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Abstract

We introduce so-called “single-index copulae”. They are semi-parametric condi-
tional copulae whose parameter is an unknown “link” function of a univariate index
only. We provide estimates of this link function and of the finite dimensional un-
known parameter. The asymptotic properties of the latter estimates are stated.
Thanks to some properties of conditional Kendall’s tau, we illustrate our technical
conditions with several usual copula families.
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1 Introduction

1.1 The framework of single-index dependence functions

Since Sklar’s theorem (1959), copula modeling has emerged as a very active field in the-
oretical and applied research. Applications in finance, insurance, biology, medicine, hy-
drology, etc., are now countless. The origin of this success is the ability of splitting
specification/inference/testing of a (complex) multivariate model into two separate (sim-
pler) problems: the management of marginal distributions on one side, and the modelling
of the dependence structure (copula) on the other side. See the books of Joe (1997) or
Nelsen (1998) for a rigorous presentation of this field.

In practice, it is usual to introduce explanatory variables (also called "covariates") in a
multivariate model, particularly in econometrics or financial risk management. When we
focus on the effect of these covariates on the underlying copulae, we need the concept of
conditional copulae immediately (Patton, 2006). Conditional copulae are a natural way of
linking conditional marginal distributions to get a multivariate conditional law and they
have been applied extensively (see the surveys of Patton 2009, 2012). Recently, the rise of
vine models (Aas et alii, 2009) has extended the scope and the importance of conditional
copulae.

Until now, most conditional copula models were parametric. For instance, they spec-
ify a given functional link between the copula parameters and an index β′z, z being the
underlying vector of covariates: see Rockinger and Jondeau (2006), Patton (2006), Ro-
driguez (2007), Batram (2007), among others. Alternatively, a fully nonparametric point
of view has been proposed by Fermanian and Wegkamp (2012) or Gijbels et alii (2011).
Such techniques rely on kernel smoothing, local polynomials or other tools in functional
estimation. As a consequence, when the dimension of the vector of covariates of larger
than three, such methods suffer from the well-know curse of dimension, and they become
unfeasible in practice.

In this paper, we propose an intermediate solution, through a single-index assumption
on the underlying copula parameter. Therefore, only a finite-dimensional parameter and
a univariate “link” function have to be estimated, avoiding the curse of dimension. Note
that Acar et alii (2011, 2013) have proposed another alternative through local linear ap-
proximations of the link function between covariates and copula parameters. Nonetheless,
the latter approach is based on a linearization (thus approximative) procedure and the
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number of unknown parameters is increasing quickly with the dimension of z.

To fix the ideas and the notations, let us consider an i.i.d. sample of observations
(X i,Zi) in Rd×Rp, that are drawn from the law of (X,Z). The vector X represents the
endogenous vector, and Z is the vector of covariates. We will be interested in the evalua-
tion of the law of X conditional on Z = z, for arbitrary vectors z. This conditional cdf is
denoted by F (·|z). The (marginal) law of Xk, k = 1, . . . , d, given Z = z, will be denoted
by Fk(·|z). We introduce the unobserved random vector Uz = (U1,z , . . . , Ud,z), where
Uk,z = Fk(Xk|z), k = 1, . . . , d. To simplify notations and when there is no ambiguity,
Uz will be often denoted by U . By definition, the law of Uz conditional on Z = z is
the conditional copula of X knowing Z = z, denoted by C(·|z).

First, we live in a parametric framework. A natural model specification would be to
assume that, for any u ∈ [0, 1]d and any z ∈ Rp,

C(u|z) = Cθ(z)(u),

where θ : Rp → Rq maps the vector of covariates to the (true) parameter of the conditional
copula knowing Z = z, and C = {Cθ : θ ∈ Θ ⊂ Rq} denotes a parametric family of
copulae. The copula density of Cθ is supposed to exist and is denoted by cθ. To simplify,
this density is assumed to be continuous for every θ ∈ Θ, and Θ will be a compact subset.

Second, since the single-index assumption will be related to the dependence function
among the components of X, given the covariates, this means there exists an unknown
function ψ s.t.

θ(z) = ψ(β0, β
′
0z), (1.1)

where the true parameter β0 ∈ B, a compact subset in Rm. To identify the parameter
β0, let us assume that the first component of β0, that is β0,1, is equal to one. Under the
single-index assumption (1.1), C(·|z) does depend on (β, β′z) if the underlying parameter
is β. Therefore, this function will be denoted equivalently Cβ(·|β′z) too.

