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Abstract

We provide conditions for the existence and the uniqueness of strictly station-

ary solutions of the Vine-GARCH process. The proof is based on Tweedie’s (1988)

criteria, after rewriting the Vine-GARCH process as a nonlinear Markov chain. Fur-

thermore, we provide asymptotic results of the estimators obtained by the quasi-

maximum likelihood method. We prove the weak consistency and asymptotic nor-

mality of the quasi-maximum likelihood estimator obtained in a two-step procedure.
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1 Introduction

This paper is the companion one of the working paper CREST ”‘2014-46, Dynamic

Asset Correlations Based on Vines, B. Poignard and J.D. Fermanian”’.

The Vine-GARCH process provides an alternative to Dynamic Conditional Cor-

relation (DCC)-type models for specifying the joint dynamics of vectorial stochastic

processes. Within the MGARCH framework, the Vine-GARCH specification is a

new method for generating dynamics of conditional correlation matrices between

asset returns. These correlation matrices are parameterized by a subset of their

partial correlations, whose structure are described by an undirected graph called

vine. Since such partial correlation processes can be specified separately, our ap-

proach provides very flexible and potentially parsimonious multivariate processes.

Lewandowski and al. (2009) explained how to deduce a correlation matrix from a

partial correlation matrix (or the opposite), through an iterative algorithm. Once

the indices of a family of partial correlations is chosen conveniently, a true correla-

tion matrix is generated for any values of these partial correlations. By generating

univariate dynamics of partial correlations independently, we obtain sequences of

correlation matrices without any normalization stage, contrary to DCC models. The

Vine-GARCH model is estimated by a two-step quasi-maximum likelihood proce-

dure.

We prove the existence of stationary solutions, which is the first step towards

providing asymptotic results (consistency/asymptotic normality of QML estimates),

because law of large numbers (potentially uniform) and some Central Limit Theo-

rems are obtained easily in this case. In the GARCH literature, proving stationarity

properties has been fulfilled notably by Bougerol and Picard (1992) for univariate

GARCH models, by Ling and McAleer (2003) for multivariate ARMA-GARCH

models, by Boussama et al. (2011) for BEKK models, notably. Then we prove the

weak consistency of the two-step quasi-maximum likelihood estimator.

After introducing some notations, we specify the Vine-GARCH model. It is

rewritten as almost linear Markov chains in Subsection 2.1. The existence of strong

and weak stationary solutions is stated in Subsection 2.2. Subsection 2.3 exhibits

sufficient conditions to get their uniqueness. Furthermore, consistency and asymp-

totic normality of the two-step quasi-maximum likelihood estimator are proved re-

spectively in subsection 3.1 and 3.2.
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1.1 Notations

Let A ∈Mn×m (R).

• If n = m, then diag (A) = (aij1i=j)1≤i≤m,1≤j≤m and Vecd (A) = (aii)1≤i≤m ∈
Rm.

• If n = m and A symmetric, Vech (A) ∈ Rq with q = m(m+ 1)/2 such that the

components are those of A column-wise without redundancy.

• If n = m, then ρ (A) is the spectral radius of A, that is the largest of the

modulus of the eigenvalues of A. We denote λ1 (A) the smallest eigenvalue of

A positive definite.

• The Kronecker product is denoted ⊗ and A⊗k = A ⊗ A ⊗ · · · ⊗ A (k times).

The Hadamard product is denoted �.

• In the following, we consider the submultiplicative norm

‖A‖ := sup{
‖Ax‖
‖x‖

, x 6= 0},

where x ∈ Rm and ‖x‖ is the Euclidean norm of vector x. For B ∈Mm×n(R),

this norm satisfies

‖AB‖ ≤ ‖A‖‖B‖, Trace (AB) ≤ (nm)1/2‖A‖‖B‖.

We define the spectral radius norm for squared non-negative matrices, which

is submultiplicative, as

‖A‖s := sup{
√
λ : λ ∈ Spect

(
A′A

)
}.

We also define the infimum norm of a matrix A ∈Mm×n(R) as

‖A‖∞ = max
i

∑
j

|Aij |.

• For a N dimensional vectorial process (εt)t, we denote εt = (ε1,t, · · · , εN,t)′ and

~εt :=
(
ε21,t, · · · , ε2N,t

)′
.

• We denote by C0
b (E) the space of all continuous and bounded functions f :

E→ R.

• The proofs of consistency and asymptotic normality require some matrix com-

putations, in particular the differentiation of some quantities involving matri-
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ces. Recalling some results recorded in Lütkepohl (1996), we have

∂x′Xx

∂X
= xx′, X ∈Mm×m(R), x ∈ Rm,

∂Trace (AX ′B)

∂X
= BA, X ∈Mm×n(R), A ∈Mp×n(R), B ∈Mm×p(R)

∂Trace
(
AX−1B

)
∂X

= −
(
X−1BAX−1

)′
, X ∈Mm×m(R), nonsingular, A,B ∈Mm×m(R),

∂ log (det(X))

∂X
= (X ′)−1, X ∈Mm×m(R), nonsingular,

∂X−1

∂x
= −(X ′)−1(∂xX)X−1, X ∈Mm×m(R), nonsingular.

1.2 Model Specification

We turn to the Vine-Garch specification. We consider a N -dimensional vectorial

stochastic process (rt)t=1,··· ,T and denote by θ the vector of the model parameters

and decompose the stochastic process (rt)t=1,··· ,T as the sum of conditional expected

returns and a residual
rt = µt (θ) + εt,

εt = H
1/2
t (θ) ηt.

(1.1)

Here, µt (θ) = E [rt|Ft−1] := Et−1 [rt], where Ft denotes the market information

until (and including) time t. We suppose Ht (θ) = Var (rt|Ft−1) := Vart−1 (rt) =

Vart−1 (εt) is a N×N positive definite matrix. The series (ηt)t≥0 are often supposed

to be a strong white noise, i.e. an independent and identically distributed sequence

of random vectors s.t. E [ηt] = 0 and Var (ηt) = IN . The model is then semi-

parametric. Its specification is complete when the law of ηt is defined and the

functional form of both µt (θ) and Ht (θ) are specified. In this paper, we focus on

the latter point. For convenience, we will denote µt (θ) = µt and Ht (θ) = Ht.

We focus on the detrended dynamics (εt). To remove the first moment, we

suppose simply that the conditional expected returns are modeled as AR(1), i.e.

there exist Φ0 a N × 1 matrix and Φ1 a N × N diagonal matrix s.t. µt (θ) =

Φ0 + Φ1rt−1. Since we are interested in εt in this paper, we estimate µt by OLS

and subtract it from rt. Now, these estimated residuals will be considered as our

observations. The information set is defined by Ft = σ(rs, s ≤ t) = σ(εs, s ≤ t).

The quantity of interest is Ht, which is split between volatility terms contained

in Dt and correlation terms in Rt as

Ht = DtRtDt, (1.2)
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where Dt = diag
(√

h11,t, · · · ,
√
hNN,t

)
is the diagonal matrix of the conditional

variances, which is Ft−1 measurable. We suppose univariate GARCH dynamics for

these conditional variances without cross-effects, such that

Vecd(D2
t ) = V +A.Vecd(D2

t−1) +B.~εt−1, (1.3)

where the matrices A and B are diagonal and V is a positive vector of RN .

The Vine-Garch specification parametrizes the correlation dynamics as

Rt = vechof (Fvine (Pct)) ,

Ψ (Pct) = Ω + ΞΨ (Pct−1) + Λζt−1,
(1.4)

where

• vechof(·) denotes the operator “devectorization”, that transforms a vector into

a symmetric matrix. It is the opposite of the usual operator vech(·).

• Ξ and Λ are N(N − 1)/2×N(N − 1)/2 diagonal matrices of unknown param-

eters, and Ω is an N(N − 1)/2 unknown vector. Set the vector of parameters

θcor = (Ω,Ξ,Λ).

• The vector Pct is the “partial correlation vector” deduced from a given R-vine

structure.

• We apply an analytic transformation Ψ to Pct. For the sake of simplicity, Ψ

will be known, even if the methodology can be adapted easily to a parametric

function Ψθ. To fix the ideas, the multivariate Ψ function will be defined as

follows:

Ψ : ]−1, 1[N(N−1)/2 −→ RN(N−1)/2,

Ψ (Pct) =
(
ψ (ρ1,2,t) , · · · , ψ

(
ρN,N−1|LN−1,N ,t

))′
,

ψ (x) = tan (πx/2) .

The function Ψ twists the univariate dynamics to manage the constraints that

partial correlations stay between (−1) and 1. Alternatively, Ψ could be chosen

among the sigmöıd functions for instance, for which ψ (x) = (exp (αx)− 1) / (exp (αx) + 1),

α ∈ R.

• The function Fvine corresponds to the one-to-one mapping from the vector

of partial correlations Pct to correlations (in Rt) by using the algorithm of
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Lewandowski, Kurowicka and Joe (2009). It is defined as

Fvine : ]−1, 1[N(N−1)/2 −→ ]−1, 1[N(N−1)/2 ,

Fvine
(
ρ1,2,t, · · · , ρN−1,N |L,t

)
= (ρ1,2,t, · · · , ρN−1,N,t)

′ .

• The vector ζt consists of a relevant function of the “innovations”, to update our

partial correlations at time t. More precisely, ζt is a measurable and nonlinear

transforms of the vector of t-innovations and some quantities that are Ft−1

measurable.

The statistical inference is based on the pseudo maximum likelihood procedure,

in two steps, which is also called quasi maximum likelihood estimator (QMLE). We

observe a T -path (εt)t=1,...,T of the random vector ε. Such a process corresponds to a

realization drawn following the unique, strict-sense stationary and nonanticipative

solution (εt) of (1.1). To avoid any confusion, we denote by Dt(θ), Rt(θ) and

Ht(θ) the (diagonal) t-matrix of conditional volatilities, the matrix of conditional

correlations and the conditional variance-covariance matrix respectively, when they

are generated by our model equations, and assuming θ is the underlying parameter.

We estimate our model (1.1) by a Gaussian QMLE, assuming the unknown true

parameter θ0 belongs to some compact set Θ. We apply a two-step estimation

method, that is usual in this stream of the literature. To do so, we work as if (ηt)t

were a Gaussian white noise. Therefore, the likelihood function can be split into

two parts: the variance part on one side, and the correlation part on the other side.

We denote θ = (θv, θc), such that θv := (θi, i = 1, · · · , 3N) corresponds to the

volatility parameters, and θc := (θi, i = 3N + 1, · · · , 3N + 3N(N − 1)/2) to the cor-

relation parameters. The variance part of the log-likelihood function is the sum of

log-likelihood functions of N univariate GARCH(1,1) models that can be estimated

independently:
θ̂T,v = arg min

θv∈Θv

QL1,T (θv; ε) ,

QL1,T (θv; ε) =
1

T

T∑
t=1
l1,t (εt; θv) :=

1

T

T∑
t=1

N∑
i=1

log (hi,t) +
ε2i,t

hi,t

 , (1.5)

where the sequences of variances (hi,t)t≥1 are generated under the assumed parame-

ter θv. In other words, Dt(θv) = diag
(
h

1/2
1,t , · · · , h

1/2
N,t

)
. Above, Θv is the projection

of the parameter set Θ on the sub-space of the variance-related components. Given

θ̂T,v, a consistent (but inefficient) estimator of θ0,v, an estimator of θ0,c can be
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obtained as
θ̂T,c = arg min

θc s.t. (θ̂T,v ,θc)∈Θ

QL2,T

(
θ̂T,v, θc; ε

)
,

QL2,T

(
θ̂T,v, θc; ε

)
=

1

T

T∑
t=1
l2,t(εt; θ̂T,v, θc) :=

1

T

T∑
t=1

[
log
(
|Rt(θ̂T,v, θc)|

)
+ û′tR

−1
t (θ̂T,v, θc)ût

]
,

(1.6)

where ût = D−1
t (θ̂T,v)εt.

Both previous criteria are C∞ and the minimization problem comes from the

negative sign in the pseudo log-likelihood, which can be ruled out. The orthogonal

conditions are
∆T (θ̂T,v) =

1

T

T∑
t=1
δt(θ̂T,v) = 0, with δt(θT,v) := ∇θv l1,t(εt; θv),

ΨT (θ̂T,v, θ̂T,c) =
1

T

T∑
t=1
ψt(θ̂T,v, θ̂T,c) = 0, with ψt(θ) := ∇θc l2,t(εt; θ).

(1.7)

We denote by δ
(i)
t (θv) (resp. ψ

(i)
t (θv, θc)) the i-th component of ∇θv l1,t(θv) (resp.

∇θc l2,t(θv, θc)).

An issue is the choice of the initial values to generate (1.1). Indeed, the marginal

variance processes and the correlation dynamics need to be initialized at time t = 1.

To do so, we propose to initialized them by their sample counterparts:

∀i = 1, · · · , N, h̃i,1 =
1

T − 1

T∑
t=1

ε2i,t, D̃1 = diag(h̃
1/2
i,1 ) and R̃1 =

1

T

T∑
t=1

ε1D̃
−2
1 ε′1.

(1.8)

A volatility process (D̃t)t>1 = (diag(h̃
1/2
i,t ))t>1 and a correlation process (R̃t)t>1

are generated starting from these initial values. Hence, besides the ”theoreti-

cal” quantities QL1,T (θv; ε) and QL2,T (θv, θc; ε), we denote by Q̃L1,T (θv; ε) and

Q̃L2,T (θv, θc; ε) the log-likelihoods generated from some fixed initial values (as those

proposed above). The same holds for ∆̃T (θv) and Ψ̃T (θv, θc), etc.

2 Stationarity

In this section, we specify the Data Generating Process (DGP) differently from the

specification given in (1.1). A significant quantity is the vector of standardized

residuals, defined as ut = D−1
t εt. We straightforwardly have Et−1 [ut] = 0 and

Et−1 [utu
′
t] = Rt. This implies that ut can be specified as ut = R

1/2
t η∗t , such that η∗t

is a centered random vector with Et−1 [η∗t η
∗′
t ] = IN . Therefore, the “true” DGP will

7



be the stationary process (η∗t ). The two ”innovations” (ηt) and (η∗t ) are related to

each other by the relation

H
1/2
t ηt = DtR

1/2
t η∗t .

Note that, if Et−1[η∗t ] = 0 and Et−1[η∗t η
∗′
t ] = IN , then Et−1[ηt] = 0 and Et−1[ηtη

′
t] =

IN , and the opposite.

2.1 Vine-Garch as Markov Chains

The Vine-Garch specification can be written as a Markov chain, a representation

that is relevant for studying stationary solutions. To do so, we define

Xt :=
(
~εt,Vecd(D2

t ),Ψ (Pct)
)′
, (2.1)

such that, for all t > 0, (Xt)t satisfies

Xt = TtXt−1 + νt. (2.2)

This means (Xt)t follows an autoregressive form of order 1 with stochastic Tt. Let

us focus on the first component of Xt. Setting ~ut := (u2
1,t, . . . , u

2
N,t), we have

D2
t ~ut = ~ut �Vecd(D2

t ) = ~εt = ~ut � V + ~ut �A.Vecd(D2
t−1) + ~ut �B.~εt−1. (2.3)

Using the dynamics of Vecd(D2
t ) and Ψ (Pct), the matrix Tt satisfies

Tt =


~ut �B ~ut �A 0

B A 0

0 0 Ξ

 , (2.4)

and the vector of innovation νt is defined as

νt =


~ut � V
V

Ω + Λζt−1

 . (2.5)

Note that ζt = ζ (χt, ηt) where χt = (Pct, Dt).

Assumption 1. The vectorial process (η∗t )t∈Z satisfies the Markov property with

respect to F , i.e

∀t ∈ Z, E [η∗t |Ft−1] = E [η∗t |Xt−1] .
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Besides, Et−1 [η∗t ] = 0 and Et−1 [η∗t η
∗′
t ] = IN .

