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Abstract

We provide conditions for the existence and the uniqueness of strictly station-
ary solutions of the Vine-GARCH process. The proof is based on Tweedie’s (1988)
criteria, after rewriting the Vine-GARCH process as a nonlinear Markov chain. Fur-
thermore, we provide asymptotic results of the estimators obtained by the quasi-
maximum likelihood method. We prove the weak consistency and asymptotic nor-

mality of the quasi-maximum likelihood estimator obtained in a two-step procedure.
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1 Introduction

This paper is the companion one of the working paper CREST ”‘2014-46, Dynamic

Asset Correlations Based on Vines, B. Poignard and J.D. Fermanian”’.

The Vine-GARCH process provides an alternative to Dynamic Conditional Cor-
relation (DCC)-type models for specifying the joint dynamics of vectorial stochastic
processes. Within the MGARCH framework, the Vine-GARCH specification is a
new method for generating dynamics of conditional correlation matrices between
asset returns. These correlation matrices are parameterized by a subset of their
partial correlations, whose structure are described by an undirected graph called
vine. Since such partial correlation processes can be specified separately, our ap-
proach provides very flexible and potentially parsimonious multivariate processes.
Lewandowski and al. (2009) explained how to deduce a correlation matrix from a
partial correlation matrix (or the opposite), through an iterative algorithm. Once
the indices of a family of partial correlations is chosen conveniently, a true correla-
tion matrix is generated for any values of these partial correlations. By generating
univariate dynamics of partial correlations independently, we obtain sequences of
correlation matrices without any normalization stage, contrary to DCC models. The
Vine-GARCH model is estimated by a two-step quasi-maximum likelihood proce-

dure.

We prove the existence of stationary solutions, which is the first step towards
providing asymptotic results (consistency/asymptotic normality of QML estimates),
because law of large numbers (potentially uniform) and some Central Limit Theo-
rems are obtained easily in this case. In the GARCH literature, proving stationarity
properties has been fulfilled notably by Bougerol and Picard (1992) for univariate
GARCH models, by Ling and McAleer (2003) for multivariate ARMA-GARCH
models, by Boussama et al. (2011) for BEKK models, notably. Then we prove the

weak consistency of the two-step quasi-maximum likelihood estimator.

After introducing some notations, we specify the Vine-GARCH model. It is
rewritten as almost linear Markov chains in Subsection 2.1. The existence of strong
and weak stationary solutions is stated in Subsection 2.2. Subsection 2.3 exhibits
sufficient conditions to get their uniqueness. Furthermore, consistency and asymp-
totic normality of the two-step quasi-maximum likelihood estimator are proved re-

spectively in subsection 3.1 and 3.2.



1.1

Notations

Let A € Myym (R).

If n = m, then diag (A) = (ai;1i=;)
R™.

and Vecd (A) = (aii)1<j<p €

1<i<m,1<j<m

If n = m and A symmetric, Vech (4) € R? with ¢ = m(m+1)/2 such that the

components are those of A column-wise without redundancy.

If n = m, then p(A) is the spectral radius of A, that is the largest of the
modulus of the eigenvalues of A. We denote A\ (A) the smallest eigenvalue of

A positive definite.

The Kronecker product is denoted ® and A®* = A® A®---® A (k times).
The Hadamard product is denoted ©.

In the following, we consider the submultiplicative norm

[ Az]

[A] = sup{=—=, = # 0},
]

where x € R™ and ||z|| is the Euclidean norm of vector z. For B € M,,xn(R),

this norm satisfies
|AB|| < ||A]l||BIl, Trace(AB) < (nm)"/?| All||B].

We define the spectral radius norm for squared non-negative matrices, which

is submultiplicative, as
|Alls := sup{V/A : X € Spect (A’A)}.
We also define the infimum norm of a matrix A € M,,x,(R) as

Al = max 14y,
J

For a N dimensional vectorial process (€;);, we denote e, = (€14, - - - ,EN,t), and
/

€ 1= (eit, e ,e%\,,t) .

We denote by C} (E) the space of all continuous and bounded functions f :

E — R.

The proofs of consistency and asymptotic normality require some matrix com-

putations, in particular the differentiation of some quantities involving matri-



ces. Recalling some results recorded in Liitkepohl (1996), we have

0r' Xz
X = z2/; X € Myum(R),z € R™,
dTrace (AX'B)
aX — BA, X S Man(R),A € Man(R),B € mep(R)
OTrace (AXle) ,
5% = —(X'BAX™1Y), X € Myxm(R), nonsingular, A, B € Mp,xm(R),
0log (det(X))
— % = (X)7!, X € Myxm(R), nonsingular,
ox1
5 = —(X)" Y0, X)X, X € Myxm(R), nonsingular.
4

1.2 Model Specification

We turn to the Vine-Garch specification. We consider a N-dimensional vectorial
stochastic process (rt)t:L__ T and denote by 6 the vector of the model parameters
and decompose the stochastic process (1¢),_; ... 7 as the sum of conditional expected

returns and a residual

re = e (0) + e,
1/ (1.1)
e = H"(0)n.
Here, p; (0) = E[r¢|Fi—1] := Ei—1 [ry], where F; denotes the market information

until (and including) time t. We suppose H; (§) = Var (r¢|Fi—1) := Vary_; (1) =
Var;_; (e;) is a N x N positive definite matrix. The series (Ut)tzo are often supposed
to be a strong white noise, i.e. an independent and identically distributed sequence
of random vectors s.t. E[n] = 0 and Var (1) = Iy. The model is then semi-
parametric. Its specification is complete when the law of 7 is defined and the
functional form of both u; () and Hy (0) are specified. In this paper, we focus on
the latter point. For convenience, we will denote y; (0) = p; and Hy (0) = Hy.

We focus on the detrended dynamics (¢). To remove the first moment, we
suppose simply that the conditional expected returns are modeled as AR(1), i.e.
there exist @9 a N x 1 matrix and ®; a N x N diagonal matrix s.t. g (0) =
®g + P17ry—1. Since we are interested in €; in this paper, we estimate u; by OLS
and subtract it from ;. Now, these estimated residuals will be considered as our

observations. The information set is defined by F; = o(rs, s < t) = o(es, s < t).

The quantity of interest is H;, which is split between volatility terms contained

in D; and correlation terms in R; as

H, = D\R,D;, (1.2)



where D; = diag (w/hn,t, e ,w/hNN,t) is the diagonal matrix of the conditional
variances, which is F;_1 measurable. We suppose univariate GARCH dynamics for

these conditional variances without cross-effects, such that
Veed(D?) = V + A.Vecd(D? ,) 4+ B.&_1, (1.3)

where the matrices A and B are diagonal and V is a positive vector of RY.

The Vine-Garch specification parametrizes the correlation dynamics as

R, = vechof (Fyine (Pcy))
‘I/(Pct) Q—FE\IJ (PCt_l) +Act—17

where

e vechof(+) denotes the operator “devectorization”, that transforms a vector into

a symmetric matrix. It is the opposite of the usual operator vech(-).

e Zand A are N(N —1)/2 x N(N —1)/2 diagonal matrices of unknown param-
eters, and  is an N(N — 1)/2 unknown vector. Set the vector of parameters
Ocor = (1, 2, A).

e The vector Pc; is the “partial correlation vector” deduced from a given R-vine

structure.

e We apply an analytic transformation ¥ to Pc;. For the sake of simplicity, ¥
will be known, even if the methodology can be adapted easily to a parametric
function Wy. To fix the ideas, the multivariate ¥ function will be defined as

follows:
Ui -1, VN2 N2,

U (Pc) = <¢(p1,2,t)7"° ’w(pN,N—HLN,LN,t))/,
Y (x) = tan(mwx/2).

The function ¥ twists the univariate dynamics to manage the constraints that
partial correlations stay between (—1) and 1. Alternatively, ¥ could be chosen
among the sigmoid functions for instance, for which ¢ () = (exp (az) — 1) / (exp (ax) + 1),

a € R.

e The function F;,e corresponds to the one-to-one mapping from the vector

of partial correlations Pc¢; to correlations (in R;) by using the algorithm of



Lewandowski, Kurowicka and Joe (2009). It is defined as

Fuine : -1, 1[NV=D/2 g q[N(V=1/2)

Fine (P1,2,t, T 7PN71,N|L,t) = (Pl,2,t7 T aPNfl,N,t)/-

e The vector (; consists of a relevant function of the “innovations”, to update our
partial correlations at time . More precisely, (; is a measurable and nonlinear
transforms of the vector of t-innovations and some quantities that are F;_;

measurable.

The statistical inference is based on the pseudo maximum likelihood procedure,
in two steps, which is also called quasi maximum likelihood estimator (QMLE). We
observe a T-path (€)¢=1,.. 7 of the random vector e. Such a process corresponds to a
realization drawn following the unique, strict-sense stationary and nonanticipative
solution (&) of (1.1). To avoid any confusion, we denote by Dy(#), R:(f) and
H(0) the (diagonal) t-matrix of conditional volatilities, the matrix of conditional
correlations and the conditional variance-covariance matrix respectively, when they

are generated by our model equations, and assuming 6 is the underlying parameter.

We estimate our model (1.1) by a Gaussian QMLE, assuming the unknown true
parameter 6y belongs to some compact set ©. We apply a two-step estimation
method, that is usual in this stream of the literature. To do so, we work as if (7;);
were a Gaussian white noise. Therefore, the likelihood function can be split into

two parts: the variance part on one side, and the correlation part on the other side.

We denote 6 = (6,,6.), such that 6, := (6;,: =1,--- ,3N) corresponds to the
volatility parameters, and 0. := (0;,i =3N +1,--- ;3N + 3N (N — 1)/2) to the cor-
relation parameters. The variance part of the log-likelihood function is the sum of

log-likelihood functions of N univariate GARCH(1,1) models that can be estimated

independently:
éTﬂ} = argmin QL7 (0y;€),
0,€0,
17T 1T N €2, (1.5)
QL1 (0vie) = =D liil(ersby) = =2 > |log(hig) +—|,
Ti= TiZich hi,t

where the sequences of variances (h;;);>1 are generated under the assumed parame-
ter 0,. In other words, Dy(6,) = diag (hi/f, e ,h%i). Above, O, is the projection
of the parameter set © on the sub-space of the variance-related components. Given

GATW, a consistent (but inefficient) estimator of #y,, an estimator of 6y, can be



obtained as

éT,c = argmin QLo (éT,va Oe; 6) ;
e s.t. (O7,0,0:)€0
. 1T . 1T . R 10A .
QLo (Br,0cic) = =3 laaleriOrus00) i= 73 [log (|Re(0r,00)) + R (Or, 00)ie]
t=1 t=1

(1.6)

where @y = D; Y07, )e;.

Both previous criteria are C°° and the minimization problem comes from the
negative sign in the pseudo log-likelihood, which can be ruled out. The orthogonal

conditions are

Aq(0r,0) = ;téat(ém) =0,  with 6(0r,) := Vo, l1e(e; 00),
A rr
Ur(Or,0rc) = Tt;lwt(eT,mgT,c) = 0, with ¢¢(0) := Vg la(er;6).
(1.7)
We denote by (5§i)(91,) (resp. W)(ev,ec)) the i-th component of Vg, 11 +(6,) (resp.
Vo l2,t(6y,0c)).

An issue is the choice of the initial values to generate (1.1). Indeed, the marginal
variance processes and the correlation dynamics need to be initialized at time ¢ = 1.
To do so, we propose to initialized them by their sample counterparts:

T T
Vi=1,---,N, hi1 = Tl—l eﬁt, Dy = diag(fzil’/f) and Ry = ;261[)1—26/1-
t=1 =1 18)
A volatility process (Dy)i>1 = (diag(ﬁif))bl and a correlation process (Ry)i>1
are generated starting from these initial values. Hence, besides the ”theoreti-
cal” quantities QL1 1 (0y;€) and QLo 1 (0y,60.;€), we denote by @ELT (0y;€) and
EszT (0y, 0; €) the log-likelihoods generated from some fixed initial values (as those

proposed above). The same holds for AT(GU) and \T/T(&U, 6.), ete.

2 Stationarity

In this section, we specify the Data Generating Process (DGP) differently from the
specification given in (1.1). A significant quantity is the vector of standardized
residuals, defined as w; = D, le,. We straightforwardly have E; 1 [u;] = 0 and
E;_1 [usu}] = Ry. This implies that u¢ can be specified as u; = Rt1 / 217;‘, such that n}

*, %/

is a centered random vector with E;_1 [9;n;'] = In. Therefore, the “true” DGP will



be the stationary process (n;). The two ”innovations” (7;) and (n;) are related to
each other by the relation
1/2 1/2
Ht/ = Dth/ M -

Note that, if E,_1[n}] = 0 and E;—1[n;n;’] = In, then E;_1[n] = 0 and Ey_q [men}] =
Iy, and the opposite.

