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MINIMAX ESTIMATION OF LINEAR AND QUADRATIC
FUNCTIONALS ON SPARSITY CLASSES

By Olivier Collier ∗ , Laëtitia Comminges † and Alexandre B. Tsybakov ‡

Modal’X, Université Paris-Ouest∗, Université Paris Dauphine† and CREST-ENSAE‡

Abstract For the Gaussian sequence model, we obtain non-asymp-
totic minimax rates of estimation of the linear, quadratic and the
`2-norm functionals on classes of sparse vectors and construct op-
timal estimators that attain these rates. The main object of inter-
est is the class B0(s) of s-sparse vectors θ = (θ1, . . . , θd), for which
we also provide completely adaptive estimators (independent of s
and of the noise variance σ) having logarithmically slower rates than
the minimax ones. Furthermore, we obtain the minimax rates on
the `q-balls Bq(r) = {θ ∈ Rd : ‖θ‖q ≤ r} where 0 < q ≤ 2, and

‖θ‖q =
(∑d

i=1
|θi|q

)1/q

. This analysis shows that there are, in gen-
eral, three zones in the rates of convergence that we call the sparse
zone, the dense zone and the degenerate zone, while a fourth zone
appears for estimation of the quadratic functional. We show that, as
opposed to estimation of θ, the correct logarithmic terms in the opti-
mal rates for the sparse zone scale as log(d/s2) and not as log(d/s).
For the class B0(s), the rates of estimation of the linear functional and
of the `2-norm have a simple elbow at s =

√
d (boundary between

the sparse and the dense zones) and exhibit similar performances,
whereas the estimation of the quadratic functional Q(θ) reveals more
complex effects: the minimax risk on B0(s) is infinite and the sparse-
ness assumption needs to be combined with a bound on the `2-norm.
Finally, we apply our results on estimation of the `2-norm to the prob-
lem of testing against sparse alternatives. In particular, we obtain a
non-asymptotic analog of the Ingster-Donoho-Jin theory revealing
some effects that were not captured by the previous asymptotic anal-
ysis.

1. Introduction. In this paper, we consider the model

(1) yj = θj + σξj , j = 1, . . . , d,

where θ = (θ1, . . . , θd) ∈ Rd is an unknown vector of parameters, ξj are i.i.d. standard normal
random variables, and σ > 0 is the noise level. We study the problem of estimation of linear
and quadratic functionals

L(θ) =
d∑
i=1

θi, and Q(θ) =
d∑
i=1

θ2
i ,

and of the `2-norm
‖θ‖2 =

√
Q(θ)

Keywords and phrases: nonasymptotic minimax estimation, linear functional, quadratic functional, sparsity,
unknown noise variance, thresholding
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2

based on the observations y1, . . . , yd.
In this paper, we assume that θ belongs to a given subset Θ of Rd. We will be considering

classes Θ with elements satisfying the sparsity constraints ‖θ‖0 ≤ s where ‖θ‖0 denotes the
number of non-zero components of θ, or ‖θ‖q ≤ r where

‖θ‖q =

(
d∑
i=1

|θi|q
)1/q

.

Here, r, q > 0 and the integer s ∈ [1, d] are given constants.
Let T (θ) be one of the functionals L(θ), Q(θ) or

√
Q(θ). As a measure of quality of an

estimator T̂ of the functional T (θ), we consider the maximum squared risk

sup
θ∈Θ

Eθ(T̂ − T (θ))2,

where Eθ denotes the expectation with respect to the probability measure Pθ of the vector
of observations (y1, . . . , yd) satisfying (1). The best possible quality is characterized by the
minimax risk

R∗T (Θ) = inf
T̂

sup
θ∈Θ

Eθ(T̂ − T (θ))2,

where inf T̂ denotes the infimum over all estimators. In this paper, we find minimax optimal
estimators of T (θ), i.e., estimators T̃ such that

(2) sup
θ∈Θ

Eθ(T̃ − T (θ))2 � R∗T (Θ).

Here and below, we write a � b if c ≤ a/b ≤ C for some absolute positive constants c and
C. Note that the minimax optimality is considered here in the non-asymptotic sense, i.e., (2)
should hold for all d and σ.

The literature on minimax estimation of linear and quadratic functionals is rather exten-
sive. The analysis of estimators of linear functionals from the minimax point of view was
initiated in [21] while for the quadratic functionals we refer to [15]. These papers, as well as
the subsequent publications [10, 11, 14, 16, 18, 19, 26, 27, 29, 30, 31, 32, 33, 35, 36], focus on
minimax estimation of functionals on the classes Θ describing the smoothness properties of
functions in terms of their Fourier or wavelet coefficients. Typical examples are Sobolev ellip-
soids, hyperrectangles or Besov bodies while a typical example of linear functional is the value
of a smooth function at a point. In this framework, a deep analysis of estimation of function-
als is now available including the minimax rates (and in some cases the minimax constants),
oracle inequalities and adaptation. Extensions to linear inverse problems have been consid-
ered in detail by [7, 8, 17]. Note that classes Θ studied in this literature are convex classes.
Estimation of functionals on the non-convex sparsity classes B0(s) = {θ ∈ Rd : ‖θ‖0 ≤ s}
or Bq(r) = {θ ∈ Rd : ‖θ‖q ≤ r} with 0 < q < 1 has received much less attention. We are
only aware of the paper [9], which establishes upper and lower bounds on the minimax risk
for estimators of the linear functional L(θ) on the class B0(s). However, that paper considers
the special case when s < da for some a < 1/2, and σ = 1/

√
d and there is a logarithmic gap

between the upper and lower bounds. Minimax rates for the estimation of Q(θ) and of the
`2-norm on the classes B0(s) and Bq(r), 0 < q < 2, were not studied. Note, that estimation the
`2-norm is closely related to minimax optimal testing of hypotheses under the `2 separation

imsart-aos ver. 2014/10/16 file: functionals_revision_submitted_AOSversion.tex date: October 15, 2015



MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 3

distance in the spirit of [24]. Indeed, the optimal tests for this problem are based on estimators
of the `2-norm. A non-asymptotic study of minimax rates of testing for the classes B0(s) and
Bq(r), 0 < q < 2, is given in [4] and [40]. But for the testing problem, the risk function is
different and these papers do not provide results on the estimation of the `2-norm. Note also
that the upper bounds on the minimax rates of testing in [4] and [40] depart from the lower
bounds by a logarithmic factor.

In this paper, we find non-asymptotic minimax rates of estimation of the above three
functionals on the sparsity classes B0(s), Bq(r) and construct optimal estimators that attain
these rates. We deal with non-convex classes Bq (0 < q < 1) for the linear functional and
with the classes that are not quadratically convex (0 < q < 2) for Q(θ) and of the `2-norm.
Our main object of interest is the class B0(s), for which we also provide completely adaptive
estimators (independent of σ and s) having logarithmically slower rates than the minimax
ones. Some interesting effects should be noted. First, we show that, for the linear functional
and the `2-norm there are, in general, three zones in the rates of convergence that we call the
sparse zone, the dense zone and the degenerate zone, while for the quadratic functional an
additional fourth zone appears. Next, as opposed to estimation of the vector θ in the `2-norm,
cf. [13, 5, 1, 28, 37, 40], the correct logarithmic terms in the optimal rates for the sparse zone
scale as log(d/s2) and not as log(d/s). Noteworthy, for the class B0(s), the rates of estimation
of the linear functional and of the `2-norm have a simple elbow at s =

√
d (boundary between

the sparse and the dense zones) and exhibit similar performances, whereas the estimation of
the quadratic functional Q(θ) reveals more complex effects and is not possible only on the basis
of sparsity described by the condition θ ∈ B0(s). Finally, we apply our results on estimation
of the `2-norm to the problem of testing against sparse alternatives. In particular, we obtain
a non-asymptotic analog of Ingster-Donoho-Jin theory revealing some effects that were not
captured by the previous asymptotic analysis.

2. Minimax estimation of the linear functional. In this section, we study the min-
imax rates of estimation of the linear functional L(θ) and we construct minimax optimal
estimators.

Assume first that Θ is the class of s-sparse vectors B0(s) = {θ ∈ Rd : ‖θ‖0 ≤ s} where s is
a given integer, 1 ≤ s ≤ d. Consider the estimator

L̂ =

{ ∑d
j=1 yj 1{|yj |>σ

√
2 log(1+d/s2)} if s <

√
d,∑d

j=1 yj if s ≥
√
d,

where 1{·} denotes the indicator function.
The following theorem shows that

ψLσ (s, d) = σ2s2 log(1 + d/s2)

is the minimax rate of estimation of the linear functional on the class B0(s) and that L̂ is a
minimax optimal estimator.

Theorem 1. There exist absolute constants c > 0, C > 0 such that, for any integers s, d
satisfying 1 ≤ s ≤ d, and any σ > 0,

(3) sup
θ∈B0(s)

Eθ(L̂− L(θ))2 ≤ CψLσ (s, d),
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and

(4) R∗L(B0(s)) ≥ cψLσ (s, d).

Proofs of (3) and of (4) are given in Sections 8 and 7 respectively. Note that since log(1+u) ≥
u/2 for 0 < u ≤ 1, and log(1 + u) ≤ u we have

(5) σ2s2 log(1 + d/s2) � min(σ2s2 log(1 + d/s2), σ2d)

for all 1 ≤ s ≤ d. This writing clarifies the fact that the rate exhibits a “hidden” elbow at
s =
√
d. Thus,

(6) R∗L(B0(s)) � min(σ2s2 log(1 + d/s2), σ2d).

We consider now the classes Bq(r) = {θ ∈ Rd : ‖θ‖q ≤ r}, where 0 < q ≤ 1, and r is a
positive number. For any r, σ, q > 0 any integer d ≥ 1, we define the intege

(7) m = max{s ∈ {1, . . . , d} : σ2 log(1 + d/s2) ≤ r2s−2/q}

if the set {s ∈ {1, . . . , d} : σ2 log(1 + d/s2) ≤ r2s−2/q} is non-empty, and we put m = 0 if this
set is empty. The next two theorems show that the optimal rate of convergence of estimators
of the linear functional on the class Bq(r) is of the form:

ψLσ,q(r, d) =

{
σ2m2 log(1 + d/m2) if m ≥ 1,
r2 if m = 0.

The following theorem shows that ψLσ,q(r, d) is a lower bound on the convergence rate of the
minimax risk of the linear functional on the class Bq(r).