As a consequence (and equivalently, in fact), the same property is fulfilled with

the other ”innovations” (ηt)t∈Z: the process (ηt)t∈Z satisfies the Markov property

with respect to F , i.e

∀t ∈ Z, E [ηt|Ft−1] = E [ηt|Xt−1] .

Moreover, Et−1 [ηt] = 0 and Et−1 [ηtη
′
t] = IN .

Proposition 2.1. Under Assumption 1, (Xt)t is a Markov Chain of order one.

Proof. Note that ut = D−1
t H

1/2
t ηt, where Ht is a deterministic function of Xt−1.

Since ηt satisfies the Markov property with respect to F , then ut|Ft−1
d
= ut|Xt−1.

Furthermore, Xt can be rewritten as follows: there exists constant matrices Γ1 and

Γ2 such that

Xt = (Γ1.ξt)� T0Xt−1 + (Γ2.~χt)� ν0, (2.6)

where T0 (resp. ν0) is the Tt (resp. νt) matrix when ut = 1, ξt := (~ut, 1)′ and

~χt := (~ut, 1, ζ (χt−1, ηt−1))′. Then Xt is a measurable function of (ηt, Xt−1, ηt−1),

where ηt satisfies the Markov property by (1). Consequently, (Xt)t is Markovian.

2.2 Existence of stationary Vine-Garch solutions

The recurrence equation (2.2) is stochastic through Tt and νt, i.e. through the

innovations ηt (or η∗t ) and the Ft−1-measurable matrix Rt. A consequence of this

parametrization is that Tt depends on subcomponents of Xt. Hence, we can not

extract an expression such as Xt = f (ηt, ηt−1, · · · ) nor Xt = f
(
η∗t , η

∗
t−1, · · ·

)
, for

some explicit function f(.). This comes from the nonlinear relationship between

Tt and the past innovations (before and including t). Classical techniques such as

Lyapunov exponent are not adapted in our framework.

The existence of stationary solutions -but not a unique solution- for the vine-

GARCH model can be proved using the criterion of Tweedie (1988). Tweedie pro-

vides the existence of an invariant probability measure for the Markov chain defined

in (2.2). Ling and McAleer used this criterion to establish the stationarity of vector

ARMA-GARCH models.

The stationarity of the (~εt)t process requires the control of Tt, which should avoid

non-explosive patterns. The matrix Tt is a function of (~ut)t, which are dependent
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variables. Furthermore, the conditional law of ~ut is a function of Ht and Dt, which

in turn is a function of Xt−1. This is the reason we need the next hypothesis.

Assumption 2. For some p ≥ 1, ‖T ?‖s <∞, where

T ? := sup
x∈Rd

E
[
|T⊗pt ||Xt−1 = x

]
. (2.7)

Assumption 3. Denoting by λ the Lebesgue measure, the conditional kernel of η∗t

given Xt−1 = x is defined as

dPXt−1=x
η∗t

(u) = fη∗t (u|x)dλ(u). (2.8)

Furthermore, for all u ∈ Rm, the mapping x → fη∗t (u|x) is continuous and there

exists an integrable function g such that, for all u ∈ Rm,

sup
t

sup
x∈Rd

fη∗t (u|x) ≤ g(u). (2.9)

Moreover, ∀t, E
[
‖η∗t ‖2p|Xt−1 = x

]
≤ ψ(‖x‖) satisfying ∀α > 0, lim

v→∞

ψ(v)

vα
= 0.

Assumption 4. There exists a positive real number a such that, for almost every

trajectory and every θ ∈ Θ, the partial correlations of our chosen vine (i.e. the

components of the vectors Pct(θ)) belong to the fixed interval [−1 + a, 1− a].

In particular, the latter assumption implies that, for every θ ∈ Θ, the determi-

nant of almost every correlation matrices Rt(θ) are strictly larger than aN(N−1) > 0

(apply Kurowicka and Cooke, 2006, Theorem 3.2), and that the norm of R−1
t (θ) is

bounded from above a.e. 1. Moreover, the function Fvine that maps partial correla-

tions to usual correlations has a bounded derivative, when applied to the trajectories

(Pct(θ)) generated by the model.

Theorem 2.2. Under Assumptions 1-4 the process (εt, Dt, Rt) as defined in equa-

tions (1.2), (1.3), and (1.4) possesses a strictly stationary solution such that (εt, Dt, Rt) ∈
Ft, the sigma field induced by the observations. Furthermore, the solution (εt) is

second-order stationary and, when the innovations η∗t are Gaussian given Ft−1, then

E
[
‖εt‖2p

]
<∞.

The key result for the existence of an invariant probability measure for Markov

chains is the criterion of Tweedie (1988). When using this approach, the irreducibil-

ity of (Xt) is not required to obtain stationarity.

1Indeed, ‖R−1t ‖s ≤ λmin(Rt)
−N ≤ aN2(N−1).
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Let (Xt)t∈Z be a homogeneous Markov chain with a measurable state space

(E, E), such that its transition probability is P (x, B) = P (Xt ∈ B|Xt−1 = x), where

x ∈ E and B ∈ E . Theorem 2 of Tweedie (1988) states the following:

Lemma 2.3. Suppose (E, E) is a locally compact separable state space and (Xt)t∈Z

is a Feller chain, that is for h ∈ C0
b (E), then E [h(Xt)|Xt−1 = x] is also C0

b (E).

1. If for some compact set B ∈ E , there exists a non negative mapping g(.) and

ε > 0 such that ∫
Bc

P (x, y)g(y)dλ(y) ≤ g(x)− ε, x ∈ Bc, (2.10)

then there exists a σ-finite invariant measure µ for P such that 0 < µ(B) <∞.

2. Furthermore, if ∫
B

(∫
Bc

P (x, y)g(y)dλ(y)

)
dµ(x) <∞, (2.11)

then µ is finite and hence π = µ/µ(E) is an invariant probability measure.

3. Furthermore, if ∫
Bc

P (x, y)g(y)dλ(y) ≤ g(x)− f(x), x ∈ Bc, (2.12)

then µ admits a finite f -moment, i.e. Eµ [f(Xt)] <∞.

The next Lemma is a specific version of Lemma A.2 in Ling and McAleer (2003).

Its proof is omitted.

Lemma 2.4. For a given squared matrix T , if ρ(|T |) < 1, then there exists a positive

vector M such that (Id− |T |)′M > 0.

Proof. We first show that (Xt)t∈Z is a Feller process. Let h ∈ C0
b (Rd). We have

E [h(Xt)|Xt−1 = x] = E [h(Ttx + νt)|Xt−1 = x]

= E
[
h(φ1(ut)x + φ2(ut, η

∗
t−1))|Xt−1 = x

]
,

(2.13)

for continuous transforms φ1 and φ2. By construction, ut = D−1
t H

1/2
t ηt = R

1/2
t η∗t ,

where R
1/2
t is a continuous mapping of Xt−1. Consequently, we obtain

E [h(Xt)|Xt−1 = x] = E
[
h ◦ φ̃(x, η∗t )|Xt−1 = x

]
=

∫
h ◦ φ̃(x, u)dPXt−1=x

η∗t
(u)

=
∫
h ◦ φ̃(x, u)fη∗t (u|x)dλ(u),

(2.14)
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for some continuous transform φ̃. Now, let (xn)n be a sequence such that xn −→
n→∞

x.

As h(.) is bounded and ∀u, (h◦φ̃(xn, u))n is convergent, then limn E [h(Xt)|Xt−1 = xn] =

E [h(Xt)|Xt−1 = x] by the Lebesgue dominated convergence theorem under (3). In

other words, x→ E [h(Xt)|Xt−1 = x] is continuous.

Second, we exhibit an explicit functional g(.) to apply the Tweedie’s criteria. To

do so, take g(x) = 1 + |x⊗p|′M , for any vector M , which will be explicit later. We

have, for p ≥ 1,

E [g(Xt)|Xt−1 = x] = 1 + E
[
|(Ttx + νt)

⊗p|′|Xt−1 = x
]
M.

By some property of the Kronecker product and algebraic manipulations, let us

rewrite (Ttx + νt)
⊗p = (Ttx)⊗p + B(x) = T⊗pt x⊗p + B(x). We deduce that

E [g(Xt)|Xt−1 = x] ≤ 1 +
(
E
[
|T⊗pt x⊗p|′|Xt−1 = x

]
+ E [‖B(x)‖|Xt−1 = x]

)
M.

(2.15)

We focus on the first expectation in (2.15). As Tt is a function of ut, its conditional

distribution depends on Rt. Hence Tt is a function of Xt−1. Then, we obtain

E [|(Ttx)⊗p|′|Xt−1 = x]M ≤ |x⊗p|′E
[
|T⊗pt |′|Xt−1 = x

]
M

≤ |x⊗p|′
(

sup
x∈Rd

E
[
|T⊗pt |′|Xt−1 = x

])
M

≤ |x⊗p|′(T ?)′M.

As for the second expectation in (2.15), by taking any multiplicative norm ‖.‖, we

have

E [‖B(x)‖|Xt−1 = x] ≤ KE
[
‖νt‖‖(Ttx)⊗(p−1)‖+ ‖νt‖2‖(Ttx)⊗(p−2)‖+ · · ·+ ‖νt‖p|Xt−1 = x

]
,

(2.16)

where K is a non-negative constant. In (2.16), we need to upper bound quantities of

the type E [‖νt‖m‖Tt‖n|Xt−1 = x], i.e. terms as E [(‖ζt−1‖+ ‖~ut‖)m‖~ut‖n|Xt−1 = x]

when m+n ≤ p. First, we consider E [‖~ut‖m+n|Xt−1 = x]. Recall that ut = R
1/2
t η∗t .

Taking the spectral norm of R
1/2
t , we obtain a.s.

‖R1/2
t ‖ = ρ

(
R

1/2
t R

1/2 ′
t

)1/2
=
√

Trace
(
D−1
t HtD

−1
t

)
≤
√
N.
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Using the previous inequality and Assumption 3, we have

E
[
‖~ut‖m+n|Xt−1 = x

]
≤ E

[
‖R1/2

t ‖2(m+n)‖~η ∗t ‖m+n|Xt−1 = x
]
≤ Nn+mE

[
‖~η ∗t ‖m+n|Xt−1 = x

]
.

(2.17)

By assumption, E
[
‖η∗t ‖2p|Xt−1 = x

]
≤ ψ(‖x‖). Then, we obtain

E
[
‖~ut‖m+n|Xt−1 = x

]
≤ αm,nψ (‖x‖)(m+n)/p ,

for some constant αm,n.

Another product element we shall bound is E [‖ζ (χt−1, ηt−1) ‖m‖~ut‖n|Xt−1 = x].

To do so, we take n+m = p, where m ≥ 1. Using the conditional Hölder inequality,

we obtain

E [‖ζ (χt−1, ηt−1) ‖m‖~ut‖n|Xt−1 = x] ≤ E [‖ζ (χt−1, ηt−1) ‖p|Xt−1 = x]m/p E [‖~ut‖p|Xt−1 = x]n/p .

(2.18)

In (2.18), E [‖~ut‖p|Xt−1 = x]n/p can be straightforwardly upper bounded using (2.17).

We now focus on the conditional expectation of ‖ζ (χt−1, ηt−1) ‖p. Denoting υ̃k|L,t =

εk,t − Et−1 [εk,t|εL,t], we have

E [‖ζ (χt−1, ηt−1) ‖p|Xt−1 = x] ≤ sup
(i,j|L)∈E

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

|p|Xt−1 = x

 .
(2.19)

For p = 1, we apply the Cauchy-Schwartz inequality to (2.19) as

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

||Xt−1 = x

 ≤ E

 υ̃2
i|L,t−1

hi|L,t−1
|Xt−1 = x

1/2

E

 υ̃2
j|L,t−1

hj|L,t−1
|Xt−1 = x

1/2

= 1.

In this case, we obtain

E [‖B(x)‖|Xt−1 = x] = α1E [‖ζt−1‖+ ‖ut‖|Xt−1 = x] ≤ α2ψ (‖x‖) + α3, (2.20)

for some constants αk, k = 1, 2, 3. Consequently for p = 1, we deduce that (2.15)

can be upper bounded as

E [g(Xt)|Xt−1 = x] ≤ 1 + (E [|Ttx|′|Xt−1 = x] + E [‖B(x)‖|Xt−1 = x])M

≤ 1 + |x|′(T ?)′M +O (‖x‖a) ,

for any a > 0. Let us now try to extend this result for p > 1. The quantity given in

13



(2.19) is a product of υ̃k|L,t−1 components, which can be decomposed as

υ̃i|L,t−1 = e′iH
1/2
t−1(θ){ηt−1 − Et−2 [ηt−1|εL,t−1, Xt−1 = x]}

= e′iDt−1R
1/2
t−1{η∗t−1 − Et−2

[
η∗t−1|εL,t−1, Xt−1 = x

]
}

(2.21)

Assuming all denominators are bounded from below a.s., this implies that (2.19)

can be upper bounded as

sup
(i,j|L)∈E

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

|p|Xt−1 = x

 ≤ Cst.E
[
‖Dt−1‖2p‖Rt−1‖p‖η∗t−1‖2p|Xt−1 = x

]
≤ Cst.E

[
‖x‖p‖η∗t−1‖2p|Xt−1 = x

]
≤ Cst.‖x‖pψ(‖x‖).

This upper bound is not of order O(‖x‖k), for k ≤ p− 1. We rely on the Gaussian

distribution hypothesis to circumvent this obstacle.

Now, the vectors η∗t (or ηt, equivalently) is supposed to be gaussian, conditional

to the past. By the Cauchy-Schwartz inequality, we have

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

|p|Xt−1 = x

 ≤ E

 υ̃2p
i|L,t−1

hpi|L,t−1

|Xt−1 = x

1/2

E

 υ̃2p
j|L,t−1

hpj|L,t−1

|Xt−1 = x

1/2

.

Since any υ̃i|L,t−1/
√
hi|L,t−1 is a Gaussian random variable N (0, 1), given Xt−1, the

r.h.s. of the latter inequality is uniformly bounded wrt i, j, L and x. We deduce

that (2.19) can be upper bounded as

E [‖ζ (χt−1, ηt−1) ‖p|Xt−1 = x] = O(1), (2.22)

for all x.

This result is proved using ∀t ≥ 1, σ2
k|L,t(x) > 0 a.s.. We need to prove that this

holds almost surely for any x ∈ Bc. That means we need to control for the variance

and correlation dynamics when x can take very large values. By contradiction,

suppose ∀k /∈ L

σ2
k|L,t(x) = E

[
(εk,t − E [εk,t|εL,t])2 |Xt−1 = x

]
= 0⇒ εk,t = E [εk,t|εL,t, Xt−1 = x] a.s.