We stress that Assumption (1.1) does not mean that C(·|z), the conditional copula of
X knowing Z = z, is equal to the conditional copula of X knowing β′0Z = β′0z (denoted
by C̃(·|β′0z)). Indeed, in the former case, the relevant margins are the cdfs’ Fk(·|z),
k = 1, . . . , d, and in the latter case, we need to consider the cdfs’ F̃k(·|β′0z) : xk 7→ P (Xk ≤
xk|β′0z). To avoid any confusion, let us denote Ũβ = (F̃1(X1|β′Z), . . . , F̃d(Xd|β′Z)), and
C̃(·|β′Z = y) will be the copula of Ũβ knowing β′Z = y. The conditional copulae C(·|z)

and C̃(·|β′0z) are identical only when Z provides the same information as β′0Z to explain
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every margin Xk, i.e. when Fk(·|z) = F̃k(·|β′0z) a.e. for every k: see Fermanian and
Wegkamp (2012) for a discussion.

1.2 The M-estimate criterion

Single-index models are well-known in the world of semiparametric statistics. The theory
of M-estimators has started with the seminal papers of Klein and Spady (1993) in the
case of the so-called binary response model, and Ichimura (1993) for the general single-
index regression model. Sherman (1994), Delecroix and Hristache (1999) extended this
approach. Härdle et alii (1993) and Delecroix et alii (1999) discussed the choice of the
bandwidth for the nonparametric estimation of the link function. Alternatively, the so-
called average derivative method has been developped in parallel by Stoker (1986), Powell,
Stock and Stoker (1989), Härdle and Stoker (1989), etc.

In this paper, we will rely on M-estimators of single-index models, but related to the
parameter of the underlying copula only. If we were able to observe a sample of the
random vector U , i.e. U i, i = 1, . . . , n, then our "naive" estimator of β0 could be

β̂naive = arg max
β∈B

n∑
i=1

ln cψ̂(β,β′zi)(U i),

for some function ψ̂ that estimates ψ(·, ·) consistently.

Since we do not observe realizations of U , we have to replace the unknown vectors U i

by some estimates Û i, given Zi, providing a so-called pseudo-sample Û 1, . . . , Ûn. Then,
a natural idea is to define our estimator by

β̂ = arg max
β∈B

n∑
i=1

ω̂i,n ln c
ψ̂(β,β′Z i)

(Û i), (1.2)

for some sequence of trimming functions ω̂i,n. Typically, they are of the type ω̂i,n =

1(Û i ∈ En,Zi ∈ Z), for some non decreasing sequence of subsets En in [0, 1]d, and
some Z ⊂ Rp. Such trimming functions allow to control some boundary effects and the
uniform convergence of our kernel estimates. For technical reasons, we will choose strictly
increasing trimmings on the U -side, i.e. ∪nEn = (0, 1)d. This choice makes it necessary to
control explicitly the behavior of U close to the boundary of [0, 1]d. This pretty delicate
task will require several regularity assumptions but the problem has already been met in
the literature (see Tsukahara 2005, for instance). Moreover, we will set a fixed trimming
for Z (i.e. Z ⊂ Rp strictly). This will not create any bias, because the law of the U
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knowing Z ∈ Z, is just cψ(β0,β′0z)(u)1(z ∈ Z)/P(Z ∈ Z). Thus, it depends on the true
parameter β0. See Assumption 1.

Remark 1.1 Actually, fixed trimming functions for Û i could be chosen instead, i.e. En =

E ⊂ [a, 1 − a]d for some a > 0 and every n. They would induce consistent estimates
without having to impose regularity conditions on the copula density close to the frontier
of [0, 1]d. But the asymptotic behavior of β̂ would be more complex. Typically, it would
be asymptotically normal, but after removing an annoying bias that cannot be evaluated
easily. Moreover, beside a small loss of efficiency, this would forbid to model the tail
dependence behaviors, a feature that is important in a lot of fields. That is why we have
chosen β̂, as defined by (1.2).

2 Consistency

2.1 The convergence of single-index estimators

Assumption 1 Let us set Z := [−M,M ]p and En = [νn, 1 − νn]d for some positive
sequence (νn), νn ∈ (0, 1/2), νn → 0. The trimming functions are ωn : [0, 1]d×Rp → [0, 1],
(u, z) 7→ 1(u ∈ En, z ∈ Z).

We set ω̂i,n = ωn(Û i,Zi) simply. For the sake of completeness, we introduce ωi,n :=

ωn(U i,Zi), the trimming function when U i is known, and ωi = ωi,∞ = 1(Zi ∈ Z).

