotic bounds for the expected Hamming loss

that will play a key role in the subsequent asymptotic analysis. They are given in the next

theorem.
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Theorem 3.2. Assume that s < d/2.

(i) If

a2 ≥ σ2
(
2 log((d− s)/s) +W

)
for some W > 0, (28)

then the selector η̂ defined in (4) with threshold (5) satisfies

sup
θ∈Θd(s,a)

Eθ|η̂ − η| ≤ (2 +
√
2π)sΦ(−∆), (29)

where ∆ is defined by

∆ =
W

2
√

2 log((d− s)/s) +W
. (30)

(ii) If a > 0 is such that

a2 ≤ σ2
(
2 log((d− s)/s) +W

)
for some W > 0, (31)

then

inf
η̃

sup
θ∈Θd(s,a)

Eθ|η̃ − η| ≥ sΦ(−∆), (32)

where the infimum is taken over all selectors η̃ and ∆ > 0 is defined in (30).

Proof. (i) In the proof of Theorem 2.1, we have obtained that

sup
θ∈Θd(s,a)

1

s
Eθ|η̂ − η| ≤ 2

(
d

s
− 1

)
Φ(−t/σ) + 2Φ(−(a− t)+/σ), (33)

where t = a
2 + σ2

a log
(
d
s − 1

)
is the threshold (5). Since a2 ≥ 2σ2 log(d/s − 1) we get that

a ≥ t and that t > a/2, which is equivalent to t > a − t. Furthermore,
(
d
s − 1

)
e−t2/(2σ2) =

e−(a−t)2/(2σ2). These remarks and (27) imply that

(
d

s
− 1

)
Φ(−t/σ) ≤

√
2

π

exp(−(a− t)2/(2σ2))

(a− t)/σ +
√

(a− t)2/σ2 + 8/π

≤ exp(−(a− t)2/(2σ2))

(a− t)/σ +
√

(a− t)2/σ2 + 4

≤
√

π

2
Φ

(
−a− t

σ

)
.

Combining this with (33) we get

sup
θ∈Θd(s,a)

1

s
Eθ|η̂ − η| ≤ (2 +

√
2π)Φ

(
−a− t

σ

)
.

Now, to prove (29) it remains to note that under assumption (28),

a− t

σ
=

a

2σ
− σ

a
log

(
d

s
− 1

)
=

a2 − 2σ2 log((d− s)/s)

2aσ
≥ ∆.

11



Indeed, assumption (28) states that a ≥ a0 , σ
(
2 log((d − s)/s) + W

)1/2
, and the function

a 7→
(
a2 − 2σ2 log((d− s)/s)

)
/a is monotonically increasing in a > 0. On the other hand,

(
a20 − 2σ2 log((d− s)/s)

)
/(2a0σ) = ∆. (34)

(ii) We now prove (32). By Theorem 2.3,

inf
η̃

sup
θ∈Θd(s,a)

1

s
Eθ|η̃ − η| ≥ Ψ+(d, s, a) ≥ Φ

(
− a

2σ
+

σ

a
log
(d
s
− 1
))

.

Here,

− a

2σ
+

σ

a
log
(d
s
− 1
)
=

2σ2 log((d− s)/s)− a2

2σa
.

Observe that the function a 7→
(
2σ2 log((d− s)/s)− a2

)
/a is monotonically decreasing in

a > 0 and that assumption (31) states that a ≤ a0. In view of (34), the value of its minimum

for a ≤ a0 is equal to −∆. The bound (32) now follows by the monotonicity of Φ(·).

The next theorem is an easy consequence of Theorem 3.2. It describes a “phase transition”

for ad in the problem of almost full recovery.

Theorem 3.3. Assume that lim supd→∞ sd/d < 1/2.