(2.23)

Using the decomposition εt = H
1/2
t ηt, relationship (2.23) becomes

εk,t = Q′(x)εL,t a.s., (2.24)

14



where Q′(x) corresponds to a vector containing the coefficients of Ht used for com-

puting the conditional expectation under the gaussian distribution. As Ht is Ft−1

measurable, then Q is a function of x. (2.24) means that εk,t can be written as a

linear combination of εn,t, for n ∈ L, given x. If there exists a linear relationship

between the components of εt given x, then the matrix Ht(x) is not a full rank ma-

trix. As Dt(x) is a diagonal matrix, it is always nonsingular, Ht(x) singular implies

that Rt(x) is not positive definite. This contradicts λ1(Rt(x)) > 0 a.s.. We deduce

that

∃µ > 0, such that ∀k, ∀L, k /∈ L, σ2
k|L,t(x) ≥ µ for almost all x. (2.25)

Consequently, using Assumption 3, we have obtained

E [g(Xt)|Xt−1 = x] ≤ 1 + |x⊗p|′(T ?)′M +O (‖x‖a)
≤ g(x)− |x⊗p|′ (IN − (T ?)′)M +O (‖x‖a) ,

(2.26)

for all a > 0. We denote N(x) :=
s∑
i=1
|xi|p. Since (Id− (T ?)′)M > 0 by Lemma

(3.5), then there exists m0 > 0 such that

(
Is − (T ?)′

)
M ≥ m0N(x), ∀x ∈ Rs. (2.27)

Similarly, ∃m1 > 0 such that ∀x ∈ Rs, g(x) ≥ m1N(x). Using the Hölder’s inequal-

ity, we have ∀k ≤ p

s∑
j1,j2,··· ,jk

|xj1xj2 · · ·xjk | =

 s∑
j=1

|xj |

k

≤

 s∑
j=1

|xj |p
k/p

sk. (2.28)

Hence using inequality (2.28), ∀k ≤ p, ∃m2 > 0 such that

g(x) ≤ 1 + ‖M‖
s∑

j1,j2,··· ,jk

|xj1xj2 · · ·xjp | ≤ 1 + c2N(x), (2.29)

We deduce that

E [g(Xt)|Xt−1 = x] ≤ g(x)

1−m0

N(x)

g(x)
+O

N(x)a/p

g(x)


≤ g(x)

1−m0

N(x)

1 +m2N(x)
+O

N(x)a/p

m1N(x)

 (2.30)
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We denote B := {x ∈ Rs|N(x) ≤ Γ}, with Γ > 1. For Γ large enough, ∀x /∈ B, and

0 < a < 1, we have

E [g(Xt)|Xt−1 = x] ≤ g(x)

1−
m0

2m2
+O (1)

 < g(x)

1−
m0

3m2

 . (2.31)

As 1 ≤ g(x), then E [g(Xt)|Xt−1 = x] ≤ g(x) − ε, for ε > 0. This proves (2.10),

idest ∃µ a σ-finite invariant measure for (Xt)t such that 0 < µ(A) <∞.

Now for any x ∈ B, (2.31) provides

E [g(Xt)|Xt−1 = x] ≤ g(x) +O (‖x‖a) ≤ K, (2.32)

for some constant K > 0. This implies∫
B

(∫
Bc

P (x, y)g(y)dλ(y)

)
dµ(x) ≤

∫
B
E [g(Xt)|Xt−1 = x] dµ(x) ≤ Kµ(B) ≤ ∞.

(2.33)

Consequently, (2.11) is proved and µ is finite and π = µ/µ(E) is an invariant

probability measure. Then there exists a strictly stationary solution of the stochastic

recurrence equation (2.2).

Finally, using inequality (2.31), we obtain (2.12) for f(x) = βg(x), where β ∈
(0, 1). As m1N(x) ≤ g(x), then

Eπ [N(Xt)] <∞. (2.34)

2.3 Uniqueness of stationary Vine-Garch Solutions

Tweedie’s criterion provides the existence of an invariant probability measure for

Markov chains. However, the uniqueness of such a measure is not ensured. Unique-

ness is a significant result as it provides the ergodicity of the stationary solution.

This is a significant feature for inference purpose since asymptotic properties for

M-estimators are based on Uniform Law of Large Numbers, or the ergodic theorem

(see Billingsley, 1995).

Assumption 5. The sequence of innovations (η∗t ) is strongly stationary.

Assumption 6. There exist some strictly positive constant Ch s.t., for any station-
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ary solution, for all t,

h−1
i|L,t ≤ Ch P− a.s., (2.35)

where (i|L) is associated to an arbitrary node (i, j|L), L 6= ∅ of the underlying vine

V (n).

Note that, when L is empty, the model provides a lower bound for all conditional

variances: for every i and t, h−1
i,t ≤ Cv. Let us introduce some intermediate quanti-

ties. We denote CF > 0 (resp. CΨ−1 > 0) the Lipschitz constant of Fvine(.) (resp.

Ψ−1(.)). Let us consider two (arbitrarily chosen) stationary solutions (Dt, Rt, εt)

and (D̃t, R̃t, ε̃t). They share the innovations (η∗t ) and the model parameters. The

proof of uniqueness relies on some top Lyapunov exponent of a stochastic matrix

process denoted by

Mt =

(
‖Ξ‖∞ + ‖Λ‖∞Υ2,t ‖Λ‖∞Υ1,t

Γ2,t Γ1,t

)
, (2.36)

where

Υ1,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{α+

√
N‖D̃t‖2s‖η∗t ‖22C2

hγ}

Υ2,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{β +

√
N‖D̃t‖2s‖η∗t ‖22C2

hδ}

γ = C
1/2
v N{‖Dt‖s + ‖D̃t‖s}

1 +
NCv‖Dt‖2s
λ1(Rt)

+
NCv‖D̃t‖2s
λ1(R̃t)

+
N2C2

v‖Dt‖2s‖D̃t‖2s
λ1(Rt)λ1(R̃t)


δ =

√
NCFCΨ−1‖Dt‖s‖D̃t‖s

1 +
NCv‖Dt‖2s
λ1(Rt)

+
NCv‖D̃t‖2s
λ1(R̃t)

+
N2C2

v‖Dt‖2s‖D̃t‖2s
λ1(Rt)λ1(R̃t)


α =

√
NC

1/2
v ‖η∗t ‖s

1 +
N‖Dt‖sCh
λ1(Rt)

{‖Dt‖s + ‖D̃t‖s}

1 +
N‖D̃t‖2sCh
λ1(R̃t)

 ,

β =
√
NCFCΨ−1‖D̃t‖s‖η∗t ‖s


√
N‖Dt‖2sCh
λ1(Rt)

1 +
N‖D̃t‖2sCh
λ1(R̃t)

+
1

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)
 .

(2.37)

and 
Γ1,t = ‖A‖∞ +N‖B‖∞‖η∗t−1‖22,

Γ2,t = ‖B‖∞‖D̃t−1‖2s
2‖η∗t ‖22

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)NCFCΨ−1 .

Assumption 7. (Mt) is a stationary stochastic process and E [log (Mt)] <∞ such

that its top Lyapunov exponent defined as

γM := lim
t→∞

1

t
log (MtMt−1 · · ·M1) (2.38)
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is strictly negative.

Theorem 2.5. Under Assumptions 1 and 5-7, a strictly stationary solution of the

Vine-Garch model is unique and ergodic, given a sequence (η∗t )t∈Z.

Proof. We remind that εt = Dtut = H
1/2
t ηt and ut = R

1/2
t η∗t . The model equations

define a solution (εt, Dt, Rt) given (η∗t ). The dynamic system is specified as
Vecd

(
D2
t

)
= V +AVecd

(
D2
t−1

)
+B~εt−1,

Rt = vechof (Fvine (Pct)) ,

Ψ (Pct) = Ω + ΞΨ (Pct−1) + Λζt−1.

(2.39)

A key quantity is the vector of innovations (ζt) defined as
ζt =

[
vi|L,tvj|L,t

]
(i,j|L)∈V (N)

,

vi|L,t =
εi,t − Et−1 [εi,t|εL,t]√

hi|L,t
,

such that

hi|L,t = Vart−1 (εi,t)− Covt−1 (εi,t, εL,t) Vart−1 (εL,t)
−1 Covt−1 (εL,t, εi,t) ,

= e′iHtei − (e′iHteL) . (e′LHteL)−1 . (e′LHtei) .

Above, we have introduced some deterministic matrices (of zeros and ones) eL s.t.

εL,t = e′Lεt. The dimension of eL is N × |L|. More generally, for any m×N -matrix

A, AeL concatenates the A-columns whose index belongs to L. Using the fact that

B is a diagonal matrix and εi,t =
√
hi,tui,t, we obtain ~εi,t = hi,tu

2
i,t and

Vecd
(
D2
t

)
= V +A.Vecd

(
D2
t−1

)
+B.D2

t−1~ut−1.

where D2
t .e = Vecd

(
D2
t

)
.

We first focus on the uniqueness of the conditional variance process. To do so,

we consider the difference

Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
= A.

[
Vecd

(
D2
t−1

)
−Vecd

(
D̃2
t−1

)]
+B.

[
D2
t ~ut−1 − D̃2

t−1
~̃ut−1

]
,

= A.
[
Vecd

(
D2
t−1

)
−Vecd

(
D̃2
t−1

)]
+B.

[
D2
t−1 − D̃2

t−1

]
~ut−1

+ B.D̃2
t−1.

[
~ut−1 − ~̃ut−1

]
.
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Using D2
t ~ut = ~ut �Vecd

(
D2
t−1

)
, we obtain

Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
= A.

[
Vecd

(
D2
t−1

)
−Vecd

(
D̃2
t−1

)]
+ B~ut−1 �

[
Vecd

(
D2
t−1

)
−Vecd

(
D̃2
t−1

)]
+B

[
~ut−1 − ~̃ut−1

]
�Vecd

(
D̃2
t−1

)
.

Furthermore
~ut − ~̃ut = (ut − ũt)� (ut + ũt)

= (ut + ũt)�
(
R

1/2
t − R̃1/2

t

)
η∗t .

Using the spectral norm, the previous quantity can be upper bounded as

‖~ut − ~̃ut‖s ≤ ‖ut + ũt‖∞.‖
(
R

1/2
t − R̃1/2

t

)
η∗t ‖s.

Since ‖η∗t ‖s = ‖η∗t ‖2 (as for any vector), note that

‖ut‖∞ = ‖R1/2
t η∗t ‖∞ ≤ ‖R

1/2
t η∗t ‖s ≤ ‖Rt‖1/2s ‖η∗t ‖2 ≤

√
N‖η∗t ‖2.

Using theorem 6.2 of Hingham (2008), for any unitarily invariant norm ‖·‖, we have

‖R1/2
t − R̃1/2

t ‖ ≤
1

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)‖Rt − R̃t‖.
Recall that the norm ‖.‖ is unitarily invariant if ‖UAV ‖ = ‖A‖ for all matrix A

and all unitary matrices U and V , ie UU ′ = Id and V V ′ = Id. For instance, the

spectral norm ‖A‖s = ρ (A′A)1/2 = λmax (A) satisfies

‖UAV ‖s = ρ
(
(UAV )′ .UAV

)1/2
= ρ

(
V ′A′AV

)1/2
= ρ

(
A′A

)1/2
= ‖A‖s,

and is then unitarily invariant. Hence

‖
(
R

1/2
t − R̃1/2

t

)
η∗t ‖s ≤ ‖R1/2

t − R̃1/2
t ‖s‖η∗t ‖s

≤
1

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)‖Rt − R̃t‖s‖η∗t ‖2.
Besides,

‖Rt − R̃t‖s ≤
√
N‖Rt − R̃t‖∞

≤
√
NCF ‖Pct − P̃ ct‖∞

≤
√
NCFCΨ−1‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞.

As B and A are diagonal matrices, their spectral norms are equal to their infinite
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norm. We obtain the upper bound

‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖s ≤ ‖A‖s‖Vecd

(
D2
t−1

)
−Vecd

(
D̃2
t−1

)
‖s

+ ‖B‖s‖~ut−1‖s‖Vecd
(
D2
t−1

)
−Vecd

(
D̃2
t−1

)
‖s

+ ‖B‖s‖Vecd
(
D̃2
t−1

)
‖∞‖ut + ũt‖∞‖η∗t ‖2

‖Rt − R̃t‖s

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)
≤ Γ1,t‖Vecd

(
D2
t−1

)
−Vecd

(
D̃2
t−1

)
‖s + Γ2,t‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞,

(2.40)

where 
Γ1,t = ‖A‖∞ +N‖B‖∞‖η∗t−1‖22,

Γ2,t = ‖B‖∞‖D̃t−1‖2s
2‖η∗t ‖22

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)NCFCΨ−1 .

We now focus on the uniqueness of the partial correlation process. We consider

the difference

Ψ (Pct)−Ψ
(
P̃ ct

)
= Ξ

(
Ψ (Pct−1)−Ψ

(
P̃ ct−1

))
+ Λ

(
ζt−1 − ζ̃t−1

)
.

In this framework, Ξ and Λ are parameterized as diagonal matrices. We have

‖Ψ (Pct)−Ψ
(
P̃ ct

)
‖∞ ≤ ‖Ξ‖∞‖Ψ (Pct−1)−Ψ

(
P̃ ct−1

)
‖∞+ ‖Λ‖∞‖ζt−1− ζ̃t−1‖∞.

(2.41)

The quantity of interest is the vector of innovations, that is

vij|L,t − ṽij|L,t =
ri|L,trj|L,t√
hi|L,t

√
hj|L,t

−
r̃i|L,tr̃j|L,t√
h̃i|L,t

√
h̃j|L,t

, (2.42)

where, using the Gaussian assumption, we have

ri|L,t = εi,t − Et−1 [εi,t|εL,t]
= εi,t − (e′iHteL) . (e′LHteL)−1 εL,t

=
[
e′i − (e′iHteL) . (e′LHteL)−1 e′L

]
εt

:= e′ipL (εt) .

(2.43)

Here, pL (·) is the projector on the orthogonal of the subspace < HteL > in RN , rel-

atively to the H−1
t -euclidian norm, defined by ‖x‖H = x′H−1

t x 2. By decomposing

2Indeed, if xj = HteLgj for any |L|×1-vector gj = [δi,j ]j=1,...,|L|, we check that pL(xj) = 0. Moreover,

when a vector v belongs to < HteL >
⊥, then v′H−1t HteLgj = v′eLgj = 0 for every j, i.e. v′eL = 0. This

implies pL(v) = v.
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the projector pL in its canonical space, we see that ‖pL‖s = 1 obviously. Similarly,

‖p̃L‖s = 1.

Recall that εt = DtR
1/2
t η∗t . Using the same steps as in (2.43), we obtain

r̃i|L,t = e′ip̃L (ε̃t) , ε̃t = D̃tR̃
1/2
t η∗t .

Now we have

‖ζt−1 − ζ̃t−1‖∞ = sup
(i,j|L)

|vij|L,t − ṽij|L,t|,

which implies we need to control |ri|L,t − r̃i|L,t| and |hi|L,t − h̃i|L,t|.

Step 1. We have

ri|L,t − r̃i|L,t = e′ipL (εt)− e′ip̃L (ε̃t)

= e′i [pL − p̃L] (εt) + e′ip̃L (εt − ε̃t)

We obtain

|ri|L,t − r̃i|L,t| ≤ ‖(pL − p̃L)(εt)‖∞ + ‖p̃L (εt − ε̃t) ‖∞

≤ ‖(pL − p̃L)(εt)‖2 + ‖p̃L (εt − ε̃t) ‖2.

Note that, for any vector x, ‖x‖2H = xH−1
t x ≥ x′x/ρ(Ht). Since ρ(Ht) ≤ Tr(Ht) ≤∑N

j=1 hj,t ≤ N‖Dt‖2s. Therefore, we get

‖x‖2 ≤
√
N‖Dt‖s‖x‖H .

Moreover, for every vector x, ‖x‖2H = x′H−1
t x ≤ ‖x‖22‖H

−1
t ‖s (diagonalize Ht in

an orthonormal basis). This means

‖x‖H ≤ C1/2
v λ1(Rt)

−1/2‖x‖2. (2.44)

Since the spectral norm is the matrix norm that is associated to the usual euclidian

norm ‖ · ‖2, we have

|ri|L,t − r̃i|L,t| ≤ ‖(pL − p̃L)(εt)‖2 + ‖p̃L (εt − ε̃t) ‖2

≤ ‖(pL − p̃L)‖s‖εt‖s + ‖p̃L‖s‖εt − ε̃t‖2

≤ ‖(pL − p̃L)‖s‖εt‖2 + ‖εt − ε̃t‖2.
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Furthermore,

p̃L − pL = −
(
IN −HteL (e′LHteL)−1 e′L

)
+

(
IN − H̃teL

(
e′LH̃teL

)−1
e′L

)
=
(
Ht − H̃t

)
eL (e′LHteL)−1 e′L + H̃teL

[
(e′LHteL)−1 −

(
e′LH̃teL

)−1
]
e′L

=
[(
Dt − D̃t

)
RtDt + D̃t

(
Rt − R̃t

)
Dt + D̃tR̃t

(
Dt − D̃t

)]
eL (e′LHteL)−1 e′L

+H̃teL (e′LHteL)−1
[(
e′LH̃teL

)
− (e′LHteL)

] (
e′LH̃teL

)−1
e′L.