Assumption 2 The parameter β0 is identifiable, i.e. two different parameters induce two
different laws of UZ , knowing Z ∈ Z. The functionM : B → R, β 7→ E[ln c

ψ(β,β′Z)
(UZ) |Z ∈

Z] is continuous and uniquely maximized at β = β0. There exists a measurable function
h s.t., for every z ∈ Z,

sup
β∈B
| ln cψ(β,β′z)(Uz)| ≤ h(Uz , z), with E[h(UZ ,Z).1(Z ∈ Z)] <∞. (2.1)

The latter assumption is usual for maximum likelihood estimation purpose. The lim-
iting objective function is here

M(β) := E
[
ln cψ(β,β′zi)(U i) |Zi ∈ Z

]
.

Note that, due to our trimming functions, we are dealing with a M-estimator of β instead
of a usual MLE formally, at the cost of a (small) loss of efficiency.
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Assumption 3

sup
z∈Z

sup
β∈B

∣∣∣ψ̂(β, β′z)− ψ(β, β′z)
∣∣∣ = oP (1). (2.2)

Moreover, the pseudo-observations Ûi,k belong to (0, 1), k = 1, . . . , d, i = 1, . . . , n, and
there exists a deterministic sequence (δn), δn = o(νn), s.t.

sup
i
|Û i −U i|.1(Zi ∈ Z) ≤ δn a.e. (2.3)

These assumptions have to be checked for any particular single-index model (see the
assumptions (A1) and (A2) in Subsection 2.2) and for any particular estimate of the
marginal cdfs’.

Now, we recall the definition of reproducing u-shaped functions, as introduced in
Tsukahara (2005).

Definition 2.1 • A function f : (0, 1)→ (0,∞) is called u-shaped if it is symmetric
about 1/2 and decreasing on (0, 1/2].

• For β ∈ (0, 1) and a u-shaped function r, define

rβ(u) =

{
r(βu) if 0 < u ≤ 1/2;

r(1− β(1− u)) if 1/2 < u ≤ 1.

If, for every β > 0 in a neighborhood of 0, there exists a constant Mβ such that
rβ < Mβ r on (0, 1), then r is called a reproducing u-shaped function.

• We denote by R the set of univariate reproducing u-shaped functions. The set Rd

is the set of functions r : (0, 1)d → R+, r(u) =
∏d

k=1 rk(uk), and rk ∈ R for every
k. Moreover, rβ(u) =

∏d
k=1 rk,β(uk).

Typically, the usual functions in R are of the type r(u) = Cru
−a(1 − u)−a, for some

positive constants a and Cr.

Assumption 4 There exist some functions r, r̃1, . . . , r̃d in Rd s.t., for every u ∈ (0, 1)d,

sup
θ∈Θ
|∇θ ln cθ(u)| ≤ r(u), E

[
r(UZ)1(Z ∈ Z)

]
<∞,

sup
θ∈Θ
|∂uk ln cθ(u)| ≤ r̃k(u), for every k = 1, . . . , d, and

sup
k=1,...,d

E
[
Uk(1− Uk)r̃k(UZ)1(Z ∈ Z)

]
<∞.
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The latter conditions of moments are easily satisfied for most copula models. They are
close to those of Assumption (A.1) in Tsukahara (2005).

Theorem 2.2 Under the assumptions 1-4, the estimator β̂ given by (1.2) tends to β0 in
probability, when n tends to the infinity.

Proof. For inference purpose and a given sample, the sample size that we use is
actually n̂i =

∑n
i=1 ω̂i,n. This random number is close to ni =

∑n
i=1 ωi,n, the sample size

if the U i were observable. Let us introduce

Mn(β) :=
1

ni + 1

n∑
i=1

ω̂i,n ln cψ̂(β,β′zi)(Û i),

M∗
n(β) :=

1

ni + 1

n∑
i=1

ω̂i,n ln cψ(β,β′zi)(U i),

M∗∗
n (β) :=

1

ni + 1

n∑
i=1

ωi ln cψ(β,β′zi)(U i).

Note that β̂ is the optimizer ofMn(·) because neither ni or n̂i is a function of the underlying
parameter β. By assumption, β0 maximizes M(β) over B. To prove the consistency of β̂,
it is sufficient to show that supβ∈B |Mn(β)−M(β)| = oP (1).