2.1 Vine-Garch as Markov Chains

The Vine-Garch specification can be written as a Markov chain, a representation

that is relevant for studying stationary solutions. To do so, we define
Xy := (&, Vecd(D?), ¥ (Pcy))’, (2.1)
such that, for all ¢ > 0, (X;); satisfies
X =T X1+ v4. (2.2)

This means (X;); follows an autoregressive form of order 1 with stochastic T;. Let

us focus on the first component of X;. Setting u; := (uit, e 7“%\!,7&): we have
D?il; = il; ® Veed(D?) = & = @y © V + @y © AVecd(D?_|) + iy ©® B.&_1. (2.3)

Using the dynamics of Vecd(D?) and ¥ (Pc;), the matrix T} satisfies

U OB woOA 0
= B 4 o, (2.4)
0 0 =
and the vector of innovation v; is defined as
U OV
Vy = V . (25)
Q4+ ACt—l

Note that ¢; = ¢ (xt,nm:) where x; = (Pcy, D).

Assumption 1. The vectorial process (nf)icz satisfies the Markov property with
respect to F, i.e
Vt € Z, Eng|Fi-1] = E /[ X¢-1].



Besides, Ei—1 [nf] = 0 and Ei—1 [nfn}'] = In.

As a consequence (and equivalently, in fact), the same property is fulfilled with
the other ”innovations” (n:)iez: the process (n:)iez satisfies the Markov property

with respect to F, i.e
Vt € Z, E | Fi—1] = E [me| Xi—1] -

Moreover, E;_q [;] = 0 and E;—y [in)] = In.
Proposition 2.1. Under Assumption 1, (X;): is a Markov Chain of order one.

Proof. Note that w; = D, 1Ht1 / 217t, where H; is a deterministic function of X;_1.
Since 7, satisfies the Markov property with respect to F, then w;|F;—1 4 ug| Xi—1.
Furthermore, X; can be rewritten as follows: there exists constant matrices I'; and
I's such that

X = (I'1.&) ©ToXi—1 + (D2.Xt) © vy, (2.6)

where Ty (vesp. 1g) is the T} (resp. 1) matrix when u; = 1, & := (i, 1) and

Xt := (@, 1,¢ (xe—1,m-1)). Then X; is a measurable function of (9, Xy_1,m:-1),

where 7 satisfies the Markov property by (1). Consequently, (X;); is Markovian.
O

2.2 Existence of stationary Vine-Garch solutions

The recurrence equation (2.2) is stochastic through 7; and v, i.e. through the
innovations 7; (or n;) and the F;_j-measurable matrix R;. A consequence of this
parametrization is that 7; depends on subcomponents of X;. Hence, we can not
extract an expression such as X; = f (g, m—1,--+) nor Xy = f (772‘,77;“_1, . --), for
some explicit function f(.). This comes from the nonlinear relationship between
T; and the past innovations (before and including ¢). Classical techniques such as

Lyapunov exponent are not adapted in our framework.

The existence of stationary solutions -but not a unique solution- for the vine-
GARCH model can be proved using the criterion of Tweedie (1988). Tweedie pro-
vides the existence of an invariant probability measure for the Markov chain defined
in (2.2). Ling and McAleer used this criterion to establish the stationarity of vector
ARMA-GARCH models.

The stationarity of the (& ); process requires the control of T, which should avoid

non-explosive patterns. The matrix T} is a function of (), which are dependent



variables. Furthermore, the conditional law of #; is a function of Hy and Dy, which

in turn is a function of X; 1. This is the reason we need the next hypothesis.

Assumption 2. For some p > 1, ||T*||s < oo, where

T* := supE [|Tt®pHXt_1 = x] : (2.7)

x€R4

Assumption 3. Denoting by A the Lebesgue measure, the conditional kernel of njf

given Xy_1 = x is defined as
Xi_1=x
dPnZt T (w) = fr (u]x)dA (). (2.8)

Furthermore, for all uw € R™, the mapping x — f,=(u|x) is continuous and there

exists an integrable function g such that, for all u € R™,

sup sup for (ulx) < g(u). (29)
t xcRd

¥(v)
Moreover, Vt, E [||n} ||*P| X1 = x| < ¢(||x]|) satisfying Yo > 0, lim =0.
v—oo PY
Assumption 4. There exists a positive real number a such that, for almost every
trajectory and every 0 € O, the partial correlations of our chosen vine (i.e. the

components of the vectors Pcy(0)) belong to the fized interval [—1 + a,1 — a].

In particular, the latter assumption implies that, for every 6 € ©, the determi-
nant of almost every correlation matrices R;(6) are strictly larger than o™ (N-1) > 0
(apply Kurowicka and Cooke, 2006, Theorem 3.2), and that the norm of Rt_l(ﬁ) is
bounded from above a.e. 1. Moreover, the function F;,. that maps partial correla-
tions to usual correlations has a bounded derivative, when applied to the trajectories
(Pc(0)) generated by the model.

Theorem 2.2. Under Assumptions 1-4 the process (e, Dy, Ry) as defined in equa-
tions (1.2), (1.3), and (1.4) possesses a strictly stationary solution such that (e;, D¢, Rt) €
Fi, the sigma field induced by the observations. Furthermore, the solution () is
second-order stationary and, when the innovations nf are Gaussian given Fi_1, then

E [[le]|*] < oo.

The key result for the existence of an invariant probability measure for Markov
chains is the criterion of Tweedie (1988). When using this approach, the irreducibil-

ity of (X}) is not required to obtain stationarity.

Undeed, ||R; s < Amin(Re)™N < oV (N-D),

10



Let (X¢)iez be a homogeneous Markov chain with a measurable state space
(E, E), such that its transition probability is P(x, B) = P (X; € B|X;—1 = x), where
x € F and B € £. Theorem 2 of Tweedie (1988) states the following:

Lemma 2.3. Suppose (E,E) is a locally compact separable state space and (Xi)iez,
is a Feller chain, that is for h € CP(E), then E [h(X;)|X;—1 = x] is also CP(E).
1. If for some compact set B € &, there exists a non negative mapping g(.) and

€ > 0 such that

. P(x,y)g(y)d\(y) < g(x) —¢, x € B, (2.10)

then there exists a o-finite invariant measure p for P such that 0 < u(B) < 0.

2. Furthermore, if

/B (/ P(x,y)g(y)dk(y)> du(x) < oo, (2.11)

then p is finite and hence m = p/p(E) is an invariant probability measure.

3. Furthermore, if

| Pepsane) < g6 - 109, x € B (212)

then p admits a finite f-moment, i.e. E, [f(X;)] < oo.

The next Lemma is a specific version of Lemma A.2 in Ling and McAleer (2003).

Its proof is omitted.

Lemma 2.4. For a given squared matriz T, if p(|T|) < 1, then there exists a positive
vector M such that (Id — |T|)’M > 0.

Proof. We first show that (X;);ez is a Feller process. Let h € CP(R?). We have

E [h(Xt”Xt_l = X] = E [h(ﬂx + Vt)‘Xt—l = X]

2.13
= E [h(qzh(m)x + 2 (ut, nf1))| Xe—1 = X] ’ ( !

for continuous transforms ¢; and ¢2. By construction, u; = D, 1Ht1 / 277t = Rg/ 27}2‘ ,

where Rz /% is a continuous mapping of X;_;. Consequently, we obtain

E[h(Xy)|Xi-1=x] = E [h o ¢~)(Xa77t*)|Xt—1 —x
= [ hod(x,u)dPy " (u) (2.14)

= [ho b(x, ) frr (u]x)dA(u),

11



for some continuous transform (5 Now, let (x5,)n be a sequence such that x,, — x.
n—oo

As h(.) is bounded and Vu, (hog(xy,, u))y is convergent, then lim,, E [h(X)| X—1 = x,] =

E [h(X})| Xi—1 = x] by the Lebesgue dominated convergence theorem under (3). In

other words, x — E [h(X})|X;—1 = x] is continuous.

Second, we exhibit an explicit functional g(.) to apply the Tweedie’s criteria. To
do so, take g(x) =1+ |x®P|'M, for any vector M, which will be explicit later. We
have, for p > 1,

E [Q(Xt)‘Xt—l = X] =1 +E |:|<EX + I/t)®p|/‘Xt_1 = X:| M.

By some property of the Kronecker product and algebraic manipulations, let us
rewrite (Tix 4 v4)®P = (Tix)®? + B(x) = T,°Px®P 4 B(x). We deduce that

E[g(X)1Xi-1 = %] < 1+ (B [IT7%5) | X,y = x| + E[|Bx) [ Xe-1 = x]) M.
(2.15)
We focus on the first expectation in (2.15). As T} is a function of u;, its conditional

distribution depends on R;. Hence T; is a function of X;_j. Then, we obtain
E (T [|Ximy = x| M < [x“/E [T X1 = x| M

< |x®r) <supE [|:rt®p|f|xt_1 - XD M

x€R4
< [x®P|(T*) M.

As for the second expectation in (2.15), by taking any multiplicative norm .||, we

have

E[IBx)[1Xi-1 = x] < KE | [|[wa[[[|(Ti)* V| + v |2 (Ti) 2P 2| + - + [P X1 = x|
(2.16)

where K is a non-negative constant. In (2.16), we need to upper bound quantities of

the type E ([l | 74" Xo—1 = x], i.e. terms as E (|G| + 1Gll)™ 2] X1 = ]

when m+n < p. First, we consider E [||i;]|™""|X;—1 = x]. Recall that u; = Rtl/Qn;".

Taking the spectral norm of Ri / 2, we obtain a.s.

IR = p (R Ry ')1/2 — \/Trace (D; ' H,D; ") < V.

12



Using the previous inequality and Assumption 3, we have

E [l || Xe1 = x] < B[Ry [20 0|4 Xy = x| < NUUE 7] X = x]
(2.17)
By assumption, E [||nf||??|X¢—1 = x| < ¢(||x||). Then, we obtain

E [||T@]™ " X1 = %] < cmnt) (|x]) ™2

for some constant Qmn -

Another product element we shall bound is E [||¢ (x¢—1, m—1) ||| @ ||| Xe—1 = x].
To do so, we take n+m = p, where m > 1. Using the conditional Holder inequality,

we obtain

E [1¢ (xe—1, m—1) ™1™ Xe1 = x] SE[IIC ir-1,me-1) [P Xecr = )™ E [} || Xp1 = x)"/7 .
(2.18)

In (2.18), E[||t||?| Xi—1 = x]"/p can be straightforwardly upper bounded using (2.17).

We now focus on the conditional expectation of || (x¢—1,7:—1) [[P. Denoting Oy, =

€t — Ei—1 [ep¢|en], we have

Oj|L,t—104| L1
EIC (xt—1,me-1) [[P|Xe—1 =x] < sup E ‘ J

! PIXi1 =x
Gjinee | VhiLie—1v/Pjini—1

(219)
For p = 1, we apply the Cauchy-Schwartz inequality to (2.19) as
5 1/2 3 1/2
U4l L,t—1U§|Lt—1 2 0%,
E || I X =x| <E| 2Ny, =x| B ZETNx, =x| =1
Vi e—1v/hj -1 hijpt—1 hjine—1

In this case, we obtain
E{[BE)[Xi—1 =x] = aa E[[[G—1[| + [Jue]|[ X1 = x] < a9 ([[x[]) + a3, (2.20)

for some constants ay, k = 1,2,3. Consequently for p = 1, we deduce that (2.15)

can be upper bounded as

Elg(X)[ X1 =% < 1+ (E[Tix/[Xi1 = x] + E[|BE|||Xi-1 = x)) M

<
< 1+ X/(T)'M+O([Ix]),

for any a > 0. Let us now try to extend this result for p > 1. The quantity given in

13



(2.19) is a product of ¥y, ;1 components, which can be decomposed as

Vj|Li—1 = th 1( Hne—1 — Ei—a [mi—1lene—1, Xe—1 = x|}

(2.21)
= DR/ {nf, — e i 1lers—1, Xeo1 = %]}

Assuming all denominators are bounded from below a.s., this implies that (2.19)

can be upper bounded as

z|Lt 105|L,t—1

sup E PIXi1 =x| < COstE[IDea|*|[RealPllnf_ o [1*P| Xe—1 =
(ij|L)eE \/hz|Lt WhiL—1 [ 1

< Cst.E[[Ix[Plln;_y [|*1X¢—1 = x]

< Cst|x|[Py(lIx])-

This upper bound is not of order O(||x||¥), for k¥ < p — 1. We rely on the Gaussian

distribution hypothesis to circumvent this obstacle.