(i) If, for all d large enough,

a2d ≥ σ2
(
2 log((d− sd)/sd) + Ad

√
2 log((d− sd)/sd)

)

for an arbitrary sequence Ad → ∞, as d → ∞, then the selector η̂ defined by (4) and (5)

achieves almost full recovery:

lim
d→∞

sup
θ∈Θd(sd,ad)

1

sd
Eθ|η̂ − η| = 0.

(ii) Moreover, if there exists A > 0 such that for all d large enough the reverse inequality

holds:

a2d ≤ σ2
(
2 log((d− sd)/sd) + A

√
2 log((d− sd)/sd)

)

then almost full recovery is impossible:

lim inf
d→∞

inf
η̃

sup
θ∈Θd(sd,ad)

1

sd
Eθ|η̃ − η| ≥ Φ

(
− A

2

)
> 0.

Here, inf η̃ is the infimum over all selectors η̃.

Proof. Assume without loss of generality that d is large enough to have (d − sd)/sd > 1. We

apply Theorem 3.2 with W = A
√

2 log((d− sd)/sd). Then,

∆2 =
A2
√

2 log((d− sd)/sd)

4
(√

2 log((d− sd)/sd) + A
) .

12



By assumption, there exists ν > 0 such that (2+ ν)sd ≤ d for all d large enough. Equivalently,

d/sd − 1 ≥ 1 + ν and therefore, using the monotonicity argument, we find

∆2 ≥ A2
√

2 log(1 + ν)√
2 log(1 + ν) + A

→ ∞ as A → ∞.

This and (29) imply part (i) of the theorem. Part (ii) follows from (32) by noticing that

∆2 ≤ supx>0
A2x

4(x+A) = A2/4 for any fixed A > 0.

Under the natural assumption that

d/sd → ∞ as d → ∞, (35)

Theorem 3.3 shows that the “phase transition” for almost full recovery occurs at the value

ad = a∗d, where

a∗d = σ
√

2 log((d − sd)/sd)
(
1 + o(1)

)
. (36)

Furthermore, Theorem 3.3 details the behavior of the o(1) term here.

We now state a corollary of Theorem 3.3 under simplified assumptions.

Corollary 3.1. Assume that (35) holds and set ad = σ
√

2(1 + δ) log(d/sd) for some δ > 0.

Then the selector η̂ defined by (4) with threshold t = σ
√

2(1 + ε(δ)) log(d/sd) where ε(δ) > 0

depends only on δ, achieves almost full recovery.

In the particular case of sd = d1−β(1 + o(1)) for some β ∈ (0, 1), condition (35) is

satisfied. Then log(d/sd) = β(1 + o(1)) log d and it follows from Corollary 3.1 that for

ad = σ
√

2β(1 + δ) log d the selector with components η̂j = I
(
|Xj | > σ

√
2β(1 + ε) log d

)

achieves almost full recovery. This is in agreement with the findings of [5, 7] where an analo-

gous particular case of sd was considered for a different model and the Bayesian definition of

almost full recovery.

We now turn to the problem of exact recovery. First, notice that if lim supd→∞ sd < ∞
the properties of exact recovery and almost full recovery are equivalent. Therefore, it suffices

to consider exact recovery only when sd → ∞ as d → ∞. Under this assumption, a “phase

transition” for ad in the problem of exact recovery is described in the next theorem.

Theorem 3.4. Assume that sd → ∞ as d → ∞, and lim supd→∞ sd/d < 1/2.

(i) If

a2d ≥ σ2
(
2 log((d− sd)/sd) +Wd

)

for all d large enough, where the sequence Wd is such that

lim inf
d→∞

Wd

4
(
log(sd) +

√
log(sd) log(d− sd)

) ≥ 1, (37)
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then the selector η̂ defined by (4) and (5) achieves exact recovery:

lim
d→∞

sup
θ∈Θd(sd,ad)

Eθ|η̂ − η| = 0. (38)

(ii) If the complementary condition holds:

a2d ≤ σ2
(
2 log((d− sd)/sd) +Wd

)

for all d large enough, where the sequence Wd is such that

lim sup
d→∞

Wd

4
(
log(sd) +

√
log(sd) log(d− sd)

) < 1, (39)

then exact recovery is impossible, and moreover we have

lim
d→∞

inf
η̃

sup
θ∈Θd(sd,ad)

Eθ|η̃ − η| = ∞.

