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Abstract

We consider the problem of estimating a low rank covariance function K(t, u)
of a Gaussian process S(t), t ∈ [0, 1] based on n i.i.d. copies of S observed in a
white noise. We suggest a new estimation procedure adapting simultaneously
to the low rank structure and the smoothness of the covariance function. The
new procedure is based on nuclear norm penalization and exhibits superior
performances as compared to the sample covariance function by a polynomial
factor in the sample size n. Other results include a minimax lower bound
for estimation of low-rank covariance functions showing that our procedure
is optimal as well as a scheme to estimate the unknown noise variance of the
Gaussian process.
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1. Introduction

Let X(t), t ∈ [0, 1] be a Gaussian process satisfying the following stochas-
tic differential equation:

dX(t) = S(t)dt+ σdW (t), t ∈ [0, 1], (1)

where W is the standard Brownian motion, σ > 0 is the noise level, and

S(t) =

r∑
k=1

√
λkξkϕk(t), t ∈ [0, 1].

Here ξk are i.i.d. standard Gaussian random variables independent of the
Brownian motion W, {ϕk}rk=1 are unknown orthonormal functions in L2[0, 1],
possibly, with r =∞, and the coefficients λk > 0 are unknown and such that∑r

k=1 λk <∞. The value of r is also unknown.
Assume that we observe n i.i.d. copies X1(t), . . . , Xn(t) of the process

X(t). In this paper, we study the problem of estimation of the covariance
function of the stochastic process S(·),

K(t, u) = E(S(t)S(u)) =

r∑
k=1

λkϕk(t)ϕk(u), t, u ∈ [0, 1], (2)

based on the observations {X1(t), . . . , Xn(t), t ∈ [0, 1]}. If r = ∞, the sum
in (2) is understood in the sense of L2([0, 1] × [0, 1])-convergence. In short,
(1) is a model of a “signal” (Gaussian stochastic process S) observed in a
Gaussian white noise and the goal is to estimate the covariance of the signal
based on a sample of such observations.

Statistical estimation of covariance functions has already received some
attention in the literature. However, somewhat different setting was consid-
ered where the trajectories Xi(·) are observed at discrete time locations:

Yi,j = Si(Ti,j) + σηi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where Si are i.i.d. copies of S, ηi,j are i.i.d. N (0, 1) and, for each i, the points
Ti,j, 1 ≤ j ≤ m, are equispaced in the interval [0, 1] or independent random
variables with uniform distribution on [0, 1]. In this setting, Yao et al. (2005)
proposed a local smoothing estimation procedure assuming that the trajec-
tories Xi(·) are well approximated by the projection on the linear span of
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functions ϕ1, . . . , ϕk for some known fixed k chosen by cross-validation. This
procedure is computationally intensive as it requires to compute the eigen-
values and the inverse for n distinct m × m empirical covariance matrices
of the trajectories Xi, 1 ≤ i ≤ n, at each of the cross-validation steps. The
results in Yao et al. (2005) provide theoretical guarantees for estimation of
the covariance function and its eigenfunctions under the condition that the
previous approximation is sufficiently precise. Hall et al. (2006) consider the
same methodology and study the effect of the sampling rate on the estima-
tion rate of the eigenfunctions. In a similar framework, Bunea and Xiao
(2013) propose a simpler procedure to estimate the eigenfunctions and ob-
tain theoretical guarantees on the estimation error. Their approach involves
a dimension reduction step where the selection of the relevant eigenfunctions
is performed by thresholding the eigenvalues of a correctly constructed em-
pirical covariance matrix. In a similar setting, Bigot et al. (2010) consider
the estimation of the covariance matrix of the process S at sample points
rather than that of the covariance function. This problem can be reduced
to multivariate regression and Bigot et al. (2010) develop a model selection
approach to it resulting in some oracle inequalities.

Noteworthy, strong regularity conditions are usually imposed on the eigen-
functions ϕk in the existing literature. In Hall et al. (2006) the eigenfunctions
are assumed to admit bounded derivatives of order at least two. In addition,
the optimal bandwidth choice in the local smoothing approach used in Hall
et al. (2006); Yao et al. (2005) requires the knowledge of smoothness de-
gree of the eigenfunctions. In Bunea and Xiao (2013), the eigenfunctions
are assumed to be continuously differentiable with bounded derivatives, the
sequence of eigenvalues belongs to a Sobolev ball with regularity β > 0 and
the optimal choice of the threshold in the dimension reduction step depends
on β.

An interesting question is what are the optimal rates of estimation of
the covariance function in a minimax sense. To our knowledge, it was not
addressed in the literature.

In this paper, we assume that the trajectories Xi(·) are fully observed in
time. Our aim is to understand the influence of the structure of the covariance
function K on the estimation rate. The main contributions of this paper are
as follows:

1. We propose a simple data-driven procedure to estimate the covariance
function and prove oracle inequalities for it based on recent results on
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high-dimensional matrix estimation.

2. We show that the proposed method is minimax optimal for estimation
of K in the L2-norm whereas the empirical covariance estimator is
suboptimal.

2. Definitions and notations

Let e1(·), e2(·), . . . be an orthonormal basis of L2[0, 1], which is assumed to
be fixed throughout the paper. Denote by ‖·‖2 the norms either of L2[0, 1] or
of L2([0, 1]× [0, 1]) (according to the context) and by 〈·, ·〉 the corresponding
inner products. For any integer l ≥ 1, consider the orthogonal projection
S(l) =

∑l
k=1〈ek, S〉ek of S onto the linear span of {e1, . . . , el}. Set

Ẋ(l) =

l∑
k=1

∫ 1

0

ek(t)dX(t) ek, Ẇ (l) =

l∑
k=1

∫ 1

0

ek(t)dW (t) ek. (3)

In view of (1), we have

Ẋ(l) = S(l) + σẆ (l).