Now, the vectors n; (or 7, equivalently) is supposed to be gaussian, conditional

to the past. By the Cauchy-Schwartz inequality, we have

1/2
0i| L,t—1Vj|L,t—1 R : o
U; 0; i|Lt—1 Lit—1
E || PIX =x| <E |4y, =x| E|2Xx, =x
7 \/h hp t hp t—
NIRRT i L,i—1 SILt—1

Since any @i‘L,t,l/, /hi|rt—1 is a Gaussian random variable N(0,1), given X;_1, the
r.h.s. of the latter inequality is uniformly bounded wrt ¢, j, L and x. We deduce
that (2.19) can be upper bounded as

EI¢ Oct—1,me—1) [P X1 = x] = O(1), (2.22)

for all x.

This result is proved using V¢ > 1, cr,%w’t(x) > 0 a.s.. We need to prove that this
holds almost surely for any x € B€. That means we need to control for the variance
and correlation dynamics when x can take very large values. By contradiction,
suppose Vk ¢ L

0£|L7t(x) =E [(6;,37,5 -E [€k7t|€L7t])2 | X1 = X} =0= €4 = Elepilers, Xi—1 = x] as.

(2.23)
Using the decomposition ¢; = Htl / 277t, relationship (2.23) becomes

€kt = QI(X)GL,t a.s., (2.24)

14

x]



where Q)'(x) corresponds to a vector containing the coefficients of H; used for com-
puting the conditional expectation under the gaussian distribution. As H; is F;_1
measurable, then @ is a function of x. (2.24) means that €,; can be written as a
linear combination of €, for n € L, given x. If there exists a linear relationship
between the components of €; given x, then the matrix Hy(x) is not a full rank ma-
trix. As Dy(x) is a diagonal matrix, it is always nonsingular, H;(x) singular implies
that R;(x) is not positive definite. This contradicts A\ (R¢(x)) > 0 a.s.. We deduce
that

3p > 0, such that Vk,VL, k ¢ L, 0,§|L’t(x) > for almost all x. (2.25)

Consequently, using Assumption 3, we have obtained

E[g(X)[ X1 = x] L =P (T%)' M + O ([[x]|)

<
< g(x) =[x (In = (T*)) M + O (|Ix]|) ,

(2.26)

S
for all @ > 0. We denote N(x) := >_|z;|P. Since (Id — (T*)') M > 0 by Lemma
i=1
(3.5), then there exists mg > 0 such that

(Is — (T")) M > moN(x), Vx € R®. (2.27)

Similarly, 3m; > 0 such that Vx € R®, g(x) > m; N (x). Using the Holder’s inequal-
ity, we have Vk < p

k k/p

S S S

ST lmjmg, gl = Dl < | Dl s*. (2.28)

j17j27"'7jk jzl .721
Hence using inequality (2.28), Vk < p, 3mg > 0 such that

S
gx) S L+[IM| D Jwjmg, x| < 14 oN(x), (2.29)
J1,J2s 5 Jk

We deduce that

: - 9(x) 9(x)
N(X) N(X)a/p (230)
< g(x) | 1—mo o

1+ moN(x) + mi N (x)

15



We denote B := {x € R°|N(x) < T}, with I" > 1. For I large enough, Vx ¢ B, and
0 < a < 1, we have

Elg(X0|Xi =% <90 [ 1= 32 +0(1) | <a0) (15| @231)

As 1 < g(x), then E[g(X;)|Xi—1 = x] < g(x) — ¢, for ¢ > 0. This proves (2.10),
idest Ju a o-finite invariant measure for (X;); such that 0 < p(A) < co.

Now for any x € B, (2.31) provides
Elg(X)[Xi—1 =x] < g(x) + O (|[x[|) < K, (2.32)

for some constant K > 0. This implies

[ ([ Peocnatianm ) auex) < [ Bla(xixio =x1dut) < Ku(B) < .

(2.33)
Consequently, (2.11) is proved and p is finite and # = p/p(E) is an invariant
probability measure. Then there exists a strictly stationary solution of the stochastic

recurrence equation (2.2).

Finally, using inequality (2.31), we obtain (2.12) for f(x) = Bg(x), where § €
(0,1). As miN(x) < g(x), then

E, [N(X;)] < . (2.34)

O

2.3 Uniqueness of stationary Vine-Garch Solutions

Tweedie’s criterion provides the existence of an invariant probability measure for
Markov chains. However, the uniqueness of such a measure is not ensured. Unique-
ness is a significant result as it provides the ergodicity of the stationary solution.
This is a significant feature for inference purpose since asymptotic properties for
M-estimators are based on Uniform Law of Large Numbers, or the ergodic theorem
(see Billingsley, 1995).

Assumption 5. The sequence of innovations (n)) is strongly stationary.

Assumption 6. There exist some strictly positive constant Cy, s.t., for any station-

16



ary solution, for all t,

hfl

AL < Chp P—-a.s., (2.35)

where (i|L) is associated to an arbitrary node (i,j|L), L # 0 of the underlying vine
V(n).

Note that, when L is empty, the model provides a lower bound for all conditional
variances: for every ¢ and t, hi_’t1 < Cy. Let us introduce some intermediate quanti-
ties. We denote C'r > 0 (resp. Cg-1 > 0) the Lipschitz constant of Fyne(.) (resp.
U~1(.)). Let us consider two (arbitrarily chosen) stationary solutions (Dy, Ry, €;)
and (Dy, Ry, &;). They share the innovations (7;) and the model parameters. The
proof of uniqueness relies on some top Lyapunov exponent of a stochastic matrix

process denoted by

Zlloo + [|A]lcoT AllY
oty = (VEloe + 1A Tas Ao T 2.36)
Loy I
where
Y1t = CuVN (IDdlls + 1 Dills ) {a + VNI Dl 2|l 13C37}
Yor = CuV'N (IIDills + | Dills) {8 + VNI Dyl ?[In; [I3C75}
2N (IDu. + | Dille} HNCUHDt||§+NCvllDt||§+NQCSIIDtIIEHDtH?
Yy = v tils tlls = =
Al(Rt) )\1(Rt) Al(Rt)Al(Rt)
. NC||D|2 NC,||D|2  N2C2|Dy||2[| D2
§ = VNCrCy||Di|s||Dells |1+ + ——— + _
v A1 (Ry) A (Ry) A (R (Re)
N{|De[|sCh - N||D¢|[3Cn
a = VNCYInflls 41+ — 2 0Dylls + IDellsy |14 ——22 Y
I iy P+ 1D} |1+ ==
. VN||IDy|2Cy, N||D¢[[2Cy, 1
B = VNCpCy-1|Dtllsllnills + = + -
M (Ry) M () A (R + 0 (Ry)
(2.37)
and
Tt = Al + NIIBlloollni_y 3,
. 2(|n113
Tor = |BlloollDi-1ll2 NCpCy-1.

N R+ A ()

Assumption 7. (M) is a stationary stochastic process and E[log (My)] < oo such
that its top Lyapunov exponent defined as

1
yar = lim > log (MyM;_y - - M) (2.38)
t—oot

17



18 strictly negative.

Theorem 2.5. Under Assumptions 1 and 5-7, a strictly stationary solution of the

Vine-Garch model is unique and ergodic, given a sequence (0} )icz.

Proof. We remind that ¢, = Dyu; = Ht1 / Znt and u; = Rt1 / 27]? . The model equations

define a solution (e, D¢, R;) given (nf). The dynamic system is specified as

Vecd (D?) = V + AVecd (Df_l) + Bér_q,
Ry = vechof (Fyine (Pct)), (2.39)
v (PCt) = 0 + =0 (Pctfl) + Athl.

A key quantity is the vector of innovations ((;) defined as

Gt = [Ui\L,t“le,t} (,J|L)EV(N)’

it — Er—1 [€it]€r )

VilLt = )
N

such that

hyre = Varii(eir) — Covioi (€, €rn,) Vary—1 (GL,t)_l Covi—1 (e, €it)
= e Hie; — (e;Her). (e’LHteL)fl (e} Hie;) .

Above, we have introduced some deterministic matrices (of zeros and ones) ey, s.t.
€+ = €y €. The dimension of ey, is N x |L|. More generally, for any m x N-matrix
A, Aej, concatenates the A-columns whose index belongs to L. Using the fact that

B is a diagonal matrix and €;; = /h; tu; ¢, we obtain € ; = hwu?’t and
Veed (D}) =V + A.Veed (D7) + B.D}_y ;1.

where D?.e = Vecd (D7).

We first focus on the uniqueness of the conditional variance process. To do so,

we consider the difference

Veod (D?) — Veed (D}) = A. |Veed (D},) = Veed (DZ, )| + B. | D3y — DFyiiv|
= A [Vecd (D2 ) — Veed (D2, )| + B. | D2, —D,?_l} T
+ B.D?_l. |:’ll’t,1 — ﬁtfl} .

18



Using D, = i, ® Veed (D2, ), we obtain
Vecd (D2) — Vecd (D,?) — A [vecd (D%,) — Vecd (D,?_l)}
+ By © |Veed (DEy) — Veed (D2, )| + B |1 = g1 | © Veed (DE, ).
Furthermore

ﬁt—ﬁt = (ut—ﬂt)Q(ut—F&t)
= (Ut+ﬂt)®(R2/2—]:Zi/2)nt*.

Using the spectral norm, the previous quantity can be upper bounded as
L 2 - /2 pl/2
I = ills < e + @alloo- | (B = Be®) il
Since ||n;||s = || ]2 (as for any vector), note that

1/2 « 2
luelloo = 1R > oo < IR0z 115 < I RellY2 05 |2 < VN5 |2

Using theorem 6.2 of Hingham (2008), for any unitarily invariant norm ||-||, we have

1/2 1 2 ~
IR — B < IR, — Rul.

N (R + 0 (Re)

Recall that the norm ||.| is unitarily invariant if |[UAV| = || A for all matrix A
and all unitary matrices U and V, ie UU’ = Id and VV' = Id. For instance, the
spectral norm ||Al|s = p (A’A)Y? = \pas (A) satisfies

1/2

[UAV|[s = p (UAVY UAV)? = p (V' AAV)? = p (A 4)"? = | 4],

and is then unitarily invariant. Hence

1 2 2 2 2
| (R = B il < IR = Rl s
IR = Rel sl [|2-
A2 (Ry) + A2 (R )
Besides,
[ Ry — Rells VN|[R: — Ril|oo

VNCE||Pey ~ Pl
VNCECy1 ¥ (Per) = ¥ (Pet) |

INIA A

As B and A are diagonal matrices, their spectral norms are equal to their infinite
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norm. We obtain the upper bound

| Vecd (D?) = Veed (DF) [l < [[Ally|[Veed (D3.,) = Veed (D7, ) |
| Bllo|1Gi- Iy Veed (DZ_y) = Veed (D2, ) |

+

| Ry —

~t”s

+ 1Bl Veed (D31 ) llsollue + ielloo 1

<
(2.40)
where
Tit = [[Alloo + NIIBlloollnf1 I3,
. 2[|n113
oy = ||Bllool| Di-1]l? NCpCy-1.

TAV2(Ry) + A2 <Rt)

We now focus on the uniqueness of the partial correlation process. We consider

the difference

U (Pey) — (Pct) —= (qf (Pei_1) — (ﬁct_l)) +A (gt_l _ g}_l) .
In this framework, = and A are parameterized as diagonal matrices. We have

19 (Per) = @ (Per) lloo < IZ |9 (Per-1) = @ (Per1) lloo + Al IGr1 = G-l

(2.41)

The quantity of interest is the vector of innovations, that is

T LT §| Lyt 1|L t/rlet
Vij|Lt — ZJ\L t = 7 (242)
\/ Z|Lt\/ gLt \/h'z|Lt\/h]|Lt
where, using the Gaussian assumption, we have
TiLt = €t — Kt [Gi,t|€L,t]
-1
= ey — (e/Heer). (e Heep)  €rny

! : L (2.43)

= |el — (e;Hepr). (e’LHteL)_1 e’L] €+
= elpr ().

Here, pyz, (+) is the projector on the orthogonal of the subspace < Hier, > in RV, rel-

atively to the H; '-euclidian norm, defined by ||z| 7 = «'H; '« 2. By decomposing

*Indeed, if &; = Hyerg; for any |L| x 1-vector g; = [6; ;]-1

.....