Theorem 2. If 0 < q ≤ 1, then there exists a constant c > 0 such that, for any integer
d ≥ 1 and any r, σ > 0, we have

(8) R∗L(Bq(r)) ≥ cψLσ,q(r, d).

The proof of Theorem 2 is given in Section 7.
We now turn to the construction of minimax optimal estimators on Bq(r). For 0 < q ≤ 1,

define the following statistic

L̂q =


∑d
j=1 yj if m >

√
d,∑d

j=1 yj 1{|yj |>2σ
√

2 log(1+d/m2)} if 1 ≤ m ≤
√
d,

0 if m = 0.

Theorem 3. Let 0 < q ≤ 1. There exists a constant C > 0 such that, for any integer
d ≥ 1 and any r, σ > 0, we have

(9) sup
θ∈Bq(r)

Eθ(L̂q − L(θ))2 ≤ CψLσ,q(r, d).
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MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 5

The proof of Theorem 3 is given in Section 8. Theorems 2 and 3 imply that ψLσ,q(r, d) is the
minimax rate of estimation of the linear functional on the ball Bq(r) and that L̂q is a minimax
optimal estimator.

Some remarks are in order here. Apart from the degenerate case m = 0 when the zero
estimator is optimal, we obtain on Bq(r) the same expression for the optimal rate as on the
class B0(s), with the difference that the sparsity s is now replaced by the “effective sparsity“ m.
Heuristically, m is obtained as a solution of

σ2m2 log(1 + d/m2) � r2m2−2/q

where the left hand side represents the estimation error for m-sparse signals established in
Theorem 1 and the right hand side gives the error of approximating a vector from Bq(r) by an
m-sparse vector in squared `1-norm. Note also that, in view of (5), we can equivalently write
the optimal rate in the form

ψLσ,q(r, d) �


σ2d if m >

√
d,

σ2m2 log(1 + d/m2) if 1 ≤ m ≤
√
d,

r2 if m = 0.

Thus, the optimal rate on Bq(r) has in fact three regimes that we will call the dense zone
(m >

√
d), the sparse zone (1 ≤ m ≤

√
d), and the degenerate zone (m = 0). Furthermore,

it follows from the definition of m that the rate ψLσ,q(r, d) in the sparse zone is of the order
σ2(r/σ)2q log1−q(1 + d(σ/r)2q), which leads to

ψLσ,q(r, d) �


σ2d if m >

√
d,

σ2(r/σ)2q log1−q(1 + d(σ/r)2q) if 1 ≤ m ≤
√
d,

r2 if m = 0.

In particular, for q = 1, the logarithmic factor disappears from the rate, and the optimal rates
in the sparse and degenerate zones are both equal to r2. Therefore, for q = 1, there is no
need to introduce thresholding in the definition of L̂q, and it is enough to use only the zero
estimator for m ≤

√
d and the estimator

∑d
j=1 yj for m >

√
d to achieve the optimal rate.

Remark 1. In this section and throughout the paper, theorems on the minimax lower
bounds are stated for the squared loss function only. However, the proofs in Section 7 are
given for the indicator loss function, which is more general. For each of the considered classes
Θ, they have the form

(10) inf
T̂

sup
θ∈Θ

Pθ

(
|T̂ − T (θ)| ≥ ψ

)
≥ c,

where inf T̂ denotes the infimum over all estimators, ψ is the corresponding minimax optimal
rate and c > 0 is an absolute constant. Clearly, (10) implies lower bounds for the minimax
risk with any monotone non-decreasing loss function on R+ taking value 0 at 0.
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3. Minimax estimation of the quadratic functional. Consider now the problem
of estimation of the quadratic functional Q(θ) =

∑d
i=1 θ

2
i . For any integers s, d satisfying

1 ≤ s ≤ d, and any σ > 0, we introduce the notation

ψ̄σ(s, d) =

{
σ4s2 log2(1 + d/s2) if s <

√
d,

σ4d if s ≥
√
d.

The following theorem shows that

ψQσ (s, d, κ) = min{κ4,max{σ2κ2, ψ̄σ(s, d)}}

is a lower bound on the convergence rate of the minimax risk of the quadratic functional on
the class B2(κ) ∩B0(s), where B2(κ) = {θ ∈ Rd : ‖θ‖2 ≤ κ}.

Theorem 4. There exists an absolute constant c > 0 such that, for any integers s, d
satisfying 1 ≤ s ≤ d, and any κ, σ > 0, we have

(11) R∗Q(B2(κ) ∩B0(s)) ≥ c ψQσ (s, d, κ).

The proof of Theorem 4 is given in Section 7.

Remark 2. Note that the minimax risk R∗Q(B2(κ) ∩ B0(s)) is monotone non-decreasing
in s while the right hand side of (11) is not monotone in s. Nevertheless, there is no problem
since ψ̄σ(s, d) is equivalent, up to absolute constants, to a monotone function of s, for which
(11) remains valid with another constant c. For example, we have

(12) ψ̄σ(s, d) � d f2(min{1, s/
√
d}
)
,

where f(t) = t log(1 + 4/t2). It is easy to check that the right hand side of (12) is monotone
in s.

One of the consequences of Theorem 4 is that R∗Q(B0(s)) =∞ (set κ =∞ in (11)). Thus,
only smaller classes than B0(s) are of interest when estimating the quadratic functional. The
class B2(κ)∩B0(s) naturally arises in this context but other classes can be considered as well.

We now turn to the construction of minimax optimal estimator on B2(κ) ∩B0(s). Set

αs = E
(
X2 |X2 > 2 log(1 + d/s2)

)
=

E
(
X21{|X|>

√
2 log(1+d/s2)}

)
P
(
|X| >

√
2 log(1 + d/s2)

) ,
where X ∼ N (0, 1) denotes the standard normal random variable. Introduce the notation

ψσ(s, d, κ) = max{σ2κ2, ψ̄σ(s, d)}.

Thus,

(13) ψQσ (s, d, κ) = min{κ4, ψσ(s, d, κ)}.

Define the following statistic

Q̂ =


∑d
j=1(y2

j − αsσ2) 1{|yj |>σ
√

2 log(1+d/s2)} if s <
√
d and κ4 ≥ ψσ(s, d, κ),∑d

j=1 y
2
j − dσ2 if s ≥

√
d and κ4 ≥ ψσ(s, d, κ),

0 if κ4 < ψσ(s, d, κ).
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MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 7

Theorem 5. There exists an absolute constant C > 0 such that, for any integers s, d
satisfying 1 ≤ s ≤ d, and any κ, σ > 0, we have

(14) sup
θ∈B2(κ)∩B0(s)

Eθ(Q̂−Q(θ))2 ≤ C ψQσ (s, d, κ).

The proof of Theorem 5 is given in Section 8. Theorems 4 and 5 imply that ψQσ (s, d, κ) is
the minimax rate of estimation of the quadratic functional on the class B2(κ) ∩ B0(s) and
that Q̂ is a minimax optimal estimator.

As a corollary, we obtain the minimax rate of convergence on the class B2(κ) (set s = d in
Theorems 4 and 5). In this case, the estimator Q̂ takes the form

Q̂∗ =

{ ∑d
j=1 y

2
j − dσ2 if κ4 ≥ max{σ2κ2, σ4d},

0 if κ4 < max{σ2κ2, σ4d}.

Corollary 1. There exist absolute constants c, C > 0 such that, for any κ, σ > 0, we
have

(15) sup
θ∈B2(κ)

Eθ(Q̂∗ −Q(θ))2 ≤ C min{κ4,max(σ2κ2, σ4d)},

and

(16) R∗Q(B2(κ)) ≥ cmin{κ4,max(σ2κ2, σ4d)}.

Note that the upper bounds of Theorem 5 and Corollary 1 obviously remain valid for the
positive part estimators Q̂+ = max{Q̂, 0}, and Q̂∗,+ = max{Q̂∗, 0}. The upper rate as in
(15) on the class B2(κ) with an extra logarithmic factor is obtained for different estimators in
[26, 27].

Alternatively, we consider the classes Bq(r), where r is a positive number and 0 < q < 2. As
opposed to the case of B0(s), we do not need to consider intersection with B2(κ). Indeed, it
is granted that the `2-norm of θ is uniformly bounded thanks to the inclusion Bq(r) ⊆ B2(r).
For any r, σ > 0, 0 < q < 2, and any integer d ≥ 1 we set

ψQσ,q(r, d) =


max{σ2r2, σ4d} if m >

√
d,

max{σ2r2, σ4m2 log2(1 + d/m2)} if 1 ≤ m ≤
√
d,

r4 if m = 0,

where m is the integer defined above (cf. (7)) and depending only on d, r, σ, q. The following
theorem shows that ψQσ,q(r, d) is a lower bound on the convergence rate of the minimax risk of
the quadratic functional on the class Bq(r).

Theorem 6. Let 0 < q < 2. There exists a constant c > 0 such that, for any integer
d ≥ 1, and any r, σ > 0, we have

(17) R∗Q(Bq(r)) ≥ c ψQσ,q(r, d).
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We now turn to the construction of minimax optimal estimators on Bq(r). Consider the
following statistic

Q̂q =


∑d
j=1 y

2
j − dσ2 if m >

√
d,∑d

j=1(y2
j − α̃mσ2) 1{|yj |>2σ

√
2 log(1+d/m2)} if 1 ≤ m ≤

√
d,

0 if m = 0,

where α̃m = E
(
X2 |X2 > 8 log(1 + d/m2)

)
, X ∼ N (0, 1).

Theorem 7. Let 0 < q < 2. There exists a constant C > 0 such that, for any integer
d ≥ 1 , and any r, σ > 0, we have

(18) sup
θ∈Bq(r)

Eθ(Q̂q −Q(θ))2 ≤ CψQσ,q(r, d).

The proof of Theorem 7 is given in Section 8. Theorems 6 and 7 imply that ψQσ,q(r, d) is the
minimax rate of estimation of the quadratic functional on the class Bq(r) and that Q̂q is a
minimax optimal estimator.

Notice that, in view of the definition of m, in the sparse zone we have

σ4m2 log2(1 + d/m2) � σ4(r/σ)2q log2−q(1 + d(σ/r)2q),

which leads to

ψQσ,q(r, d) �


max{σ2r2, σ4d} if m >

√
d,

max{σ2r2, σ4(r/σ)2q log2−q(1 + d(σ/r)2q)} if 1 ≤ m ≤
√
d,

r4 if m = 0.