Similarly to (3), we define the processes

Ẋ
(l)
i =

l∑
k=1

∫ 1

0

ek(t)dXi(t) ek, i = 1, . . . , n,

and consider the empirical covariance function

R(l)
n (t, u) =

1

n

n∑
i=1

Ẋ
(l)
i (t)Ẋ

(l)
i (u), t, u ∈ [0, 1].

Note that the expectation of R
(l)
n (t, u) is

E
[
R(l)
n (t, u)

]
= E

[
S(l)(t)S(l)(u)

]
+ σ2I(l)(t, u)

= K(l)(t, u) + σ2I(l)(t, u),

with I(l)(t, u) =
∑l

k=1 ek(t)ek(u) and

K(l)(t, u) = E
[
S(l)(t)S(l)(u)

]
=

r∑
m=1

λmϕ
(l)
m (t)ϕ(l)

m (u)
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where ϕ
(l)
m =

∑l
k=1〈ek, ϕm〉ek is the orthogonal projection of ϕm onto the lin-

ear span of {e1, . . . , el}. In what follows, we will consider the set of functions

Sl =

{ l∑
j,k=1

sjk(ej ⊗ ek) : sjk = skj, j, k = 1, . . . , l

}
where (ej⊗ ek)(t, s) = ej(t)ek(s). The set Sl consists of all symmetric kernels
belonging to the linear span of {ej ⊗ ek : j, k = 1, . . . , l}. Note that K is not

necessarily in Sl while R
(l)
n , K(l), I(l) ∈ Sl. It is easy to see that K(l) is the

orthogonal projection of K onto Sl.
If no ambiguity is caused, for any A ∈ Sl, we will use the same symbol A

to denote the corresponding symmetric l× l matrix. For any function A ∈ Sl
or any l× l matrix A we denote by ‖A‖1 and ‖A‖∞ its nuclear and spectral
norms, respectively. The trace and the rank of matrix A are denoted by
tr(A) and rank(A), and its Frobenius norm by ‖A‖F . Writing A ≥ 0 for a
matrix A means that A is non-negative definite.

3. Nuclear norm penalized estimator and its convergence rate

In this section, we assume that the noise level σ is known. For an integer
l ≥ 1, we define the estimator Â(l) ofK as a solution of the following penalized
minimization problem

Â(l) ∈ argminA∈Sl,A≥0

(
‖R(l)

n − A− σ2I(l)‖2
2 + µ‖A‖1

)
, (4)

where µ > 0 is a regularization parameter to be tuned. Note that here
we have ‖A‖1 = tr(A). The solution of (4) is explicitly expressed via soft

thesholding of the eigenvalues of the matrix R
(l)
n − σ2I(l) (cf. Koltchinskii

et al. (2011)). The next theorem easily follows from the argument in the
proof of Theorem 1 in Koltchinskii et al. (2011) (see also Lounici (2014)).

Theorem 1. Let n, l ≥ 1 be integers and let X1(·), . . . , Xn(·) be i.i.d. real-

izations of the process X(·) satisfying (1). If µ ≥ 2‖R(l)
n − K(l) − σ2I(l)‖∞

then, for any K satisfying (2) with
∑r

k=1 λk <∞ we have

‖Â(l) −K‖2
2 ≤ inf

A∈Sl,A≥0

{
‖A−K‖2

2 + min

{
2µ‖A‖1,

(1 +
√

2)2

8
µ2rank(A)

}}
.
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This theorem is a deterministic fact as soon as we have a proper bound on
a single random variable, namely, the spectral norm ‖R(l)

n −K(l) − σ2I(l)‖∞.
In other words, all stochastic effects in our problem are localized in the
behaviour of this random variable and the choice of µ is driven by it as well.
The next lemma provides a probabilistic bound on this random variable.

Lemma 2. Let n, l ≥ 1 be integers and let X1(·), . . . , Xn(·) be i.i.d. real-
izations of the process X(·) satisfying (1). Set λmax = sup1≤j≤r λj. For any
t > 0 and l ≥ 1, define

δn(l, t) = max

{√
l + t

n
,
l + t

n

}
. (5)

Then, with probability at least 1−e−t, for any K satisfying (2) with
∑r

k=1 λk <
∞ we have

‖R(l)
n −K(l) − σ2I(l)‖∞ ≤ C(λmax + σ2)δn(l, t),

for some absolute constant C > 0.

Proof. Set xi(l) = (
∫ 1

0
e1(t)dXi(t), . . . ,

∫ 1

0
el(t)dXi(t))

> for any 1 ≤ i ≤ n and

B̂n,l = 1
n

∑n
i=1 xi(l)xi(l)

>. Note that xi(l) are i.i.d. normal random vectors

with mean 0 and covariance matrix Bl = K(l) + σ2I(l). Also ‖R(l)
n −K(l) −

σ2I(l)‖∞ = ‖B̂n,l − Bl‖∞. Here, I(l) is the l × l identity matrix. Next,

‖B̂n,l−Bl‖∞ ≤ ‖Bl‖∞

∥∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i − I(l)

∥∥∥∥∥
∞

≤ (λmax+σ2)

∥∥∥∥∥ 1

n

n∑
i=1

ZiZ
>
i − I(l)

∥∥∥∥∥
∞

where Z1, . . . , Zn are i.i.d. standard normal vectors in IRl. Here we also used
the fact that the following representation holds for random vectors xi(l) :

xi(l) = B
1/2
l Zi. Applying Theorem 5.39 in Vershynin (2012) to the random

variable
∥∥ 1
n

∑n
i=1 ZiZ

>
i − I(l)

∥∥
∞ we get the result.