20

2 Rt) )\1/2 (Rt>
Ty ||Veed (D2 ) — Vecd (Df,l) s + Do || W (Pey) — W (Pct) oo,

1|, we check that pr(x;) = 0. Moreover,
when a vector v belongs to < Her, >1 then v’H{lHteng = v’eng = 0 for every j, i.e. v'ey, = 0. This
implies pr,(v) = v.



the projector py, in its canonical space, we see that ||pr||s = 1 obviously. Similarly,

IPLlls =1,

Recall that ¢, = Dthl / 2?7;". Using the same steps as in (2.43), we obtain
~ ~ ~ ~ ~ 51/2
Fire = eipr (&) & = DRy,
Now we have

1G—1 — C—1lloo = sup [VijiLe — Vgl
(@,41L)

which implies we need to control |r;r,; — 7 1¢| and [h; ¢ — ﬁi|L7t|.
Step 1. We have

TiiLe — TiLe = epL(e) —epr(é)

= e [prL —Pr] (&) +ePr (e — &)

We obtain

IriiLe — Tijel < (PL — Pr)(er)lloo + IPL (62 — &) [loo

< l(pL = pr)(e)ll2 + [1BL (e — &) [|2-

Note that, for any vector , ||z||?, = zH, 'z > x'x/p(H,). Since p(H;) < Tr(H;) <
Z;.Vzl hj+ < N|D¢|?. Therefore, we get

lzll2 < VN|IDels|]lz-

Moreover, for every vector z, ||z||% = @' H; 'z < ||=||3||H; (s (diagonalize H; in

an orthonormal basis). This means
|2l < CL2 M (Re) 2|2 (2.44)

Since the spectral norm is the matrix norm that is associated to the usual euclidian

norm || - ||2, we have

Irije — Tipel < (L —Pr)(e)ll2 + [|PL (& — &) |2

IN

I(pL = Pr)lislletlls + IPLlsller — éll2

IN

(P = Pr)lslletlla + [ler — €2
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Furthermore,

~ - —1
PL—PL=— (IN — Hier, (¢} Hyer) ™" G’L) + (IN — Hyep, <6'LHt€L> €’L>

Il
VS

. . . —1
H, — Ht) er, (e’LHteL)_1 e + Hier, [(e’LHteL)_l — <e’LHteL> ] er
= |:(Dt — Dt> RtDt + ﬁt (Rt — Rt> Dt + Dth (Dt — Dt)} €y, (e’LHteL)_l €/L
- - N -1
+Hey, (e’LHteL)_l Ke’LHteL) — (e'LHteL)} (e’LHteL> er.
Note that ||(e} Hier,)™!||s is the inverse of the smallest eigenvalue of ¢} Hiey,. By the

Courant-Raleigh theorem, \; (€} Her) is larger than Ay (Hy). Then, ||(e} Hier)™!||s <
M(H)™' = ||HY|s. Since H' = D7PR;7ID;, we obtain

(e Hrer) ™ ls < [1H s < 1D HIEIRE s < Cotn(Be) ™

Moreover, it is easy to check that |ler||s = ||e/||s = 1. Since

71

|D: = Dills < max[hig = higl /(hi)” + hi}*) < O}/ |[Veed (D}) = Veed (DF) |

we have

lpr—Bels < 1D = Dulls | RelloNDills + 1Dallll Re = Rellsh Dels + 1Dl | Ball | Ds = Dl }
e Heen) ™ s (11 + 1 el Ji (e, Heer) )
{Ci/*|[Veed (DF) = Veed (DF) N (|Di]ls + | D)
+ VNCECyr ¥ (Per) = ¥ (Per) [lool Dells | D}
Cur(R) ™ (14 N DolECh (Be) ).

IN

We also have

1/2
leclla < 1Dl By sl 11

< IDellsAvlae (Be) ;2 < (| DellsV/N [ | 2-

Moreover,
- 1/2 = 51/2\ 4
lee —ells < I (DeRy" = DRt s
~ 1/2 % ~ 1/2 ~1/2 «
< 1D; = Dells| Ry s lmi s + 1 Dells | R = By sl Il
< [CV2Veed (D) — Veed (D3) [N + | Dill K | (Per) — & (Per) o] I
1
where K = \/NCFC\I;—I.

N () A ()
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Consequently, for every (i, L) deduced from the vine structure, we obtain

PiLs = Tl < ol Veed (DF) = Veed (D7) [l + 8% (Per) = W (Per) flo: (2.45)

where
) .
N||Dy||sCh . N||D¢|2Cy,
a = VNCY Il 41+ 0 Dylls + I1Dells) |1+ —— 222 %
7| WO {lIDells + | Dells )
. VN|Dy|2Ch, N||Dy|2Cy, 1
B = VNCpCy-1|Dills|nflls S ——5~— |1+ = + -
M (Ry) M (Ry) N2 (R + 0 (R

Step 2. We now focus on the discrepancy |h;r,; — fL,-|L’t|. We have

hirs —hijry = € (Ht - ﬁt) e; — € (Ht - gt) er, (e Heer) ™ (¢} Hye;)
o . . ~1
+ elHey, (e’LHteL)fl [e’LHteL — e’LHteL} (e’LHteL> (€ Hye;)

+ e;ﬁteL (e’LﬁteL) e (Ht—flt> €,
which implies
igne = hugp el < 11— Hilly [1+ Coda (RO IHills + Coda (B) ™ 1 Hll,
2 -1 P \—1 r7
+ CIa(R) ™ M (Re) T Hills |
< (Cl2IVeed (DF) = Veed (D?) [WN{IDils + 1Dy}
+ VNCrCyr D5l Dills ¥ (Per) = W (Per) o )

NC|| D2 N NGy || Dylf? N N2C3 | Dyl 21| D2
)\I(Rt) Al(Rt) Al(Rt)Al(Rt)

< 9l|Veed (D7) — Veed (D7) [ls + 6|1 (Per) = ¥ (Per) oo, (2:46)
where

NCD2  NGDi2  N2C2|Dif2| D)2
NE) MB) M(BoM(R)
NC,|Dy||? NG| D> N2C2|Dy||?|| D)2
A (Ry) * M (Ry) * M (R (Ry)

v = CN{IDls + |1Dells} |1+

) = \/NCFC\I;—lnDtHsHEtHS 1+
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Consequently, we obtain the following relationship for (2.42)

(rijps = Fane) riine Tt (Tjoe — Tiin.)

.. N, . — +
1 1

+ Tt 5 -
SRRV TRV \/hi|L,t\/hj|Lvt

For any (i, L) we consider, h;1; < | D¢||? everywhere, because the variance of a

residual is smaller than the variance of any random variable. Therefore, we get

1 1 C? .

| - — ——| < - - - ——{hipthjins — hanihin.t
Vhizey/hjee \/hi|L,t\/hj|L,t \/hz‘|L,t\/hj\L,t + \/hi|L,t\/hj\L,t

C [(hi\L,t - hz’\L,t) Py + hije (hj'“ B ﬁj'“)}

CS{HDtIIEIhnL,t - ili\L,t + ||Dt||§|hj\L,t - ﬁj|L,t|}a
(2.47)

IN

IN

and

[rindl < Pz (e0) oo < lIpr (e0) 12 < Ipells-lleellz < lleellz < VNIDylslls 7 l2-
(2.48)
Consequently, using (2.46), (2.47) and (2.48), (2.42) can be upper bounded as

vigie — Bigizdl < OV (IDls + 1 Dell)
{(aHVecd (Df) — Veed (D?) IIs + B|¥ (Pc) — ¥ (.P~Ct) Hoo)

+ VNIDIII3CE (v Veed (DF) — Veed (D2) |l + o119 (Per) = W (Per) o) } -
Hence using the previous inequality, we obtain
G = Gillow < Trl[Veed (DF) = Veed (D7) [l + Yaall ¥ (Per) = @ (Pet) oo, (2:49)

with

T
Yoy

Cuv/N (| Di]ls + ||1Dells ) {a + VN D2 [13C3}
CuV/'N (IIDells + |1Dells ) {B + VN Di||2[|n; 13CE6}
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Using (2.49) and (2.41), we have

19 (Per) = 9 (Pei) lloo < {IE oo + [Alow T2 (Pei-1) = ¥ (Per1 )
|Alloo 1,0l Veed (D) — Vecd (DF) [

_l’_

(2.50)
We denote

19 (Pep1) = W (Peit) 12000 + [Alloo T2z [IAllsoX 1
HMtH = 9 Mt - .

|Vecd (D?) — Vecd (th) P Py INW

)

Using (2.40) and (2.50), we deduce that

el < Mif| |

t—p
{kUOMtfk}HMt—p—l I,

IN

for any p € N. Under Assumption 7, lim || MM;_1--- M;_,|| = 0 P—a.s., for a fixed
t using Lemma 2.1 of Francq and Zaﬁ:oiogn (2010). We deduce that g o 0. This
implies that W(Pc;) = ¥(Pe¢;) a.s. and D; = D; a.s., which then implies R, = R; a.s.
and €¢; = € a.s.. This concludes the proof of uniqueness. Furthermore, ergodicity is

obtained as a consequence of corollary 7.17 in Douc and al. (2014).

A sufficient condition for uniqueness is that the top Lyapunov exponent s is
strictly negative. This condition holds if E [log (||M]|)] < 0.
O
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3 Asymptotic Properties

We provided conditions for the existence and the uniqueness of strictly stationary
solutions of the Vine-GARCH model. These results are significant for asymptotic

properties since law of large numbers and central limit theorems can be applied.

We consider the DGP given in (1.1). From an inference point of view, a practical
issue arises when computing log-likelihoods, which is the choice of some initial values
to generate the sequences (Dy), (R:) and then (Hy), t =1,...,T. Given some fixed
values for ¢y, Dy and Ry, we obtain log-likelihoods. In this Section only, the latter
log-likelihoods will be denoted by ail,T (0y; €) and @\EZT (0y,0.;€). More generally,

7 are deduced from the process with fixed arbitrary starting

all quantities with a “~
values at ¢ = 0. Therefore, they are distinct from the “theoretical” log-likelihoods
QL1 (0y;€) and QLo 7 (6y,0c;€), for which the initial values are coming from the
stationary laws 3. Actually, this subtlety has no consequence because we will assume

irrelevance of initial values: see Assumptions 10 and 18 and Section A.

3.1 Consistency

To show the weak consistency, we need a set of assumptions given as follows.

Assumption 8. The variance parameters 0, (resp. correlation parameters 6.) be-
2 _1)2 _
long to a compact set ©,, in R3N (resp. O in in RiN (N=1/4+NN 1)/2). The true

parameter 6y = (6o v, 00’0)/ belongs to the interior of the compact set © := ©, x O..

Assumption 9. The sequence of innovations (n;) is strongly stationary, E¢_1[n] =
0, Ecm1[nemy] = In and Ei_1[nit|njs) = 0 when @ # j. Moreover, 1n; € RY has a

nondegenerate distribution.

Assumption 10. The initial values are asymptotically irrelevant, which means

sup|QLa,7(0; €) — QLy (65 €)| = op(1).
0O

Moreover and as expected, we need the classic assumptions that guarantee the

strong consistency of univariate GARCH(1,1) QML estimates.

3Equivalently, they can be seen as coming from a stationary solution (e;):ez.
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Assumption 11. . Let My = (Mo:): be a sequence of matriz defined by Mo, =
(77?, 1)’(/{,7’), where the index © are removed for clarity. Then vy, < 0, the top

Lyapunov exponent, defined as

1 1
Yo = Inf S [log (| Mo, Mo,—1 - Moa|D] = lim ~log (|| Mo Moe—1--- Moall) a-s.

Besides, V0, € ©,, T < 1.

Assumption 12. Let (A4, By) defined as

Ay = sup || (VU(Pey)) P AV p,C(Pey, Dy, e,)Vo, Dy,
0:1|0v—00,v || <cx
B, = sup || (VU (Pe,)) H [EVE(Pe;) + AV pe,C(Pey, Dy, e)] |-

0:(10,—00.0 ]| <o

For some a > 0, the stochastic matriz process (Ay, By) is stationary, E[A:] < 400

and

Z E[Bi_1By_o-- By Aj_p_1] < o0.
k>1

~ ~ ~ !/
Theorem 3.1. Let 6p = (GT,v,HT,C) a sequence of pseudo-mazximum likelihood
estimators verifying (2.10) and (2.11). Then under Assumptions 4 and 8-12,

éTi>90 when T — oo.

We shall proceed step-by-step to prove the weak consistency of the two-step
estimator. We denote 6\, = (6o,v,0c). The next three steps shall be demonstrated

successively.

1. Identifiability of the parameters, which can be expressed in our framework as
{Vt € 7, Dt(Qv) = Dt(007v) and Rt(9) = Rt(ﬁo) ]P)go as} =60 =10.

2. The optimum 6y is well-separated: if éT,U — 0o, a.s., and [|0. — Op.c|| > v, for
some 7 > 0 then lo¢(et; 0.0, 00,c) € L*(R) and

Eo, [l2,¢(€t;60,0,0c)] > Eg, [l2,¢(€:;600)] -

3. Let Og\. = {0 = (00v,0:) € O} = {0y} x Oc. For every 0* € O, with
16% — 00.c|]| > 0 and every m > 0, there exists an open ball V(6*,7) around 6*
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in the space O, s.t.