One can check that for q = 2 this rate is of the same order as the rate obtained in Corollary 1.

4. Minimax estimation of the `2-norm. Interestingly, the minimax rates of estimation
of the `2-norm ‖θ‖2 =

√
Q(θ) do not degenerate as the radius κ grows to infinity, as opposed to

the rates for Q(θ) established above. It turns out that the restriction to B2(κ) is not needed to
get meaningful results for estimation of

√
Q(θ) on the sparsity classes. We drop this restriction

and assume that Θ = B0(s). Consider the estimator

N̂ =
√

max{Q̂•, 0}

where

Q̂• =

{ ∑d
j=1(y2

j − αsσ2) 1{|yj |>σ
√

2 log(1+d/s2)} if s <
√
d,∑d

j=1 y
2
j − dσ2 if s ≥

√
d.

The following theorem shows that N̂ is a minimax optimal estimator of the `2-norm ‖θ‖2 =√
Q(θ) on the class B0(s) and that the corresponding minimax rate of convergence is

ψ
√
Q

σ (s, d) =

{
σ2s log(1 + d/s2) if s <

√
d,

σ2
√
d if s ≥

√
d.
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MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 9

Theorem 8. There exist absolute constants c > 0, C > 0 such that, for any integers s, d
satisfying 1 ≤ s ≤ d, and any σ > 0,

(19) sup
θ∈B0(s)

Eθ(N̂ − ‖θ‖2)2 ≤ Cψ
√
Q

σ (s, d),

and

(20) R∗√Q(B0(s)) ≥ cψ
√
Q

σ (s, d).

Proofs of (19) and of (20) are given in Sections 8 and 7 respectively.

Our next step is to analyze the classes Bq(r). For any r, σ > 0, 0 < q < 2, and any integer
d ≥ 1 we set

ψ
√
Q

σ,q (r, d) =


σ2
√
d if m >

√
d,

σ2m log(1 + d/m2) if 1 ≤ m ≤
√
d,

r2 if m = 0,

where m is the integer defined above (cf. (7)) and depending only on d, r, σ, q. The estimator
that we consider when θ belongs to the class Bq(r) is

N̂q =
√

max{Q̂q, 0}.

Theorem 9. Let 0 < q < 2. There exist constants C, c > 0 such that, for any integer
d ≥ 1, and any r, σ > 0, we have

(21) sup
θ∈Bq(r)

Eθ(N̂q − ‖θ‖2)2 ≤ Cψ
√
Q

σ,q (r, d),

and

(22) R∗√Q(Bq(r)) ≥ cψ
√
Q

σ,q (r, d).

Proofs of (21) and of (22) are given in Sections 8 and 7 respectively.

As in the case of linear and quadratic functionals, we have an equivalent expression for the
optimal rate:

ψ
√
Q

σ,q (r, d) �


σ2
√
d if m >

√
d,

σ2(r/σ)q log1−q/2(1 + d(σ/r)2q) if 1 ≤ m ≤
√
d,

r2 if m = 0.

Though we formally did not consider the case q = 2, note that the logarithmic factor disappears
from the above expression when q = 2, and the optimal rates in the sparse and degenerate zones
are both equal to r2. This suggests that, for q = 2, there is no need to introduce thresholding
in the definition of N̂q, and it is enough to use only the zero estimator for m ≤

√
d and the

estimator
(

max
{∑d

j=1 y
2
j − dσ2, 0

})1/2 for m >
√
d to achieve the optimal rate.
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5. Estimation with unknown noise level. In this section, we discuss modifications
of the above estimators when the noise level σ is unknown. A general idea leading to our
construction is that the smallest y2

j are likely to correspond to zero components of θ, and thus
to contain information on σ not corrupted by θ. Here, we will demonstrate this idea only for
estimation of s-sparse vectors in the case s ≤

√
d. Then, not more than d −

√
d smallest y2

j

can be used for estimation of the variance. Throughout this section, we assume that d ≥ 3.
We start by considering estimation of the linear functional. Then it is enough to replace σ

in the definition of L̂ by the following statistic

σ̂ = 3
(1
d

∑
j≤d−

√
d

y2
(j)

)1/2

where y2
(j) ≤ · · · ≤ y2

(d) are the order statistics associated to y2
1, . . . , y

2
d. Note that σ̂ is not a

good estimator of σ but rather an over-estimator. The resulting estimator of L(θ) is

L̃ =
d∑
j=1

yj 1{|yj |>σ̂
√

2 log(1+d/s2)}.

Theorem 10. There exists an absolute constant C such that, for any integers s and d
satisfying s ≤

√
d, and any σ > 0,

sup
θ∈B0(s)

Eθ(L̃− L(θ))2 ≤ CψLσ (s, d).

The proof of Theorem 10 is given in Section 8.

Note that the estimator L̃ depends on s. To turn it into a completely data-driven one, we
may consider

L̃′ =
d∑
j=1

yj 1{|yj |>σ̂
√

2 log d}.

Inspection of the proof of Theorem 10 leads to the conclusion that

(23) sup
θ∈B0(s)

Eθ(L̃′ − L(θ))2 ≤ Cσ2s2 log d.

Thus, the rate for the data-driven estimator L̃′ is not optimal but the deterioration is only in
the expression under the logarithm.

A data-driven estimator of the quadratic functional can be taken in the form:

Q̃ =
d∑
j=1

y2
j 1{|yj |>σ̂

√
2 log d}.

The following theorem shows that the estimator Q̃ is nearly minimax on B2(κ) ∩B0(s) for
s ≤
√
d.

Theorem 11. There exists an absolute constant C such that, for any integers s and d
satisfying s ≤

√
d, and any σ > 0,

sup
θ∈B2(κ)∩B0(s)

Eθ(Q̃−Q(θ))2 ≤ C max
{
σ2κ2, σ4s2 log2 d

}
.

The proof of Theorem 11 is given in Section 8.
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6. Consequences for the problem of testing. The results on estimation of the `2-
norm stated above allow us to obtain the solution of the problem of non-asymptotic minimax
testing on the classes B0(s) and Bq(r) under the `2 separation distance. For q ≥ 0, u > 0, and
δ > 0, consider the set

Θq,u(δ) = {θ ∈ Bq(u) : ‖θ‖2 ≥ δ}.

Assume that we wish to test the hypothesis H0 : θ = 0 against the alternative

H1 : θ ∈ Θq,u(δ).

Let ∆ be a test statistic with values in {0, 1}. We define the risk of test ∆ as the sum of the
first type error and the maximum second type error:

P0(∆ = 1) + sup
θ∈Θq,u(δ)

Pθ(∆ = 0).

A benchmark value is the minimax risk of testing

Rq,u(δ) = inf
∆

{
P0(∆ = 1) + sup

θ∈Θq,u(δ)
Pθ(∆ = 0)

}
where inf∆ is the infimum over all {0, 1}-valued statistics. The minimax rate of testing on
Θq,u is defined as λ > 0, for which the following two facts hold:

(i) for any ε ∈ (0, 1) there exists Aε > 0 such that, for all A > Aε,

(24) Rq,u(Aλ) ≤ ε,

(ii) for any ε ∈ (0, 1) there exists aε > 0 such that, for all 0 < A < aε,

(25) Rq,u(Aλ) ≥ 1− ε.

Note that this defines a non-asymptotic minimax rate of testing as opposed to the classical
asymptotic definition that can be found, for example, in [24]. A non-asymptotic minimax
study of testing for the classes B0(s) and Bq(r) is given by [4] and [40]. However, those papers
derive the minimax rates of testing on Θq,u only up to a logarithmic factor. The next theorem
provides the exact expression for the minimax rates in the considered testing setup.

Theorem 12. For any integers s and d satisfying 1 ≤ s ≤ d, and any σ > 0, the minimax
rate of testing on Θ0,s is equal to λ = (ψ

√
Q

σ (s, d))1/2. For any 0 < q < 2, and any r, σ > 0,
the minimax rate of testing on Θq,r is equal to λ = (ψ

√
Q

σ,q (r, d))1/2.

The proof of this theorem consists in establishing the upper bounds (24) and the lower
bounds (25). We note first that the lower bounds (25) are essentially proved in [4] and [40].
However, in those papers they are stated in somewhat different form, so for completeness we
give a brief proof in Section 7, which is very close to the proofs of the lower bounds (20) and
(22). The upper bounds (24) are straightforward in view of (19) and (21). Indeed, for example,
to prove (24) with q = 0 and u = s, we fix some A > 0 and consider the test

(26) ∆∗ = 1
{N̂>(A/2)(ψ

√
Q

σ (s,d))1/2}
.
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Then, writing for brevity ψ = ψ
√
Q

σ (s, d) and applying Chebyshev’s inequality, we have

R0,s(Aψ) ≤ P0(∆∗ = 1) + sup
θ∈Θ0,s(A

√
ψ)

Pθ(∆∗ = 0)(27)

≤ P0(N̂ > A
√
ψ/2) + sup

θ∈B0(s)
Pθ(N̂ − ‖θ‖2 ≤ −A

√
ψ/2)

≤ 2 sup
θ∈B0(s)

Eθ(N̂ − ‖θ‖2)2

(A/2)2ψ
≤ C∗A−2

for some absolute constant C∗ > 0, where the last inequality follows from (19). Choosing Aε
as a solution of C∗A−2

ε = ε we obtain (24). The case 0 < q < 2 is treated analogously by
introducing the test

∆∗q = 1
{N̂>(A/2)(ψ

√
Q

σ,q (r,d))1/2}

and using (21) rather than (19) to get the upper bound (24).
Furthermore, as a simple corollary we obtain a non-asymptotic analog of the Ingster-

Donoho-Jin theory. Consider the problem of testing the hypothesis H0 : θ = 0 against the
alternative H1 : θ ∈ Θs(δ) where

(28) Θs(δ) = {θ ∈ Rd : ‖θ‖0 = s, θj ∈ {0, δ}, j = 1, . . . , d}

for some integer s ∈ [1, d] and some δ > 0. Papers [22] and [12] studied a slightly different
but equivalent problem (with θj taking values 0 and δ at random) assuming in addition that
s = da for some a ∈ (0, 1/2). In an asymptotic setting when σ → 0 and d = dσ → ∞, [22]
obtained the detection boundary in the exact minimax sense, that is the value λ = λσ such
that asymptotic analogs of (24) and (25) hold with Aε = aε and ε = 0. In [12], it is proved that
the detection boundary is attained at the Higher Criticism test. Extensions to the regression
and classification problems and more references can be found in [23], [25], [3]. Note that the
alternatives in these papers are defined not exactly in the same way as in (28).