Theorem 1 with Lemma 2 immediately imply the following result.

Theorem 3. Let n, l ≥ 1 be integers and let X1(·), . . . , Xn(·) be i.i.d. real-
izations of the process X(·) satisfying (1). Take

µ = c(λmax + σ2)δn(l, t),
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for some sufficiently large absolute constant c > 0. Define

vn(A, l, t) = min
{

(λmax + σ2)tr(A)δn(l, t), (λmax + σ2)2rank(A)δ2
n(l, t)

}
.

Let t > 0. Then, with probability at least 1 − e−t, for any K satisfying (2)
with

∑r
k=1 λk <∞ we have

‖Â(l) −K‖2
2 ≤ inf

A∈Sl,A≥0

{
‖A−K‖2

2 + Cvn(A, l, t)
}

(6)

with some absolute constant C > 0.

The bound (6) is the main oracle inequality that we will use now to obtain
bounds on the risk of the estimator Â(l). It is easy to check that

vn(A, l, t) ≤ (λmax + σ2)2rank(A)
l + t

n
.

The above bound is trivial if l + t ≤ n. In the case l + t > n, it follows from
the bound

(λmax+σ2)tr(A)
l + t

n
≤ (λmax+σ2)λmaxrank(A)

l + t

n
≤ (λmax+σ2)2rank(A)

l + t

n
.

Combining Theorem 3 with the fact that, for a random variable η, E[|η|] =∫∞
0

P(|η| ≥ t)dt and taking A = K(l),

E[‖Â(l) −K‖2
2] ≤ ‖K(l) −K‖2

2 + C(λmax + σ2)2 (r ∧ l)l
n

(7)

for some absolute constant C > 0, where we have used that rank(K(l)) ≤ r∧l.
This inequality is valid for all K of the form (2), with finite or infinite r.

As a corollary, we get the following bound on the minimax risk over the
class of covariance functions that admit a finite expansion with respect to
the basis {ek}. Denote by Kr,l(λmax) the class of all covariance functions
satisfying (2) such that K ∈ Sl and ‖K‖∞ ≤ λmax where λmax is a finite
positive constant. Note that the system of functions {ϕk} in this definition
is not fixed and varies among all orthonormal systems in L2[0, 1].

Corollary 4. Under the assumptions of Theorem 3, we have

sup
K∈Kr,l(λmax)

E[‖Â(l) −K‖2
2] ≤ C(λmax + σ2)2 (r ∧ l)l

n

for some absolute constant C > 0.
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It is interesting to compare the estimator Â(l) with the other natural
estimator, which is the corrected empirical covariance function

Ā(l) , R(l)
n − σ2I(l).

We have the following expression for the risk of Ā(l).

Proposition 5. For any K satisfying (2) with
∑r

k=1 λk <∞ we have

E[‖Ā(l) −K‖2
2] = ‖K(l) −K‖2

2 +
‖Bl‖2

2 + [tr(Bl)]
2

n

where Bl = K(l) + σ2I(l).

Proof. Set for brevity B = Bl, B̂n = B̂n,l, xi = xi(l). Note that E(Ā(l)) =
K(l). The bias-variance decomposition of the risk of Ā(l) yields

E[‖Ā(l) −K‖2
2] = ‖K(l) −K‖2

2 + E[‖R(l)
n − E(R(l)

n )‖2
2].

Here, E[‖R(l)
n −E(R

(l)
n )‖2

2] = E[‖B̂n −B‖2
F ] = E

[∥∥ 1
n

∑n
i=1 Wi

∥∥2

F

]
where Wi =

xix
>
i −E[xix

>
i ]. Since the matrices Wi are i.i.d. we find E

[∥∥ 1
n

∑n
i=1 Wi

∥∥2

F

]
=

E tr
(

1
n2

∑n
i,j=1 W

>
i Wj

)
= 1

n
tr
(
E(W>

1 W1)
)

= 1
n

(
E(|x1|42)−tr(B>B)

)
where |·|2

denotes the Euclidean norm. Here, E(|x1|42) − tr(B>B) = ‖B‖2
2 + [tr(B)]2

and the result follows.

Since tr(B) ≥ σ2l, Proposition 5 implies

E[‖Ā(l) −K‖2
2] ≥ ‖K(l) −K‖2

2 +
σ4l2

n
, (8)

inf
K

E[‖Ā(l) −K‖2
2] ≥ σ4l2

n
(9)

where infK is the infimum over all K satisfying (2) with
∑r

k=1 λk < ∞.
Comparing (9) with Corollary 4 we see that the risk of the empirical estimator
Ā(l) on the class Kr,l is of the order greater than the risk of our estimator

Â(l) when r is smaller than l.
Our estimator also outperforms the estimator Ā(l) for kernels K that

do not admit a finite expansion with respect to the basis {ek}, but satisfy
some regularity conditions. To this end, we introduce a specific norm that
can be naturally interpreted as a version of the Sobolev norm for covariance
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functions. Fix the smoothness parameter s > 0. For any symmetric function
K : [0, 1]2 → IR, we define

‖K‖s,2 := ‖∆sK‖2 =

(∑
k,k′≥1

k2s〈Kek, ek′〉2
)1/2

,

where ∆ is an operator admitting the matrix representation diag(1, 2, · · · , k, · · · )
w.r.t the basis (ek)k≥1. Note that the norm ‖K‖s,2 depends on the basis {ek}
but we do not indicate this dependence in the notation since {ek} is fixed.
Note also that if K admits spectral representation (2), then

‖K‖s,2 =
(
tr(∆2sK2)

)1/2
=

(
r∑

k=1

λ2
k‖ϕk‖2

s,2

)1/2

,

where we use the notation

‖ϕ‖s,2 = ‖∆sϕ‖ =

(∑
k≥1

k2s〈ϕ, ek〉2
)1/2

for a Sobolev type norm of a function ϕ : [0, 1]→ IR.