Eg, GEVi'I(le*,Tr)lzt(Et; 0)| > Eg, [l24+(e;0)] — 7.

Note that a proof of the strong consistency of GAT,Z, can be found in Francq and
Zakoian (2004). In their proof, similar steps as above (and Assumption 10) are

demonstrated for QLj 7(¢;0,), the first step likelihood.

Remark about Assumption 10. The asymptotic irrelevance of the initial values
is probably the most difficult step to prove for weak consistency. To do so, when
comparing QLo 7(6;€) and @Q’T(G; €), we need to evaluate the rate of convergence
of ||[R; — Ry||. For the sake of clarity, we assume that this assumption holds. A
detailed proof is considered secondary w.r.t. the core of the consistency result, but

it can be found in Section A.

We need the following lemma, whose proof is postponed after the proof of The-

orem 3.1.

Lemma 3.2. Under Assumptions 8-11,
sup QLo 7(07,0,0) — QLo 7 (60,0, 0c)| = 0p(1).
€

Proof. Step 1. We now prove the identifiability part of the vine-Garch model. Due
to the identifiability of GARCH models, when D;(6,) = D(6y,) for every t and

almost everywhere, this means that 6, = 0 ,.

Let us state the identifiability of the correlation-related parameters. To do so, we
define Dy(z) = Az and Qy(z) = Iy —Ez. There is a one-to-one relationship between
the components of the lower (or upper) triangular part of R;(), and P, (6), the
vector of partial correlations, through Fyine(.). Then R:(0) = R:(6o) Py, a.s. implies
Pc,(0) = Pc,(0p) Py, a.s.. For a given sequence of innovations (7;), we write the
partial correlation dynamics U (Pc(6)) = Q+ EV (Pei—1(0)) + AG—1(0) as

Qo(B)¥ (Pce(0)) = Q-+ Dp(B)G(0)
& U (Pci(0)) = Q5 (B) Q2+ Dy(B)G(0)]

& U (Pe(f) = Q' (B)De(B) [Dy (1) + G(6)] .
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Now, for some 6 and 6, suppose

Q; ' (B)Do(B) [Py (DR + G(6)] = ;) (B)Dy (B) [Py (10 + Gi(00)| as. vt

This means

Qy ' (B)Da(B)G:(8) — Qp,' (B)Day (B)¢e(6o) = Q. (1) — Q5 (1)Q aus.,
which can be rewritten as

(In — EB) ' ABG(6) — (In — Z0B) " AoBG&(60) = Q51 (1) — Q51 (1)Q
The latter is equivalent to

3 [EkBk“Ag‘t(Q) - E’gB’““AOQ(eO)} =, (1) - Q5 (1),

k>0

& > [EFAG41(0) — EbAoG k1 (00)| = Q51 (1% — Q7 (1),

k>0

implying
AG-1(0)—AoGr-1(00)+EAG-2(0)—EoMoGi—2(00) + - = Q. (1)~ Q5 ()R, (3.1)
for every t and almost everywhere. Hence, a.s., it is equivalent to

AG—1(0) — AoCi—1(60) = Mo, (3.2)

where M;_5 is a random variable that is measurable wrt o (7—s,s > 2). For an
arbitrary parameter 6, let ¢, = H, !/ 2(9)m, that depends implicitly on the under-
lying parameter. Let us consider an element of (;—1(f), which corresponds to a

conditioned set, say 7, j, and a conditioning set, say L. Then, we have

€ii—1 — Elei—1]eri—1, Fi—2] €ji—1 —El€je—1]en—1, Fi—2]

Vi1 Vi1

G =

Both denominators are F;_s measurable and depend on 6 through the variance

and correlation processes. We rewrite ¢; ; = e;(Htlﬂ(H)nt), with e; = (0,---,0,1,0,---

with 1 at the ith component. Focusing on one of the numerators, the quantity of
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interest is

€it—1— Ele—1ler—1, Fi—a] = €;H;_/§(9)77t—1 - €;H;_/?(9)E [Me—1l€r,t—1, Fr—2]
= H O {1 — Enaleri—1, Hia(9)]}
= H O {1~ E [l fu o, 00T}
fr is a linear function of the components of 7,1 and depends on the specific con-

ditioning set of the vine. It also depends on 6 because the linear coefficients of fr,

are the sub-components of Ht1/2(0). Now, for all ¢,

GP(0) = Trace (e H 3 0)af1 (0 (0) B3 0)e; ) / (y/hara 10y hjne1(6))

with Oth_l(H) =mn_1—E [7715—1|fL("7t—17‘9)]-

But we assumed R;(0) = R¢(0y), Di(0) = D.(6y) for t. Consequently, H;(0) =
Hy(6p), the observations ¢ are the same under Py and Py,, and o (9) = af(6y).

This implies that (;(6) = (¢(fy) and (3.2) becomes componentwise

ij|L iilL
)‘(ijIL)Clt(—Jl' )(9) - >‘0,(z‘j|L)Ct(_jl| )(00) = my_o

1/2 1/2
A ()‘(z'j|L) - /\0,(ij|L))egHt—/1(0)athl(0)(0‘#1(9))/Ht11(9>€j = Mmi—2

for some F;_s—measurable function m;_o. The L.h.s. corresponds to a quadratic
form of (1;—1), whose coefficients are some functions of H;_;(#). This can be rewrit-

ten

Mot — docm) S HY2 (@HY? (@)ak. (0)ak, (0)
(AGijin) 07(11\12))“2_1 i,k,t—l( ) j,k:,t—l( )O‘k,tq( )O‘z,tq( ) = my—2

& (Auin) — )\o,(ij|L))(M1177%,t—1 +m2me-1nze—1+ - +tanmg-1+ -+ Mkkn]%,t—l + W1 Mk t—111 -1

+- o apnri—1 + - Fannng—1 + C) = my_o,
(3.3)

for some F;_s-measurable coefficients 1; ;, ar and a constant C. Taking the condi-
tional expectation E [.|n_g;—1, Fi—2], with n_g 1 the vector n,—; excluding g ;—1,
using the assumption E[n—1 |n_k -1, Fi—2] = 0 (c.f. Assumption 9), and substract-
ing to (3.3), we obtain

(AjiLy — AO,(ile))(Mkk"?l%,tfl + agnki—1 — prkEr—2 [771%,,571]) =0, as. (3.4)

If A\ijiLy # Ao,@jL) in (3.4), then a solution is 7,1 € {a,B}. This contradicts
Assumption 9. Consequently, A¢jiz) = Ao,(ijr)- This holds for all the components
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of (t—1(#), hence A = Ag. Plugging this last inequality in (3.1), we obtain
(2 —Z0)Al—2(0) = M;_s3. (3.5)
The same steps can be applied as previously

A1) €zl — €o,512)) (BT om0 + 12T —2Th,0—2 -+ QU= o RRTTR g F JETR 27T 2
+Fagng—2 ++ - rannNi—2 + C) = m¢—3.

Taking the conditional expectation E [.|n_j 2] and using the same steps as previ-

ously, we obtain ;i) = o,(ij|L), hence = = Zo. Finally, a.s.

> [EFBFHLAG(0) — EEBR T AoG(60)] = Qg (1)Q0 — Q5 (102
k>0

& 0=0,'(1)2 — 9, (HN
As Qg,(1) = Qp(1), this implies Q = Q. O

Proof. Step 2. We now show that the limit criterion is minimized at the true value.
It is important to note that the second step is conditional to the first step estimator,
idest we deal with lg 4 (e; HATJ,, 6.).

For all 6 € O,

Eg [lz_,t(ft;@} < Eg, [log™ (|Rs])] < max (0, —log(|Ry])) < oo, (3.6)

by Assumption 4. Consequently, Eg, [l2+(€; 6)] belongs to R U {+00}. Now at the

true parameter value, we show Eg, [

l27t(6t;00)” < Q.
Indeed, the determinant of R;(fp) is bounded from above by Trace(R;)Y, i.e.

NN Therefore, without any assumption,
Eg, [l2,¢(e¢; 00)] = Eag, [log(|Re(60)|)] + Trace (Eq, [nm:]) < Nlog N + N.

Therefore, we obtain that ly¢(et;0) € L.

Denoting by «; the eigenvalues of R:(6p)R; 1(90\0), which are positive, fp\. =
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(00.0,0c) and uy = Di(0.,) Ler, we have

Eeo [l2,t(€t;90\c) lzt Gt,ao)
= Eg, [log(|R; o
= Eg, [log(|Re(Oo\)I| Ry (0o
Oo\e) || R (6o

] +Eg, [uf (R (Bo\e) — By ' (60)) ui]
[log(|Re(Bove) | Ry (
[log(| R (o) (
= Eg, [log(|R:(0p\c)|[R; " (60
[og(|Re(Bo\e) 1R (
[log (| Re(Bo\e) 1R (

)
ﬁ + Egy |ni Ry (00) (B (B0\e) — By (00)) B (G )

)] + Eag, Trace n (Rtl/Q(QO) R (Oo\) R, }(00) — ) m)
)] +Eg, Trace Rz/z(eo)’Rt (GO\C)R/ (60) — In nmt)
)]

)]

)| =

= Eg, [log(|R:(0o\)||R; ' (60
= Eg, [log(|Re(0o\c)|| Ry * (60

N
= Ey, Z (it — 1 —log(cvit)

]
)|
)|
)|
)|
)] +Eoy |Trace ((Ri> (00 B (O0\o) By (0) — I ) Bua ] )|
)| + Ea, [Trace (Rt(GO)Rt (Oo\e) — )]

(3.7)
because Vx > 0, log(z) < x — 1. The inequality log(z) < z — 1 holds if and only if
r = 1. In our case, that means «;; = 1, Vi, which is R;(0p\.) = Ri(6h) Py, a.s.. By
stationarity, this reasoning can be made at time ¢t —1, which would give Rt,l(OO\C) =
Rt—1(00) Py, a.s.. Hence for any ¢, the relationship R¢(fp\.) = R:(00) Py, a.s. holds
by stationarity. By step 1, this means 6y = .. O

Proof. Step 3. For a given 6* € O\, 0 # 0o, consider a sequence of open balls
of radius 1/k, k € N defined by Vi (0%) := {0 € Og\,|[|0 — 0% < 1/k}. Since the
sequence of random variable (infgey, g+)l2,¢(€r;0)) is increasing, the Beppo-Levi

Theorem applies:

lim E inf [ 10)] =Eg, [ ;0*
Jim Eqg, [96‘1/2(9*) 2.0(€s; )} oo [12.1(€1;07)]

providing the result. O

Proof. Theorem (3.1). Under our assumptions, OAT,U converges weakly to 0y, (see
Theorem 7.1 in Francq and Zakoian, 2010, e.g.). Now, let us prove the weak con-

vergence of HAT’C to 0pc, that is
Va >0, lim P (||éT,C — Oy > a) = 0. (3.8)
T—o0

By Assumption 8, © and then ©g . are compact sets. For any given 7 > 0 and
for every 6% € Og\, 0* # tp with [0 — 0| > a/2, let us associate an open ball
U(0%) C Og\ s.t.

Eq, [06151(%*) It (€t; 9)] > Eq, [lo1(€;67)] — .
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We know it is always possible due to the previous Step 3. Since the function 6 €
One — Eg, [12,t(€1; 00,0, 0c)] — Eg, [l2,4(er;00)] is strictly positive (c.f. Step 2) and
continuous on the compact subset &y(a) := {0 € Og\. | |6 —0o.c|| > a/2}, it reaches
its minimum 2p > 0. Therefore, for any given 0* € &(a), set m = w(0*) =
Eg, [l2,¢(e1;0%)] — Eg, [l2,4(e; 60)] — 1 > 0.