We first show that supβ∈B |Mn(β)−M∗
n(β)| = oP (1). Simple calculations provide

|Mn(β)−M∗
n(β)| ≤ 1

ni + 1

n∑
i=1

ω̂i,n sup
θ∈Θ

∣∣∣∣∣∇θcθ(Û i)

cθ(Û i)

∣∣∣∣∣ · ∣∣∣ψ̂(β, β′Zi)− ψ(β, β′Zi)
∣∣∣

+
1

ni + 1

n∑
i=1

∣∣∣∣ω̂i,n∇ucψ(β,β′zi)
cψ(β,β′zi)

(U ∗i ) · (Û i −U i)

∣∣∣∣ := T1(β) + T2(β),

for some vectors U ∗i s.t. |U i −U ∗i | ≤ |U i − Û i| for all i.
Due to Assumption 3, the vectors Û i and U ∗i we consider in the summations above

belong to a neighborhood of U i whose size may be chosen uniformly wrt i. To be specific,
since δn = o(νn), we can assume that, for every i s.t. ω̂in = 1 and every k = 1, . . . , d, we
have

Ui,k/2 ≤ Ûi,k if Ûi,k ≤ 1/2, and

(1− Ui,k)/2 ≤ (1− Ûi,k) if Ûi,k > 1/2.

For the k-th of the u-shaped functions rk that define r, we deduce

rk(Ûi,k) ≤ rk(Ui,k/2) if Ûi,k ≤ 1/2, and
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rk(Ûi,k) ≤ rk(1− (1− Ui,k)/2) if Ûi,k > 1/2.

In other words, rk(Ûi,k) ≤ rk,1/2(Ui,k) for every i and k. Then, Assumption 4 implies

1

n

n∑
i=1

sup
θ∈Θ

∣∣∣∣∣∇θcθ(Û i)

cθ(Û i)

∣∣∣∣∣ ω̂i,n ≤ 1

n

n∑
i=1

r(Û i)ω̂i,n

≤ 1

n

n∑
i=1

r1/2(U i)ωi ≤
Md

1/2

n

n∑
i=1

r(U i)ωi,

which is integrable. Since ni/n tends to a positive constant a.e., and due to Assump-
tion (2.2), we deduce supβ T1(β) = oP (1).

By a slightly more subtle reasoning, we can obtain supβ T2 = oP (1). Indeed, due to
Assumption 4 and for every ε > 0, there exists η ∈ (0, 1/2) s.t.

sup
k=1,...,d

E[r̃k(UZ){Uk1(Uk < η) + (1− Uk)1(Uk > 1− η)}.1(Z ∈ Z)] < ε.

Invoking Assumptions 3 and the Law of Large Numbers, we have

sup
β∈B

T2(β) ≤ 1

ni + 1

d∑
k=1

n∑
i=1

ω̂i,n |r̃k(U ∗i )| ·
∣∣∣Ûi,k − Ui,k∣∣∣

≤ 1

ni + 1

d∑
k=1

n∑
i=1

ωi |r̃k(U i)| ·
(∣∣∣Ûi,k − Ui,k∣∣∣1{η ≤ Ui,k ≤ 1− η}

+ Ui,k1(Ui,k < η) + (1− Ui,k)1(Ui,k > 1− η))

≤ δn
ni + 1

d∑
k=1

n∑
i=1

ωi |r̃k(U i)| · 1{η ≤ Ui,k ≤ 1− η}+ 2ε,

for n sufficiently large and a.e. Note the r.h.s. of the latter inequality does not depend on
β, and that we have used Ûi,k ∈ (0, 1) for every i = 1, . . . , n and k = 1, . . . , d. Moreover,
we have

1

ni + 1

d∑
k=1

n∑
i=1

ωi |r̃k(U i)| · 1{η ≤ Ui,k ≤ 1− η} ≤ η

ni + 1

d∑
k=1

n∑
i=1

ωiUi,k(1− Ui,k) |r̃k(U i)| ,

that is OP (1) due to the LLN and Assumption 4. Since ε may be arbitrarily small, we
get supβ T2(β) = oP (1), and we have proved supβ∈B |Mn(β)−M∗

n(β)| = oP (1).
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Second, due to Assumption 2 and for every ε > 0, we have

P

(
| 1
n

n∑
i=1

(ω̂i,n − ωi,n) ln cψ(β,β′zi)(U i)| > ε

)

≤ P

(
1

n

n∑
i=1

1(U i ∈ En, Û i 6∈ En,Zi ∈ Z)| ln cψ(β,β′zi)(U i)| > ε/2

)

+ P

(
1

n

n∑
i=1

1(U i 6∈ En, Û i ∈ En,Zi ∈ Z)| ln cψ(β,β′zi)(U i)| > ε/2

)

≤ 2

ε
E
[{

1(U i ∈ En, Û i 6∈ En) + 1(U i 6∈ En, Û i ∈ En)
}
· 1(Zi ∈ Z)| ln cψ(β,β′zi)(U i)|

]
.