Assumption 6. Suppose the covariance function K has finite rank r and
there exist constants λmax > 0, s > 0 and ρ ≥ 1 such that ‖K‖∞ ≤ λmax and
‖K‖s,2 ≤ ρ.

Denote by Kr(s, ρ;λmax) the class of all kernels K satisfying Assumption
6.

Theorem 7. Given r ≥ 1, s > 0, ρ > 0 and λmax > 0, set

` := max

(⌈(
ρ2

(λmax + σ2)2

n

r

)1/(2s+1)
⌉
,

⌈(
ρ2n

(λmax + σ2)2

)1/(2s+2)
⌉)

.

Then, with some absolute constant C > 0,

sup
K∈Kr(s,ρ;λmax)

E[‖Â(`) −K‖2
2] ≤ (10)

C min

(
(λmax + σ2)4s/(2s+1)ρ2/(2s+1)

( r
n

)2s/(2s+1)

, (λmax + σ2)2s/(s+1)ρ2/(s+1)n−s/(s+1)

)
.
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Proof. Since K satisfies Assumption 6, we have for any l ≥ 1 that

‖K −K(l)‖2
2 =

∑
k≥l+1

∞∑
k′=1

〈Kek, ek′〉2 +
∑
k′≥l+1

l∑
k=1

〈Kek, ek′〉2

≤ (l+1)−2s
∑
k≥l+1

∞∑
k′=1

k2s〈Kek, ek′〉2+(l+1)−2s
∑
k′≥l+1

∞∑
k=1

(k′)2s〈Kek, ek′〉2 ≤ 2ρ2l−2s.

Combining the previous display with (7), we find that, for any l ≥ 1,

E[‖Â(l) −K‖2
2] ≤ 2ρ2l−2s + C(λmax + σ2)2 (r ∧ l)l

n
.

The minimum of the right-hand side of this inequality is achieved for l of the
order of `. By setting l = `, we obtain (10).

Note that, if the rank r is small, the problem of estimation of covariance
function K reduces to estimation of a small number r of eigenfunctions and
eigenvalues of K. The rate in (10) is, in this case, of the order O(n−2s/(2s+1)),
which coincides with a standard minimax error rate of estimation of a func-
tion of one variable of smoothness s. On the other hand, when the rank r is
large (say, r = +∞), the estimation error rate becomes O(n−s/(s+1)), which is
the minimax rate of estimation of a function of two variables of smoothness
s. Similar error rates where studied earlier in matrix completion problems
for smooth kernels on graphs (see Koltchinskii and Rangel (2013)).

We consider now a class of kernels determined by the following assump-
tion, which can be interpreted as a Sobolev type condition on the individual
eigenfunctions ϕj.

Assumption 8. The value r is finite and there exist constants s > 0, c∗ > 0
such that, for any 1 ≤ j ≤ r, ‖ϕj‖s,2 ≤ c∗.

Denote by Kr(s, c∗;λmax) the class of all kernels K defined by (2) with
eigenfunctions ϕj satisfying Assumption 8 and such that ‖K‖∞ < λmax.

Theorem 9. Let l1 = max
(
dn

1
2s+1 e, d(rn)

1
2(s+1) e

)
, n ≥ 1, 1 ≤ r < ∞. For

any s > 0, c∗ > 0, λmax > 0 we have

sup
K∈Kr(s,c∗;λmax)

E[‖Â(l1) −K‖2
2] ≤ C min

(
rn−

2s
2s+1 , r

1
s+1n−

s
s+1

)
(11)

where C > 0 is a constant depending only on λmax, σ and c∗.
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Proof. It is enough to observe that, for all K ∈ Kr(s, c∗;λmax),

‖K‖2
s,2 =

r∑
k=1

λ2
k‖ϕk‖2

s,2 ≤ c2
∗λ

2
maxr,

implying that Kr(s, c∗;λmax) ⊂ Kr(s, ρ;λmax) with ρ = c∗λmax

√
r. Bound

(11) now follows from (10).

When r is a fixed constant and n is large, the rate in (11) is O(n−
2s

2s+1 ).
The next theorem shows that this rate cannot be achieved by the corrected
empirical covariance estimator Ā(l) whatever is the choice of l.

Theorem 10. Let n ≥ 1, 1 ≤ r <∞. There exists c∗ > 0 such that for any
s > 0, λmax > 0 we have

inf
l≥1

sup
K∈Kr(s,c∗;λmax)

E[‖Ā(l) −K‖2
2] ≥ Cn−

s
s+1 (12)

where C > 0 is a constant that can depend only on λmax, σ, s and c∗.

Proof. Fix l ≥ 1 and consider the function

ϕ1(t) = C1

(
l∑

k=1

ek(t)

ks+1
+

2l∑
k=l+1

ek(t)

ks+1/2

)
, t ∈ [0, 1],

where C1 is a normalizing constant, depending only on s, such that ‖ϕ1‖2 = 1.
By an easy computation, ‖ϕ1‖s,2 ≤ c′ for a constant c′ depending only on s.