Moreover, set U(fp) := {0 € O\, : |0 — 6ol < a}. Then

60\0 cU 90 U U
9650(0()

Since O can be covered by a finite set of open balls, there is a finite set of points
91, e ,9n in 50(0() s.t.
@O\c cU 00 U U

i=1,...,n
Equation (3.8) becomes
P(I0rc —bocl > o) <P [ (Boubroe J UG) | < 3 P (000 0r0) cUG)).
i=1,...,n 1=1,....,n
By definition of éT, we obtain for alli=1,--- ,n

P (00,0, 0r.) € U(6)) <P (eelg(f QLy1(0:¢) < QLo (00,0, 01 >)

< P < inf QLQ T(9 6) < QLo T(HTmeTa ) + 2sup ’QLZT(@;G) — afzg T(@;G)’
0cU (6; 0O '

+  |QLar (80,0105 €) — QLo (07 €)|)

< ]P’< inf QL2 7(0;€) < QLo T(GTU,HO €)| + ZEuS\QLZT(@;e) —/@ZZT(Q;E)‘
€

0cU (6;

+  |QLar (80,0105 €) — QLo (07 6)’)

< P (961n(f QL2 7(0;€) < Eg, [l2,t(er;00)] + QSug’QLQ’T(G; €) — iQ\I//Q’T(Q; e
€

+ QLo (80;€) — Eg, [l24(e;00)] | + |QLor (80,0, 07,05 €) — QLo (07 6)\)

< P <E90 [ inf lo (e 9)} < Eg, [l2,¢(€t;00)] + 2sup|QLa 7 (0; €) — @\ZQ,T(Q; )l + Ry,
0cU(0;) e

i

+  |QLar(ho; €) — Egy [lo.4(€t500)] | + |QLar(Bo.0, 07,05 €) — QLo 1(Br; €)|) ,
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1T
where Ry, = Ttgleei(?(fei)lz’t(et; 0) — Eq, [9€i£{9i)l2’t(€t; 0)] Invoking step 3 and the
way the neighborhoods have been built, for any ¢ = 1,...,n,

Eyg, Leilrjl(fei)lg,t(a:; 9)] > B, [l2.4(et;00)] + 1.

Using the property {X +Y <a+b} C{X <a}U{Y <b}, a,b>0and X,Y any

random variables, (3.9) becomes

P (0.0, 0cr) € U(B)) <P <u < 250pIQLy 1 (0;€) ~ QLo (656) + [Ro,
€

+ QLo (60; ) — Eoy llas(e:00)] | + [QLar (B0, O3 €) — QLor(6r; )]

M . 1
< Pl< 2§ug|QL2,T(9; €) = QLyr(0s )| | +P | 7 <[QL27(00: €) — Egy [l2e(er; 0)] |
€

u u A -
+ P 1< |Re,| | +P 1< |QL21(00,0,07,c5€) — QL7 (075 €)|

Under Assumption 10, the initial values generating the process are asymptotically

irrelevant. For some § > 0 and T > T7, this implies

w _
P 1< 2sup|QLa7(0;¢) — QLo p(05€)| | < /4. (3.11)
0O

As for the second probability of the r.h.s. in (3.10), we use the ergodic theorem of
Billingsley (1995), and for T' > T3, we obtain

I
P Z < ‘QLQ’T(GO; 6) — E90 [l2,t(€t§ 90)] | < (5/4 (3.12)

Let us focus on the the third term in the r.h.s. Although the quantity l2(es;0) is
not necessarily integrable, the ergodic theorem can still be used as Eg, [l2,:(e; 0)] €
R U {oo}. Furthermore, ly(€:;6) is a measurable function of an ergodic process,
hence, as in Exercise 7.4 in Francq and Zakoian (2010), the ergodic theorem of

Billingsley (1995) can be applied to (9 i[r]l(fg )lg,t(et; 0)); as follows
e .

7

1 T
lim inf— inf ;0)=E inf ; .
Thoe thleelcrfl(ei)b’t(et’ %) o [9elcrfl(9i)l2’t(et’ 9)}
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Plugging this convergence result into (3.10), for § > 0, T' > T3, we obtain

W
Pl <IRol| <d/4 (3.13)

Note that the derivative of 6, — QL2 7(0y,00;€) is uniformly bounded under As-
sumption 4 (recall the arguments in the proof of Step 2). Invoking Lemma 3.2, we

can tackle the fourth term of (3.10): if ¢ > T}, we have
p .
P Z < |QL27T(90; 6) — QL27T(0T7U7 0070; 6)‘ < 5/4 (3.14)

Consequently, with (3.11), (3.12), (3.13) and (3.14), for 7' > T1 V To vV T3 V Ty,
(3.10) becomes
P (éT c U(Gi)> < 6. (3.15)

Since & can be chosen arbitrarily small, this proves the convergence in probability

~ N /
of <9T7U, HT,C> to the true parameter vector 6. O

Proof. Lemma 3.2. Applying a Taylor expansion to QLZT(HAT,U, 0c; €) around 6,

we obtain
1 L ~ 1 T . 1 T ~
thz;lzt(ﬁt; QT’U’ 90) = T;lzt(ﬁt; 00,1}7 90) + (GT,’U - Ho,v)TEVQvlg’t(et; (91), 06)7

for some 0,,, ||0, — Bo.0ll < 1600 — éT,vH. Using the consistency of éTﬂ), it is sufficient

to prove that
1 T
TZ sup Vo, l2.t (€15 00, 0) || = Op(1), (3.16)
t—1 10€0 | |0v—00,v]|<a}

for some (small) a > 0. Applying some matrix derivation rules (see Liitkepohl,
1996), the analytical score of the second step likelihood with respect to the i-th
element of 6, is given by
o ' =1 p—1p—1
36512,t(6t,9) = Op; [log (|Re) + €Dy "Ry~ Dy Gt}
= Trace (Rt_l(ﬁ%Rt)) + Trace (ere10p: [D;'R;'D; 1))
= Trace (R;l(ﬁ%Rt)) — Trace (e [D;l(ﬁ%Dt)D;lR;lD;l])

— Trace (e€; [D; 'Ry 1 (0gi Re)Ry "Dy ') — Trace (ere [Dy 'Ry D' (95 D)D) -
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Obviously, the matrices D, 1 are bounded from above by positive constants due
to the definition of our univariate GARCH dynamics. Concerning correlations, we
know that R, 1is bounded from above, due to Assumption 4. As for the derivatives
of Ry, note that ||V, Re|| < ||V Fyine(Pct). Vo, Pct|| and that the derivative of Fyine(+)

is bounded a.e. under the latter assumption.

Consequently, there exists some positive constant C' such that, for any « > 0,

sup |V, lou(er;0c,0,) < C. sup  {(I|Vo, Dil|+[|Vo, Perl))eel |+ Vo, Per }-
0:]|60u =60, || <« 0:1|0,—00,v || <

Let us focus on Vy, Pc;. By the chain rule, we have

Vo,Pc; = (VU(Pei1)) ' [EVE(Pes_1) + AV pel(Pei1, Di_1,€i-1)] Vo, Per1

+ (VO(Pci1)) P AVDC(Pei1, Di1,€4-1)Vg, D1,
and then

sup IVo,Per]] < Aiq1+ By sup Vo, Pci—1]|
0:110,—00, || <cx 6:(10u—00,v || <cx

(o)
< A+ ZBt—lBt—2 By g Ayp—1. (3.17)
k=1

Assumption 12 provides sufficient conditions so that the latter series belongs to L.
As a consequence, the existence of the series (3.17) is ensured a.s. But we need a
stronger assumption than in Theorem 1.1. of Bougerol and Picard (1992) typically,

because of the integrability requirement. This implies

= Z sup ||V, Pel|-([leel|” + 1) = Op(1).
t 1 0: ||9-U 90 v||<a
We now focus on || Vg, Dt[|, which is determined as [|9g; Dt = | D; 'diag (89% hit) 1/2,
i =1,---,3N. The partial derivative of the j-th component above is zero when

i # 7. Otherwise, note that, by iterating the volatility process equation, we have

E k12
T jtk7

k>1

Gi
a;jhj,t = 1 —JT]” anjh_jt ZTk ! ?t k> and 87-jhj7t 1 —7'] +Z k 1 k 2 375 ke

E>1 k>1
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We deduce there exists some constant C s.t.

sup Vo, Difllell* <C {1+ (k=17 e, 4 | el as.
0:10,—00,» <« E>1

The latter r.h.s. belongs to L' because Et,l[ej%t] =1 for every j and t. Therefore,

T
1 2
= sup [V, De|-[lec]|” = Op(1),
T tz:; 0:100—00,0<ax

proving (3.16) and then our lemma. O

3.2 Asymptotic Normality

We proved the consistency of émc. The consistency together with the central limit
theorem are used to prove the asymptotic normality of Op = (éT,v, éT,C)’ . To do so,
several Taylor expansions are applied to the orthogonal conditions given by (1.7).
Besides the assumptions defined for consistency, another set of hypothesis is required

for the asymptotic normality.

Assumption 13. 6y € © with © the interior of ©.
Assumption 14. The innovations n: have finite fourth order moments.

Assumption 15. Let the processes defined as

1

Cy = (VU(Pei1)) 7,

Cy = (VU(Pe;_1)) H [EVE(Pey_y) + AVC(Pei—1, D1, e-1)]
Ey = (VU(Pci1)) ' U(Peyy),

Gy = (VU(Pci—1)) ' C(Pey—1, Di—1, €1-1),

The stochastic matriz process (Cy, C,, E,, Gi)¢ is stationary,

00
E [HCtH2 + HEt”2 + ”GtHz] < +OO, and B HZCt_lct_Q s Ct—k:Zt—k—IH2 < +OO,
k=1

where the generic letter Z denotes C, E or G.

The next regularity conditions are classic and necessary to justify the existence of

the asymptotic covariance in the next Theorem. They are assumed for convenience.
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Under the price of additional technicalities, it is possible to establish some sufficient

and more explicit conditions to satisfy the later ones.

Assumption 16. Vg g/ l2¢(et;00,0,00.c), Vo.orloi(€t;00.0,00.c), Vo1 (00,0, 00,c) and
V.0, (00,0, 00,c) admit a finite first order moment.

Assumption 17. E [Vgcgélg,t(et;eo,v,90,0)] is nonsingular.

As expected, we need to assume that the initial values of the process are asymp-
totically irrelevant to evaluate score functions. The multiplication by /T renders
this task more difficult than in the proof of consistency. We have not tried to exhibit

the equivalent of Lemma 3.2 to deal with this case.

ASSllmptiOl’l 18. \/THAT(007’!))_AT(90,U)H = Op(l) and \/TH\IJT(Q(LU,9070)—@71(907@,9070)” =
op(1).
For some o > 0, sup Ve, A7(0,) — Vo, Ar(6,)|| = 0p(1), and

60,2160 —00.0]| <

sup Vo Ur(8) — Vol ()] = op(1).
0:|0—bp || <

Theorem 3.3. Assume Assumptions 4 and 8-18, then éTﬂ) and éT,c are asymptot-

ically normal, and

VT (éT - 90) N (0,7 T,

where
Vo ol 16000 0
J = Eeo 006!, 1,t(€t 07) 7
| \Vo,0.l2.4(et5 00,0, 00.c)  Vao.ol2t(er; 00,0, 00,c)
I - E Vo, l1,t(€t500,0) Vo l1,t (€3 00,0) Vo, l1,t(€t;00,0)Vorlai(er; 00,0, 00,c)
* L\ Vo lat(e; 00,0, 00.c) Vo e (e1:00.0)  Volot(er: 000, 00.c) Va2 (et; 00,0, 0o.c)

Remark about Assumption 16. This hypothesis for the two first quantities en-
sures the existence of the subblocks in J. The existence of the covariance of the
scores in I is proved in Lemma (3.4) thanks to Assumption 15. Although the
existence of the Hessians in J can be proved, it would require intense matrix com-
putations and Lyapunov conditions on more complex coefficients than those given

in Assumption 15. For the sake of clarity, we assume the existence of these Hessians.
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Furthermore, assumption (16) for the last two quantities is used to prove the weak

convergences in (i) of Lemma (3.5).

Remark about Assumption 17. This assumption ensures the invertibility of J,
which requires the positive definiteness of £ [ngggj lit(€s 9071,)] and E [Vgcgélg,t(et; 00,0 90,0)] .
Actually, the invertibility of the latter can be proved by contradiction based on a
technical hypothesis, which is the family of vectors (vec(Jyi Rt) is linearly indepen-

dent.

Lemma 3.4. Suppose the assumptions of theorem (3.3) hold,

(1) 119t (00,0,00.c)10t(00.0,00.c) ||, 10:(00,0)¢t (000, 00.c)|| admit a finite first order

moment.
0:(00.4
(ZZ) Vas ( t( 0 ) ) -
¢t(90,v7 90,0)

Proof. (i) Note that the existence of E [||8:(00.,)d:(00,)’ ||| and E[||Va,d:(60.)]|] has
been established by Francq and Zakoian (2004), as they are related to usual GARCH

processes and Gaussian QMLE. This not require additional assumptions.