Note that ‖(e′LHteL)−1‖s is the inverse of the smallest eigenvalue of e′LHteL. By the

Courant-Raleigh theorem, λ1(e′LHteL) is larger than λ1(Ht). Then, ‖(e′LHteL)−1‖s ≤
λ1(Ht)

−1 = ‖H−1
t ‖s. Since H−1

t = D−1
t R−1

t D−1
t , we obtain

‖(e′LHteL)−1‖s ≤ ‖H−1
t ‖s ≤ ‖D

−1
t ‖2s‖R

−1
t ‖s ≤ Cvλ1(Rt)

−1.

Moreover, it is easy to check that ‖eL‖s = ‖e′L‖s = 1. Since

‖Dt − D̃t‖s ≤ max
i
|hi,t − h̃i,t|/(h1/2

i,t + h̃
1/2
i,t ) ≤ C1/2

v ‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖s,

we have

‖pL − p̃L‖s ≤ {‖Dt − D̃t‖s‖Rt‖s‖Dt‖s + ‖D̃t‖s‖Rt − R̃t‖s‖Dt‖s + ‖D̃t‖s‖R̃t‖s‖Dt − D̃t‖s}
· ‖(e′LHteL)−1‖s

(
‖1 + ‖H̃t‖s‖(e′LH̃teL)−1‖s

)
≤ {C1/2

v ‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖sN(‖Dt‖s + ‖D̃t‖s)

+
√
NCFCΨ−1‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞‖Dt‖s‖D̃t‖s}

· Chλ1(Rt)
−1
(

1 +N‖D̃t‖2sChλ1(R̃t)
−1
)
.

We also have

‖εt‖2 ≤ ‖Dt‖s‖R1/2
t ‖s‖η∗t ‖2

≤ ‖Dt‖sλ1/2
max (Rt) ‖η∗t ‖2 ≤ ‖Dt‖s

√
N‖η∗t ‖2.

Moreover,

‖εt − ε̃t‖s ≤ ‖
(
DtR

1/2
t − D̃tR̃

1/2
t

)
η∗t ‖s

≤ ‖Dt − D̃t‖s‖R1/2
t ‖s‖η∗t ‖s + ‖D̃t‖s‖R1/2

t − R̃1/2
t ‖s‖η∗t ‖s

≤
[
C

1/2
v ‖Vecd

(
D2
t

)
−Vecd

(
D̃2
t

)
‖s
√
N + ‖D̃t‖sK‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞
]
‖η∗t ‖s,

where K =
1

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)√NCFCΨ−1 .
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Consequently, for every (i, L) deduced from the vine structure, we obtain

|ri|L,t − r̃i|L,t| ≤ α‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖s + β‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞. (2.45)

where
α =

√
NC

1/2
v ‖η∗t ‖s

1 +
N‖Dt‖sCh
λ1(Rt)

{‖Dt‖s + ‖D̃t‖s}

1 +
N‖D̃t‖2sCh
λ1(R̃t)

 ,

β =
√
NCFCΨ−1‖D̃t‖s‖η∗t ‖s


√
N‖Dt‖2sCh
λ1(Rt)

1 +
N‖D̃t‖2sCh
λ1(R̃t)

+
1

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)
 .

Step 2. We now focus on the discrepancy |hi|L,t − h̃i|L,t|. We have

hi|L,t − h̃i|L,t = e′i

(
Ht − H̃t

)
ei − e′i

(
Ht − H̃t

)
eL (e′LHteL)−1 (e′LHtei)

+ e′iH̃teL (e′LHteL)−1
[
e′LH̃teL − e′LHteL

] (
e′LH̃teL

)−1
(e′LHtei)

+ e′iH̃teL

(
e′LH̃teL

)−1
e′L

(
Ht − H̃t

)
ei,

which implies

|hi|L,t − h̃i|L,t| ≤ ‖Ht − H̃t‖s
[
1 + Cvλ1(Rt)

−1‖Ht‖s + Cvλ1(R̃t)
−1‖H̃t‖s

+ C2
vλ1(Rt)

−1λ1(R̃t)
−1‖Ht‖s‖H̃t‖s

]
≤

(
C1/2
v ‖Vecd

(
D2
t

)
−Vecd

(
D̃2
t

)
‖sN{‖Dt‖s + ‖D̃t‖s}

+
√
NCFCΨ−1‖Dt‖s‖D̃t‖s‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞
)

·

1 +
NCv‖Dt‖2s
λ1(Rt)

+
NCv‖D̃t‖2s
λ1(R̃t)

+
N2C2

v‖Dt‖2s‖D̃t‖2s
λ1(Rt)λ1(R̃t)


≤ γ‖Vecd

(
D2
t

)
−Vecd

(
D̃2
t

)
‖s + δ‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞, (2.46)

where
γ = C

1/2
v N{‖Dt‖s + ‖D̃t‖s}

1 +
NCv‖Dt‖2s
λ1(Rt)

+
NCv‖D̃t‖2s
λ1(R̃t)

+
N2C2

v‖Dt‖2s‖D̃t‖2s
λ1(Rt)λ1(R̃t)


δ =

√
NCFCΨ−1‖Dt‖s‖D̃t‖s

1 +
NCv‖Dt‖2s
λ1(Rt)

+
NCv‖D̃t‖2s
λ1(R̃t)

+
N2C2

v‖Dt‖2s‖D̃t‖2s
λ1(Rt)λ1(R̃t)


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Consequently, we obtain the following relationship for (2.42)

vi,j|L,t − ṽi,j|L,t =

(
ri|L,t − r̃i|L,t

)
rj|L,t√

hi|L,t
√
hj|L,t

+
r̃i|L,t

(
rj|L,t − r̃j|L,t

)√
hi|L,t

√
hj|L,t

+ r̃i|L,tr̃j|L,t{
1√

hi|L,t
√
hj|L,t

−
1√

h̃i|L,t

√
h̃j|L,t

}.

For any (i, L) we consider, hi|L,t ≤ ‖Dt‖2s everywhere, because the variance of a

residual is smaller than the variance of any random variable. Therefore, we get

|
1√

hi|L,t
√
hj|L,t

−
1√

h̃i|L,t

√
h̃j|L,t

| ≤
C2
h√

h̃i|L,t

√
h̃j|L,t +

√
h̃i|L,t

√
h̃j|L,t

{hi|L,thj|L,t − h̃i|L,th̃j|L,t}

≤ C3
h

[(
hi|L,t − h̃i|L,t

)
hj|L,t + h̃i|L,t

(
hj|L,t − h̃j|L,t

)]
≤ C3

h{‖Dt‖2s|hi|L,t − h̃i|L,t|+ ‖D̃t‖2s|hj|L,t − h̃j|L,t|},
(2.47)

and

|ri|L,t| ≤ ‖pL (εt) ‖∞ ≤ ‖pL (εt) ‖2 ≤ ‖pL‖s.‖εt‖2 ≤ ‖εt‖2 ≤
√
N‖Dt‖s‖s‖η∗t ‖2.

(2.48)

Consequently, using (2.46), (2.47) and (2.48), (2.42) can be upper bounded as

|vi,j|L,t − ṽi,j|L,t| ≤ Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
·
{(
α‖Vecd

(
D2
t

)
−Vecd

(
D̃2
t

)
‖s + β‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞
)

+
√
N‖D̃t‖2s‖η∗t ‖22C2

h

(
γ‖Vecd

(
D2
t

)
−Vecd

(
D̃2
t

)
‖s + δ‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞
)}

.

Hence using the previous inequality, we obtain

‖ζt− ζ̃t‖∞ ≤ Υ1,t‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖s + Υ2,t‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞, (2.49)

with  Υ1,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{α+

√
N‖D̃t‖2s‖η∗t ‖22C2

hγ}

Υ2,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{β +

√
N‖D̃t‖2s‖η∗t ‖22C2

hδ}
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Using (2.49) and (2.41), we have

‖Ψ (Pct)−Ψ
(
P̃ ct

)
‖∞ ≤ {‖Ξ‖∞ + ‖Λ‖∞Υ2,t}‖Ψ (Pct−1)−Ψ

(
P̃ ct−1

)
‖∞

+ ‖Λ‖∞Υ1,t‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖s.

(2.50)

We denote

‖µt‖ =

‖Ψ (Pct−1)−Ψ
(
P̃ ct−1

)
‖∞

‖Vecd
(
D2
t

)
−Vecd

(
D̃2
t

)
‖s

 , Mt =

(
‖Ξ‖∞ + ‖Λ‖∞Υ2,t ‖Λ‖∞Υ1,t

Γ2,t Γ1,t

)
.

Using (2.40) and (2.50), we deduce that

‖µt‖ ≤ Mt‖µt−1‖

≤ {
t−p∏
k=0

Mt−k}‖µt−p−1‖,

for any p ∈ N. Under Assumption 7, lim
p→∞
‖MtMt−1 · · ·Mt−p‖ = 0 P−a.s., for a fixed

t using Lemma 2.1 of Francq and Zakoian (2010). We deduce that µt −→
t→∞

0. This

implies that Ψ(Pct) = Ψ(P̃ ct) a.s. and Dt = D̃t a.s., which then implies Rt = R̃t a.s.

and εt = ε̃t a.s.. This concludes the proof of uniqueness. Furthermore, ergodicity is

obtained as a consequence of corollary 7.17 in Douc and al. (2014).

A sufficient condition for uniqueness is that the top Lyapunov exponent γM is

strictly negative. This condition holds if E [log (‖Mt‖)] < 0.
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3 Asymptotic Properties

We provided conditions for the existence and the uniqueness of strictly stationary

solutions of the Vine-GARCH model. These results are significant for asymptotic

properties since law of large numbers and central limit theorems can be applied.

We consider the DGP given in (1.1). From an inference point of view, a practical

issue arises when computing log-likelihoods, which is the choice of some initial values

to generate the sequences (Dt), (Rt) and then (Ht), t = 1, . . . , T . Given some fixed

values for ε0, D0 and R0, we obtain log-likelihoods. In this Section only, the latter

log-likelihoods will be denoted by Q̃L1,T (θv; ε) and Q̃L2,T (θv, θc; ε). More generally,

all quantities with a “ ˜ ” are deduced from the process with fixed arbitrary starting

values at t = 0. Therefore, they are distinct from the “theoretical” log-likelihoods

QL1,T (θv; ε) and QL2,T (θv, θc; ε), for which the initial values are coming from the

stationary laws 3. Actually, this subtlety has no consequence because we will assume

irrelevance of initial values: see Assumptions 10 and 18 and Section A.

3.1 Consistency

To show the weak consistency, we need a set of assumptions given as follows.

Assumption 8. The variance parameters θv (resp. correlation parameters θc) be-

long to a compact set Θv in R3N
+ (resp. Θc in in R2N2(N−1)2/4+N(N−1)/2

+ ). The true

parameter θ0 = (θ0,v, θ0,c)
′ belongs to the interior of the compact set Θ := Θv ×Θc.

Assumption 9. The sequence of innovations (ηt) is strongly stationary, Et−1[ηt] =

0, Et−1[ηtη
′
t] = IN and Et−1[ηi,t|ηj,t] = 0 when i 6= j. Moreover, ηt ∈ RN has a

nondegenerate distribution.

Assumption 10. The initial values are asymptotically irrelevant, which means

sup
θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)| = ◦p(1).

Moreover and as expected, we need the classic assumptions that guarantee the

strong consistency of univariate GARCH(1,1) QML estimates.

3Equivalently, they can be seen as coming from a stationary solution (εt)t∈Z.
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Assumption 11. . Let M0 = (M0,t)t be a sequence of matrix defined by M0,t =(
η2
t , 1
)′

(κ, τ), where the index i are removed for clarity. Then γM0 < 0, the top

Lyapunov exponent, defined as

γM0 := inf
t∈N?

1

t
E [log (‖M0,tM0,t−1 · · ·M0,1‖)] = lim

t→∞

1

t
log (‖M0,tM0,t−1 · · ·M0,1‖) a.s.

Besides, ∀θv ∈ Θv, τ < 1.

Assumption 12. Let (At, Bt) defined as

At := sup
θ:‖θv−θ0,v‖<α

‖ (∇Ψ(Pct))
−1 Λ∇Dtζ(Pct, Dt, εt)∇θvDt‖,

Bt := sup
θ:‖θv−θ0,v‖<α

‖ (∇Ψ(Pct))
−1 [Ξ∇Ψ(Pct) + Λ∇Pctζ(Pct, Dt, εt)] ‖.

For some α > 0, the stochastic matrix process (At, Bt) is stationary, E[At] < +∞
and ∑

k≥1

E [Bt−1Bt−2 · · ·Bt−kAt−k−1] <∞.

Theorem 3.1. Let θ̂T =
(
θ̂T,v, θ̂T,c

)′
a sequence of pseudo-maximum likelihood

estimators verifying (2.10) and (2.11). Then under Assumptions 4 and 8-12,

θ̂T
P−→ θ0 when T →∞.

We shall proceed step-by-step to prove the weak consistency of the two-step

estimator. We denote θ0\c = (θ0,v, θc). The next three steps shall be demonstrated

successively.

1. Identifiability of the parameters, which can be expressed in our framework as

{∀t ∈ Z, Dt(θv) = Dt(θ0,v) andRt(θ) = Rt(θ0) Pθ0 as} ⇒ θ = θ0.

2. The optimum θ0 is well-separated: if θ̂T,v → θ0,v a.s., and ‖θc − θ0,c‖ > γ, for

some γ > 0 then l2,t(εt; θ0,v, θ0,c) ∈ L1(R) and

Eθ0 [l2,t(εt; θ0,v, θc)] > Eθ0 [l2,t(εt; θ0)] .

3. Let Θ0\c = {θ = (θ0,v, θc) ∈ Θ} = {θ0,v} × Θc. For every θ∗ ∈ Θ0\c with

‖θ∗c − θ0,c‖ > 0 and every π > 0, there exists an open ball V (θ∗, π) around θ∗
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in the space Θ0\c s.t.

Eθ0

[
inf

θ∈V (θ∗,π)
l2,t(εt; θ)

]
≥ Eθ0 [l2,t(εt; θ

∗)]− π.

Note that a proof of the strong consistency of θ̂T,v can be found in Francq and

Zakoian (2004). In their proof, similar steps as above (and Assumption 10) are

demonstrated for QL1,T (ε; θv), the first step likelihood.

Remark about Assumption 10. The asymptotic irrelevance of the initial values

is probably the most difficult step to prove for weak consistency. To do so, when

comparing QL2,T (θ; ε) and Q̃L2,T (θ; ε), we need to evaluate the rate of convergence

of ‖Rt − R̃t‖. For the sake of clarity, we assume that this assumption holds. A

detailed proof is considered secondary w.r.t. the core of the consistency result, but

it can be found in Section A.

We need the following lemma, whose proof is postponed after the proof of The-

orem 3.1.

Lemma 3.2. Under Assumptions 8-11,

sup
θ∈Θ
|QL2,T (θ̂T,v, θc)−QL2,T (θ0,v, θc)| = oP (1).

Proof. Step 1. We now prove the identifiability part of the vine-Garch model. Due

to the identifiability of GARCH models, when Dt(θv) = Dt(θ0,v) for every t and

almost everywhere, this means that θv = θ0,v.