Set K̄(t, u) = λmaxϕ1(t)ϕ1(u). Then K̄ ∈ Kr(s, c∗;λmax) with c∗ = c′.
Due to (8),

sup
K∈Kr(s,c∗;λmax)

E[‖Ā(l) −K‖2
2] ≥ sup

K∈Kr(s,c∗;λmax)

‖K(l) −K‖2
2 +

σ4l2

n

≥ ‖K̄(l) − K̄‖2
2 +

σ4l2

n
. (13)

Observe that

ϕ1 ⊗ ϕ1 = ϕ
(l)
1 ⊗ ϕ

(l)
1 + (ϕ1 − ϕ(l)

1 )⊗ ϕ(l)
1 + ϕ1 ⊗ (ϕ1 − ϕ(l)

j ).
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Therefore,

‖ϕ1 ⊗ ϕ1 − ϕ(l)
1 ⊗ ϕ

(l)
1 ‖2

2 = ‖(ϕ1 − ϕ(l)
1 )⊗ ϕ(l)

1 ‖2
2 + ‖ϕ1 ⊗ (ϕ1 − ϕ(l)

1 )‖2
2

≥ ‖ϕ1‖2
2‖ϕ1 − ϕ(l)

1 ‖2
2 = ‖ϕ1 − ϕ(l)

1 ‖2
2.

This implies that

‖K̄(l) − K̄‖2
2 ≥ λ2

max‖ϕ1 − ϕ(l)
1 ‖2

2 ≥ cλ2
maxl

−2s

for some constant c > 0 depending only on s. Using this inequality in (13)
and taking the minimum over l ≥ 1, we obtain the result.

4. Adaptive Estimation

We observe that the optimal choice of the parameter l in theorems 7 and
9 depends on the unknown parameters ρ, s and r that quantify respectively
the smoothness of the eigenfunctions of K and their number. In this section,
we propose an adaptive estimator, which does not depend on s and r that
attains the same rate as in Theorem 7 or in Theorem 9.

First, we describe a general method of aggregating estimators. Assume
without loss of generality that the sample size n is even. We split the sample
of n trajectories X = {X1, . . . , Xn} into two parts of equal size n/2, denoted
X1 = {X1, . . . , Xn/2} and X2 = {Xn/2+1, . . . , Xn}. Fix an integer L. Using
the sample X1, we construct a family of estimators A(1), . . . , A(L) such that
A(l) ∈ Sl, 1 ≤ l ≤ L. These can be, for example, the estimators Â(1), . . . , Â(L)

defined in (4).
Consider the following adaptive selector of l:

l̂ = arg min
1≤l≤L

{‖A(l)‖2
2 − 2〈A(l), R̃(l)

n − σ2I(l)〉}, (14)

where R̃
(l)
n (t, u) = 2

n

∑n
i=n/2+1 Ẋ

(l)
i (t)Ẋ

(l)
i (u) is the projected empirical covari-

ance function associated to the second subsample X2.
In the following theorem we assume that the first subsample is frozen, so

we state the result for non-random functions A(l) ∈ Sl, 1 ≤ l ≤ L.

Theorem 11. Let A(l), 1 ≤ l ≤ L, be functions such that A(l) ∈ Sl. For any
t > 0, with probability at least 1 − e−t with respect to the subsample X2 we
have

‖A(l̂) −K‖2
2 ≤ 2 min

1≤l≤L
‖A(l) −K‖2

2 + C[λmax ∨ σ2]2 max

{
t+ logL

n
,

(
t+ logL

n

)2
}

12



for all K satisfying (2) with
∑r

k=1 λk < ∞. Here, C > 0 is an absolute
constant.

Proof. Fix an arbitrary l̄ ∈ {1, . . . , L}. Note that, by definition, {Sl}l≥1 is a
nested sequence satisfying

Sl+1 = Sl ⊕ l.s. {ej ⊗ el+1 + el+1 ⊗ ej, 1 ≤ j ≤ l} .

Consequently, for any 1 ≤ l, l′ ≤ L, we have 〈A(l), R̃
(l)
n 〉 = 〈A(l), R̃

(l∨l′)
n 〉.

Similarly 〈A(l), K〉 = 〈A(l), K(l)〉 = 〈A(l), K(l∨l′)〉. Combining this observation
with (14), we get

‖A(l̂) −K‖2
2 − ‖A(l̄) −K‖2

2

= ‖A(l̂)‖2
2 − 2〈A(l̂), K(l̂)〉 − [‖A(l̄)‖2

2 − 2〈A(l̄), K(l̄)〉]

≤ ‖Â(l̂)‖2
2 − 2〈A(l̂), R̃(l̂)

n − σ2I(l̂)〉 − [‖A(l̄)‖2
2 − 2〈A(l̄), R̃(l̄)

n − σ2I(l̄)〉]

+ 2〈A(l̂) − A(l̄), R̃(l̂∨l̄)
n −K(l̂∨l̄) − σ2I(l̂∨l̄)〉

≤ 2〈A(l̂) − A(l̄), R̃(l̂∨l̄)
n −K(l̂∨l̄) − σ2I(l̂∨l̄)〉.