A natural non-asymptotic analog of these results consists in establishing the minimax rate
of testing on Θs(δ) in the sense of the definition (24) - (25). This is done in the next corollary
that covers not only Θs(δ) but also the following more general class:

Θ∗s(δ) =
{
θ ∈ Rd : ‖θ‖0 = s, min

j: θj 6=0
|θj | ≥ δ

}
.

We define the minimax rate of testing on the classes Θs and Θ∗s similarly as such rate was
defined for Θq,u, by modifying (24) - (25) in an obvious way.

Corollary 2. Let s and d be integers satisfying 1 ≤ s ≤ d, and let σ > 0. The minimax
rate of testing on Θs is equal λ = σ

√
log(1 + d/s2) for s ≤

√
d. Furthermore, the minimax

rate of testing on Θ∗s is equal to

λ =

 σ
√

log(1 + d/s2) if s <
√
d,

σd1/4/
√
s if s ≥

√
d.

The proof of the upper bound in this corollary is essentially the same as in Theorem 12.
We take the same test statistic ∆∗ and then act as in (27) using that Θs(Aλ) and Θ∗s(Aλ) are
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MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 13

included in Θ0,s(Aλ
√
s). The proof of the lower bound for the case s ≤

√
d is also the same as

in Theorem 12 since the measure µρ used in the proofs (cf. Section 7) is supported on s-sparse
vectors θ with all coefficients taking the same value. For s >

√
d we need a slightly different

lower bound argument - see Section 7 for the details.
Papers [22] and [12] derived the asymptotic rate of testing in the form λ = c(a)σ

√
log d

where the exact value c(a) > 0 is explicitly given as a function of a appearing in the relation
s = da, 0 < a < 1/2. Corollary 2 allows us to explore more general behavior of s leading to
other types of rates. For example, we find that the minimax rate of testing is of the order σ
if s =

√
d and it is of the order σ

√
log log d if s �

√
d/(log d)γ for any γ > 0. Such effects are

not captured by the previous asymptotic results. Note also that the test ∆∗ (cf. (26)) that
achieves the minimax rates in Corollary 2 is very simple - it is a plug-in test based on the
estimator of the `2-norm. We do not need to invoke refined techniques as the Higher Criticism
test. However, we do not prove that our method achieves the exact constant c(a) in the specific
regime considered by [22] and [12].

7. Proofs of the lower bounds.

7.1. General tools. The proofs of the lower bounds in this section use a technique based on
a reduction to testing between two probability measures, one of which is a mixture measure.
This is a special case of what is called the method of fuzzy hypotheses or Le Cam’s method
since Le Cam [34] was apparently the first to consider this kind of argument.

Let µ be a probability measure on Θ. Denote by Pµ the mixture probability measure

Pµ =
∫

Θ
Pθ µ(dθ).

A vector θ ∈ Rd is called s-sparse if ‖θ‖0 = s. For an integer s such that 1 ≤ s ≤ d and ρ > 0,
we denote by µρ the uniform distribution on the set of s-sparse vectors in Rd with all nonzero
coefficients equal to σρ. Let

χ2(P ′, P ) =
∫

(dP ′/dP )2dP − 1

be the chi-square divergence between two mutually absolutely continuous probability measures
P ′ and P .

The following lemma is obtained by combining arguments of [4] and [9].

Lemma 1. For all σ > 0, ρ > 0, 1 ≤ s ≤ d, we have

χ2(Pµρ ,P0) ≤
(

1− s

d
+
s

d
eρ

2
)s
− 1.

For completeness, the proof of this lemma is given in the Appendix. We will also need a
second lemma, which is a special case of Theorem 2.15 in [39]:

Lemma 2. Let Θ be a subset of Rd containing 0. Assume that there exists a probability
measure µ on Θ and numbers v > 0, β > 0 such that T (θ) = 2v for all θ ∈ supp(µ) and
χ2(Pµ,P0) ≤ β, Then

inf
T̂

sup
θ∈Θ

Pθ

(
|T̂ − T (θ)| ≥ v

)
≥ 1

4
exp(−β),

where inf T̂ denotes the infimum over all estimators.

imsart-aos ver. 2014/10/16 file: functionals_revision_submitted_AOSversion.tex date: October 15, 2015



14

7.2. Proof of the lower bound (4) in Theorem 1. Set ρ =
√

log(1 + d/s2). Then, by
Lemma 1,

(29) χ2(Pµρ ,P0) ≤
(

1− s

d
+
s

d

(
1 +

d

s2

))s
− 1 =

(
1 +

1
s

)s
− 1 ≤ e− 1.

Next, L(θ) = σsρ for all θ ∈ supp(µρ), and also supp(µρ) ⊆ B0(s). Thus, the assumptions of
Lemma 2 are satisfied with Θ = B0(s), β = e − 1, v = σsρ/2 = (1/2)σs

√
log(1 + d/s2) and

T (θ) = L(θ). An application of Lemma 2 yields

inf
T̂

sup
θ∈B0(s)

Pθ

(
|T̂ − L(θ)| ≥ (1/2)σs

√
log(1 + d/s2)

)
≥ 1

4
exp(1− e),

which implies (4).

7.3. Proof of Theorem 4. We start by rewriting in a more convenient form the lower rates
we need to prove. For this, consider separately the cases s ≥

√
d and s <

√
d.

Case s ≥
√
d. The lower rate we need to prove in this case is min{κ4,max(σ2κ2, σ4d)}. It

is easy to check that we can write it as follows:

min{κ4,max(σ2κ2, σ4d)} =


σ2κ2 if κ4 > σ4d2,
σ4d if σ4d < κ4 ≤ σ4d2,
κ4 if κ4 ≤ σ4d.

(30)

Note that the lower rate σ4d for σ4d < κ4 ≤ σ4d2 follows from the lower rate κ4 for κ4 < σ4d
and the fact that the minimax risk is a non-decreasing function of κ. Therefore, to prove
Theorem 4 for s ≥

√
d, it is enough to show that R∗Q(B2(κ) ∩ B0(s)) ≥ c(lower rate), where

c > 0 is an absolute constant, and

(31) lower rate =

{
σ2κ2 if κ4 > σ4d2 and s =

√
d,

κ4 if κ4 ≤ σ4d and s =
√
d.

In (31), we assume without loss of generality that
√
d is an integer and we replace without

loss of generality the condition s ≥
√
d by s =

√
d since the minimax risk is a non-decreasing

function of s.
Case s <

√
d. The lower rate we need to prove in this case is

min{κ4,max(σ2κ2, σ4s2 log2(1 + d/s2))}.

The same argument as above shows that the analog of representation (30) holds with d replaced
by s2 log2(1 + d/s2), and that it is enough to prove the lower rate of the form:

(32) lower rate =

{
σ2κ2 if κ4 > σ4s4 log4(1 + d/s2) and s <

√
d,

κ4 if κ4 ≤ σ4s2 log2(1 + d/s2) and s <
√
d.

Thus, to prove Theorem 4 it remains to establish (31) and (32). This is done in the following
two propositions. Proposition 1 is used with b = log 2 and it is a more general fact than the
first lines in (31) and (32) since B2(κ) ∩ B0(s) ⊇ B2(κ) ∩ B0(1), and s log(1 + d/s2) ≥ log 2
for 1 ≤ s ≤

√
d. Proposition 2 is applied with b = 1/(log 2).
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Proposition 1. Let b > 0. If κ > bσ, then

inf
T̂

sup
θ∈B2(κ)∩B0(1)

Pθ

(
|T̂ −Q(θ)| ≥ (3b/8)σκ

)
≥ 1

4
exp(−b2/4),

where inf T̂ denotes the infimum over all estimators of Q.

Proposition 2. Let b > 0. If κ4 ≤ b2σ4s2 log2(1 + d/s2) and 1 ≤ s ≤ d, then

inf
T̂

sup
θ∈B2(κ)∩B0(s)

Pθ

(
|T̂ −Q(θ)| ≥ κ2/(2 max(b, 1))

)
≥ 1

4
exp(1− e),

where inf T̂ denotes the infimum over all estimators of Q.

Remark 3. At first sight, the proof of the lower bound seems to exhibit a paradox: the
proof for the rate σ2κ2 involves a two-point comparison, while the trivial rate κ4 needs a more
elaborate proof. But, in fact it is not surprising since the rate σ2κ2 is independent from the
dimension d, so that it is natural that the proof only uses simple arguments that also hold for
d = 1. On the other hand, the bound κ4 needs a construction based on multiple hypotheses,
since the dimension-dependent rate σ4d derives from it in view of the above argument.

7.4. Proof of Proposition 1. Consider the vectors θ = (κ, 0, . . . , 0) and θ′ = (κ−bσ/2, 0, . . . , 0).
Clearly, θ and θ′ belong to B2(κ) ∩B0(1). We have

d(θ, θ′) ,
∣∣Q(θ)−Q(θ′)

∣∣ = |σ2b2/4− κσb| > 3σκb/4,

and the Kullback-Leibler divergence between Pθ and Pθ′ satisfies

K(Pθ,Pθ′) =
‖θ − θ′‖22

2σ2
=
b2

8
.

We now apply Theorem 2.2 and (2.9) in [39] to obtain the result.

7.5. Proof of Proposition 2. Set ρ = κ/(σ
√

max(b, 1)s). Then ρ2 ≤ log(1 + d/s2) and
due to (29) we have χ2(Pµρ ,P0) ≤ e − 1. Next, Q(θ) = ‖θ‖22 = sσ2ρ2 = κ2/max(b, 1)
for all θ ∈ supp(µρ), which implies supp(µρ) ⊆ B2(κ). We also have supp(µρ) ⊆ B0(s) by
construction. Therefore, the assumptions of Lemma 2 are satisfied with Θ = B2(κ) ∩ B0(s),
β = e−1, v = κ2/(2 max(b, 1)) and T (θ) = Q(θ). An application of Lemma 2 yields the result.

7.6. Proof of Theorem 2. In order to prove Theorem 2, we will need the following propo-
sition.

Proposition 3. Let b > 0. If κ2 ≤ b2σ2s2 log(1 + d/s2) and 1 ≤ s ≤ d, then

inf
T̂

sup
θ∈B1(κ)∩B0(s)

Pθ

(
|T̂ − L(θ)| ≥ κ/(2 max(b, 1))

)
≥ 1

4
exp(1− e),

where inf T̂ denotes the infimum over all estimators.