Let us state the identifiability of the correlation-related parameters. To do so, we

define Dθ(z) = Λz and Qθ(z) = IN−Ξz. There is a one-to-one relationship between

the components of the lower (or upper) triangular part of Rt(θ), and PCt(θ), the

vector of partial correlations, through Fvine(.). Then Rt(θ) = Rt(θ0) Pθ0 a.s. implies

PCt(θ) = PCt(θ0) Pθ0 a.s.. For a given sequence of innovations (ηt), we write the

partial correlation dynamics Ψ (Pct(θ)) = Ω + ΞΨ (Pct−1(θ)) + Λζt−1(θ) as

Qθ(B)Ψ (Pct(θ)) = Ω +Dθ(B)ζt(θ)

⇔ Ψ (Pct(θ)) = Q−1
θ (B) [Ω +Dθ(B)ζt(θ)]

⇔ Ψ (Pct(θ)) = Q−1
θ (B)Dθ(B)

[
D−1
θ (1)Ω + ζt(θ)

]
.
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Now, for some θ and θ0, suppose

Q−1
θ (B)Dθ(B)

[
D−1
θ (1)Ω + ζt(θ)

]
= Q−1

θ0
(B)Dθ0(B)

[
D−1
θ0

(1)Ω0 + ζt(θ0)
]

a.s. ∀t.

This means

Q−1
θ (B)Dθ(B)ζt(θ)−Q−1

θ0
(B)Dθ0(B)ζt(θ0) = Q−1

θ0
(1)Ω0 −Q−1

θ (1)Ω a.s.,

which can be rewritten as

(IN − ΞB)−1 ΛBζt(θ)− (IN − Ξ0B)−1 Λ0Bζt(θ0) = Q−1
θ0

(1)Ω0 −Q−1
θ0

(1)Ω.

The latter is equivalent to

∑
k≥0

[
ΞkBk+1Λζt(θ)− Ξk0B

k+1Λ0ζt(θ0)
]

= Q−1
θ0

(1)Ω0 −Q−1
θ (1)Ω,

⇔
∑
k≥0

[
ΞkΛζt−k−1(θ)− Ξk0Λ0ζt−k−1(θ0)

]
= Q−1

θ0
(1)Ω0 −Q−1

θ (1)Ω,

implying

Λζt−1(θ)−Λ0ζt−1(θ0)+ΞΛζt−2(θ)−Ξ0Λ0ζt−2(θ0)+· · · = Q−1
θ0

(1)Ω0−Q−1
θ (1)Ω, (3.1)

for every t and almost everywhere. Hence, a.s., it is equivalent to

Λζt−1(θ)− Λ0ζt−1(θ0) = Mt−2, (3.2)

where Mt−2 is a random variable that is measurable wrt σ (ηt−s, s ≥ 2). For an

arbitrary parameter θ, let εt = H
1/2
t (θ)ηt, that depends implicitly on the under-

lying parameter. Let us consider an element of ζt−1(θ), which corresponds to a

conditioned set, say i, j, and a conditioning set, say L. Then, we have

ζ
(ij|L)
t−1 (θ) =

εi,t−1 − E [εi,t−1|εL,t−1,Ft−2]√
hi|L,t−1

·
εj,t−1 − E [εj,t−1|εL,t−1,Ft−2]√

hj|L,t−1

·

Both denominators are Ft−2 measurable and depend on θ through the variance

and correlation processes. We rewrite εi,t = e′i(H
1/2
t (θ)ηt), with ei = (0, · · · , 0, 1, 0, · · · , 0)′

with 1 at the ith component. Focusing on one of the numerators, the quantity of
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interest is

εi,t−1 − E [εi,t−1|εL,t−1,Ft−2] = e′iH
1/2
t−1(θ)ηt−1 − e′iH

1/2
t−1(θ)E [ηt−1|εL,t−1,Ft−2]

= e′iH
1/2
t−1(θ){ηt−1 − E [ηt−1|εL,t−1, Ht−1(θ)]}

= e′iH
1/2
t−1(θ){ηt−1 − E [ηt−1|fL(ηt−1, θ)]}.

fL is a linear function of the components of ηt−1 and depends on the specific con-

ditioning set of the vine. It also depends on θ because the linear coefficients of fL

are the sub-components of H
1/2
t (θ). Now, for all t,

ζ
(ij|L)
t−1 (θ) = Trace

(
e′iH

1/2
t−1(θ)αLt−1(θ)αL′t−1(θ)H

1/2
t−1(θ)ej

)
/
(√

hi|L,t−1(θ)
√
hj|L,t−1(θ)

)
,

with αLt−1(θ) = ηt−1 − E [ηt−1|fL(ηt−1, θ)].

But we assumed Rt(θ) = Rt(θ0), Dt(θ) = Dt(θ0) for t. Consequently, Ht(θ) =

Ht(θ0), the observations εt are the same under Pθ and Pθ0 , and αLt (θ) = αLt (θ0).

This implies that ζt(θ) = ζt(θ0) and (3.2) becomes componentwise

λ(ij|L)ζ
(ij|L)
t−1 (θ)− λ0,(ij|L)ζ

(ij|L)
t−1 (θ0) = mt−2

⇔ (λ(ij|L) − λ0,(ij|L))e
′
iH

1/2
t−1(θ)αLt−1(θ)(αLt−1(θ))′H

1/2
t−1(θ)ej = mt−2

for some Ft−2−measurable function mt−2. The l.h.s. corresponds to a quadratic

form of (ηt−1), whose coefficients are some functions of Ht−1(θ). This can be rewrit-

ten

(λ(ij|L) − λ0,(ij|L))
N∑

k,l=1

H
1/2
i,k,t−1(θ)H

1/2
j,k,t−1(θ)αLk,t−1(θ)αLl,t−1(θ) = mt−2

⇔ (λ(ij|L) − λ0,(ij|L))(µ11η
2
1,t−1 + µ12η1,t−1η2,t−1 + · · ·+ a1η1,t−1 + · · ·+ µkkη

2
k,t−1 + µk1ηk,t−1η1,t−1

+ · · ·+ akηk,t−1 + · · ·+ aNηN,t−1 + C) = mt−2,

(3.3)

for some Ft−2-measurable coefficients µi,j , ak and a constant C. Taking the condi-

tional expectation E [.|η−k,t−1,Ft−2], with η−k,t−1 the vector ηt−1 excluding ηk,t−1,

using the assumption E[ηt−1 | η−k,t−1,Ft−2] = 0 (c.f. Assumption 9), and substract-

ing to (3.3), we obtain

(λ(ij|L) − λ0,(ij|L))(µkkη
2
k,t−1 + akηk,t−1 − µkkEt−2

[
η2
k,t−1

]
) = 0, a.s. (3.4)

If λ(ij|L) 6= λ0,(ij|L) in (3.4), then a solution is ηk,t−1 ∈ {α, β}. This contradicts

Assumption 9. Consequently, λ(ij|L) = λ0,(ij|L). This holds for all the components
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of ζt−1(θ), hence Λ = Λ0. Plugging this last inequality in (3.1), we obtain

(Ξ− Ξ0)Λζt−2(θ) = Mt−3. (3.5)

The same steps can be applied as previously

λ(ij|L)(ξ(ij|L) − ξ0,(ij|L))(µ11η
2
1,t−2 + µ12η1,t−2η2,t−2 + · · ·+ a1η1,t−2 + · · ·+ µkkη

2
k,t−2 + µk1ηk,t−2η1,t−2

+ · · ·+ akηk,t−2 + + · · · aNηN,t−2 + C) = mt−3.

Taking the conditional expectation E [.|η−k,t−2] and using the same steps as previ-

ously, we obtain ξ(ij|L) = ξ0,(ij|L), hence Ξ = Ξ0. Finally, a.s.

∑
k≥0

[
ΞkBk+1Λζt(θ)− Ξk0B

k+1Λ0ζt(θ0)
]

= Q−1
θ0

(1)Ω0 −Q−1
θ0

(1)Ω

⇔ 0 = Q−1
θ0

(1)Ω0 −Q−1
θ (1)Ω

As Qθ0(1) = Qθ(1), this implies Ω = Ω0.

Proof. Step 2. We now show that the limit criterion is minimized at the true value.

It is important to note that the second step is conditional to the first step estimator,

idest we deal with l2,t(εt; θ̂T,v, θc).

For all θ ∈ Θ,

Eθ0
[
l−2,t(εt; θ)

]
≤ Eθ0

[
log−(|Rt|)

]
≤ max (0,− log(|Rt|)) <∞, (3.6)

by Assumption 4. Consequently, Eθ0 [l2,t(εt; θ)] belongs to R ∪ {+∞}. Now at the

true parameter value, we show Eθ0 [|l2,t(εt; θ0)|] <∞.

Indeed, the determinant of Rt(θ0) is bounded from above by Trace(Rt)
N , i.e.

NN . Therefore, without any assumption,

Eθ0 [l2,t(εt; θ0)] = Eθ0 [log(|Rt(θ0)|)] + Trace
(
Eθ0

[
η′tηt

])
≤ N logN +N.

Therefore, we obtain that l2,t(εt; θ0) ∈ L1.

Denoting by αi,t the eigenvalues of Rt(θ0)R−1
t (θ0\c), which are positive, θ0\c =
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(θ0,v, θc) and ut = Dt(θ0,v)
−1εt, we have

Eθ0
[
l2,t(εt; θ0\c)− l2,t(εt; θ0)

]
= Eθ0

[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
u′t
(
R−1
t (θ0\c)−R−1

t (θ0)
)
ut
]

= Eθ0
[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
η′tR

1/2
t (θ0)′

(
R−1
t (θ0\c)−R−1

t (θ0)
)
R

1/2
t (θ0)ηt

]
= Eθ0

[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
Trace

(
η′t

(
R

1/2
t (θ0)′R−1

t (θ0\c)R
1/2
t (θ0)− IN

)
ηt

)]
= Eθ0

[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
Trace

((
R

1/2
t (θ0)′R−1

t (θ0\c)R
1/2
t (θ0)− IN

)
ηtη
′
t

)]
= Eθ0

[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
Trace

((
R

1/2
t (θ0)′R−1

t (θ0\c)R
1/2
t (θ0)− IN

)
Et−1[ηtη

′
t]
)]

= Eθ0
[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
Trace

(
Rt(θ0)R−1

t (θ0\c)− IN
)]

= Eθ0

[
N∑
i=1

(αi,t − 1− log(αi,t))

]
≥ 0,

(3.7)

because ∀x > 0, log(x) ≤ x − 1. The inequality log(x) ≤ x − 1 holds if and only if

x = 1. In our case, that means αi,t = 1, ∀i, which is Rt(θ0\c) = Rt(θ0) Pθ0 a.s.. By

stationarity, this reasoning can be made at time t−1, which would give Rt−1(θ0\c) =

Rt−1(θ0) Pθ0 a.s.. Hence for any t, the relationship Rt(θ0\c) = Rt(θ0) Pθ0 a.s. holds

by stationarity. By step 1, this means θ0 = θ0\c.

Proof. Step 3. For a given θ∗ ∈ Θ0\v, θ
∗
c 6= θ0,c, consider a sequence of open balls

of radius 1/k, k ∈ N defined by Vk(θ
∗) := {θ ∈ Θ0\v| ‖θ − θ∗‖ ≤ 1/k}. Since the

sequence of random variable (infθ∈Vk(θ∗) l2,t(εt; θ))k is increasing, the Beppo-Levi

Theorem applies:

lim
k→∞

Eθ0

[
inf

θ∈Vk(θ∗)
l2,t(εt; θ)

]
= Eθ0 [l2,t(εt; θ

∗)] ,

providing the result.

Proof. Theorem (3.1). Under our assumptions, θ̂T,v converges weakly to θ0,v (see

Theorem 7.1 in Francq and Zakoian, 2010, e.g.). Now, let us prove the weak con-

vergence of θ̂T,c to θ0,c, that is

∀α > 0, lim
T→∞

P
(
‖θ̂T,c − θ0,c‖ > α

)
= 0. (3.8)

By Assumption 8, Θ and then Θ0\c are compact sets. For any given π > 0 and

for every θ∗ ∈ Θ0\c, θ
∗ 6= θ0 with ‖θ∗c − θ0,c‖ ≥ α/2, let us associate an open ball

U(θ∗) ⊂ Θ0\c s.t.

Eθ0

[
inf

θ∈U(θ∗)
l2,t(εt; θ)

]
≥ Eθ0 [l2,t(εt; θ

∗)]− π.
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We know it is always possible due to the previous Step 3. Since the function θ ∈
Θ0\c → Eθ0 [l2,t(εt; θ0,v, θc)] − Eθ0 [l2,t(εt; θ0)] is strictly positive (c.f. Step 2) and

continuous on the compact subset E0(α) := {θ ∈ Θ0\c | ‖θc−θ0,c‖ ≥ α/2}, it reaches

its minimum 2µ > 0. Therefore, for any given θ∗ ∈ E0(α), set π := π(θ∗) =

Eθ0 [l2,t(εt; θ
∗)]− Eθ0 [l2,t(εt; θ0)]− µ > 0.

Moreover, set U(θ0) := {θ ∈ Θ0\c : ‖θ − θ0‖ < α}. Then

Θ0\c ⊂ U(θ0) ∪
⋃

θ∈E0(α)

U(θ).

Since Θ0\c can be covered by a finite set of open balls, there is a finite set of points

θ1, . . . , θn in E0(α) s.t.

Θ0\c ⊂ U(θ0) ∪
⋃

i=1,...,n

U(θi).

Equation (3.8) becomes

P
(
‖θ̂T,c − θ0,c‖ > α

)
≤ P

(θ0,v, θ̂T,c) ∈
⋃

i=1,...,n

U(θi)

 ≤ ∑
i=1,...,n

P
(

(θ0,v, θ̂T,c) ∈ U(θi)
)
.

By definition of θ̂T , we obtain for all i = 1, · · · , n

P
(

(θ0,v, θ̂T,c) ∈ U(θi)
)
≤ P

(
inf

θ∈U(θi)
Q̃L2,T (θ; ε) ≤ Q̃L2,T (θ0,v, θ̂T,c; ε)

)
≤ P

(
inf

θ∈U(θi)
QL2,T (θ; ε) ≤ QL2,T (θ̂T,v, θ̂T,c; ε) + 2 sup

θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|

+ |QL2,T (θ0,v, θ̂T,c; ε)−QL2,T (θ̂T ; ε)|
)

≤ P
(

inf
θ∈U(θi)

QL2,T (θ; ε) ≤ QL2,T (θ̂T,v, θ0,c; ε)|+ 2 sup
θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|

+ |QL2,T (θ0,v, θ̂T,c; ε)−QL2,T (θ̂T ; ε)|
)

≤ P
(

inf
θ∈U(θi)

QL2,T (θ; ε) ≤ Eθ0 [l2,t(εt; θ0)] + 2 sup
θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|

+ |QL2,T (θ0; ε)− Eθ0 [l2,t(εt; θ0)] |+ |QL2,T (θ0,v, θ̂T,c; ε)−QL2,T (θ̂T ; ε)|
)

≤ P
(
Eθ0

[
inf

θ∈U(θi)
l2,t(εt; θ)

]
≤ Eθ0 [l2,t(εt; θ0)] + 2 sup

θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|+ |Rθi |

+ |QL2,T (θ0; ε)− Eθ0 [l2,t(εt; θ0)] |+ |QL2,T (θ0,v, θ̂T,c; ε)−QL2,T (θ̂T ; ε)|
)
, (3.9)
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where Rθi =
1

T

T∑
t=1

inf
θ∈U(θi)

l2,t(εt; θ) − Eθ0

[
inf

θ∈U(θi)
l2,t(εt; θ)

]
. Invoking step 3 and the

way the neighborhoods have been built, for any i = 1, . . . , n,

Eθ0

[
inf

θ∈U(θi)
l2,t(εt; θ)

]
≥ Eθ0 [l2,t(εt; θ0)] + µ.