We denote by 6¢ (resp. §) the i-th component of the vector of volatility (resp.
correlation) parameters. First we derive the score of the first step likelihood, which

is in matrix form
le(er; 00) = 1og(|DE(60)]) + €, Dy (B)er.
Fori=1,---,3N, after some matrix manipulations, this score function is given as

5i(0,) = —Trace (et Dy + Dy ere) Dy (99 Di)D; ') + 2Trace (D (9, Dy))
= Trace ((In — Dy 'ereiD; ") (D' (9gs Dy) + (99 D) D Y)) -

Using D, Lo, = Rt1 / 277t, we obtain
5:7(6,) = Trace ((IN - Rtl/Qﬁtﬁin}/z) (D; (95 Dy) + (39;;Dt)Dfl)) :

Choosing the spectral matrix norm, we have ||Rt1/2\| < /Tr(R;) < V/N. Hence,
(5@ (0,) admits the upper bound

7 1/2 1/2 _ _
160(0,)] < Co.N|\In — R *nenj Ry (||| Dy (99, Di) + (9 D) D Y|

<
< 200N (L+ [meni) -1D5 (33 Do),
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for some constant Cy. The second step likelihood is defined as Iy ¢ (€5 §) = log(|R¢(6)])+
u, Ry (0)uy. Fori=1,--- ,3N(N —1)/2, its score function is

00(60,,0) = Trace ((In — B, Pnn RY®) R (0 1))
This score can be upper bounded as
[0 (0, 00)] < Co.N? (14 Amin (Be) " |mef ) |1 By (93 R

By the Cauchy-Schwartz inequality and Assumption 14, we have
i _ 1/2 1/2
E 1617 (00 (60,001 | < €y {1 +E [||R7 (0 Ro) ] } A1+ E DT @ DOIP)

for some constant C; > 0 and every ¢ = 1,--- ;3N and j = 1,--- ,3N(N — 1)/2.

Concerning the covariance of ¢ (0,,6.), we get similarly for every i, j

E[lu )6 0)l] < ¢ {1+E IR (agéRt)P]W}.{l —|—E[HR1§_1(8@£R1§)H2}1/2}7

with Cs > 0. Note that we have invoked the fact that the lower eigenvalue of R; are
bounded from above by a strictly positive constant, using Assumption 4. Therefore,
it is sufficient to show that E [HRt_l(BgiRt)HQ] < oo and E [HDt_l(@giDt)Hﬂ < 00

By the chain rule property, we have |Vg, R¢|| < ||V Fyine(Pct). Vo, Peil|. But As-
sumption 4 implies that Fi,e(+) is Lipschitz, i.e. its derivative is uniformly bounded.
Now, setting «95}) =(0,i=1,...,N(N —1)/2) = Q, we have

Voo Pe = (VU(Peo1)™' + (VE(Pe1)) ™ [EVE(Pert) + AV((Pert, Doty e-1)] Vg Pee
= Ca+ > C1Cg CgCropn,
k=1

Furthermore, 0 = (#,i=N(N-1)/2+1,--- ,N(N — 1)) = diag(Z), which

is the vector stacking the diagonal element of =, we obtain

V9§2)Pct = ( ( )) [E (Pct_l)—i—AVC(PCt_l,Dt_l,Gt_l)} v0£2)Pct_1
+ (V\I'(Pct 1)) U (Pci—1)

Ei_1+ Zét 1Cy9--Cy 1By _j_1,
k=1

40



Finally, 6 = (81,i = N(N — 1) +1,--- ,3N(N — 1)/2) = diag(A), we get

v0§3)PCt = ( ( )) [E (PCt_l) +AVC(PCt—17Dt—1a€t—1)} V9£3>Pct_1
+ (V‘I/(Pct D) C(Pey_1, Dy1y€-1)
Gi—1 + Z Ci 1Ci_g---Cy 1.Gy_p1,
=1

Under Assumption 15, we deduce
E [||R; (80, Re)|)%] < o0

The existence of E [||(9p,D)D; '[|?] was coming from the proof of Lemma 3.2.
Hence, we have shown that, for i = 1,--- ;3N and j,k,l=1,--- ,3N(N —1)/2,

E |16 (607 (00, 00| < o0, and E |67 (6., 000" (61, 6.)]] < o,

proving the result.

(i) Due to the orthogonal conditions, we have

V.. (¢ 6¢(60.0) ) _ ( Eg, [0:(60.0)0¢(c; 60.0)]  Eoy [6:(60,0) e (Bo,0, 60.c) ) o

(60,0, 00.¢) Eg, [¢¢(80,0,00,¢)0t(600)']  Eay [14 (00,05 00,c)0¢ (60,0, 00,c)']

Now we focus on the Hessian matrix J, defined as

J—( Eg, [Vo,0:(60,0)] Eg, [Vo.0:(00.0)] )_ <J11 J12>
Eg, [Vo,%t(00,0,00.c)] Eoy [Vo,0t(00.0,00.c)] Jo1 Jas) '

which is a lower triangular matrix as Eg, [V, 0:(60,)] = 0. Hence to prove J is
positive definite, it is sufficient to prove that each block matrix on the diagonal of
J is positive definite. By assumption, Jos is supposed positive definite. However,
its proof can be lead based on a technical assumption stated in the following note.

O

Lemma 3.5. Suppose the assumptions of theorem (3.3) hold. If O — g in proba-
bility, then
(i) Vo, A1 () — 11, Vo, 9r(0,,00) — Jo1, Ve, Wr(f,,0.) — Jos.
T—o0 T—o0 T—o0

.. AT(HO,U) d
(”) \/T (‘I/T(eo,va 90,0)) —> N (0, I) '

Proof. (i) The first convergence corresponds to the sum of N scores of GARCH log
likelihood. This was proved by Francq and Zakoian (2004).
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We focus first on the last convergence. We apply a Taylor expansion of V@C\P(éT)

around 6.

Vo. U1 (07,0,07) = Vo.Y7(00.0,00.c) + Vo0, Y7070, 07.) (07,0 — Oo,0)
+ Vo.0.Y7(07,0,07.) (Or,c — O0.c) + 0p(1),

(3.18)
with 9:T = 20+ (1 — )07, for z €]0, 1[. Furthermore, we apply the ergodic theorem
to

sup || Va.g,9t(00,0c)], sup ||V, 0t (et; 0, 0c)], (3.19)
0:]|0—0o || < 0:]|0—0p || <

and by Theorem (3.1), we obtain GZT T—> 0o a.s. Those two results imply
—00

T
lim sup Vo0, U7 (0y,0c)[| < limsup >3  sup Voo, (6, 0c)]|
T—o0 T—oo t=1 6:|60—0p||<c

(3.20)
= E[ sup Hvecewt(%@c)ll]a
6:116—6o| <o
and
. . L
lim sup (Voo Ur(0y,0c)| < limsup >°  sup  [|[Vo.p¢e(6,0c)|
T—o00 T—oo t=1 6:]|60—0p||<c (3 21)
- E sup ||V o000, 0.)] | -
0:1|0—0o || <

By Assumption 16, both expectations of (3.20) and (3.21) are finite. Besides, by

Theorem (3.1), 07 T—> 0o a.s., which implies that the two last terms of the r.h.s.
—00

of (3.18) converge to 0. Finally, the ergodic theorem applied to Vg V7(0y.4,00,c)

proves the last convergence of (i).

To prove the second convergence of (i), a Taylor expansion can be applied to
Vo, ¥t(0,,0.). The same steps can be followed as previously: (ii) of Lemma (3.4),

the strong consistency and the ergodic theorem.

(i3) We shall prove that the vector (d;(6o.»), ¥t(f0.,00.)) is a square integrable

martingale difference to apply the central limit theorem of Billingsley.

For inference purposes, the correlation matrix is set to Iy in the first step esti-

mation. The score with respect to the volatility components is given by
5" (6.) = Trace ((In — Dy 'aeyD; ') (D; (99 De) + (99, D) D))

Using u; = Rtl/Qnt with Ry = In, E[mn;] = Iy, and the F;—1 measurability of Dy,
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we obtain

E 6 (01 Fi1| = E[Trace ((In = Dy ete,D") (D7 (99 Dr) + (8, DD ) | Fed]

= 2Trace ((9ys D) Dy
= 2Trace (95, Dy)D; ")) — 2Trace ((9gs Dy) D; 1))

= 0.
(3.22)
For the correlation components, for i =1,--- ;3N (N — 1)/2, the score is
¢t(i)(6?077), 6o,c) = Trace ((IN — Rt_lutug) Rt_l(agéRt)) ) (3.23)

Using u; = Rz / 217t, E [mn,] = In, and the F;_1 measurability of R;, we obtain

E |6 (000,000 Fia| = E[Trace ((Iy — Ry ugut) Ry (9 o)) | Fir
= Trace ((In — B; 'E [wu}| Fi—1]) R;l(aggRt))
— Trace ((IN — R7'RYE [ RY 2) R;l(aeéRt))
= Trace ((In — R;'Ry) Ry ' (0 Ry))
= 0.
(3.24)
Consequently, (3;(60.,),%t(00.0,00.)) is a square integrable martingale difference.

The vector (6t(90’v),1/1,5(907,,,90,0))/ is a function of ¢; together with elements,
which are o (€5, s < t) measurable. By assumption, the process ¢ is stationary.
Consequently, by the central limit theorem of Billinsgley for stationary square inte-

grable martingale difference, we have

\/T< A (fo.0) > AN (07 (Q” Q”)) . (3.25)
Ur(60,0,00,c) Qo1 Q22
O

Proof. We now turn to the proof of Theorem (3.3). To do so, we shall apply a
Taylor expansion around the first derivatives of the first and second step criteria.

Expanding the first quantity in a Taylor series around 6y ,, we obtain
0= Ar(fry) = Ar(6o.0) + Vo, Ar(07,) (éT,v - 90,1}) ,

where ||67., — 60.4]| < |05 — 60| Inverting this relationship and multiplying by
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VT, we have
VT (éT,v - 90,1;) = (—VQUAT@T,U)Y1 VT Ar(o,).

Since O, I 00,0, by the weak convergence of VT Ar(fp,) and the Slutsky
— 00
theorem, we obtain the result of Bollerslev and Wooldridge (1992)

VT (éT,U . 00,7,) LN (0, Ay BoAgY) | (3.26)

With Ao =-E [ngét(t%,v)] and Bg =E [5,5(9071,)&(00,1,)’].

We now apply a Taylor expansion to the second step likelihood around 6y =

(Ao, 00.c), such that ||z, — Oo.c|| < ||f7.c — 00| and
0= Ur(07.,07) = U1(00.0,00.0)+ Vo, U1 (070, O1.c) (éT,v — 90,u)+Vec‘PT(9_T,U, Or.c) (éT,c — 90,c) .

Inverting this relationship and multiplying by /T, we obtain

VT (éT,c - 90,c) = (=Vo, U1 (01, éT,c))_l Vo, VY7 (07, 07 )VT (éT,v - 90,1;)
+ (=Vo, U1 (01, éT,c))_l VT U (60,0, 00.c)-

Using the expansion of the first step likelihood criterion, we obtain

VT (éT,c — 90,c> = (=Vo. U1 (7, éT,c))il Vo, Y1(07,,07.) (—Vo, AT(éT,v))il VT Ar(0o.)
+ (_VOC \IIT<§T,U7 éT,c)) ! \/T \IIT(GO,va 90,0)-

Since éT,c T—> 0o,c, by the weak convergence of VT U7(00,0,60,), by (ii) of Lemma
—00
(3.5) and the Slutsky theorem, we obtain

Ar(f7,) — Ar(8) Q Q
JT - 7( AT,’U) 7(60.0) Ny 11 Q2 '
Vr(070,07) — Vr(60,0,00,c) Qo1 Qo2
Asymptotic normality is a consequence of the convergence in probability of the Hes-
sian quantities, proved in (i) of Lemma (3.5), the convergence of the joint scores and

the Slutsky theorem. As a by-product, simple calculations provide the asymptotic

variances of 0, and 6 .: with obvious notations,

Vas(eT,v) = Jfllllljﬁla

Vas(07.c) = Jog' Inady — Tladyy' — Jog- Iy T + TI T, T o= Jopt Jor J it
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To summarize the proof, we used Lemma (3.5) to prove that we can apply Tay-
lor expansions to the likelihood functions with theoritical scores and Hessians as we
only have the empirical counterparts. The main step for asymptotic normality is in
(ii) in Lemma (3.5), which proves the asymptotic normality of the joint likelihood
functions, the first step and second step. The weak convergence of the empirical
Hessian to their theoritical counterparts is in step (i) of Lemma (3.4). The Slutsky
theorem is finally used to prove the asymptotic normality of Or. Asymptotic nor-
mality also required the existence of the asymptotic variance covariance. This step

is done in Lemma (3.4). O
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A Technical result: Assumption 10, Theorem

(3.1)

Assumption 10 is proved in this section. It is probably the most difficult part as the

nonlinear dynamic of R; should be controlled. To prove Assumption 10, we need a

technical assumption.