But, due to (2.3), we have for any i

1(U i 6∈ En, Û i ∈ En) + 1(U i ∈ En, Û i 6∈ En)

≤ 2
d∑

k=1

{1(Ui,k ∈ [νn − δn, νn + δn]) + 1(1− Ui,k ∈ [νn − δn, νn + δn])} ,

that tends to zero a.e. when n tends to the infinity. Invoking the dominated convergence
Theorem and (2.1), we get

1

n

n∑
i=1

(ω̂i,n − ωi,n) ln cψ(β,β′zi)(U i) = oP (1).

Similarly, we prove n−1
∑n

i=1(ωi,n − ωi) ln cψ(β,β′zi)(U i) = oP (1). We deduce easily
supβ∈B |M∗

n(β)−M∗∗
n (β)| = oP (1) because ni/n tends to a constant a.e.

To conclude the proof, we can apply a usual uniform law of large numbers. For
instance, Lemma 2.4 in Newey and McFadden (1994) tells us that (2.1) insures that
supβ∈B |M∗∗

n (β)−M(β)| = oP (1). Therefore, we get that β̂ tends to β0 in probability.

Until now, we have not specified how we estimate the link function ψ and the pseudo-
observations Û i. This will be the subject of the next two subsections.

2.2 Estimation of the link function ψ

For inference purpose, we need a relationship between the previous link function ψ and
some quantities that can be estimated empirically. Typically, there are two possibilities.

(A1) There exists a known functional Ψ s.t., for any β ∈ Rm,

ψ(β, β′z) = Ψ (Cβ(·|β′z)) . (2.4)
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(A2) There exists a known functional Ψ s.t., for any β ∈ Rm,

ψ(β, β′z) = Ψ (Hβ(·|β′z)) , (2.5)

where Hβ(·|y) denotes the cdf of (X,Z) conditional on β′Z = y.

In numerous practical situations, Assumptions (2.4) and (2.5) are simply moment-like
conditions, as in the GMM methodology: there is a map g : Rm̄ → Rq, m̄ ≥ m, such that

θ(z) = g(m1(β0, β
′
0z), . . . ,mm̄(β0, β

′
0z)),

where mk(β, y) ∈ R, k = 1, 2, . . ., are “moment” relations based on the underlying dis-
tributions. In the case of (2.4), these moment relations are directly linked to conditional
copulae by

mk(β, y) = E[χk(UZ , β
′Z)|β′Z = y] = E[E[χk(UZ , β

′Z)|Z]|β′Z = y]

= E[

∫
χk(u, β

′Z)C(du|Z)|β′Z = y] =

∫
χk(u, y)Cβ(du|β′Z = y), (2.6)

for some known functions χk, k = 1, . . . , m̄.

In the case of (2.5), there exist some “moments” mk(β, y) ∈ R, k = 1, 2, . . ., based on
the underlying distribution of (X,Z) given β′Z = y:

mk(β, y) = E[χk(X,Z)|β′Z = y] =

∫
χk(x, z)Hβ(dx, dz|β′Z = y). (2.7)

During the estimation procedure, the latter moments mk, or more generally the cdfs’
Cβ(·|β′z) andHβ(·|β′z) in (A1) and (A2), will be replaced by some empirical counterparts.
The formalism of (A2) will behave nicer than (A1), because it is simpler to work with the
observations (X i,Zi) directly rather than with vectors U i (i.e. some i.i.d. realizations of
the random vector UZ). Indeed, since UZ cannot be observed, the latter quantities U i

have to be estimated too, adding another level of complexity.

Example: Spearman’s rho.

A natural candidate is given by mk(β, β
′z) = ρ(β, β′z), a multivariate extension of

the usual Spearman’s rho, defined by

ρ(β, y) =

∫ (
Cβ(u|β′Z = y)−

d∏
j=1

uj

)
du.

Through a d-dimensional integration by parts, check that this moment is of the type (2.6).
Therefore, we work under (A1). Other definitions of Spearman’s rho are possible with
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an arbitrary dimension d: see Schmidt and Schmid (2007), for instance. Note that,
when d = 2, ρ(β, y) is simply the correlation between F1(X1|Z) and F2(X2|Z) given
β′Z. Therefore, it can be estimated relatively easily, at least when the dimension of Z is
“reasonable”.