Using the property {X + Y ≤ a+ b} ⊂ {X ≤ a} ∪ {Y ≤ b}, a, b ≥ 0 and X,Y any

random variables, (3.9) becomes

P
(

(θ0,v, θ̂c,T ) ∈ U(θi)
)
≤ P

(
µ ≤ 2 sup

θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|+ |Rθi |

+ |QL2,T (θ0; ε)− Eθ0 [l2,t(εt; θ0)] |+ |QL2,T (θ0,v, θ̂T,c; ε)−QL2,T (θ̂T ; ε)|
)

≤ P

µ
4
< 2 sup

θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|

+ P

µ
4
< |QL2,T (θ0; ε)− Eθ0 [l2,t(εt; θ0)] |


+ P

µ
4
< |Rθi |

+ P

µ
4
< |QL2,T (θ0,v, θ̂T,c; ε)−QL2,T (θ̂T ; ε)|

 . (3.10)

Under Assumption 10, the initial values generating the process are asymptotically

irrelevant. For some δ > 0 and T > T1, this implies

P

µ
4
< 2 sup

θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)|

 < δ/4. (3.11)

As for the second probability of the r.h.s. in (3.10), we use the ergodic theorem of

Billingsley (1995), and for T > T2, we obtain

P

µ
4
< |QL2,T (θ0; ε)− Eθ0 [l2,t(εt; θ0)] |

 < δ/4. (3.12)

Let us focus on the the third term in the r.h.s. Although the quantity l2,t(εt; θ) is

not necessarily integrable, the ergodic theorem can still be used as Eθ0 [l2,t(εt; θ)] ∈
R ∪ {∞}. Furthermore, l2,t(εt; θ) is a measurable function of an ergodic process,

hence, as in Exercise 7.4 in Francq and Zakoian (2010), the ergodic theorem of

Billingsley (1995) can be applied to ( inf
θ∈U(θi)

l2,t(εt; θ))t as follows

lim inf
T→∞

1

T

T∑
t=1

inf
θ∈U(θi)

l2,t(εt; θ) = Eθ0

[
inf

θ∈U(θi)
l2,t(εt; θ)

]
.
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Plugging this convergence result into (3.10), for δ > 0, T > T3, we obtain

P

µ
4
< |Rθi |

 < δ/4. (3.13)

Note that the derivative of θv 7→ QL2,T (θv, θ0,c; ε) is uniformly bounded under As-

sumption 4 (recall the arguments in the proof of Step 2). Invoking Lemma 3.2, we

can tackle the fourth term of (3.10): if t > T4, we have

P

µ
4
< |QL2,T (θ0; ε)−QL2,T (θ̂T,v, θ0,c; ε)|

 < δ/4. (3.14)

Consequently, with (3.11), (3.12), (3.13) and (3.14), for T > T1 ∨ T2 ∨ T3 ∨ T4,

(3.10) becomes

P
(
θ̂T ∈ U(θi)

)
≤ δ. (3.15)

Since δ can be chosen arbitrarily small, this proves the convergence in probability

of
(
θ̂T,v, θ̂T,c

)′
to the true parameter vector θ0.

Proof. Lemma 3.2. Applying a Taylor expansion to QL2,T (θ̂T,v, θc; ε) around θ0,v,

we obtain

1

T

T∑
t=1

l2,t(εt; θ̂T,v, θc) =
1

T

T∑
t=1

l2,t(εt; θ0,v, θc) + (θ̂T,v − θ0,v)
1

T

T∑
t=1

∇θv l2,t(εt; θ̄v, θc),

for some θ̄v, ‖θ̄v − θ0,v‖ < ‖θ0,v − θ̂T,v‖. Using the consistency of θ̂T,v, it is sufficient

to prove that

1

T

T∑
t=1

sup
{θ∈Θ | ‖θv−θ0,v‖<α}

‖∇θv l2,t(εt; θv, θc)‖ = OP (1), (3.16)

for some (small) α > 0. Applying some matrix derivation rules (see Lütkepohl,

1996), the analytical score of the second step likelihood with respect to the i-th

element of θv is given by

∂θiv l2,t(εt; θ) = ∂θiv
[
log (|Rt|) + ε′tD

−1
t R−1

t D−1
t εt

]
= Trace

(
R−1
t (∂θivRt)

)
+ Trace

(
εtε
′
t∂θiv

[
D−1
t R−1

t D−1
t

])
= Trace

(
R−1
t (∂θivRt)

)
− Trace

(
εtε
′
t

[
D−1
t (∂θivDt)D

−1
t R−1

t D−1
t

])
− Trace

(
εtε
′
t

[
D−1
t R−1

t (∂θivRt)R
−1
t D−1

t

])
− Trace

(
εtε
′
t

[
D−1
t R−1

t D−1
t (∂θivDt)D

−1
t

])
.
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Obviously, the matrices D−1
t are bounded from above by positive constants due

to the definition of our univariate GARCH dynamics. Concerning correlations, we

know that R−1
t is bounded from above, due to Assumption 4. As for the derivatives

of Rt, note that ‖∇θvRt‖ ≤ ‖∇Fvine(Pct).∇θvPct‖ and that the derivative of Fvine(·)
is bounded a.e. under the latter assumption.

Consequently, there exists some positive constant C such that, for any α > 0,

sup
θ:‖θv−θ0,v‖<α

|∇θv l2,t(εt; θc, θv)| ≤ C. sup
θ:‖θv−θ0,v‖<α

{(‖∇θvDt‖+‖∇θvPct‖)‖εt‖2+‖∇θvPct‖}.

Let us focus on ∇θvPct. By the chain rule, we have

∇θvPct = (∇Ψ(Pct−1))−1 [Ξ∇Ψ(Pct−1) + Λ∇Pcζ(Pct−1, Dt−1, εt−1)]∇θvPct−1

+ (∇Ψ(Pct−1))−1 Λ∇Dζ(Pct−1, Dt−1, εt−1)∇θvDt−1,

and then

sup
θ:‖θv−θ0,v‖<α

‖∇θvPct‖ ≤ At−1 +Bt−1 sup
θ:‖θv−θ0,v‖<α

‖∇θvPct−1‖

≤ At−1 +

∞∑
k=1

Bt−1Bt−2 · · ·Bt−kAt−k−1. (3.17)

Assumption 12 provides sufficient conditions so that the latter series belongs to L1.

As a consequence, the existence of the series (3.17) is ensured a.s. But we need a

stronger assumption than in Theorem 1.1. of Bougerol and Picard (1992) typically,

because of the integrability requirement. This implies

1

T

T∑
t=1

sup
θ:‖θv−θ0,v‖<α

‖∇θvPct‖.(‖εt‖2 + 1) = OP (1).

We now focus on ‖∇θvDt‖, which is determined as ‖∂θivDt‖ = ‖D−1
t diag

(
∂θivhj,t

)
‖/2,

i = 1, · · · , 3N . The partial derivative of the j-th component above is zero when

i 6= j. Otherwise, note that, by iterating the volatility process equation, we have

hj,t =
ςj

1− τj
+ κj

∑
k≥1

τk−1
j ε2j,t−k

 ,

∂ςjhj,t =
ςj

1− τj
, ∂κjhj,t =

∑
k≥1

τk−1
j ε2j,t−k, and ∂τjhj,t =

ςj
(1− τj)2

+
∑
k≥1

(k−1)τk−2
j ε2j,t−k.
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We deduce there exists some constant C s.t.

sup
θ:‖θv−θ0,v<α

‖∇θvDt‖.‖εt‖2 ≤ C

1 +
∑
k≥1

(k − 1)τk−1
j ε2j,t−k

 ‖εt‖2 a.s.

The latter r.h.s. belongs to L1 because Et−1[ε2j,t] = 1 for every j and t. Therefore,

1

T

T∑
t=1

sup
θ:‖θv−θ0,v<α

‖∇θvDt‖.‖εt‖2 = OP (1),

proving (3.16) and then our lemma.

3.2 Asymptotic Normality

We proved the consistency of θ̂T,c. The consistency together with the central limit

theorem are used to prove the asymptotic normality of θ̂T = (θ̂T,v, θ̂T,c)
′. To do so,

several Taylor expansions are applied to the orthogonal conditions given by (1.7).

Besides the assumptions defined for consistency, another set of hypothesis is required

for the asymptotic normality.

Assumption 13. θ0 ∈ Θ̊ with Θ̊ the interior of Θ.

Assumption 14. The innovations ηt have finite fourth order moments.

Assumption 15. Let the processes defined as

Ct = (∇Ψ(Pct−1))−1 ,

C̃t = (∇Ψ(Pct−1))−1 [Ξ∇Ψ(Pct−1) + Λ∇ζ(Pct−1, Dt−1, εt−1)] ,

Et = (∇Ψ(Pct−1))−1 Ψ(Pct−1),

Gt = (∇Ψ(Pct−1))−1 ζ(Pct−1, Dt−1, εt−1),

The stochastic matrix process (Ct, C̃t, Et, Gt)t is stationary,

E
[
‖Ct‖2 + ‖Et‖2 + ‖Gt‖2

]
< +∞, and E

[
‖
∞∑
k=1

C̃t−1C̃t−2 · · · C̃t−kZt−k−1‖2
]
< +∞,

where the generic letter Z denotes C, E or G.

The next regularity conditions are classic and necessary to justify the existence of

the asymptotic covariance in the next Theorem. They are assumed for convenience.
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Under the price of additional technicalities, it is possible to establish some sufficient

and more explicit conditions to satisfy the later ones.

Assumption 16. ∇θvθ′c l2,t(εt; θ0,v, θ0,c), ∇θcθ′c l2,t(εt; θ0,v, θ0,c), ∇θcθ′cψ(θ0,v, θ0,c) and

∇θcθ′vψ(θ0,v, θ0,c) admit a finite first order moment.

Assumption 17. E
[
∇θcθ′c l2,t(εt; θ0,v, θ0,c)

]
is nonsingular.

As expected, we need to assume that the initial values of the process are asymp-

totically irrelevant to evaluate score functions. The multiplication by
√
T renders

this task more difficult than in the proof of consistency. We have not tried to exhibit

the equivalent of Lemma 3.2 to deal with this case.

Assumption 18.
√
T‖∆T (θ0,v)−∆̃T (θ0,v)‖ = op(1) and

√
T‖ΨT (θ0,v, θ0,c)−Ψ̃T (θ0,v, θ0,c)‖ =

op(1).

For some α > 0, sup
θv :‖θv−θ0,v‖<α

‖∇θv∆T (θv)−∇θv∆̃T (θv)‖ = op(1), and

sup
θ:‖θ−θ0‖<α

‖∇θΨT (θ)−∇θΨ̃T (θ)‖ = op(1).

Theorem 3.3. Assume Assumptions 4 and 8-18, then θ̂T,v and θ̂T,c are asymptot-

ically normal, and
√
T
(
θ̂T − θ0

)
d−→ N

(
0, J−1IJ−1

)
,

where

J = Eθ0

[(
∇θvθ′v l1,t(εt; θ0,v) 0

∇θvθ′c l2,t(εt; θ0,v, θ0,c) ∇θcθ′c l2,t(εt; θ0,v, θ0,c)

)]
,

I = Eθ0

[(
∇θv l1,t(εt; θ0,v)∇θ′v l1,t(εt; θ0,v) ∇θv l1,t(εt; θ0,v)∇θ′c l2,t(εt; θ0,v, θ0,c)

∇θc l2,t(εt; θ0,v, θ0,c)∇θ′v l1,t(εt; θ0,v) ∇θc l2,t(εt; θ0,v, θ0,c)∇θ′c l2,t(εt; θ0,v, θ0,c)

)]
.

Remark about Assumption 16. This hypothesis for the two first quantities en-

sures the existence of the subblocks in J . The existence of the covariance of the

scores in I is proved in Lemma (3.4) thanks to Assumption 15. Although the

existence of the Hessians in J can be proved, it would require intense matrix com-

putations and Lyapunov conditions on more complex coefficients than those given

in Assumption 15. For the sake of clarity, we assume the existence of these Hessians.
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Furthermore, assumption (16) for the last two quantities is used to prove the weak

convergences in (i) of Lemma (3.5).

Remark about Assumption 17. This assumption ensures the invertibility of J ,

which requires the positive definiteness of E
[
∇θvθ′v l1,t(εt; θ0,v)

]
and E

[
∇θcθ′c l2,t(εt; θ0,v, θ0,c)

]
.

Actually, the invertibility of the latter can be proved by contradiction based on a

technical hypothesis, which is the family of vectors (vec(∂θicRt) is linearly indepen-

dent.

Lemma 3.4. Suppose the assumptions of theorem (3.3) hold,

(i) ‖ψt(θ0,v, θ0,c)ψt(θ0,v, θ0,c)
′‖, ‖δt(θ0,v)ψt(θ0,v, θ0,c)

′‖ admit a finite first order

moment.

(ii) Vas

(
δt(θ0,v)

ψt(θ0,v, θ0,c)

)
= I.

Proof. (i) Note that the existence of E [‖δt(θ0,v)δt(θ0,v)
′‖] and E [‖∇θvδt(θ0,v)‖] has

been established by Francq and Zakoian (2004), as they are related to usual GARCH

processes and Gaussian QMLE. This not require additional assumptions.

We denote by θiv (resp. θic) the i-th component of the vector of volatility (resp.

correlation) parameters. First we derive the score of the first step likelihood, which

is in matrix form

l1,t(εt; θv) = log(|D2
t (θv)|) + ε′tD

−2
t (θv)εt.

For i = 1, · · · , 3N , after some matrix manipulations, this score function is given as

δ
(i)
t (θv) = −Trace

(
(εtε
′
tD
−1
t +D−1

t εtε
′
t)D

−1
t (∂θivDt)D

−1
t

)
+ 2Trace

(
D−1
t (∂θivDt)

)
= Trace

((
IN −D−1

t εtε
′
tD
−1
t

)
(D−1

t (∂θivDt) + (∂θivDt)D
−1
t )
)
.

Using D−1
t εt = R

1/2
t ηt, we obtain

δ
(i)
t (θv) = Trace

((
IN −R

1/2
t ηtη

′
tR

1/2
t

)
(D−1

t (∂θivDt) + (∂θivDt)D
−1
t )
)
.

Choosing the spectral matrix norm, we have ‖R1/2
t ‖ ≤

√
Tr(Rt) ≤

√
N . Hence,

δ
(i)
t (θv) admits the upper bound

|δ(i)
t (θv)| ≤ C0.N‖IN −R

1/2
t ηtη

′
tR

1/2
t ‖‖D

−1
t (∂θivDt) + (∂θivDt)D

−1
t ‖

≤ 2C0N
2 (1 + ‖ηtη′t‖) .‖D−1

t (∂θivDt)‖,
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for some constant C0. The second step likelihood is defined as l2,t(εt; θ) = log(|Rt(θ)|)+
u′tR

−1
t (θ)ut. For i = 1, · · · , 3N(N − 1)/2, its score function is

ψ
(i)
t (θv, θc) = Trace

((
IN −R

−1/2
t ηtη

′
tR

1/2
t

)
R−1
t (∂θicRt)

)
.

This score can be upper bounded as

|ψ(i)
t (θv, θc)| ≤ C0.N

2
(
1 + λmin(Rt)

−1‖ηtη′t‖
)
‖R−1

t (∂θicRt)‖,

By the Cauchy-Schwartz inequality and Assumption 14, we have

E
[
|δ(i)
t (θv)ψ

(j)
t (θv, θc)|

]
≤ C1

{
1 + E

[
‖R−1

t (∂
θjc
Rt)‖2

]1/2
}
.
{

1 + E
[
‖D−1

t (∂θivDt)‖2
]1/2}

,

for some constant C1 > 0 and every i = 1, · · · , 3N and j = 1, · · · , 3N(N − 1)/2.