Here, K(l̂∨l̄) + σ2I(l̂∨l̄) = E[R̃
(l̂∨l̄)
n ]. Setting for brevity m = l̂ ∨ l̄ we deduce

from the previous display that

‖A(l̂) −K‖2
2 − ‖A(l̄) −K‖2

2 ≤ 2U‖A(l̂) − A(l̄)‖2 ≤
1

6
‖A(l̂) − A(l̄)‖2

2 + 6U2

where U , maxl=1,...,L〈Ul, R̃(m)
n −E[R̃

(m)
n ]〉 with Ul = (A(l̂)−A(l̄))/‖A(l̂)−A(l̄)‖2

if A(l̂) 6= A(l̄) and Ul = 0 otherwise. It follows from the last display and the
bound

1

6
‖A(l̂) − A(l̄)‖2

2 ≤
1

3
‖A(l̂) −K‖2

2 +
1

3
‖A(l̄) −K‖2

2

that

‖A(l̂) −K‖2
2 ≤ 2‖A(l̄) −K‖2

2 + 9U2. (15)

Since l̄ is arbitrary, to complete the proof it suffices to bound the random vari-
able U in probability. We first obtain a bound for each of the variables ζl =
〈Ul, R̃(m)

n −E[R̃
(m)
n ]〉. Note that associating Ul with the corresponding m×m

matrices that we will also denote by Ul, we can write ζl = 〈Ul, B̂−B〉 where
B̂ = (2/n)

∑n
i=n/2+1 xi(m)xi(m)>, B = K(m) + σ2I(m) = E[xi(m)xi(m)>],

13



and xi(m) are i.i.d. normal vectors with mean 0 and covariance matrix B
(cf. the proof of Lemma 2) and 〈·, ·〉 is the inner product of matrices. It
follows that

ζl = 〈B1/2UlB
1/2,

2

n

n∑
i=n/2+1

ZiZ
>
i − I(m)〉

= tr
( 2

n

n∑
i=n/2+1

B1/2UlB
1/2ZiZ

>
i − B1/2UlB

1/2
)

=
2

n

n∑
i=n/2+1

Z>i DZi − tr(D)

where Z1, . . . , Zn are i.i.d. standard normal vectors in IRm andD = B1/2UlB
1/2.

By the Hanson-Wright inequality (see, e.g., Rudelson and Vershynin (2013))
we have that for any t > 0, with probability at least 1 − e−t,∣∣∣∣∣∣ 2n

n∑
i=n/2+1

Z>i DZi − tr(D)

∣∣∣∣∣∣ ≤ C

(
‖D‖∞t
n

+ ‖D‖F

√
t

n

)
(16)

where C > 0 is an absolute constant. Since ‖Ul‖2 ≤ 1 when considering Ul
as a function (which is equivalent to ‖Ul‖F ≤ 1 when considering Ul as a
matrix) and ‖B‖∞ ≤ λmax + σ2 we have ‖D‖∞ ≤ ‖D‖F ≤ λmax + σ2. Thus,
with probability at least 1 − e−t

|ζl| ≤ C(λmax ∨ σ2)

(√
t

n
+
t

n

)
where C > 0 is an absolute constant. The union bound argument gives that,
with probability at least 1 − e−t,

U2 = max
l=1,...,L

ζ2
l ≤ C(λmax ∨ σ2)2

(√
t+ logL

n
+
t+ logL

n

)2

where C > 0 is an absolute constant. Combining this with (15) proves the
theorem.

We now apply Theorem 11 to A(l) = Â(l) where the estimators Â(1), . . . , Â(L)

are defined in (4). Combining Theorems 3, 11 and the fact that, for a random
variable η, E[|η|] =

∫∞
0

P (|η| ≥ t) dt we get the following result.

14



Theorem 12. Let each of the estimators Â(l) satisfy the conditions of The-
orem 3. Then

E
[
‖Â(l̂) −K‖2

2

]
≤ C min

1≤l≤L
inf

A∈Sl, A≥0

{
‖A−K‖2

2 + vn(A, l, l)
}

+C[λmax∨σ2]2
logL

n

for all K satisfying (2) with
∑r

k=1 λk < ∞. Here, C > 0 is an absolute
constant.

We now fix L = n. Using Theorem 12, Theorem 7, Theorem 9 and
Corollary 4, we obtain the following result.

Theorem 13. Let each of the estimators A(l) = Â(l) satisfy the conditions of
Theorem 3. Let Â(l̂) be the aggregated estimator with l̂ defined in (14) with
L = n.

(i) For any r ≥ 1, c∗ > 0 and s > 0 such that 1 ≤ r ≤ n1+2s, we have

sup
K∈Kr(s,c∗;λmax)

E‖Â(l̂) −K‖2
2 ≤ C min

(
rn−

2s
2s+1 , r

1
s+1n−

s
s+1

)
,

where C > 0 is a constant that can depend only on λmax, σ
2, c∗, and s.

(ii) For any r ≥ 1, ρ ≥ 1, s > 0, λmax > 0, σ2 ≥ 0 such that ρ2 ≤
(λmax + σ2)2 min

(
rn2s, n1+2s

)
, we have

sup
K∈Kr(s,ρ;λmax)

E‖Â(l̂) −K‖2
2 ≤ C min

(( r
n

)2s/(2s+1)

, n−s/(s+1)

)
,

where C > 0 is a constant that can depend only on λmax, σ
2, ρ, and s.

(iii) If (r ∧ l)l ≥ log n and l ≤ n, then for any λmax > 0,

sup
K∈Kr,l(λmax)

E[‖Â(l̂) −K‖2
2] ≤ C

(r ∧ l)l
n

where C > 0 is a constant that can depend only on λmax and σ2.