Proof. We proceed as in the proof of Proposition 2 with the following modifications. We
now set ρ = κ/(max(b, 1)σs). Then χ2(Pµρ ,P0) ≤ e−1 and L(θ) = ‖θ‖1 = sσρ = κ/max(b, 1)
for all θ ∈ supp(µρ), so that supp(µρ) ⊆ Θ = B1(κ) ∩ B0(s) and Lemma 2 applies with
β = e− 1, v = κ/(2 max(b, 1)) and T (θ) = L(θ).
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Proof of Theorem 2. First notice that, for an integer s ∈ [1, d], and 0 < q < 1, κ > 0,

(33) B1(κ) ∩B0(s) ⊂ Bq(r) if s1−qκq = rq.

We will prove the theorem by considering separately the cases m = 0 and m ≥ 1.
Case m = 0. Then, r2 < σ2 log(1+d) and the assumption of Proposition 3 is satisfied with

s = 1, b = 1, and κ = r. Applying Proposition 3 with these parameters and using (33) with
s = 1 we easily deduce that R∗L(Bq(r)) ≥ Cr2.

Case m ≥ 1. We now use the embedding (33) with s = m. Then

(34) κ = rm1−1/q ≥ σm
√

log(1 + d/m2)

where the last inequality follows from the definition of m. Furthermore, the fact that m ≥ 1
and the definition of m imply

(35) 2−2/qr2m−2/q ≤ r2(m+ 1)−2/q < σ2 log(1 + d/(m+ 1)2) ≤ σ2 log(1 + d/m2).

This proves that for κ defined in (34) we have κ2 ≤ 22/qσ2m2 log(1 + d/m2). Thus, the
assumption of Proposition 3 is satisfied with s = m, b = 21/q and κ defined in (34). Applying
Proposition 3 with these parameters and using (33) with s = m we deduce that R∗L(Bq(r)) ≥
Cκ2. This and (34) yield R∗L(Bq(r)) ≥ Cσ2m2 log(1+d/m2), which is the desired lower bound.

7.7. Proof of Theorem 6. First notice that, for an integer s ∈ [1, d], and 0 < q < 2, κ > 0,

(36) B2(κ) ∩B0(s) ⊂ Bq(r) if s1−q/2κq = rq.

Consider separately the cases m = 0, 1 ≤ m ≤
√
d, and m >

√
d.

Case m = 0. Then, r2 < σ2 log(1 + d) so that the assumption of Proposition 2 is satisfied
with s = 1, b = 1, and κ = r. Applying Proposition 2 with these parameters and using (36)
with s = 1 and κ = r we get that R∗Q(Bq(r)) ≥ Cr4.

Case 1 ≤ m ≤
√
d. We start by using (36) with s = m. Then

(37) κ = rm1/2−1/q ≥ σ
√
m log(1 + d/m2)

where the last inequality follows from the definition of m. For this κ, using (35) we obtain
κ2 ≤ 22/qσ2m log(1 + d/m2). Thus, the assumption of Proposition 2 is satisfied with s = m,
b = 22/q and κ defined in (37). Applying Proposition 2 with these parameters and using
(36) with s = m we deduce that R∗Q(Bq(r)) ≥ Cκ4. This and (37) prove the lower bound
R∗Q(Bq(r)) ≥ Cσ4m2 log2(1 + d/m2).

To show that R∗Q(Bq(r)) ≥ Cσ2r2, we use (36) with s = 1 and κ = r. Now, m ≥ 1, which
implies r2 ≥ σ2 log(1 + d) ≥ σ2(log 2). Thus, the assumption of Proposition 1 is satisfied with
s = 1, κ = r, and any 0 < b <

√
log 2, leading to the bound R∗Q(B2(κ) ∩ B0(1)) ≥ Cσ2r2.

This inequality and the embedding in (36) with s = 1 yield the result.
Case m >

√
d. It suffices to note that the argument used above in the case 1 ≤ m ≤

√
d

remains valid for m >
√
d and s =

√
d instead of s = m (assuming without loss of generality

that
√
d is an integer).
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7.8. Proof of the lower bound (20) in Theorem 8. Let s <
√
d. Set ρ =

√
log(1 + d/s2).

Due to (29) we have χ2(Pµρ ,P0) ≤ e − 1. Next, ‖θ‖2 = σρ
√
s = σ

√
s log(1 + d/s2) for all

θ ∈ supp(µρ), and supp(µρ) ⊆ B0(s) by construction. Therefore, the assumptions of Lemma 2
are satisfied with Θ = B0(s), β = e − 1, v = σ

√
s log(1 + d/s2)/2 and T (θ) = ‖θ‖2. An

application of Lemma 2 yields the result for s <
√
d. To obtain the lower bound for s ≥

√
d,

it suffices to consider the case s =
√
d (assuming without loss of generality that

√
d is an

integer) and to repeat the above argument with this value of s.

7.9. Proof of the lower bound (22) in Theorem 9. If m = 0 we have r2 < σ2 log(1 + d).
In this case, set ρ = r/σ, s = 1. Then, ρ <

√
log(1 + d) and due to (29) with s = 1 we have

χ2(Pµρ ,P0) ≤ 1. Next, ‖θ‖2 = ‖θ‖q = r for all θ ∈ supp(µρ). Thus, supp(µρ) ⊆ Bq(r) and
the assumptions of Lemma 2 are satisfied with Θ = Bq(r), β = 1, v = r/2 and T (θ) = ‖θ‖2,
which implies the bound R∗√

Q
(Bq(r)) ≥ Cr2 for m = 0.

Case 1 ≤ m ≤
√
d. Use the same construction as in the proof of (20) replacing there s

with m. Then, ‖θ‖2 = σ
√
m log(1 + d/m2), and ‖θ‖q = σρm1/q = σm1/q

√
log(1 + d/m2) for

all θ ∈ supp(µρ). By definition of m, we have σm1/q
√

log(1 + d/m2) ≤ r guaranteeing that
supp(µρ) ⊆ Bq(r). Other elements of the argument remain as in the proof of (20).

Case m >
√
d. Use the same construction as in the proof of (20) with s =

√
d (assum-

ing without loss of generality that
√
d is an integer). Then ρ =

√
log 2, ‖θ‖2 = σd1/4

√
log 2,

and ‖θ‖q = σd1/(2q)
√

log 2 ≤ r (by definition of m) for all θ ∈ supp(µρ). Other elements of
the argument remain as in the proof of (20).

7.10. Proof of the lower bounds in Theorem 12 and in Corollary 2. The following lemma
reduces the proof to the argument, which is very close to that of the previous two proofs.

Lemma 3. If µ is a probability measure on Θ, then

inf
∆

{
P0(∆ = 1) + sup

θ∈Θ
Pθ(∆ = 0)

}
≥ 1−

√
χ2(Pµ,P0)

where inf∆ is the infimum over all {0, 1}-valued statistics.

Proof. For any {0, 1}-valued statistic ∆,

P0(∆ = 1) + sup
θ∈Θ

Pθ(∆ = 0) ≥ P0(∆ = 1) +
∫

Θ
Pθ(∆ = 0)µ(dθ)

= P0(∆ = 1) + Pµ(∆ = 0) ≥ 1− V (Pµ,P0) ≥ 1−
√
χ2(Pµ,P0)

where V (·, ·) denotes the total variation distance and the last two inequalities follow from the
standard properties of this distance (cf. Theorem 2.2(i) and (2.27) in [39]).

Proof of the lower bound in Theorem 12 for q = 0. We use a slightly modified argument of
Subsection 7.8. As in Subsection 7.8, it suffices to prove the result in the case s <

√
d. Then,

ψ
√
Q

σ (s, d) = σ2s log(1 + d/s2), so that our aim is to show that the lower rate of testing on
B0(s) is λ = σ

√
s log(1 + d/s2). Fix A ∈ (0, 1). We use Lemma 3 with Θ = Θ0,s(Aλ) and

µ = µρ where we take ρ = A
√

log(1 + d/s2). For all θ ∈ supp(µρ) we have ‖θ‖2 = σρ
√
s = Aλ
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while supp(µρ) ⊆ B0(s) by construction. Hence supp(µρ) ⊆ Θ0,s(Aλ), so that we can apply
Lemma 3. Next, by Lemma 1,

(38) χ2(Pµρ ,P0) ≤
(

1− s

d
+
s

d

(
1 +

d

s2

)A2)s
− 1 ≤

(
1 +

A2

s

)s
− 1 ≤ exp(A2)− 1

where we have used that (1 + x)A
2 − 1 ≤ A2x for 0 < A < 1, x > 0. The last display and

Lemma 3 imply that R0,s(Aλ) ≥ 1−
√

exp(A2)− 1. Choosing aε such that
√

exp(a2
ε)− 1 = ε

proves (25).
Proof of the lower bound in Theorem 12 for 0 < q < 2 follows along similar lines but now we

modify, in the same spirit, the argument of Subsection 7.9 rather than that of Subsection 7.8.
The corresponding ρ in Subsection 7.9 is multiplied by a suitable A ∈ (0, 1) and then Lemma 3
is applied. We omit the details.

Proof of the lower bound in Corollary 2. As explained after the statement of Corollary 2,
we need only to consider the case s >

√
d for the class Θ∗s. Then, λ = σd1/4/

√
s. Instead of µρ

we consider now a slightly different measure µ̄ρ, which is the uniform distribution on the set
of s-sparse vectors in Rd with nonzero coefficients taking values in {−σρ, σρ}. Then, similarly
to Lemma 1,

(39) χ2(Pµ̄ρ ,P0) ≤
(
1− s

d
+
s

d
cosh(ρ2)

)s
− 1,

cf. formula (27) in [4]. Fix A ∈ (0, 1). We now use Lemma 3 with Θ = Θ∗s(Aλ) and µ = µ̄ρ
where we take ρ = Ad1/4/

√
s. For all θ ∈ supp(µ̄ρ) we have |θj | = σρ = Aσd1/4/

√
s = Aλ

and also supp(µ̄ρ) ⊆ {‖θ‖0 = s} by construction. Hence supp(µ̄ρ) ⊆ Θ∗s(Aλ), so that we can
apply Lemma 3. Since s >

√
d we have ρ < 1. Using (39) and the fact that cosh(x) ≤ 1 + x2

for 0 < x < 1 we obtain

χ2(Pµ̄ρ ,P0) ≤
(
1 +

sρ4

d

)s
− 1 ≤ exp(A4)− 1

and we conclude the proof in the same way as it is done after (38).