Here, inf η̃ is the infimum over all selectors η̃.

Proof. Throughout the proof, we assume without loss of generality that d is large enough to

have sd ≥ 2, and (d− sd)/sd > 1. Set W∗(s) , 4
(
log s+

√
log s log(d− s)

)
, and notice that

W∗(sd)

2
√

2 log((d− sd)/sd) +W∗(sd)
=
√

2 log sd, (40)

2 log((d− sd)/sd) +W∗(sd) = 2
(√

log(d− sd) +
√

log sd

)2
. (41)

If (37) holds, we have Wd ≥ W∗(sd) for all d large enough. By the monotonicity of the quantity

∆ defined in (30) with respect to W , this implies

∆d ,
Wd

2
√

2 log((d− sd)/sd) +Wd

≥ W∗(sd)

2
√

2 log((d− sd)/sd) +W∗(sd)
=
√

2 log sd . (42)

Now, by Theorem 3.2 and using (27) we may write

sup
θ∈Θd(sd,ad)

Eθ|η̂ − η| ≤ (2 +
√
2π)sdΦ (−∆d) ≤ 3sd min

{
1,

1

∆d

}
exp

(
−∆2

d

2

)

= 3min

{
1,

1

∆d

}
exp

(
−∆2

d − 2 log sd
2

)
. (43)

This and (42) imply that, for all d large enough,

sup
θ∈Θd(sd,ad)

Eθ|η̂ − η| ≤ 3min

{
1,

1√
2 log sd

}
.

Since sd → ∞, part (i) of the theorem follows.
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We now prove part (ii) of the theorem. It suffices to consider Wd > 0 for all d large enough

since for non-positive Wd almost full recovery is impossible and the result follows from part

(ii) of Theorem 3.3. If (39) holds, there exists A < 1 such that Wd ≤ AW∗(sd) for all d large

enough. By the monotonicity of the quantity ∆ defined in (30) with respect to W and in view

of equation (40), this implies

∆2
d − 2 log sd ≤ A2W 2

∗ (sd)

4(2 log((d− sd)/sd) + AW∗(sd))
− W 2

∗ (sd)

4(2 log((d− sd)/sd) +W∗(sd))

=
(A− 1)W 2

∗ (sd)(AW∗(sd) + 2(A+ 1) log((d − sd)/sd))

4(2 log((d− sd)/sd) + AW∗(sd))(2 log((d− sd)/sd) +W∗(sd))

≤ (A− 1)AW 2
∗ (sd)

4(2 log((d− sd)/sd) +W∗(sd))

=
2(A− 1)A

(
log sd +

√
log sd log(d− sd)

)2

(√
log(d− sd) +

√
log sd

)2 = 2(A− 1)A log sd, (44)

where we have used the fact that A < 1 and equations (40), (41). Next, by Theorem 3.2 and

using (27), we have

inf
η̃

sup
θ∈Θd(sd,ad)

Eθ|η̃ − η| ≥ sdΦ (−∆d) ≥
sd
4
min

{
1

2
,
1

∆d

}
exp

(
−∆2

d

2

)

=
1

4
min

{
1

2
,
1

∆d

}
exp

(
−∆2

d − 2 log sd
2

)
.

Combining this inequality with (44), we find that, for all d large enough,

inf
η̃

sup
θ∈Θd(sd,ad)

Eθ|η̃ − η| ≥ 1

4
min

{
1

2
,
1

∆d

}
exp ((1−A)A log sd) .

Since A < 1 and ∆d ≤ A
√
2 log sd by (44), the last expression tends to ∞ as sd → ∞. This

proves part (ii) of the theorem.