Assumption 19. = and A are diagonal matrices such that ||Z||s < 1, and E [log (|| Be.m (X, €)|)] <

0, where
2|V 1|l A
1
Btfl,m(>2> 6) = 0
0

2|1V 1G2l[|A]E]

0
1

VG-l ATIEN™

0
0o --- 0 7
0 1 0

Above, ¢ = ((x¢,me) is the t-innovation of our partial correlation process, where

Xt = (Pct, Dt) is a Fi_1 measurable random vector, denoting by Pc; a random set

of partial correlations that satisfies 4, and Dy is bounded a.e. Moreover, fori = 1,2,

Vi(; is the derivative of (; with respect to its i-th component. Finally, E[||e;||*] < oo.

Now Assumption 10 becomes

,v 1T
sup|QLa,7(0; €) — QLyp(0;€) < 73 sup|log(| By |)
66 =160

~ 17 N
— log(| Ry |)| + i; Sgg!uiRt‘lut — @Ry g
(A.1)

We focus on the second sum, which can be written as

—Z sup|uj Ry 'uy — @y Ry Mg

— 0€o

By definition, u; = Dt_lft and uy = Dt_lﬁt'

written as

TZ sup|Tr (e [

t=160€0O

sup|Tr ([
th1 0e@|

R

YRr!

—Z sup|u; (R

— 0€o

1T

—Z sup|Trace

T4 vco

—R;YD;' + Dy 'Ry

47

— )ut -+ UtR 1(’U,t — ut) + (Ut — ﬂt)lRt_luﬂ

(ut(Rt Y RyYay + ul Ry (ug — i) + (we — @) Ry

Thus, the previous quantity can be

YDt = D+ (D7 = DEYRT DT @)

— BOD + D RSN (DT = DY + (D7 = DR D )|

Ut

)



We shall consider a multiplicative norm for matrices. To fix the ideas, this will be

the spectral norm. Hence, we can bound the Trace operator as
1z —1p—1 _ p-1y—1 T N L | -1 _ /-1 p-17-1
Tt; Zlelg‘Tr <|:Dt (R, =R, )Dy + Dy Ry (D =Dy )+ (D" — Dy )Ry Dy } 5t€£>

<§T DIYNRYIR: — Re||||R7H|||D; Y DYDY Dy — DIl DY (|1 R Rt /
< thlgtelg(ll e IR R — Rell[|[ Ry (1D M| + (1D Dy~ [ De — Del[[|Dg (1 ULR N+ 127 [) lleeer |
We denote

T, = Dy IR IR — Relll BREHIIDE

My = D7D D = DD (IR + 1)

The main issue consists of controlling for (R; — R;). We focus now on the quantity
T, and firstly on || R, — Ry||.

R, — R, = vechof( Fyine(Pey)) — vechof(vae(PNCt)),

= ane(PCt@a]‘L(zv.]))) - szne(P~Ct(Z7]‘L(Zv.])))] 1<ij<N :

]N(Nfl)/z. The one-to-one

Let € > 0, and define the compact set A, = [-1+¢,1—¢
mapping Fyine maps A to [—1 + &1 — NN =D/2 for some € > 0. On A, Fyine is
C', hence V Fy;p. is bounded. Consequently, F;,. satisfies the Lipschitz condition:

there exists C' > 0 s.t., for all z and ¥ € A2, we have
[ Foine() = Foine(Z)]loo < Cllz = Zf|oo- (A2)

If we control the dynamics of these partial correlations, then we can ensure to gen-
erate trajectories within [—1+ €, 1 — €]. The stationary partial correlation processes
are defined as

U(Pe;) = Q+ EU(Pep1) + Al (A.3)

When generating the partial correlation dynamics from arbitrarily fixed initial val-

ues, they are defined as

W(Pe;) = Q+EW(Pe;1) + Al 1. (A.4)
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In this process, the matrices are diagonal. Iterating (A.3), we get

t t
U(Pey) =Y EF'Q+EW(Peg) + Y EF T AG 4, (A.5)
k=1 k=1

where W(.) is applied to each component of the vector Pc; and (;_j is a function
of P¢;_j,. The r.h.s. is an element of RN(N=1/2 We recover P¢; by inverting U(.)

componentwise. (A.3) becomes

t t
PCt = \I/_l(ZEk_IQ + Et\I/(PC()) =+ ZEk_lACt,k).
k=1

k=1

The trickiest part of this proof consists of controlling for the difference Pc; — Pey.
The difficulty comes from the necessary transformation of €;, Dy and R; to recover

(¢ Now we have

5 t t t ~
Pcy— Pey = YUY Z EF1Q + 2N (Peg) + 2 EFIAG k) — U DDERIQ + N (Pey)
= k=1 k=1
t -
+ Z EFIAG 1)
E=1 . )
= VU (X) |E(¥(Pco) — ¥(Peo)) + Z EFTIA(G—k — k)
for some matrix random X. The componentwise derivatives of ¥ ! are the bounded

functions x — pe Hence ||[V¥ ™| < 2/7 and we obtain

|Pe; — Pef| < %llEHtH‘I’(PCO) — W(Peo)|| + illAHZt:!EHklllCt—k — Gl
where (. = C(Xt—k, €1—k), with x4 = (Pci—g, Di—k). This gives the expansion
COXt—tr €1-1)—C(Ri €1-1) = V1C(Xetr €—1) (Pr—k—Per 1)+ Va2l (Xt €1—1) (D —Di ),
where Y; is located between x; and y;. Consequently, we deduce

- t -
SlIPee— Peill < A+ 2A S IIE]* <HV1C(>ZH<, et—k) |1 Pet—r — Perill
k=1

92—k -1 D1 = Diil )

with Ay = 2||Z|||| ¥ (Pco)—U(Pcy)|| /7. Denote ry = ||Pey—Pe|| and dy = || Dy—Dy]|.

Note that r; is uniformly bounded, by a constant that depends on the considered
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norm. To simplify and wlog, this constant will be one here. We obtain

t—1
2 1k _ _
S Aﬁ;HAHZH:H’“ FUIVIC (Xt i) Ire—r + [IV2C (Xe— s €6-1) |dit) - (A6)
k=1
Now we rewrite (A.6), for all ¢ > T and for some m < t large enough that will be
stated after, as

ﬂ,m < Ct,m + Bt—l,m(f(a 6)7:;5—1,m7 (A7)

where C; ,,, = fft + Et,m + ﬁt, and the vectors

ﬁf,m — (T‘t,'l"tf]_, e 7Tt7m+l),y A’t — (At705 e 70)/7 CZE,m — (dta dt717 e adt7m+].)/7

. ¢
Kim = CIAl Y IVt i) IEN*re, 0, ,0),
k=m-+1

. t
Dy = (%HAHkZIIIWC(Xt-k,et_k)IIH:H’“’ldt-k,O, -+, 0)".

(A.8)
These quantities are such that 7% ,, € R™, /_ft e R™, Iét_Lm e R™, ﬁt e R™,
We first focus on C; ,,,. For our matrix norm, we have
[Cemll < [ Aell + [[Kemll + D (A.9)

Now iterating ¢ in (A.7), let 0 < ¢ < ¢ fixed, we obtain

q
ﬁf,m_ t,m t—1,m X € t—2,m X5 €) - By g (X €)C—km t—1,m X,€) - t—qg—1,m X € T_‘;fqul,m'
< Crm+Y Bitm(X OBio2m(X,€) - Bipm (X )Cihm+Bi1m(X,€) - - B (X, €)
k=1

The sequence of matrices By_j (X, €) is stochastic and each of them has a size
+o0o
depending on m. Under our assumptions, the series By, == > H§:1 Bi—jm(X,€)

k=1
is converging a.s. In particular, its main term tends to zero.

q+1

P (|7m| > €) < P(ICeml| > ¢/3) + B(] T IIBt—jm(x. )l > ¢/3)
j=1

q k
+ PO T IBejm( O NC—pmll > €/3) := Ty + Ty + Ts.
k=1j=1

First, let us manage T, i.e. the Cy,, term. Since || ¥(Pcy) — W(Pcp)] is a fixed

finite random variable and since ||Z| < 1,

P(||A¢|| > €/9) <e,
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for ¢ sufficiently large (and independently of m and ¢). Moreover,

t
- 2 _ e E_1_ _
P (Kim >€/9) <P (WHAII > IV m @RI 2™ > e/9) <e
k=m+1
for m sufficiently large and because the latter series converges a.s.
Denote by p the largest parameter among 71, ...,7,. By assumption, p € [0, 1).

Equation (4.6) in Francq and Zakoian (2004) provides supy ||D; — Dy|| < Kp' a.s.
Therefore,

. 2K ! B I
IP(HDtH >e/9) <IP><7THAHZ\%C(xt_k,et_k)\||:||‘f pt >e/9>
k=1

k=1

K[| Al < o
< P( 7r||t HZHV%()&%,et,k)H.tmax(H:H,p)t 1 >€/9>

< €
for ¢ sufficiently large, under our assumptions and the LLN. We deduce T < 3¢, for
a well-chosen (and now fixed) m and for ¢ sufficiently large.

Second, note that the main term of the series B ,, tends to zero a.s. Therefore,

T < € for the previous fixed m and ¢ sufficiently large.

Third, it remains to deal with T5. Actually, it is sufficient to use the same

arguments as for 7. Indeed,

q k q k
PO [T IBe—jn (% N ICe el > €/3) < BO - TT IBe—jm (% 1| Av—rm | > €/9)

k=1 j=1 k=1j=1
9 k q k
+ PO [T IB—jn (% OIK kel > €/9) + PO [T IBe—jiin (% N Ds—pmll > €/9)
k=1j=1 k=1 j=1

= T3+ T30+ T33.

To be specific, due to the finiteness of By,

+oo k

2 ~ i _
Tsr < _P(|[¥(Peo) ~ U(Peo)[IEN D T IBi—sm (X )l > €/9),
k=1 j=1

that is less than e for ¢ sufficiently large (and a fixed m). The terms T39 and T33 are

managed as above, because the multiplication by the (a.e. finite) random variable
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Bt.m does not change the reasoning.

By grouping the all inequalities above and since the reasonings were uniform wrt

0, we get
P (sup |Tm| > e> < Te,
0cO
proving that supgegr: = op(l). Since it is bounded by one and due to the

dominated convergence theorem, this convergence to zero is true in L' or L2,
This is true for |R; — Ry|| too, because of (A.2): supyeg ||[R: — Rt|| = op(1) and
T-1 Zthl suppeo || Rt — Ry|| tends to zero when ¢ — oo.

We now focus on the precision matrix R; ' := [pi?]. Obviously,

itj det(Rt_(Z’])>

e =(-1) det(Ry)

where R, (:9) i3 the covmatrix of R, (the matrix deduced from R, after having
removed line ¢ and column j). But note that Theorem 3.2 in Kurowicka and Cooke
(2006) and Assumption 4 implies that there exists a constant a s.t. det(R) > a >0
a.s. Since det(R;<i’j)) is a finite sum of elements in [—1, 1], this term is bounded

from above. Therefore, there exists a constant M s.t.

sup|[ Ry} < My, as.
6co

The same argument holds for R;: sup||R; || < Mo.
0cO

Since ||D; Y|, ||D; || and ||R; | are uniformly bounded from above, we deduce

1 & Cte T
Pl = sup Ty.|leser]| > e | <P | — sup ||Pes — Pe|.||erel]| > €
(ngeg t-llerey ) < T tz_;ee@” ¢ tll-flecer

Cte 1/2
E [lleer|?]7,
The second term M can be bounded more straightforwardly. Using the station-

Ct
< —F [suprt.HeteQH} < g
€ 0€© €

that is less than ¢ for ¢ sufficiently large.

arity assumption of the GARCH process, there exists U > 0, and p €]0,1[ such
that, a.s.,

hit — hid| < Up.

sup sup
0eO i
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Consequently, M; can be bounded as

sup M; = sup || D7 || D7 11D = Dol 07| (IR + I1771) < €y as, (A10)
0co 0cO

for some constant C'. Then

1 & C — C
P|— M || €€l <P| = tleel]| > €| € =———F U < e,
(TZsug t|etetu>e>_ (T;pnetetu ) < gy B llatl] <

t=10¢

for t sufficiently large.

In other words, we have proved that
1 T
— sup(T; —|—Mt) |€t€/ =op(1).
7 2l lexeyl| = 0p(1)

For the first sum of (A.1) and considering the spectral norm, we have:

log(|Re|) = log(|Re|) = log(|In + (R — R)R; )

IN

Nlog(|[ Iy + (Re — R)RY|)

IN

Nlog(|[In|| + [I(Re = Re) R )

IN

Nlog(1 + |[(Re — R)RY))

< NJ|R: — Re|l|| Ry

By symmetry log(|R¢|) — log(|R¢|) < N||R; — R¢||||R;"|. Using the previous argu-

ments, the first sum of (A.1) converges to 0 when T — co. We proved that

sup|QLa.r(0; €) — QLy (65 €)| = 0p(1). (A.11)
6cO
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