8. Proofs of the upper bounds. We will use the following lemma.

Lemma 4. For X ∼ N (0, 1) and any x > 0 we have

(40)
4√

2π(x+
√
x2 + 4)

e−x
2/2 ≤ P

(
|X| > x

)
≤ 4√

2π(x+
√
x2 + 2)

e−x
2/2,

(41) E
[
X21{|X|>x}

]
≤
√

2
π

(
x+

2
x

)
e−x

2/2,

(42) E
[
X41{|X|>x}

]
≤
√

2
π

(
x3 + 3x+

1
x

)
e−x

2/2.

Inequality (40) is due to [6] and [38]. Inequalities (41) and (42) follow from integration by
parts.
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In this section, we will use the notation

(43) x =
√

2 log(1 + d/s2), Ŝ = {j : |yj | > σx}, S = {j : θj 6= 0}.

We also recall that the observations are of the form yj = θi + σξj , j = 1, . . . , d, with i.i.d.
errors ξj ∼ N (0, 1). We will denote by Ci, i = 1, 2, . . . , absolute positive constants, and by C
absolute positive constants that can vary from line to line.

8.1. Proof of the bound (3) in Theorem 1. Clearly, Eθ(
∑d
j=1 yj − L(θ))2 = σ2d. Thus, in

view of (5), to prove (3) it is enough to show that for s ≤
√
d we have

(44) sup
θ∈B0(s)

Eθ(L̂∗ − L(θ))2 ≤ Cσ2s2 log(1 + d/s2)

where

L̂∗ =
d∑
j=1

yj 1{|yj |>σ
√

2 log(1+d/s2)}

and C > 0 is an absolute constant. Recalling the notation set in (43) we have

(45) L̂∗ − L(θ) =
∑
j∈S

(yj − θj)−
∑
j∈S\Ŝ

yj +
∑
j∈Ŝ\S

yj .

Thus, for θ ∈ B0(s), we obtain

Eθ(L̂∗ − L(θ))2 ≤ 3 E
(∑
j∈S

σξj
)2

+ 3 Eθ

(∑
j∈S

yj 1{|yj |≤σx}
)2

+ 3 E
( ∑
j∈Sc

σξj 1{|ξj |>x}
)2

≤ 3σ2
{

(s+ s2x2) +
∑
j∈Sc

E
(
ξ2
j 1{|ξj |>x}

)}

≤ 3σ2
{

(s+ s2x2) + d

√
2
π

(
x+

2
x

)
e−x

2/2
}

(by (41))

≤ 3σ2
{

(s+ s2x2) + s2

√
2
π

(
x+

2
x

)}
,

and (44) follows since x ≥
√

2 log 2 for s ≤
√
d.

8.2. Proof of Theorem 3. We will consider only the sparse zone 1 ≤ m ≤
√
d since the

cases m = 0 and m >
√
d are trivial. Fix θ ∈ Bq(r). We will use the notation

d̃ = 1 + d/m2, x̃ = 2
√

2 log d̃, S̃ = {j : |θj | > σx̃/2}.

Note that

(46) Card(S̃) ≤
(

2r
σx̃

)q
< 2−q/2(m+ 1) ≤ 21−q/2m,

where the first inequality is due to the fact that θ ∈ Bq(r) and the second follows from the
definition of m.
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Consider first the bias of L̂q. Lemma 5 yields

(
Eθ(L̂q)− L(θ)

)2 ≤ C( d∑
j=1

min(|θj |, σx̃)
)2
≤ C

( d∑
j=1

|θj |q(σx̃)1−q
)2

(47)

≤ C
(
r

σx̃

)2q

σ2 log d̃

≤ Cσ2m2 log d̃,

where we have used (46). Next, the variance of L̂q has the form

Varθ(L̂q) =
d∑
j=1

Varθ(yj 1{|yj |>σx̃}).

Here, for indices j belonging to S̃, using (46) we have∑
j∈S̃

Varθ(yj 1{|yj |>σx̃}) ≤ 2
∑
j∈S̃

Varθ(yj) + 2
∑
j∈S̃

Varθ(yj 1{|yj |≤σx̃})(48)

≤ 2Card(S̃)σ2(1 + x̃2)

≤ Cσ2m log d̃.

For indices j belonging to S̃c, we have∑
j∈S̃c

Varθ(yj 1{|yj |>σx̃}) ≤
∑
j∈S̃c

Eθ(y2
j 1{|yj |>σx̃})(49)

≤ 2
∑
j∈S̃c

θ2
j + 2σ2

∑
j∈S̃c

Eθ(ξ2
j 1{|yj |>σx̃})

≤ 2
( ∑
j∈S̃c
|θj |
)2

+ 2σ2
∑
j∈S̃c

E(ξ2
j 1{|ξj |>

√
2 log d̃}

).

Using the same argument as in (47) we find

(50)
( ∑
j∈S̃c
|θj |
)2
≤ C

( d∑
j=1

min(|θj |, σx̃)
)2
≤ Cσ2m2 log d̃.

Finally, (41) implies

σ2
∑
j∈S̃c

E(ξ2
j 1{|ξj |>

√
2 log d̃}

) ≤ Cσ2(d/d̃)
√

log d̃ ≤ Cσ2m2 log d̃(51)

where for the last inequality we have used that log d̃ ≥ log 2 for m ≤
√
d. Combining (48) –

(51) we obtain that
Varθ(L̂q) ≤ Cσ2m2 log d̃.

Together with (41), this yields the desired result:

sup
θ∈Bq(r)

Eθ(L̂q − L(θ))2 ≤ Cσ2m2 log d̃.

imsart-aos ver. 2014/10/16 file: functionals_revision_submitted_AOSversion.tex date: October 15, 2015



MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 21

8.3. Proof of Theorem 5. We will use the notation set in (43). Moreover, we recall the
definition of the estimator studied here:

Q̂∗ =

{ ∑d
j=1 y

2
j − dσ2 if κ4 ≥ max{σ2κ2, σ4d},

0 if κ4 < max{σ2κ2, σ4d}.

The upper bound κ4 for κ4 < ψσ(s, d, κ) is trivial since the risk of the zero estimator is equal
to κ4. Let now κ4 ≥ ψσ(s, d, κ). We analyze separately the cases s ≥

√
d, κ4 ≥ ψσ(s, d, κ),

and s <
√
d, κ4 ≥ ψσ(s, d, κ).

Case s ≥
√
d and κ4 ≥ ψσ(s, d, κ). Then, Q̂ = Q̂∗ and Theorem 5 claims a bound with the

rate ψQσ (s, d, κ) = ψσ(s, d, κ) = max(σ2κ2, σ4d). To prove this bound, note that

Q̂∗ −Q(θ) = 2σ
d∑
j=1

θjξj + σ2
d∑
j=1

(ξ2
j − 1).

Thus, for all θ ∈ B2(κ),

Eθ(Q̂∗ −Q(θ))2 = 4σ2E
( d∑
j=1

θjξj
)2

+ σ4E
( d∑
j=1

(ξ2
j − 1)

)2

= 4σ2‖θ‖22 + 2σ4d ≤ 6 max(σ2κ2, σ4d).(52)

Case s <
√
d and κ4 ≥ ψσ(s, d, κ). Then, Q̂ = Q̂′ where

Q̂′ =
d∑
j=1

(y2
j − ασ2) 1{|yj |>σ

√
2 log(1+d/s2)}

and ψQσ (s, d, κ) = max(σ2κ2, σ4s2 log2(1 + d/s2)). Here and below in this proof, we set for
brevity α = αs.

Let x be defined in (43). Since s <
√
d, we have x ≥

√
2 log 2. Using Lemma 4, we find that,

for s ≤
√
d,

α =
E
(
X21{|X|>x}

)
P
(
|X| > x

) ≤ (x+ 2/x)(x+ 1) ≤ 5x2 = 10 log(1 + d/s2).(53)

Similarly to (45), we get

Q̂′ −Q(θ) =
∑
j∈S

(y2
j − ασ2 − θ2

j )−
∑
j∈S\Ŝ

(y2
j − ασ2) +

∑
j∈Ŝ\S

(y2
j − ασ2),

where S and Ŝ are defined in (43). Thus,

(54) Eθ

(
Q̂′−Q(θ)

)2 ≤ 3 Eθ

[(∑
j∈S

(y2
j−ασ2−θ2

j )
)2

+
( ∑
j∈S\Ŝ

(y2
j−ασ2)

)2
+
( ∑
j∈Ŝ\S

(y2
j−ασ2)

)2]
.

For θ ∈ B2(κ) ∩B0(s), the first term on the right-hand side satisfies

Eθ

(∑
j∈S

(y2
j − ασ2 − θ2

j )
)2

= E
(∑
j∈S

(2σθjξj + σ2(ξ2
j − α))

)2

≤ 4σ2‖θ‖22 + 2σ4s2(α2 + 3)(55)

≤ 4σ2‖θ‖22 + 2σ4s2(25x4 + 3),
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where the last inequality derives from (53). Hence, using the definition of x in (43) we find

Eθ

(∑
j∈S

(y2
j − ασ2 − θ2

j )
)2
≤ C1

(
σ2‖θ‖22 + σ4s2 log2(1 + d/s2)

)
(56)

≤ C1
(
σ2κ2 + σ4s2 log2(1 + d/s2)

)
.

Furthermore, by definition of Ŝ,

Eθ

( ∑
j∈S\Ŝ

(y2
j − ασ2)

)2
≤ 4σ4s2 log2(1 + d/s2) + 2σ4s2α2

≤ C2σ
4s2 log2(1 + d/s2)

for any θ ∈ B0(s). Finally, α was chosen such that, for any j 6∈ S,

Eθ

[(
y2
j − ασ2)1{|yj |>σx}] = σ2E

[(
X2 − α

)
1{|X|>x}

]
= 0,

where X ∼ N (0, 1). Thus, by independence we have

Eθ

( ∑
j∈Ŝ\S

(y2
j − ασ2)

)2
=
∑
j 6∈S

Eθ

[(
y2
j − ασ2)21{|yj |>σx}]

≤ σ4dE
[(
X2 − α

)2
1{|X|>x}

]
(57)

≤ 16σ4dE
[
X41{|X|>x}

]
since α ≤ 5X2 on the event {|X| > x}, cf. (53). Now, Lemma 4 implies

Eθ

( ∑
j∈Ŝ\S

(y2
j − ασ2)

)2
≤ C3σ

4d x3e−x
2/2,

and by definition of x,

Eθ

( ∑
j∈Ŝ\S

(y2
j − ασ2)

)2
≤ C4σ

4s2x3 ≤ (C4/
√

2 log 2)σ4s2x4 ≤ C5σ
4s2 log2(1 + d/s2),

where we have used the fact that x ≥
√

2 log 2. Combining the above displays yields

sup
θ∈B2(κ)∩B0(s)

Eθ

(
Q̂′ −Q(θ)

)2 ≤ C6 max(σ2κ2, σ4s2 log2(1 + d/s2)).