Some remarks are in order here. First of all, Theorem 3.4 and (41) show that the “phase

transition” for exact recovery occurs at the value ad = a∗d, where

a∗d = σ
(√

2 log(d− sd) +
√

2 log sd

)
. (45)

This is larger than the value a∗d for almost full recovery, cf. (36), which is intuitively quite

clear. The optimal threshold (5) corresponding to (45) has a simple form:

t∗d =
a∗d
2

+
σ2

a∗d
log

(
d

sd
− 1

)
= σ

√
2 log(d− sd).
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For example, if sd = d1−β(1+o(1)) for some β ∈ (0, 1), then a∗d ∼ σ(1+
√
1− β)

√
2 log d. In this

particular case, Theorem 3.4 implies that if ad = σ(1+
√
1− β)

√
2(1 + δ) log d for some δ > 0,

then exact recovery is possible and the selector with threshold t = σ
√

2(1 + ε) log d for some

ε > 0 achieves exact recovery. This is in agreement with the results of [5, 7] where an analogous

particular case of sd was considered for a different model and the Bayesian definition of exact

recovery. For our model, even a sharper result is true; namely, a simple universal threshold

t = σ
√
2 log d guarantees exact recovery adaptively in the parameters a and s. Intuitively, this

is suggested by the form of t∗d. The precise statement is given in Theorem 4.1 below.

Finally, we state an asymptotic corollary of Theorem 2.4 showing that the selector η̂ con-

sidered above is sharp in the asymptotically minimax sense with respect to the risk defined as

the probability of wrong recovery.

Theorem 3.5. Assume that exact recovery is possible for the classes (Θd(sd, ad))d≥1 and

(Θ+
d (sd, ad))d≥1, that is, condition (26) holds. Then, for the selectors η̂ and η̂+ defined by (4),

(8), and (5) we have

lim
d→∞

sup
θ∈Θ+

d
(sd,ad)

Pθ(Sη̂+ 6= S(θ))

sdΨ+(d, sd, ad)
= lim

d→∞
inf
η̃∈T

sup
θ∈Θ+

d
(sd,ad)

Pθ(Sη̃ 6= S(θ))

sdΨ+(d, sd, ad)
= 1,

and

lim sup
d→∞

sup
θ∈Θd(sd,ad)

Pθ(Sη̂ 6= S(θ))

sdΨ+(d, sd, ad)
≤ 2,

lim inf
d→∞

inf
η̃∈T

sup
θ∈Θd(sd,ad)

Pθ(Sη̃ 6= S(θ))

sdΨ+(d, sd, ad)
≥ 1.

Note that the threshold (5) depends on the parameters s and a, so that the selectors

considered in all the results above are not adaptive. In the next section, we propose adaptive

selectors that achieve almost full recovery and exact recovery without the knowledge of s and a.

4 Adaptive selectors

In this section, we consider the asymptotic setup as in Section 3 and construct the selectors

that provide almost full and exact recovery adaptively, that is, without the knowledge of a

and s.

As discussed in Section 3, the issue of adaptation for exact recovery is almost trivial.

Indeed, the expressions for minimal value a∗d, for which exact recovery is possible (cf. (45)),

and for the corresponding optimal threshold t∗d suggest that taking a selector with the universal

threshold t = σ
√
2 log d is enough to achieve exact recovery simultaneously for all values

(ad, sd), for which the exact recovery is possible. This point is formalized in the next theorem.
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Theorem 4.1. Assume that sd → ∞ as d → ∞ and that lim supd→∞ sd/d < 1/2. Let the

sequence (ad)d≥1 be above the phase transition level for exact recovery, that is, ad ≥ a∗d for all

d, where a∗d is defined in (45). Then the selector η̂ defined by (4) with threshold t = σ
√
2 log d

achieves exact recovery.