Example: Kendall’s tau. To fix the ideas, let us assume d = 2. The Kendall’s tau
of X conditional on Z = z is

τz = 4

∫
C(u|z)C(du|z)− 1 = 4

∫
Cβ(u|β′z)Cβ(du| β′z)− 1. (2.8)

Since it depends only on β′z, it is denoted by τ(β, β′z). Then, managing Kendall’s tau,
we work under Assumption (A1) usually. The parameter β and then ψ(β, β′z) can be
estimated empirically, replacing Cβ(·|β′z) by an empirical counterpart in the previous
integral.

If (X,Z) and (Y ,Z) denote independent copies knowing Z, note that

E[1(X1 > Y1, X2 > Y2)| β′Z = y]

= E[E[1 (F1(X1|Z) > F1(Y1|Z), F2(X2|Z) > F2(Y2|Z)) |Z]| β′Z = y]

= E[

∫
C(u|Z)C(du|Z)|β′Z = y] =

∫
Cβ(u|y)Cβ(du| y).

This implies that the Kendall’s tau of X given β′Z = y is τ(β, y), under (1.1). Inciden-
tally, we have proved that∫

Cβ(u|y)Cβ(du|y) =

∫
C̃β(u|y) C̃β(du|y), and

τ(β, β′z) = 4

∫
C̃β(u|y) C̃β(du|y)− 1. (2.9)

Moreover, since

E[1(X1 > Y1, X2 > Y2)|β′Z = y] =

∫
Hβ(x,+∞|β′Z = y)Hβ(dx,+∞|β′Z = y),

we recognize Assumption (A2), and

τ(β, β′z) = 4

∫
Hβ(x,+∞|β′z)Hβ(dx,+∞|β′z)− 1. (2.10)

In other terms, Kendall’s tau are of the two types (A1) and (A2) simultaneously. And
the relations (2.9) and (2.10) will be very useful in practice. Indeed, the estimation of
Hβ(·|y) or C̃β(·|y) is less demanding than the non parametric estimation of Cβ(·|β′z): an
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empirical counterpart of Hβ(x|y) or C̃β(u|y) does not suffer from the curse of dimension
because it necessitates only conditioning subsets in R, contrary to Cβ(u|y) that involves
conditioning wrt z ∈ Rp to manage its marginal laws.

In dimension d, many Kendall’s tau can be built, but the same reasonings and conclu-
sions apply. These Kendall’s tau may be associated to any couple of variables (Xi, Xj),
i, j = 1, . . . , d, i 6= j. Or they can be defined formally as in (2.8), with d-dimension
integrals, or even d′-dimension integrals, d′ < d if we focus on some sub-vectors of X.
Globally, all such quantities are linear function of

∫
C(uI ,1Ī |z)C(duI ,1Ī |z), where I is a

subset of {1, . . . , d} and Ī is its complement 1. These dependence measures are candidates
to provide convenient moments. Note the two usual generalizations of Kendall’s tau in
dimension d: the first one has been proposed by Joe (1990) as

τd(z) :=
1

2d − 1

{
2d
∫
C(u|z)C(du|z)− 1

}
, (2.11)

and the second one has been introduced by Kendall and Babington Smith (1940) as the
average value of Kendall’s tau over all possible couples (Xk, Xl), k, l = 1, . . . , d, k 6= l.
See Genest et al. (2011) for details and complementary results.

In practice, the underlying copulae often depend on a few parameters only, say one
or two (Archimedean copulae, typically). In the latter case, their Kendall’s tau and/or
Spearman’s rho are sufficient to identify the underlying copula parameters. And there
often exists an explicit one-to-one relationship between θ and the latter dependence mea-
sures. But, obviously, other moments may be considered, particularly some functionals
of the conditional copula functions only.

Now, let us specify our estimator ψ̂. The simplest solution we adopt is to invoke
kernel-type regression functions. Under (A1), we can replace simply the conditional copula
Cβ(·|β′Z = y) by a consistent estimator Ĉ(·|β′Z = y). Several candidates exist in the
literature. Historically, Fermanian and Wegkamp (2006, published in 2012) were the first
ones to propose a nearest neigbour estimator of conditional copulae. Gijbels et alii (2011)
introduced other non-parametric estimates, including Nadaraya-Watson, Gasser-Müller,
etc.