The conditions r ≤ n1+2s and ρ2 ≤ (λmax + σ2)2 min
(
rn2s, n1+2s

)
are

rather mild. Indeed, if r and ρ are fixed quantities, then these conditions
are satisfied for n large enough. Theorem 13 shows that the estimator
Â(l̂) is adaptive to the unknown parameters r and s on the scale of classes
Kr(s, ρ;λmax) and Kr(s, c∗;λmax) that no price is paid in the rate as compared
to the non-adaptive estimators of Theorems 7 and 9. The same estimator is
adaptive on the scale of classes Kr,l(λmax), again with no price to be paid,
for a wide range of values of l and r.
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5. Estimation of σ2

We now tackle the estimation of the unknown variance σ2. We use the
simple idea that 〈el, S〉 becomes negligible for large l when Assumption 8 is
satisfied. Therefore, we propose the following (biased) estimator of σ2 based
on an independent copy X of the process (1):

σ̂2 =
1

M

∥∥∥Ẋ(L+M) − Ẋ(L)
∥∥∥2

2
, L = en,M ≥ 1. (17)

Theorem 14. Let n, l ≥ 1 be integers and let X1(·), . . . , Xn(·) be i.i.d. re-
alizations of the process X(·) satisfying (1). Let Assumption 8 be satisfied.
For any t > 0, we have with probability at least 1− e−t

|σ̂2 − σ2| . max

{
c2
∗rλmaxL

−2s(1 ∨
√
t ∨ t), σ2

√
t

M
,
t

M

}
.

Proof. We have, in view of Plancherel inequality, that

σ̂2 − σ2 =
1

M

∥∥S(L+M) − S(L)
∥∥2

2
+

2

M
〈S(L+M) − S(L), Ẇ (L+M) − Ẇ (L)〉

+
1

M

∥∥∥Ẇ (L+M) − Ẇ (L)
∥∥∥2

2
− σ2

=
1

M

L+M∑
l=L

〈S, el〉2 +
2

M

L+M∑
l=L

〈S, el〉zl +
1

M

L+M∑
l=L

z2
l − σ2 = I + II + III,

(18)

where zL, . . . , zL+M are i.i.d. standard normal random variables also inde-
pendent from S.

We now take the expectation

E
[
σ̂2
]
− σ2 =

1

M

L+M∑
l=L

r∑
j=1

λj〈ϕj, el〉2.

Note that 〈ϕj, el〉2 ≤ ‖ϕj − ϕ(l−1)
j ‖2

2. In view of Assumption 8, we get

1

M

L+M∑
l=L

r∑
j=1

λj〈ϕj, el〉2 ≤ rλmax
c2
∗
M

L+M−1∑
l=L−1

l−2s . c2
∗rλmaxL

−2s.
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The bound in probability follows easily from the representation (18). Indeed,
the second term can be treated using standard deviations bounds for Gaus-
sian combined with a conditioning argument. The third term can be treated
with a standard deviation inequality for chi-square distributions. The first
term can be treated using (16) again. More specifically, set ξ = (ξ1, . . . , ξr)

>

and A = (aj,j′)1≤j,j′≤r with

aj,j′ =

√
λjλj′

M

L+M∑
l=L

〈ϕj, el〉〈ϕj′ , el〉.

Then, we have

1

M

L+M∑
l=L

〈S, el〉2 − E

[
1

M

L+M∑
l=L

〈S, el〉2
]

= ξ>Aξ − E[ξ>Aξ],

with ‖A‖F . c2
∗rλmaxL

−2s and ‖A‖∞ . c2
∗
√
rλmaxL

−2s.
An union bound argument gives the result. Details of the proof are omit-

ted here.

6. Minimax lower bound

In this section, we show that the upper bound of Corollary 4 cannot be
improved in a minimax sense.

Theorem 15. Let 1 ≤ r < ∞ and let λmax > 0 be a given constant. Then
there exist absolute constants c0 > 0 and 0 < c1 < 1 such that, for any
integers n and l satisfying l ≥ 2, n ≥ l, we have

inf
K̂n

sup
K∈Kr,l(λmax)

P
(
‖K̂n −K‖2

2 ≥ c0[λmax ∧ σ2]2
(r ∧ l)l
n

)
> c1

where infK̂n
denotes the infimum over all estimators of K.

Proof. Let first r ≤ l/2. Consider the vector-functions e(t) = (e1(t), . . . , el(t))
and ϕ(t) = (ϕ1(t), . . . , ϕr(t)) and a subset of Kr,l(λmax) composed of kernels
K satisfying (2) with λj ≡ γ and

ϕ(t) = He(t)
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for suitable γ > 0 and suitable r× l matrices H. Orthonormality of functions
ϕj implies that H must satisfy HH> = Ir where Ir is the r × r identity
matrix, i.e., the rows of H should be orthonormal. To each such matrix H
we associate a linear subspace UH of IRl, which is the linear span of the r
rows of H. Clearly, dim(UH) = r and H>H is the orthogonal projector onto
UH in IRl.

Note that the set of all such spaces UH is the Grassmannian manifold
Gr(Rl), i.e., the set of r-dimensional linear subspaces of Rl. The Grassman-
nian manifold Gr(Rl) is a smooth manifold of dimension d = r(l − r). A
natural metric d(·, ·) on Gr(Rl) is defined as follows: for U, Ū ∈ Gr(Rl),

d(U, Ū) , ‖PU − PŪ‖F = ‖H>H − H̄>H̄‖F

where PU is the orthogonal projector onto U and H, H̄ are the r × l ma-
trices with orthonormal rows associated to U and Ū respectively. We refer
to Mattila (1995) and Milnor and Stasheff (1974) for more details on the
Grassmannian manifold.