Proof. By (7), for any θ ∈ Θd(s, a), and any t > 0 we have

Eθ|η̂ − η| ≤ (d− s)P(|ξ| ≥ t/σ) + sP(|ξ| > (a− t)+/σ),

where ξ is a standard normal random variable. It follows that, for any ad ≥ a∗d, any θ ∈
Θd(sd, ad), and any t > 0,

Eθ|η̂ − η| ≤ dP(|ξ| ≥ t/σ) + sdP(|ξ| > (a∗d − t)+/σ).

It suffices to consider d ≥ 9, and 2 ≤ sd ≤ d/2. Then, using (45) we get

a∗d ≥ σ min
2≤x≤d/2

(√
2 log(d− x) +

√
2 log x

)
= 2σ

√
2 log(d/2) ≥ 2σ

√
log d.

Thus, (a∗d − t)+/σ ≥ (2 −
√
2)
√
log d for our choice of t. Using this inequality, (27) and (45),

we find

sup
θ∈Θd(sd,ad)

Eθ|η̂ − η| ≤ 1√
2 log d

+
sd exp

(
−
[√

log(d− sd) +
√

log(sd)−
√
log d

]2)

(2−
√
2)
√
log d

≤ 1√
2 log d

+
exp

(
2(
√
log d−

√
log(d− sd))

√
log(sd)

)

(2−
√
2)
√
log d

and the theorem follows since, under our assumptions, (
√
log d −

√
log(d− sd))

√
log(sd) ≤

(
√
log d−√

log d− log 2)
√

log(sd) = O(1) as d → ∞.

We now turn to the problem of adaption for almost full recovery. Ideally, we would like to

construct a selector that achieves almost full recovery for all sequences (sd, ad)d≥1 for which

almost full recovery is possible. We have seen in Section 3 that this includes a much broader

range of values than in case of exact recovery. Thus, using the adaptive selector of Theorem 4.1

for almost full recovery does not give a satisfactory result, and we have to take a different

approach.

Following Section 3, we will use the notation

a0(s,A) , σ
(
2 log((d− s)/s) + A

√
log((d− s)/s)

)1/2
.

As shown in Section 3, it makes sense to consider the classes Θd(s, a) only when a ≥ a0(s,A)

with some A > 0, since for other values of a almost full recovery is impossible. Only such

classes will be studied below.
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In the asymptotic setup of Section 3 we have used the assumption that d/sd → ∞ (the

sparsity assumption), which is now transformed into the condition

sd ∈ Sd , {1, 2, . . . , s∗d} where s∗d is an integer such that
d

s∗d
→ ∞ as d → ∞. (46)

Assuming sd to be known, we have shown in Section 3 that almost full recovery is achievable for

all a ≥ a0(sd, Ad), where Ad tends to infinity as d → ∞. The rate of growth of Ad was allowed

to be arbitrarily slow there, cf. Theorem 3.3. However, for adaptive estimation considered in

this section we will need the following mild assumption on the growth of Ad:

Ad ≥ c0

(
log log

(
d

s∗d
− 1

))1/2

, (47)

where c0 > 0 is an absolute constant. In what follows, we will assume that s∗d ≤ d/4, so that

the right-hand side of (47) is well-defined.

Consider a grid of points {g1, . . . , gM} on Sd where gj = 2j−1 and M is the maximal integer

such that gM ≤ s∗d. For each gm, m = 1, ...,M , we define a selector

η̂(gm) = (η̂j(gm))j=1,...,d , (I(|Xj | ≥ w(gm)))j=1,...,d ,

where

w(s) = σ

√
2 log

(d
s
− 1
)
.

Note that w(s) is monotonically decreasing. We now choose the “best” index m, for which gm

is near the true (but unknown) value of s, by the following data-driven procedure:

m̂ = min
{
m ∈ {2, . . . ,M} :

d∑

j=1

I
(
w(gk) ≤ |Xj | < w(gk−1)

)
≤ τgk for all k ≥ m

}
, (48)

where

τ =
(
log (d/s∗d − 1)

)− 1
7 .

Finally, we define an adaptive selector as

η̂ad = η̂(gm̂).