Under (A2), for every β ∈ B and y ∈ R, set ψ̂(β, y) := Ψ(Ĥβ(·|y)), where

Ĥβ(x, z|y) =
n∑
j=1

wβ,j,n(y)1(Xj ≤ x,Zj ≤ z), (2.12)

1Obviously, uI ,1Ī denotes a d-dimensional vector whose components are uk when k ∈ I, and are equal
to one otherwise.
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wβ,j,n(y) = K

(
β′Zj − y

hn

)
/

n∑
l=1

K

(
β′Z l − y

hn

)
,

for some kernel function K : R → R and some bandwidth sequence (hn), hn > 0. Here-
after, we will remove the latter sub-index n, i.e. h := hn simply for any bandwidth.

To check Condition (2.2), we have to rely on the functional link between the parameter
ψ and the underlying distributions, as evaluated under (A1) and/or (A2). This depends
on the regularity of the corresponding functionals Ψ and on the uniform distance between
the conditional empirical cdfs’ and true ones.

For instance, under (A2), assume Ψ is Lipschitz, with a Lipschitz constant λ (at least
when β ∈ B and z ∈ Z, and then z′β belongs to a real compact subset). For such couples
(β, z), we have

|ψ̂(β, β′z)− ψ(β, β′z)| ≤ λ‖Ĥβ(·|β′z)−Hβ(·|β′z)‖∞

Assuming Ĥβ is given by (2.12) and applying Corollary 3 in Einmahl and Mason (2005),
we obtain

sup
i
|ψ̂(β, β′Zi)− ψ(β, β′Zi)|ωi,n ≤ λ sup

i
‖Ĥβ(·|β′Zi)−Hβ(·|β′Zi)‖∞ωi,n −→ 0,

a.e. and uniformly wrt β ∈ B. This will be sufficient to satisfy (2.2).

Note that Ψ is Lipschitz in the case of Kendall’s tau. Indeed, through an integration
by parts and for two cdfs’ H and H ′ (for which H or H ′ is continuous), we observe that

|
∫
H(·|z) dH(·, |z)−

∫
H ′(·|z) dH ′(·, |z)|

≤ |
∫

(H −H ′)(·|z) dH(·, |z)|+ |
∫

(H −H ′)(·|z) dH ′(·, |z)|

≤ ‖(H −H ′)(·|z)‖∞ ·
(∫
|dH|(·, |z) +

∫
|dH ′|(·, |z)

)
≤ 2‖(H −H ′)(·|z)‖∞.

More generally, under (A2) and if Ψ is Hadamard differentiable, there exist continuous
linear maps Ψ̇i s.t.

ψ̂(β, β′Zi)− ψ(β, β′Zi) = Ψ(Ĥβ(·|β′Zi))−Ψ(Hβ(·|β′Zi))

= Ψ̇i((Ĥ −H)β(·|β′Zi)) + o(‖(Ĥ −H)β(·|β′Zi)‖).

Under some additional conditions (particularly on the Ψ̇i), we get typically the uniformity
of the latter identity wrtZi ∈ Z. But, thanks to Theorem 3 in Einmahl and Mason (2005),
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there exists a sequence of positive numbers (an), an → 0, s.t.

an sup
β∈B

sup
z∈Z
‖(Ĥ −H)β(·|β′z)‖∞ −→ 0

a.e. when n → 0. The latter result is true uniformly wrt bandwith sequences (hn) s.t.
nhn/ lnn >> 1 and hn → 0. Therefore, (2.2) is usually satisfied when Ψ is Hadamard
differentiable.

Note that the uniform consistency of the conditional copula function, simultaneously
wrt to its argument and the conditioning value, is not available in the literature. Therefore,
checking Condition (2.2) under (A1) is more difficult than under (A2).

2.3 The choice of the pseudo-estimations Û

By assumption, β will be the index of the underlying dependence functions (copulae)
only. Therefore, Û i will not depend on β. Now, let us discuss the possible choices for Û i,
i = 1, . . . , n. Actually, in Section 3, we will consider a generic class of estimates s.t., for
all k = 1, . . . , d,

F̂k(x|z)− Fk(x|z) =
1

n

n∑
j=1

ak,n(Xj,Zj, x, z) + rn(x, z), (2.13)

for some sequence (rn(x, z)) that tend to zero sufficiently quickly 2 uniformly in probabil-
ity, and some particular functions ak,n. Then, we will set Ûi,k := F̂k(Xi,k|Zi), i = 1, . . . , n,
k = 1, . . . , d. A lot of estimators of Fk, and then of U i, may be built and satisfy (2.13).