Remark 4. This proof elucidates why we have chosen the threshold x in the form (43).
In (54), the three terms on the right hand side are of the order respectively σ2κ2 + σ4s2x4,
σ4s2x4, and σ4dx3e−x

2/2. Among these, the expressions containing x are balanced if σ4s2x4 �
σ4dx3e−x

2/2, which is equivalent to xex2/2 � d/s2. This leads to a choice of x in the form√
2 log(d/s2)− log log(d/s2) �

√
2 log(d/s2).
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8.4. Proof of Theorem 7. Fix θ ∈ Bq(r). We will prove the theorem only for 1 ≤ m ≤
√
d

since the case m = 0 is trivial and the result for the case m >
√
d follows from (52) and the

fact that ‖θ‖2 ≤ ‖θ‖q ≤ r. In this proof, we will write for brevity α = α̃m, d̃ = 1 + d/m2,
x̃ = 2(2 log d̃)1/2. Let J ⊆ {1, . . . , d} be the set of indices corresponding to the m largest in
absolute value components of θ, and let |θ|(j) denote the jth largest absolute value of the
components of θ. It is easy to see that

|θ|(j) ≤
‖θ‖q
j1/q

.

This implies

∑
j∈Jc

θ2
j =

∑
j≥m+1

|θ|2(j) ≤ |θ|
2−q
(m)

∑
j≥m+1

|θ|q(j) ≤
( ‖θ‖q
m1/q

)2−q
‖θ‖qq = ‖θ‖2qm1−2/q.

Therefore, since θ ∈ Bq(r) and due to the definition of m,

(58)
∑
j∈Jc

θ2
j ≤ r2m1−2/q ≤ σ2m log d̃,

and

(59) ∀ j ∈ Jc : |θj | ≤ rm−1/q ≤ σ
√

log d̃ ≤ σx̃/2.

We have

Q̂q −Q(θ) =
∑
j∈J

{
y2
j − ασ2 − θ2

j

}
−

∑
j∈J\S̃

{
y2
j − ασ2}(60)

+
∑
j∈S̃\J

{
y2
j − ασ2}− ∑

j∈Jc
θ2
j ,

where S̃ = {j : |θj | > σx̃/2}. Consider the first sum on the right hand side of (60). Since
Card(J) = m, and α ≤ 40 log d̃ (which is obtained analogously to (53) recalling that now
α = α̃m instead of α = αs), the same argument as in (56) leads to

Eθ

(∑
j∈J

{
y2
j − ασ2 − θ2

j

})2
≤ C(σ2‖θ‖22 + σ4m2 log2 d̃).(61)

Next, consider the second sum on the right hand side of (60). By definition of S̃,

Eθ

( ∑
j∈J\S̃

{
y2
j − ασ2} )2

≤
(∑
j∈J

σ2(x̃+ α)
)2
≤ Cσ4m2 log2 d̃.(62)

Let us now turn to the third sum on the right hand side of (60). The bias-variance decompo-
sition yields

Eθ

( ∑
j∈S̃\J

{
y2
j − ασ2} )2

= Eθ

( ∑
j∈Jc

(y2
j − ασ2) 1{|yj |>σx̃}

)2

=
∑
j∈Jc

Varθ
(
(y2
j − ασ2) 1{|yj |>σx̃}

)
+
[ ∑
j∈Jc

Eθ

(
(y2
j − ασ2) 1{|yj |>σx̃}

)]2
.
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Here,

Varθ
(
(y2
j − ασ2) 1{|yj |>σx̃}

)
≤ Eθ

(
(y2
j − ασ2) 1{|yj |>σx̃}

)2

≤ CEθ

(
(θ4
j + σ4ξ4

j + α2σ4) 1{|yj |>σx̃}
)

≤ C
[
θ4
j + α2σ4 + σ4E

(
ξ4
j 1{|ξj |>x̃/2}

)]
(by (59)).

Using now the same argument as in (57) to bound E
(
ξ4
j 1{|ξj |>x̃/2}

)
we obtain

∑
j∈Jc

Varθ
(
(y2
j − ασ2) 1{|yj |>σx̃}

)
≤ C

( ∑
j∈Jc

θ4
j + σ4m2 log2 d̃

)
≤ C

(( ∑
j∈Jc

θ2
j

)2
+ σ4m2 log2 d̃

)
.

Furthermore, by Lemma 6,∣∣∣ ∑
j∈Jc

Eθ

(
(y2
j − ασ2) 1{|yj |>σx̃}

)∣∣∣ ≤ C ∑
j∈Jc

θ2
j .

Combining the above displays leads to the following bound :

Eθ

( ∑
j∈S̃\J

{
y2
j − ασ2} )2

≤ C
(( ∑

j∈Jc
θ2
j

)2
+ σ4m2 log2 d̃

)
.(63)

From (60) - (63) we deduce that

Eθ(Q̂q −Q(θ))2 ≤ C
(
σ2‖θ‖22 +

( ∑
j∈Jc

θ2
j

)2
+ σ4m2 log2 d̃

)
.

The result now follows if we use (58) and note that ‖θ‖2 ≤ ‖θ‖q ≤ r.

8.5. Proof of the upper bound (19) in Theorem 8. Fix θ ∈ B0(s) and set for brevity
τ =

(
ψ
√
Q

σ (s, d)
)1/2. We will bound the risk Eθ(N̂ − ‖θ‖2)2 separately for the cases ‖θ‖2 ≤ τ

and ‖θ‖2 > τ .

Case ‖θ‖2 ≤ τ . Using the elementary inequality (a− b)2 ≤ 2(a2 − b2) + 4b2, we find

Eθ(N̂ − ‖θ‖2)2 ≤ 2 Eθ(max{Q̂•, 0} −Q(θ)) + 4Q(θ) ≤ 2
(
Eθ(Q̂• −Q(θ))2

)1/2
+ 4τ2.

Note that Q̂• = Q̂ if we set κ = τ in the definition of Q̂. Furthermore, θ ∈ B0(s) and, in the
case under consideration θ belongs to B2(τ). Now, use that for all θ ∈ B2(τ) ∩ B0(s), due to
Theorem 5, we have

Eθ(Q̂• −Q(θ))2 ≤ CψQσ (s, d, τ).

Using this inequality and the fact that ψQσ (s, d, τ) =
(
ψ
√
Q

σ (s, d)
)2, we obtain the desired rate:

Eθ(N̂ − ‖θ‖2)2 ≤ C7ψ
√
Q

σ (s, d) + 4τ2 = (C7 + 4)ψ
√
Q

σ (s, d).
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Case ‖θ‖2 > τ . Using the elementary inequality ∀ a > 0, b ≥ 0, (a − b)2 ≤ (a2 − b2)2/a2,
we find

Eθ(N̂ − ‖θ‖2)2 ≤ Eθ(Q̂• −Q(θ))2

‖θ‖22
.

Now, we bound Eθ(Q̂• − Q(θ))2 along the lines of the proof of Theorem 5. In particular, if
s ≥
√
d we have Q̂• = Q̂∗, τ = σd1/4 and using (52) we obtain

Eθ(Q̂• −Q(θ))2

‖θ‖22
≤ 4σ2 +

2σ4d

‖θ‖22
≤ 4σ2 +

2σ4d

τ2
≤ C8σ

2
√
d,

which is the desired rate. If s <
√
d, we have Q̂• = Q̂′, τ = σ

√
s log(1 + d/s2) and using (56)

and the subsequent bounds in the proof of Theorem 5, we obtain

Eθ(Q̂• −Q(θ))2

‖θ‖22
≤

3
(
C1σ

2‖θ‖22 + (C1 + C2 + C5)σ4s2 log2(1 + d/s2)
)

‖θ‖22
(64)

≤ C9

(
σ2 +

σ4s2 log2(1 + d/s2)
τ2

)
≤ C10σ

2s log(1 + d/s2),

which is again the desired rate.

8.6. Proof of the upper bound (21) in Theorem 9. The case m = 0 is trivial. For m ≥ 1, we
use the same method of reduction to the risk of estimators of Q as in the proof of (19). The
difference is that now we set τ =

(
ψ
√
Q

σ,q (r, d)
)1/2, we replace s by m, and we apply Theorem 7

rather than to Theorem 5. In particular, an analog of (64) with s = m is obtained using (61).

8.7. Proof of Theorem 10. Here, we will use the notation set in (43). As in the proof of
the bound (3) and with the same notation, we have, for θ ∈ B0(s),

Eθ(L̃− L(θ))2 ≤ 3E
(∑
j∈S

σξj
)2

+ 3Eθ

(∑
j∈S

yj 1{|yj |≤σ̂x}
)2

+ 3E
( ∑
j∈Sc

σξj 1{σ|ξj |>σ̂x}
)2

≤ 3
{

(sσ2 + s2Eθ(σ̂2)x2) + σ2
∑
j∈Sc

E
(
ξ2
j 1{σ|ξj |>σ̂x}

)}
.

Here,

Eθ

(
ξ2
j 1{σ|ξj |>σ̂

√
2 log(1+d/s2)}

)
= Eθ

(
ξ2
j 1{σ|ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂>σ}

)
+ Eθ

(
ξ2
j 1{σ|ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂≤σ}

)
.

The first term on the right hand side satisfies

Eθ

(
ξ2
j 1{σ|ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂>σ}

)
≤ Eθ

(
ξ2
j 1{|ξj |>

√
2 log(1+d/s2)}

)
≤ Cs2

d

√
log(1 + d/s2) (by (41)).