Theorem 4.2. Let c0 ≥ 4. Then the selector η̂ad adaptively achieves almost full recovery in

the following sense:

lim
d→∞

sup
θ∈Θd(sd,ad)

1

sd
Eθ|η̂ad − η| = 0 (49)

for all sequences (sd, ad)d≥1 such that (46) holds and ad ≥ a0(sd, Ad), where Ad satisfies (47).
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Proof. Throughout the proof, we will write for brevity sd = s, ad = a,Ad = A, and set σ = 1.

Since Θd(s, a) ⊆ Θd(s, a0(s,A)) for all a ≥ a0(s,A), it suffices to prove that

lim
d→∞

sup
θ∈Θd(s,a0(s,A))

1

s
Eθ|η̂ad − η| = 0. (50)

Here s ≤ s∗d and recall that throughout this section we assume that s∗d ≤ d/4; since we deal

with asymptotics as d/s∗d → ∞, the latter assumption is without loss of generality in the

current proof. We first decompose the risk as follows:

1

s
Eθ|η̂ad − η| = I1 + I2,

where

I1 =
1

s
Eθ (|η̂(gm̂)− η|I(m̂ ≤ m0)) ,

I2 =
1

s
Eθ (|η̂(gm̂)− η|I(m̂ ≥ m0 + 1)) ,

with m0 being the index of the minimal element of the grid gm0 that is greater than the true

underlying s: gm0−1 ≤ s < gm0 .

We now evaluate I1. First note that I1 = 0 if m0 = 1 since by definition m̂ ≥ 2. Thus,

consider the case m0 ≥ 2. Using the fact that η̂j(gm) is monotonically increasing in m and the

definition of m̂, we obtain that, on the event {m̂ ≤ m0},

|η̂(gm̂)− η̂(gm0)| ≤
m0∑

m=m̂+1

|η̂(gm)− η̂(gm−1)|

=

m0∑

m=m̂+1

d∑

j=1

(η̂j(gm)− η̂j(gm−1))

=

m0∑

m=m̂+1

d∑

j=1

I
(
w(gm) ≤ |Xj | < w(gm−1)

)

≤ τ

m0∑

m=m̂+1

gm ≤ τs

m0∑

m=2

2m−m0+1 ≤ 4τs,

where we have used that gm = 2m and the fact that, by the choice of m0, we have s ≥ gm0−1 =

gm0/2. Thus,

I1 ≤ 1

s
Eθ (|η̂(gm̂)− η̂(gm0)|I(m̂ ≤ m0)) +

1

s
Eθ|η̂(gm0)− η| (51)

≤ 4τ +
1

s
Eθ|η̂(gm0)− η|.

By (7), for any θ ∈ Θd(s, a0(s,A)) we have

1

s
Eθ|η̂(gm0)− η| ≤

(
d

s
− 1

)
P(|ξ| ≥ w(gm0 )) +P(|ξ| > (a0(s,A)− w(gm0))+) (52)
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where ξ is a standard Gaussian random variable. Using the bound on the Gaussian tail

probability and the fact that s ≥ gm0/2, we get

(
d

s
− 1

)
P(|ξ| ≥ w(gm0 )) ≤

d/s − 1

d/gm0 − 1

π−1/2

√
log(d/gm0 − 1)

(53)

≤ d− s

d− 2s

2π−1/2

√
log(d/s − 1)

≤ 3π−1/2

√
log(d/s∗d − 1)

.

To bound the second probability on the right-hand side of (52), we use the following lemma.