Concerning the covariance of ψt(θv, θc), we get similarly for every i, j

E
[
|ψ(i)
t (θ)ψ

(j)
t (θ)|

]
≤ C2

{
1 + E

[
‖R−1

t (∂θicRt)‖
2
]1/2}

.

{
1 + E

[
‖R−1

t (∂
θjc
Rt)‖2

]1/2
}
,

with C2 > 0. Note that we have invoked the fact that the lower eigenvalue of Rt are

bounded from above by a strictly positive constant, using Assumption 4. Therefore,

it is sufficient to show that E
[
‖R−1

t (∂θiRt)‖2
]
<∞ and E

[
‖D−1

t (∂θiDt)‖2
]
<∞.

By the chain rule property, we have ‖∇θcRt‖ ≤ ‖∇Fvine(Pct).∇θcPct‖. But As-

sumption 4 implies that Fvine(·) is Lipschitz, i.e. its derivative is uniformly bounded.

Now, setting θ
(1)
c = (θic, i = 1, . . . , N(N − 1)/2) = Ω, we have

∇
θ
(1)
c
Pct = (∇Ψ(Pct−1))−1 + (∇Ψ(Pct−1))−1 [Ξ∇Ψ(Pct−1) + Λ∇ζ(Pct−1, Dt−1, εt−1)]∇

θ
(1)
c
Pct−1

= Ct−1 +
∞∑
k=1

C̃t−1C̃t−2 · · · C̃t−kCt−k−1,

Furthermore, θ
(2)
c = (θic, i = N(N − 1)/2 + 1, · · · , N(N − 1)) = diag(Ξ), which

is the vector stacking the diagonal element of Ξ, we obtain

∇
θ
(2)
c
Pct = (∇Ψ(Pct−1))−1 [Ξ∇Ψ(Pct−1) + Λ∇ζ(Pct−1, Dt−1, εt−1)]∇

θ
(2)
c
Pct−1

+ (∇Ψ(Pct−1))−1 Ψ(Pct−1)

= Et−1 +
∞∑
k=1

C̃t−1C̃t−2 · · · C̃t−kEt−k−1,
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Finally, θ
(3)
c = (θic, i = N(N − 1) + 1, · · · , 3N(N − 1)/2) = diag(Λ), we get

∇
θ
(3)
c
Pct = (∇Ψ(Pct−1))−1 [Ξ∇Ψ(Pct−1) + Λ∇ζ(Pct−1, Dt−1, εt−1)]∇

θ
(3)
c
Pct−1

+ (∇Ψ(Pct−1))−1 ζ(Pct−1, Dt−1, εt−1)

= Gt−1 +
∞∑
k=1

C̃t−1C̃t−2 · · · C̃t−kGt−k−1,

Under Assumption 15, we deduce

E
[
‖R−1

t (∂θiRt)‖
2
]
<∞.

The existence of E
[
‖(∂θiDt)D

−1
t ‖2

]
was coming from the proof of Lemma 3.2.

Hence, we have shown that, for i = 1, · · · , 3N , and j, k, l = 1, · · · , 3N(N − 1)/2,

E
[
|δ(i)
t (θv)ψ

(j)
t (θv, θc)|

]
<∞, and E

[
|ψ(k)
t (θv, θc)ψ

(l)
t (θv, θc)|

]
<∞,

proving the result.

(ii) Due to the orthogonal conditions, we have

Vas

(
δt(θ0,v)

ψt(θ0,v, θ0,c)

)
=

(
Eθ0 [δt(θ0,v)δt(ε; θ0,v)] Eθ0 [δt(θ0,v)ψt(θ0,v, θ0,c)

′]

Eθ0 [ψt(θ0,v, θ0,c)δt(θ0,v)
′] Eθ0 [ψt(θ0,v, θ0,c)ψt(θ0,v, θ0,c)

′]

)
= Ω.

Now we focus on the Hessian matrix J , defined as

J =

(
Eθ0 [∇θvδt(θ0,v)] Eθ0 [∇θcδt(θ0,v)]

Eθ0 [∇θvψt(θ0,v, θ0,c)] Eθ0 [∇θcψt(θ0,v, θ0,c)]

)
=

(
J11 J12

J21 J22

)
,

which is a lower triangular matrix as Eθ0 [∇θcδt(θ0,v)] = 0. Hence to prove J is

positive definite, it is sufficient to prove that each block matrix on the diagonal of

J is positive definite. By assumption, J22 is supposed positive definite. However,

its proof can be lead based on a technical assumption stated in the following note.

Lemma 3.5. Suppose the assumptions of theorem (3.3) hold. If θ̄T → θ0 in proba-

bility, then

(i) ∇θv∆T (θ̄v)
P−→

T→∞
J11,∇θvΨT (θ̄v, θ̄c)

P−→
T→∞

J2,1,∇θcΨT (θ̄v, θ̄c)
P−→

T→∞
J2,2.

(ii)
√
T

(
∆T (θ0,v)

ΨT (θ0,v, θ0,c)

)
d−→ N (0, I) .

Proof. (i) The first convergence corresponds to the sum of N scores of GARCH log

likelihood. This was proved by Francq and Zakoian (2004).
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We focus first on the last convergence. We apply a Taylor expansion of ∇θcΨ(θ̂T )

around θ0.

∇θcΨT (θ̄T,v, θ̄T,c) = ∇θcΨT (θ0,v, θ0,c) +∇θcθ′vΨT (˜̄θT,v, θ̄T,c)
(
θ̄T,v − θ0,v

)
+ ∇θcθ′cΨT (θ̄T,v,

˜̄θT,c)
(
θ̄T,c − θ0,c

)
+ ◦p(1),

(3.18)

with ˜̄θT = xθ0 +(1−x)θ̄T , for x ∈]0, 1[. Furthermore, we apply the ergodic theorem

to

sup
θ:‖θ−θ0‖<α

‖∇θcθ′vψt(θv, θc)‖, sup
θ:‖θ−θ0‖<α

‖∇θcθ′cψt(εt; θv, θc)‖, (3.19)

and by Theorem (3.1), we obtain ˜̄θT −→
T→∞

θ0 a.s. Those two results imply

lim sup
T→∞

‖∇θcθ′vΨT (θv, θc)‖ ≤ lim sup
T→∞

T∑
t=1

sup
θ:‖θ−θ0‖<α

‖∇θcθ′vψt(θv, θc)‖

= E

[
sup

θ:‖θ−θ0‖<α
‖∇θcθ′vψt(θv, θc)‖

]
,

(3.20)

and

lim sup
T→∞

‖∇θcθ′cΨT (θv, θc)‖ ≤ lim sup
T→∞

T∑
t=1

sup
θ:‖θ−θ0‖<α

‖∇θcθ′cψt(θv, θc)‖

= E

[
sup

θ:‖θ−θ0‖<α
‖∇θcθ′cψt(θv, θc)‖

]
.

(3.21)

By Assumption 16, both expectations of (3.20) and (3.21) are finite. Besides, by

Theorem (3.1), θ̄T −→
T→∞

θ0 a.s., which implies that the two last terms of the r.h.s.

of (3.18) converge to 0. Finally, the ergodic theorem applied to ∇θcΨT (θ0,v, θ0,c)

proves the last convergence of (i).

To prove the second convergence of (i), a Taylor expansion can be applied to

∇θvψt(θv, θc). The same steps can be followed as previously: (ii) of Lemma (3.4),

the strong consistency and the ergodic theorem.

(ii) We shall prove that the vector (δt(θ0,v), ψt(θ0,v, θ0,c))
′ is a square integrable

martingale difference to apply the central limit theorem of Billingsley.

For inference purposes, the correlation matrix is set to IN in the first step esti-

mation. The score with respect to the volatility components is given by

δ
(i)
t (θv) = Trace

((
IN −D−1

t εtε
′
tD
−1
t

)
(D−1

t (∂θivDt) + (∂θivDt)D
−1
t )
)
.

Using ut = R
1/2
t ηt with Rt = IN , E [ηtη

′
t] = IN , and the Ft−1 measurability of Dt,
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we obtain

E
[
δ

(i)
t (θv)|Ft−1

]
= E

[
Trace

((
IN −D−1

t εtε
′
tD
−1
t

)
(D−1

t (∂θivDt) + (∂θivDt)D
−1
t )
)
|Ft−1

]
= 2Trace

(
(∂θivDt)D

−1
t )
)
− Trace

(
E [utu

′
t|Ft−1] (∂θivDt)D

−1
t +D−1

t (∂θivDt))
)

= 2Trace
(
(∂θivDt)D

−1
t )
)
− 2Trace

(
(∂θivDt)D

−1
t )
)

= 0.

(3.22)

For the correlation components, for i = 1, · · · , 3N(N − 1)/2, the score is

ψ
(i)
t (θ0,v, θ0,c) = Trace

((
IN −R−1

t utu
′
t

)
R−1
t (∂θicRt)

)
. (3.23)

Using ut = R
1/2
t ηt, E [ηtη

′
t] = IN , and the Ft−1 measurability of Rt, we obtain

E
[
ψ

(i)
t (θ0,v, θ0,c)|Ft−1

]
= E

[
Trace

((
IN −R−1

t utu
′
t

)
R−1
t (∂θicRt)

)
|Ft−1

]
= Trace

((
IN −R−1

t E [utu
′
t|Ft−1]

)
R−1
t (∂θicRt)

)
= Trace

((
IN −R−1

t R
1/2
t E [ηtη

′
t]R

1/2
t

)
R−1
t (∂θicRt)

)
= Trace

((
IN −R−1

t Rt
)
R−1
t (∂θicRt)

)
= 0.

(3.24)

Consequently, (δt(θ0,v), ψt(θ0,v, θ0,c))
′ is a square integrable martingale difference.

The vector (δt(θ0,v), ψt(θ0,v, θ0,c))
′ is a function of εt together with elements,

which are σ (εs, s < t) measurable. By assumption, the process εt is stationary.

Consequently, by the central limit theorem of Billinsgley for stationary square inte-

grable martingale difference, we have

√
T

(
∆T (θ0,v)

ΨT (θ0,v, θ0,c)

)
d−→ N

(
0,

(
Ω11 Ω12

Ω21 Ω22

))
. (3.25)

Proof. We now turn to the proof of Theorem (3.3). To do so, we shall apply a

Taylor expansion around the first derivatives of the first and second step criteria.

Expanding the first quantity in a Taylor series around θ0,v, we obtain

0 = ∆T (θ̂T,v) = ∆T (θ0,v) +∇θv∆T (θ̄T,v)
(
θ̂T,v − θ0,v

)
,

where ‖θ̄T,v − θ0,v‖ < ‖θ̂T,v − θ0,v‖. Inverting this relationship and multiplying by
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√
T , we have

√
T
(
θ̂T,v − θ0,v

)
=
(
−∇θv∆T (θ̄T,v)

)−1√
T ∆T (θ0,v).

Since θ̄T,v −→
T→∞

θ0,v, by the weak convergence of
√
T ∆T (θ0,v) and the Slutsky

theorem, we obtain the result of Bollerslev and Wooldridge (1992)

√
T
(
θ̂T,v − θ0,v

)
d
= N

(
0, A−1

0 B0A
−1
0

)
, (3.26)

with A0 = −E [∇θvδt(θ0,v)] and B0 = E [δt(θ0,v)δt(θ0,v)
′].

We now apply a Taylor expansion to the second step likelihood around θ0 =

(θ0,v, θ0,c), such that ‖θ̄T,c − θ0,c‖ < ‖θ̂T,c − θ0,c‖ and

0 = ΨT (θ̂T,v, θ̂T,c) = ΨT (θ0,v, θ0,c)+∇θvΨT (θ̄T,v, θ̄T,c)
(
θ̂T,v − θ0,v

)
+∇θcΨT (θ̄T,v, θ̄T,c)

(
θ̂T,c − θ0,c

)
.

Inverting this relationship and multiplying by
√
T , we obtain

√
T
(
θ̂T,c − θ0,c

)
=

(
−∇θcΨT (θ̄T,v, θ̄T,c)

)−1∇θvΨT (θ̄T,v, θ̄T,c)
√
T
(
θ̂T,v − θ0,v

)
+

(
−∇θcΨT (θ̄T,v, θ̄T,c)

)−1√
T ΨT (θ0,v, θ0,c).

Using the expansion of the first step likelihood criterion, we obtain

√
T
(
θ̂T,c − θ0,c

)
=

(
−∇θcΨT (θ̄T,v, θ̄T,c)

)−1∇θvΨT (θ̄T,v, θ̄T,c)
(
−∇θv∆T (θ̄T,v)

)−1√
T ∆T (θ0,v)

+
(
−∇θcΨT (θ̄T,v, θ̄T,c)

)−1√
T ΨT (θ0,v, θ0,c).

Since θ̄T,c −→
T→∞

θ0,c, by the weak convergence of
√
T ΨT (θ0,v, θ0,c), by (ii) of Lemma

(3.5) and the Slutsky theorem, we obtain

√
T

(
∆T (θ̂T,v)−∆T (θ0,v)

ΨT (θ̂T,v, θ̂T,c)−ΨT (θ0,v, θ0,c)

)
d−→ N

(
0,

(
Ω11 Ω12

Ω21 Ω22

))
.

Asymptotic normality is a consequence of the convergence in probability of the Hes-

sian quantities, proved in (i) of Lemma (3.5), the convergence of the joint scores and

the Slutsky theorem. As a by-product, simple calculations provide the asymptotic

variances of θ̂T,v and θ̂T,c: with obvious notations,

Vas(θ̂T,v) = J−1
11 I11J

−1
11 ,

Vas(θ̂T,c) = J−1
22 I22J

−1
22 − ΓI12J

−1
22 − J

−1
22 I21Γ′ + ΓI11Γ′, Γ := J−1

22 J21J
−1
11 .
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To summarize the proof, we used Lemma (3.5) to prove that we can apply Tay-

lor expansions to the likelihood functions with theoritical scores and Hessians as we

only have the empirical counterparts. The main step for asymptotic normality is in

(ii) in Lemma (3.5), which proves the asymptotic normality of the joint likelihood

functions, the first step and second step. The weak convergence of the empirical

Hessian to their theoritical counterparts is in step (i) of Lemma (3.4). The Slutsky

theorem is finally used to prove the asymptotic normality of θ̂T . Asymptotic nor-

mality also required the existence of the asymptotic variance covariance. This step

is done in Lemma (3.4).
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A Technical result: Assumption 10, Theorem

(3.1)

Assumption 10 is proved in this section. It is probably the most difficult part as the

nonlinear dynamic of Rt should be controlled. To prove Assumption 10, we need a

technical assumption.

Assumption 19. Ξ and Λ are diagonal matrices such that ‖Ξ‖s < 1, and E [log (‖Bt,m(χ, ε)‖)] <
0, where

Bt−1,m(χ̄, ε) =



2
π‖∇1ζt−1‖‖Λ‖ 2

π‖∇1ζt−2‖‖Λ‖‖Ξ‖ · · · · · · 2
π‖∇1ζt−m‖‖Λ‖‖Ξ‖m−1

1 0 · · · · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


,

Above, ζt = ζ (χt, ηt) is the t-innovation of our partial correlation process, where

χt =
(
P̄ ct, D̄t

)
is a Ft−1 measurable random vector, denoting by P̄ ct a random set

of partial correlations that satisfies 4, and D̄t is bounded a.e. Moreover, for i = 1, 2,

∇iζt is the derivative of ζt with respect to its i-th component. Finally, E[‖εt‖4] <∞.

Now Assumption 10 becomes

sup
θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)| ≤

1

T

T∑
t=1

sup
θ∈Θ
| log(|Rt|)− log(|R̃t|)|+

1

T

T∑
t=1

sup
θ∈Θ
|u′tR−1

t ut − ũ′tR̃−1
t ũt|.