For the second term, we use Lemma 7 to get

Eθ

(
ξ2
j 1{σ|ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂≤σ}

)
≤
√

E(ξ4
1)
√

Pθ(σ̂ ≤ σ) ≤ C
√
d exp(−

√
d/C).

Combining the above displays and using Lemma 7 to bound Eθ(σ̂2) we obtain

Eθ(L̃− L(θ))2 ≤ Cσ2s2 log(1 + d/s2).
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8.8. Proof of Theorem 11. Set S̃ = {j : |yj | ≥ σ̂
√

2 log d} and recall that S = {j : θj 6= 0}.
As in the proof of Theorem 5 we get

Eθ

(
Q̃−Q(θ)

)2 ≤ 3 Eθ

[(∑
j∈S

(y2
j − θ2

j )
)2

+
( ∑
j∈S\S̃

y2
j

)2
+
( ∑
j∈S̃\S

y2
j

)2]
.

We bound separately the three terms on the right hand side. For θ ∈ B2(κ) ∩B0(s), the first
term on the right-hand side satisfies, due to (56) with α = 0,

Eθ

(∑
j∈S

(y2
j − θ2

j )
)2
≤ C

(
σ2‖θ‖22 + σ4s2) ≤ C (

σ2κ2 + σ4s2).(65)

Using Lemma 7 we find

Eθ

( ∑
j∈S\S̃

y2
j

)2
= Eθ

(∑
j∈S

y2
j 1{|yj |<σ̂

√
2 log d}

)2

≤ s2Eθ(σ̂4)(2 log d)2 ≤ Cσ4s2 log2 d.(66)

Finally, we write the third term as follows

Eθ

( ∑
j∈S̃\S

y2
j

)2
= Eθ

(∑
j 6∈S

σ2ξ2
j 1{σ|ξj |>σ̂

√
2 log d}

)2
≤ 2(A1 +A2)(67)

where

A1 = Eθ

( d∑
j=1

σ2ξ2
j 1{σ|ξj |>σ̂

√
2 log d}1{σ̂>

√
2σ}

)2
,

A2 = Eθ

( d∑
j=1

σ2ξ2
j 1{σ̂≤

√
2σ}

)2
.

Using (42) we obtain

A1 ≤ σ4Eθ

( d∑
j=1

ξ2
j 1{|ξj |>2

√
log d}

)2
≤ 2σ4d2E

(
X4 1{|X|>2

√
log d}

)
(68)

≤ Cσ4(log d)3/2

where X ∼ N (0, 1). Next,

A2 ≤ σ4Eθ

( d∑
j=1

ξ2
j 1{σ̂≤

√
2σ}

)2
≤ σ4d2 max

1≤j≤d
Eθ

(
ξ4
j 1{σ̂≤

√
2σ}
)
.

Using (42) we find

Eθ

(
ξ4
j 1{σ̂≤

√
2σ}
)
≤ Eθ

(
ξ4
j 1{|ξj |>2

√
log d}

)
+ Eθ

(
ξ4
j 1{|ξj |≤2

√
log d} 1{σ̂≤

√
2σ}
)

≤ C

d2
(log d)3/2 + 16(log d)2Pθ(σ̂ ≤

√
2σ).

The last two displays and the bound for Pθ(σ̂ ≤
√

2σ) from Lemma 7 yield

A2 ≤ Cσ4(log d)3/2.(69)

Combining (65) - (69) proves the theorem.
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9. Appendix: Auxiliary lemmas.

Proof of Lemma 1. We first follow the lines of the proof of Theorem 7 in [9] and then
apply a result of [2] (cf. also Section 6 in [20]) in the same spirit as it was done in [4]. Let ϕσ
be a density of normal distribution with mean 0 and variance σ2. For I ∈ S(s, d), let

gI(y1, . . . , yd) =
d∏
j=1

ϕσ(yj − fj)

where fj = σρ1j∈I . The density of Pµρ is

g =
1(d
s

) ∑
I∈S(s,d)

gI

and we can write

χ2(Pµρ ,P0) =
∫ (dPµρ

dP0

)2
dP0 − 1 =

∫
g2

f
− 1

where f is a density of n i.i.d. normal random variables with mean 0 and variance σ2. Now,∫
g2

f
=

1(d
s

)2 ∑
I∈S(s,d)

∑
I′∈S(s,d)

∫
gIgI′

f
.

It is easy to see that ∫
gIgI′

f
= exp(ρ2Card(I ∩ I ′)),

which implies ∫
g2

f
= E exp(ρ2J)

where J is a random variable with hypergeometric distribution,

P(J = j) =

(s
j

)(d−s
s−j
)(d

s

) .

As shown in [2], J coincides in distribution with the conditional expectation E[Z|B] where Z
is a binomial random variable with parameters (s, s/d) and B is a suitable σ-algebra. This
fact and Jensen’s inequality lead to the following bound implying the lemma:∫

g2

f
≤ E exp(ρ2Z) =

(
1− s

d
+
s

d
eρ

2
)s
.

In the next two lemmas, we will use the notation Di(t) = E
(
Xi1{X>t}

)
for i ≥ 0, t > 0,

where X ∼ N (0, 1). Clearly, D0(t) = 1 − Φ(t), and D1(t) = φ(t) where Φ and φ are the
standard normal c.d.f. and density respectively. For i ≥ 2 integration by parts gives Di(t) =
ti−1φ(t) + (i− 1)Di−2(t). It follows that Di(t) = O(ti−1e−t

2/2) as t→∞, and each Di as well
as each of its derivatives is uniformly bounded.
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Lemma 5. Let y ∼ N (a, σ2) and T̂ = y 1{|y|>στ} where τ > 0. Set B(a) = E(T̂ )−a. Then
there exists C > 0 such that

|B(a)| ≤ C min(|a|, στ).

Proof. Note that B(a) = E(y 1{|y|≤στ}), so that |B(a)| ≤ στ. Thus, it remains to show
that there exists C > 0 such that |B(a)| ≤ C|a|. We have

B(a) = a
(
D0(τ + a/σ) +D0(τ − a/σ)

)
+ σ

(
D1(τ + a/σ)−D1(τ − a/σ)

)
.

Since all Di and their derivatives are uniformly bounded the result follows.

Lemma 6. Let y ∼ N (a, σ2), and τ > 0. Let α be such that E
[
(X2 − α) 1{|X|>τ}

]
= 0,

where X ∼ N (0, 1). Then there exists C > 0 such that∣∣∣E[(y2 − ασ2) 1{|y|>στ}
]∣∣∣ ≤ Ca2.

Proof. We have

E
[
(y2 − ασ2) 1{|y|>στ}

]
= σ2

(
D2(τ + a/σ) +D2(τ − a/σ)

)
+ 2aσ

(
D1(τ + a/σ)−D1(τ − a/σ)

)
+ (a2 − ασ2)

(
D0(τ + a/σ) +D0(τ − a/σ)

)
.

Using that D0 is bounded and D1 is Lipschitz continuous, we see that it is enough to check
the condition |f(a)| ≤ Ca2 for

f(a) = σ2
[
D2(τ + a/σ) +D2(τ − a/σ)− α

(
D0(τ + a/σ) +D0(τ − a/σ)

)]
.

Now, f(0) = 0 by definition of α and f ′(0) = 0 because f is symmetric. Since the second
derivatives of D2 and D0 are uniformly bounded Taylor’s theorem gives the result.

Lemma 7. For any θ such that ‖θ‖0 ≤
√
d we have

(70) Eθ(σ̂2) ≤ 9σ2, Eθ(σ̂4) ≤ Cσ4,

and

(71) Pθ(σ̂ ≤ σ) ≤ Cd exp(−
√
d/C)

for some absolute constant C > 0.

Proof. Since ‖θ‖0 ≤
√
d we have

σ̂2 ≤ 9
d

d−‖θ‖0∑
j=1

y2
(j).

Denote by F the set of indices i corresponding to the d− ‖θ‖0 smallest values y2
i . Then

d−‖θ‖0∑
j=1

y2
(j) =

∑
i∈F

y2
i = σ2

∑
i∈Sc

ξ2
i +

∑
i∈S∩F

y2
i − σ2

∑
i∈Sc∩F c

ξ2
i
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where S = {j : θj 6= 0}. For any i ∈ S ∩ F and any j ∈ Sc ∩ F c, we have

y2
i ≤ σ2ξ2

j .

Furthermore, Card(S ∩ F ) = Card(Sc ∩ F c). Therefore,

σ̂2 ≤ 9σ2

d

∑
i∈Sc

ξ2
i .

This implies (70). We now prove (71). Let G be the set of indices i corresponding to the
bd −

√
dc smallest y2

i . Here, bxc denotes the largest integer less than or equal to x. Then we
have ∑

j≤d−
√
d

y2
(j) =

∑
i∈G

y2
i ≥ σ2

∑
i∈Sc∩G

ξ2
i ≥ σ2

∑
i∈Sc

ξ2
i − 2

√
d σ2 max

i∈Sc
ξ2
i ,

where we have used that Card(Gc) ≤ 2
√
d. This implies:

σ̂2 ≥ 9σ2

d

∑
i∈Sc

ξ2
i −

18σ2

√
d

max
i∈Sc

ξ2
i .

Thus,

Pθ(σ̂ ≤
√

2σ) ≤ P
(
9σ2

∑
i∈Sc

ξ2
i − 18

√
dσ2 max

i∈Sc
ξ2
i ≤ 2dσ2

)
≤ P

(
9
∑
i∈Sc

ξ2
i ≤ 3d

)
+ P

(
18 max

i∈Sc
ξ2
i ≥
√
d
)
.(72)

The first term on the right hand side of (72) satisfies

P
(
3
∑
i∈Sc

ξ2
i ≤ d

)
≤ P

(
UD −D ≤ −2d/3 +

√
d
)

where D = Card(Sc), and UD is a χ2 random variable with D degrees of freedom. A standard
bound on the tails of χ2 random variables (see, e.g. [33]) yields

P(UD −D ≤ −t) ≤ exp(−t2/(4D)), ∀ t > 0.

Thus, for d > 2, we obtain

P
(
3
∑
i∈Sc

ξ2
i ≤ d

)
≤ exp(−(2d/3−

√
d)2/(4D)) ≤ exp(−d/C)

where C > 0 is an absolute constant. Finally, the second term on the right hand side of (72)
satisfies

P

(
max
i∈Sc

ξ2
i ≥
√
d

18

)
≤ d exp

(
−
√
d

36

)

in view of (40). Plugging the last two displays in (72) we obtain (71).
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