Lemma 4.1. Under the assumptions of Theorem 4.2, for any m ≥ m0 we have

P(|ξ| > (a0(s,A)− w(gm))+) ≤
(
log (d/s∗d − 1)

)− 1
2 . (54)

Combining (52), (53) and (54) with m = m0, we find

1

s
Eθ|η̂(gm0)− η| ≤ 3π−1/2 + 1√

log(d/s∗d − 1)
, (55)

which together with (51) leads to the bound

I1 ≤ 4τ +
3π−1/2 + 1√
log(d/s∗d − 1)

. (56)

We now turn to the evaluation of I2. We have

I2 =
1

s

M∑

m=m0+1

Eθ (|η̂(gm̂)− η|I(m̂ = m)) (57)

≤ 1

s

M∑

m=m0+1

(
Eθ

(
|η̂(gm)− η|2

) )1/2(
Pθ(m̂ = m)

)1/2

=
1

s

M∑

m=m0+1

(
Eθ|η̂(gm)− η|

)1/2(
Pθ(m̂ = m)

)1/2
.

By definition, the event {m̂ = m} occurs if and only if there exists some ℓ ≥ m such that
∑d

j=1 I(wℓ ≤ |Xj | < wℓ−1) > τgℓ , vℓ, where we set for brevity wℓ = w(gℓ). Thus,

Pθ(m̂ = m) ≤
M∑

ℓ=m

Pθ




d∑

j=1

I(wℓ ≤ |Xj | < wℓ−1) > vℓ


 . (58)

By Bernstein’s inequality, for any t > 0 we have

Pθ




d∑

j=1

I(wℓ ≤ |Xj | < wℓ−1)−Eθ




d∑

j=1

I(wℓ ≤ |Xj | < wℓ−1)


 > t




≤ exp

(
− t2/2
∑d

j=1Eθ (I(wℓ ≤ |Xj | < wℓ−1)) + 2t/3

)
, (59)
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where we have used that, for random variables with values in {0, 1}, the variance is smaller

than the expectation. Now, similar to (7), for any θ ∈ Θd(s, a0(s,A)),

Eθ

( d∑

j=1

I(wℓ ≤ |Xj | < wℓ−1)
)

≤ (d− s)P (wℓ ≤ |ξ| < wℓ−1) +
∑

j:θj 6=0

P (|θj + ξ| < wℓ−1)

≤ (d− s)P (|ξ| ≥ wℓ) + sP(|ξ| > −(a0(s,A)− wℓ−1)+),

where ξ is a standard Gaussian random variable. Since ℓ ≥ m0 + 1, from Lemma 4.1 we get

P(|ξ| > (a0(s,A) − wℓ−1))+) ≤
(
log (d/s∗d − 1)

)− 1
2 . (60)

Next, using the bound on the Gaussian tail probability and the inequalities gℓ ≤ s∗d ≤ d/4, we

find

(d− s)P (|ξ| ≥ wℓ) ≤
d− s

d/gℓ − 1

π−1/2

√
log(d/gℓ − 1)

≤ (4/3)π−1/2gℓ√
log(d/s∗d − 1)

. (61)

We now deduce from (60) and (61), and the inequality s ≤ gℓ for ℓ ≥ m0 + 1, that

Eθ

( d∑

j=1

I(wℓ ≤ |Xj | < wℓ−1)
)
≤
(
(4/3)π−1/2 + 1

)
gℓ√

log(d/s∗d − 1)
≤ 2τgℓ. (62)

Taking in (59) t = 3τgℓ = 3vℓ and using (62), we find

Pθ




d∑

j=1

I(wℓ ≤ |Xj | < wℓ−1) > vℓ


 ≤ exp(−C1vℓ) = exp(−C12

ℓτ),

for all ℓ ≥ m0 + 1 and some absolute constant C1 > 0. This implies

Pθ(m̂ = m) ≤
M∑

ℓ=m

exp(−C12
ℓτ) ≤ C22

−mτ−1 exp(−C12
mτ) (63)

for some absolute constant C2 > 0.