From now on, we will identify U ∈ Gr(Rl) with the associated orthogonal
projector PU = H>H. The behavior of entropy numbers of the Grassman-
nian manifold is well studied (Szarek (1982), see also Proposition 8 in Pajor
(1998)). In particular, for any ε ∈ (0, 1) there exists a family of orthogonal
projectors U ⊂ Gr(Rl) such that

|U| ≥
⌊ c̄
ε

⌋d
and c̄ε

√
r ≤ ‖P −Q‖F ≤

1

c̄
ε
√
r, ∀P,Q ∈ U , P 6= Q, (19)

for some small enough universal constant c̄ > 0. Here |U| denotes the car-
dinality of U . We take in what follows ε = c̄/2. Set N = |U| and U ={
P(1), . . . , P(N)

}
. The associated H-matrices will be denoted by H1, . . . , HN .

Let Kj be a kernel of the form (2) with eigenvalues λi ≡ γ, i = 1, . . . , r, and

ϕ(t) = Hje(t), j = 1, . . . , N,

where γ = a(σ2∧λmax)
√

l
n

and a ∈ (0, 1) is an absolute constant to be chosen

later. Consider the set K′ = {K1, . . . , KN}. Clearly, we have K′ ⊂ Kr,l(λmax).
We now evaluate the Kullback-Leibler divergence between two probabil-

ity measures induced by the observations {X1(t), . . . , Xn(t), t ∈ [0, 1]} corre-
sponding to the kernels K1 and Kj (with j 6= 1). Using the Girsanov formula
and the fact that Kj is bilinear in {ek} it is easy to check that this divergence
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is equal to the Kullback-Leibler divergence between the n-product distribu-

tions of the associated Gaussian vectors
(∫ 1

0
e1(t)dX(t), . . . ,

∫ 1

0
el(t)dX(t)

)
.

If K = Kj this vector is distributed as N (0,Σj) with Σj = σ2Il + γP(j) =
(σ2 +γ)P(j) +σ2P⊥(j) and P⊥(j) = Il−P(j). Denote the corresponding Gaussian

measure by Pj and by P⊗nj its n-product. Let KL(P,Q) be the Kullback-
Leibler divergence between two probability measures P and Q.

It is easy to see that all matrices Σj have the same eigenvalues. Thus, for
any 2 ≤ j ≤ N we have

KL(P⊗n1 ,P⊗nj ) = nKL(P1,Pj)

=
n

2

[
tr(Σ−1

1 Σj)− l − log
(
det(Σ−1

1 Σj)
)]

=
n

2

[
tr(Σ−1

1 (Σj − Σ1)
]
.

Now, Σ−1
1 = 1

σ2+γ
P(1) + 1

σ2P
⊥
(1), which yields

tr(Σ−1
1 (Σj − Σ1)) =

γ

σ2 + γ
tr(P(1)(P(j) − P(1))) +

γ

σ2
tr(P⊥(1)(P(j) − P(1)))

=

(
γ

σ2 + γ
− γ

σ2

)(
tr(P(1)P(j))− r

)
=

γ2

2(σ2 + γ)σ2
‖P(1) − P(j)‖2

F

≤ rγ2

8(σ2 + γ)σ2

where we have used (19) with ε = c̄/2, and the fact that tr(P(1)P(j)) =
r − ‖P(1) − P(j)‖2

F/2. Combining the last two displays, we find

KL(P⊗n1 ,P⊗nj ) ≤ a2(λmax ∧ σ2)2

8(σ2 + γ)σ2
rl ≤ a2

8
rl, ∀ 2 ≤ j ≤ N.

Recall that we assume r ≤ l/2, so that the dimension of the Grassmannian
satisfies d = r(l − r) ≥ rl/2. Consequently, in view of (19) with ε = c̄/2, we
have log |U| ≥ rl(log 2)/2. Thus, choosing a = (log 2)1/2/2 we obtain

KL(P⊗n1 ,P⊗nj ) ≤ 1

16
log |U|, ∀ 2 ≤ j ≤ N.
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Next, for any 1 ≤ i, j ≤ N with i 6= j,

‖Ki −Kj‖2
2 = γ2‖H>i Hi −H>j Hj‖2

F = γ2‖P(i) − P(j)‖2
F ≥ ca2[σ4 ∧ λ2

max]
rl

n
,

where c > 0 is a absolute constant and the last inequality is due to (19). The
result now follows from the last two displays by application of Theorem 2.5
in Tsybakov (2009).

Finally, consider the case r > l/2. Note that the classes Kr,l(λmax) are
nested in r. Assuming w.l.o.g. that l is even, we get that the minimax risk
over Kr,l(λmax) is bounded from below by the minimax risk on Kl/2,l(λmax).
But the minimax risk on Kl/2,l(λmax) has been already treated above and we
have proved that the lower rate is of the order l2/n, which is the desired rate
when r > l/2.

Remark 16. It is possible to prove a minimax lower bound ensuring that the
bound in Theorem 7 is optimal at least regarding the n dependence. Indeed,
by a similar argument to that used in the proof of Theorem 15, we can prove
the existence of an absolute constant 0 < c2 < 1 and a constant c3 > 0
possibly depending on σ2, λmax, ρ, r such that, for any integer n ≥ 1 we have

inf
K̂n

sup
K∈Kr(s,ρ;λmax)

P
(
‖K̂n −K‖2

2 ≥ c3 min
(
n−

2s
2s+1 , n−s/(s+1)

))
> c2

where infK̂n
denotes the infimum over all estimators of K. Specifying the

dependence of the minimax rate on parameters σ2, λmax, ρ, r remains an in-
teresting open question. A similar argument should also provide a minimax
lower bound for the class Kr(s, c∗;λmax) matching the upper bound of Theo-
rem 9 at least regarding the dependence in n.
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