(A.1)

We focus on the second sum, which can be written as

1

T

T∑
t=1

sup
θ∈Θ
|u′tR−1

t ut − ũ′tR̃−1
t ũt| =

1

T

T∑
t=1

sup
θ∈Θ
|u′t(R−1

t − R̃
−1
t )ũt + u′tR

−1
t (ut − ũt) + (ut − ũt)′R̃−1

t ũt|

=
1

T

T∑
t=1

sup
θ∈Θ
|Trace

(
u′t(R

−1
t − R̃

−1
t )ũt + u′tR

−1
t (ut − ũt) + (ut − ũt)′R̃−1

t ũt

)
|.

By definition, ut = D−1
t εt and ũt = D̃−1

t εt. Thus, the previous quantity can be

written as

1

T

T∑
t=1

sup
θ∈Θ
|Tr
(
ε′t

[
D−1
t (R−1

t − R̃
−1
t )D̃−1

t +D−1
t R−1

t (D−1
t − D̃

−1
t ) + (D−1

t − D̃
−1
t )R̃−1

t D̃−1
t

]
εt

)
|

=
1

T

T∑
t=1

sup
θ∈Θ
|Tr
([
D−1
t (R−1

t − R̃
−1
t )D̃−1

t +D−1
t R−1

t (D−1
t − D̃

−1
t ) + (D−1

t − D̃
−1
t )R̃−1

t D̃−1
t

]
εtε
′
t

)
|

47



We shall consider a multiplicative norm for matrices. To fix the ideas, this will be

the spectral norm. Hence, we can bound the Trace operator as

1

T

T∑
t=1

sup
θ∈Θ
|Tr
([
D−1
t (R−1

t − R̃
−1
t )D̃−1

t +D−1
t R−1

t (D−1
t − D̃

−1
t ) + (D−1

t − D̃
−1
t )R̃−1

t D̃−1
t

]
εtε
′
t

)
|

≤
N

T

T∑
t=1

sup
θ∈Θ

(‖D−1
t ‖‖R̃

−1
t ‖‖Rt − R̃t‖‖R

−1
t ‖‖D̃

−1
t ‖+ ‖D−1

t ‖‖D̃
−1
t ‖‖Dt − D̃t‖‖D−1

t ‖(‖R
−1
t ‖+ ‖R̃−1

t ‖))‖εtε′t‖.

We denote

Tt = ‖D−1
t ‖‖R̃

−1
t ‖‖Rt − R̃t‖‖R

−1
t ‖‖D̃

−1
t ‖

Mt = ‖D−1
t ‖‖D̃

−1
t ‖‖Dt − D̃t‖‖D−1

t ‖
(
‖R−1

t ‖+ ‖R̃−1
t ‖
)

The main issue consists of controlling for (Rt − R̃t). We focus now on the quantity

Tt, and firstly on ‖Rt − R̃t‖.

Rt − R̃t = vechof(Fvine(Pct))− vechof(Fvine(P̃ ct)),

=
[
Fvine(Pct(i, j|L(i, j)))− Fvine(P̃ ct(i, j|L(i, j)))

]
1≤i,j≤N

.

Let ε > 0, and define the compact set Aε = [−1 + ε, 1− ε]N(N−1)/2. The one-to-one

mapping Fvine maps Aε to [−1 + ε̃, 1− ε̃]N(N−1)/2, for some ε̃ > 0. On Aε, Fvine is

C1, hence ∇Fvine is bounded. Consequently, Fvine satisfies the Lipschitz condition:

there exists C > 0 s.t., for all x and x̃ ∈ A2
ε , we have

‖Fvine(x)− Fvine(x̃)‖∞ ≤ C‖x− x̃‖∞. (A.2)

If we control the dynamics of these partial correlations, then we can ensure to gen-

erate trajectories within [−1 + ε̃, 1− ε̃]. The stationary partial correlation processes

are defined as

Ψ(Pct) = Ω + ΞΨ(Pct−1) + Λζt−1. (A.3)

When generating the partial correlation dynamics from arbitrarily fixed initial val-

ues, they are defined as

Ψ(P̃ ct) = Ω + ΞΨ(P̃ ct−1) + Λζt−1. (A.4)
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In this process, the matrices are diagonal. Iterating (A.3), we get

Ψ(Pct) =

t∑
k=1

Ξk−1Ω + ΞtΨ(Pc0) +

t∑
k=1

Ξk−1Λζt−k, (A.5)

where Ψ(.) is applied to each component of the vector Pct and ζt−k is a function

of Pct−k. The r.h.s. is an element of RN(N−1)/2. We recover Pct by inverting Ψ(.)

componentwise. (A.3) becomes

Pct = Ψ−1(

t∑
k=1

Ξk−1Ω + ΞtΨ(Pc0) +

t∑
k=1

Ξk−1Λζt−k).

The trickiest part of this proof consists of controlling for the difference Pct − P̃ ct.
The difficulty comes from the necessary transformation of εt, Dt and Rt to recover

ζt. Now we have

Pct − P̃ ct = Ψ−1(
t∑

k=1

Ξk−1Ω + ΞtΨ(Pc0) +
t∑

k=1

Ξk−1Λζt−k)−Ψ−1(
t∑

k=1

Ξk−1Ω + ΞtΨ(P̃ c0)

+
t∑

k=1

Ξk−1Λζ̃t−k)

= ∇Ψ−1(X)

[
Ξt(Ψ(Pc0)−Ψ(P̃ c0)) +

t∑
k=1

Ξk−1Λ(ζt−k − ζ̃t−k)
]
,

for some matrix random X. The componentwise derivatives of Ψ−1 are the bounded

functions x 7→
2

π(1 + x2)
. Hence ‖∇Ψ−1‖∞ ≤ 2/π and we obtain

‖Pct − P̃ ct‖ ≤
2

π
‖Ξ‖t‖Ψ(Pc0)−Ψ(P̃ c0)‖+

2

π
‖Λ‖

t∑
k=1

‖Ξ‖k−1‖ζt−k − ζ̃t−k‖,

where ζt−k = ζ(χt−k, εt−k), with χt−k = (Pct−k, Dt−k). This gives the expansion

ζ(χt−k, εt−k)−ζ(χ̃t−k, εt−k) = ∇1ζ(χ̄t−k, εt−k)(Pct−k−P̃ ct−k)+∇2ζ(χ̄t−k, εt−k)(Dt−k−D̃t−k),

where χ̄t is located between χt and χ̃t. Consequently, we deduce

π
2 ‖Pct − P̃ ct‖ ≤ At + 2

π‖Λ‖
t∑

k=1

‖Ξ‖k−1
(
‖∇1ζ(χ̄t−k, εt−k)‖‖Pct−k − P̃ ct−k‖

+ ‖∇2ζ(χ̄t−k, εt−k)‖‖Dt−k − D̃t−k‖
)
,

with At = 2‖Ξ‖t‖Ψ(Pc0)−Ψ(P̃ c0)‖/π. Denote rt = ‖Pct−P̃ ct‖ and dt = ‖Dt−D̃t‖.
Note that rt is uniformly bounded, by a constant that depends on the considered
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norm. To simplify and wlog, this constant will be one here. We obtain

rt ≤ At+
2

π
‖Λ‖

t−1∑
k=1

‖Ξ‖k−1 (‖∇1ζ(χ̄t−k, εt−k)‖rt−k + ‖∇2ζ(χ̄t−k, εt−k)‖dt−k) . (A.6)

Now we rewrite (A.6), for all t ≥ T and for some m ≤ t large enough that will be

stated after, as

~rt,m ≤ Ct,m + Bt−1,m(χ̄, ε)~rt−1,m, (A.7)

where Ct,m = ~At + ~Kt,m + ~Dt, and the vectors

~rt,m = (rt, rt−1, · · · , rt−m+1)′, ~At = (At, 0, · · · , 0)′, ~dt,m = (dt, dt−1, · · · , dt−m+1)′,

~Kt,m = ( 2
π‖Λ‖

t∑
k=m+1

‖∇1ζ(χ̄t−k, εt−k)‖‖Ξ‖k−1rt−k, 0, · · · , 0)′,

~Dt = ( 2
π‖Λ‖

t∑
k=1

‖∇2ζ(χ̄t−k, εt−k)‖‖Ξ‖k−1dt−k, 0, · · · , 0)′.

(A.8)

These quantities are such that ~rt,m ∈ Rm, ~At ∈ Rm, ~Kt−1,m ∈ Rm, ~Dt ∈ Rm.

We first focus on Ct,m. For our matrix norm, we have

‖Ct,m‖ ≤ ‖ ~At‖+ ‖~Kt,m‖+ ‖ ~Dt‖. (A.9)

Now iterating t in (A.7), let 0 < q < t fixed, we obtain

~rt,m ≤ Ct,m+

q∑
k=1

Bt−1,m(χ̄, ε)Bt−2,m(χ̄, ε) . . .Bt−k,m(χ̄, ε)Ct−k,m+Bt−1,m(χ̄, ε) · · ·Bt−q−1,m(χ̄, ε)~rt−q−1,m.

The sequence of matrices Bt−k,m(χ̄, ε) is stochastic and each of them has a size

depending on m. Under our assumptions, the series Bt,m :=
+∞∑
k=1

∏k
j=1 Bt−j,m(χ̄, ε)

is converging a.s. In particular, its main term tends to zero.

P (|~rt,m| > ε) ≤ P(‖Ct,m‖ > ε/3) + P(

q+1∏
j=1

‖Bt−j,m(χ̄, ε)‖ > ε/3)

+ P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖Ct−k,m‖ > ε/3) := T1 + T2 + T3.

First, let us manage T1, i.e. the Ct,m term. Since ‖Ψ(Pc0) − Ψ(P̃ c0)‖ is a fixed

finite random variable and since ‖Ξ‖ < 1,

P(‖At‖ > ε/9) < ε,
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for t sufficiently large (and independently of m and q). Moreover,

P
(
~Kt,m > ε/9

)
≤ P

(
2

π
‖Λ‖

t∑
k=m+1

‖∇1ζ(χ̄t−k, εt−k)‖.‖Ξ‖k−1−m.‖Ξ‖m > ε/9

)
≤ ε,

for m sufficiently large and because the latter series converges a.s.

Denote by ρ the largest parameter among τ1, . . . , τn. By assumption, ρ ∈ [0, 1).

Equation (4.6) in Francq and Zakoian (2004) provides supθ ‖Dt − D̃t‖ ≤ Kρt a.s.

Therefore,

P
(
‖ ~Dt‖ > ε/9

)
≤ P

(
2K

π
‖Λ‖

t∑
k=1

‖∇2ζ(χ̄t−k, εt−k)‖‖Ξ‖k−1ρt−k > ε/9

)

≤ P

(
2K‖Λ‖
πt

t∑
k=1

‖∇2ζ(χ̄t−k, εt−k)‖.tmax(‖Ξ‖, ρ)t−1 > ε/9

)
≤ ε

for t sufficiently large, under our assumptions and the LLN. We deduce T1 ≤ 3ε, for

a well-chosen (and now fixed) m and for t sufficiently large.

Second, note that the main term of the series Bt,m tends to zero a.s. Therefore,

T2 < ε for the previous fixed m and q sufficiently large.

Third, it remains to deal with T3. Actually, it is sufficient to use the same

arguments as for T1. Indeed,

P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖Ct−k,m‖ > ε/3) ≤ P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖ ~At−k,m‖ > ε/9)

+ P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖~Kt−k,m‖ > ε/9) + P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖ ~Dt−k,m‖ > ε/9)

:= T31 + T32 + T33.

To be specific, due to the finiteness of Bt,m,

T31 ≤
2

π
P(‖Ψ(Pc0)−Ψ(P̃ c0)‖.‖Ξ‖t−1.

+∞∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖ > ε/9),

that is less than ε for t sufficiently large (and a fixed m). The terms T32 and T33 are

managed as above, because the multiplication by the (a.e. finite) random variable
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Bt,m does not change the reasoning.

By grouping the all inequalities above and since the reasonings were uniform wrt

θ, we get

P
(

sup
θ∈Θ
|~rt,m| > ε

)
≤ 7ε,

proving that supθ∈Θ rt = oP (1). Since it is bounded by one and due to the

dominated convergence theorem, this convergence to zero is true in L1 or L2.

This is true for ‖Rt − R̃t‖ too, because of (A.2): supθ∈Θ ‖Rt − R̃t‖ = oP (1) and

T−1
∑T

t=1 supθ∈Θ ‖Rt − R̃t‖ tends to zero when t→∞.

We now focus on the precision matrix R−1
t := [ρijt ]. Obviously,

ρijt = (−1)i+j
det(R

−(i,j)
t )

det(Rt)
,

where R
−(i,j)
t is the covmatrix of Rt (the matrix deduced from Rt after having

removed line i and column j). But note that Theorem 3.2 in Kurowicka and Cooke

(2006) and Assumption 4 implies that there exists a constant a s.t. det(Rt) > a > 0

a.s. Since det(R
−(i,j)
t ) is a finite sum of elements in [−1, 1], this term is bounded

from above. Therefore, there exists a constant M1 s.t.

sup
θ∈Θ
‖R−1

t ‖ ≤M1, a.s.

The same argument holds for R̃t: sup
θ∈Θ
‖R̃−1

t ‖ ≤M2.

Since ‖D−1
t ‖, ‖D̃

−1
t ‖ and ‖R−1

t ‖ are uniformly bounded from above, we deduce

P

(
1

T

T∑
t=1

sup
θ∈Θ

Tt.‖εtε′t‖ > ε

)
≤ P

(
Cte

T

T∑
t=1

sup
θ∈Θ
‖Pct − P̃ ct‖.‖εtε′t‖ > ε

)

≤ Cte

ε
E

[
sup
θ∈Θ

rt.‖εtε′t‖
]
≤ Cte

ε
E

[(
sup
θ∈Θ

rt

)2
]1/2

.E
[
‖εtε′t‖2

]1/2
,

that is less than ε for t sufficiently large.

The second term Mt can be bounded more straightforwardly. Using the station-

arity assumption of the GARCH process, there exists U > 0, and ρ ∈]0, 1[ such

that, a.s.,

sup
θ∈Θ

sup
i

∣∣∣hi,t − h̃i,t∣∣∣ ≤ Uρt.
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Consequently, Mt can be bounded as

sup
θ∈Θ

Mt = sup
θ∈Θ
‖D−1

t ‖‖D̃
−1
t ‖‖Dt−D̃t‖‖D−1

t ‖
(
‖R−1

t ‖+ ‖R̃−1
t ‖
)
≤ Cρt, a.s, (A.10)

for some constant C. Then

P

(
1

T

T∑
t=1

sup
θ∈Θ

Mt‖εtε′t‖ > ε

)
≤ P

(
C

T

T∑
t=1

ρt‖εtε′t‖ > ε

)
≤ C

Tε(1− ρ)
E
[
‖εtε′t‖

]
< ε,

for t sufficiently large.

In other words, we have proved that

1

T

T∑
t=1

sup
θ∈Θ

(Tt + Mt).‖εtε′t‖ = oP (1).

For the first sum of (A.1) and considering the spectral norm, we have:

log(|Rt|)− log(|R̃t|) = log(|IN + (Rt − R̃t)R̃−1
t |)

≤ N log(‖IN + (Rt − R̃t)R̃−1
t ‖)

≤ N log(‖IN‖+ ‖(Rt − R̃t)R̃−1
t ‖)

≤ N log(1 + ‖(Rt − R̃t)R̃−1
t ‖)

≤ N‖Rt − R̃t‖‖R̃−1
t ‖.

By symmetry log(|R̃t|) − log(|Rt|) ≤ N‖R̃t − Rt‖‖R−1
t ‖. Using the previous argu-

ments, the first sum of (A.1) converges to 0 when T −→∞. We proved that

sup
θ∈Θ
|QL2,T (θ; ε)− Q̃L2,T (θ; ε)| = op(1). (A.11)
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