On the other hand, notice that the bounds (52), and (53) are valid not only for gm0 but

also for any gm with m ≥ m0 +1. Using this observation and Lemma 4.1 we get that, for any

θ ∈ Θd(s, a0(s,A)) and any m ≥ m0 + 1,

Eθ|η̂(gm)− η| ≤ s

[
d/s − 1

d/gm − 1

π−1/2

√
log(d/gm − 1)

+
(
log (d/s∗d − 1)

)− 1
2

]
(64)

≤
(
(4/3)π−1/2 + 1

)
gm√

log(d/s∗d − 1)
, τ ′gm = τ ′2m ,

where the last inequality follows from the same argument as in (61).

Now, we plug (63) and (64) in (57) to obtain

I2 ≤ C
1/2
2 (τ ′/τ)1/2

s

M∑

m=m0+1

exp(−C12
m−1τ) (65)

≤ C3(τ
′)1/2τ−3/2 exp(−C12

m0τ) ≤ C3(τ
′)1/2τ−3/2
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for some absolute constant C3 > 0. Notice that (τ ′)1/2 = O
((

log (d/s∗d − 1)
)− 1

4
)
as d/s∗d → ∞

while τ−3/2 = O
((

log (d/s∗d − 1)
) 3

14
)
. Thus, I2 = o(1) as d → ∞. Since from (56) we also get

that I1 = o(1) as d → ∞, the proof is complete.

Proof of Lemma 4.1. Since gm > s for m ≥ m0, we have w(gm) < w(s). It follows that

a0(s,A)− w(gm) ≥ a0(s,A) − w(s) ≥
√
A

2
√
2
min

(√
A√
2
, log1/4 (d/s − 1)

)
,

where we have used the elementary inequalities

√
x + y −√

y ≥ y/(2
√
x+ y) ≥ (2

√
2)−1min

(
y/

√
x,

√
y
)

with x = 2 log (d/s − 1) and y = A
√

log (d/s − 1). By assumption, A ≥ 4
√

log log
(
d/s∗d − 1

)
,

so that we get

a0(s,A) − w(gm) ≥ a0(s,A)− w(s) ≥
(
log log

(
d

s∗d
− 1

))1/2

.

This and the bound on the Gaussian tail probability imply

P(|ξ| > (a0(s,A)− w(gm))+) ≤ exp(−(a0(s,A)− w(gm))2/2) ≤
(
log (d/s∗d − 1)

)− 1
2 .
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[2] K. Bertin and G.Lecué (2008). Selection of variables and dimension reduction in high-

dimensional nonparametric regression. Electronic J. Statist., 2, 1224–1241.

[3] C. Butucea and N. Stepanova (2015). Adaptive variable selection in nonparametric sparse

additive models. http://arxiv.org/abs/1508.06660

22



[4] L. Comminges and A. S. Dalalyan (2012). Tight conditions for consistency of variable

selection in the context of high dimensionality. Ann. Statist. 40 (5), 2667–2696.

[5] C. R. Genovese, J. Jin, L. Wasserman, and Z. Yao. (2012). A comparison of the Lasso

and Marginal Regression. J. Mach. Learn. Res., 13, 2107–2143.

[6] Yu. I. Ingster and N. A. Stepanova (2014). Adaptive variable selection in nonparametric

sparse regression. Journal of Mathematical Sciences, 199, 184–201.

[7] P. Ji, and J. Jin (2012). UPS delivers optimal phase diagram in high-dimensional variable

selection. Ann. Statist., 40 (1), 73–103.

[8] J.Jin, C.-H.Zhang, and Q.Zhang (2014) Optimality of graphlet screening in high dimen-

sional variable selection. J. of Machie Learning Research, 15, 2723–2772.

[9] J. Lafferty, and L. Wasserman (2008). Rodeo: sparse, greedy nonparametric regression.

Ann. Statist., 36, 28–63.

[10] K. Lounici (2008). Sup-norm convergence rate and sign concentration property of Lasso

and Dantzig estimators. Electronic J. Statist., 2, 90–102.

[11] N. Meinshausen and P. Bühlmann (2006). High-dimensional graphs and variable selection

with the Lasso. Ann. Statist., 34 (3), 1436–1462.
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