A first example of such estimates is given by parametric marginal conditional distribu-
tions: for every x and z, Fk(x|z) = Gk,θk(z)(x), for some family of cdfs’ Gk := {Gk,θk , θk ∈
Θk}. Since this model is parametric, the function θk depends on a vector of parameters
ηk ∈ Rmk . With a light abuse of notations, set θk(z) = θk(z, ηk), and θk(·, η) is known for
every η. Assume we have found a consistent and asymptotically normal estimate η̂k, and
set F̂k(x|z) = Gk,θk(z,η̂k)(x). This implies Ûi,k = Gk,θk(zi,η̂k)(Xi,k).

Clearly, for every i, there exists θ∗k,i and η∗k s.t.

|Ûi,k − Ui,k| ≤ |∇θGk,θ∗k,i
(Xi,k)| · |∂2θk(Zi, η

∗
k)| · |η̂k − ηk|,

where |θk(Zi, ηk)− θ∗k,i| ≤ |θk(Zi, η̂k)− θk(Zi, ηk)| and |ηk − η∗k| ≤ |η̂k − ηk|.
2in particular to satisfy (2.3)
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Typically, if supθk |∇θGk,θk(Xi,k)| and supηk |∂2θk(Zi, ηk)| are bounded in probability,
the condition (2.3) is satisfied, even without trimming.

Moreover, in a lot of usual cases (M-estimates, e.g.), it can be checked by a limited
expansion that the functions F̂k(x|z) satisfy (2.13). Typically, for asymptotically normal
estimators, we observe nrn(x, z) = OP (1), and this result may be uniform under some
conditions of regularity concerning G and θk(·). Such a choice of conditional margins
induces the so-called estimator β̂(1).

A second candidate is provided by nonparametric estimates of conditional expecta-
tions. A usual kernel-based nonparametric estimator of F (·|z) on Rd is given by

F̂ (x|z) =
n∑
j=1

wj,n(z)1(Xj ≤ x), (2.14)

with weights

wj,n(z) = K (Zj − z,h) /
n∑
l=1

K (Z l − z,h) , (2.15)

where K is a multivariate kernel and h := (h1, . . . , hp) is a p-vector of bandwidths hk > 0.
To simplify and w.l.o.g., we can restrict ourselves on products of p univariate kernels Kk

i.e.

K (Zj − z,h) =
1

h1 · · ·hp

p∏
k=1

Kk

(
Zj,k − zk

hk

)
.

Therefore, nonparametric estimators of every marginal cdf Fk(x|z) are obtained by set-
ting F̂k(x|z) = F̂ (x,+∞(−k)|z). The marginal “unfeasible” observations will be Ui,k =

Fk(Xi,k|Zi), and their estimated versions will be Ûi,k = F̂k(Xi,k|Zi). In this case, it can
be checked that (2.13) is satisfied.

Lemma 2.3 For k = 1, . . . , d, define F̂k as

F̂k(x|z) =
n∑
j=1

wj,n(z)1(Xj,k ≤ x), (2.16)

with the weights given by (2.15). If

• fZ , the density of Z, exists and is strictly positive on Z. Moreover, it is s-times
continuously differentiable, s ≥ 2.

• For every real x and every k, the function h(x, ·) : z 7→ P (Xk ≤ x|Z = z)fZ(z),
defined on Z, is s-times continuously differentiable. Moreover,

sup
x∈R

sup
z∈Z
|dszh(x, z)| is bounded.
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• the underlying kernel K(·,1) is continuous, bounded,
∫
K(z,1) dz = 1, of bounded

variation and compactly supported 3. Moreover, it is a multivariate s-order kernel,
i.e.

p∏
j=1

z
αj
j K(z,1) dz = 0,

for every p-uplet of integers (α1, . . . , αp) s.t. αj ∈ {1, . . . , s− 1} for some index j.

Then, for any k = 1, . . . , d, we have

F̂k(x|z)− Fk(x|z) =
1

n

n∑
j=1

ak,n(Xj,Zj, x, z) + rn(x, z), (2.17)

ak,n(Xj,Zj,x, z) =
1

fZ(z)
(K (Zj − z,h)1(Xj,k ≤ x)− E[K (Zj − z,h)1(Xj,k ≤ x)]

− P (Xk ≤ x|Z = z){K (Zj − z,h)− E[K (Zj − z,h)]}) ,

sup
x∈R,z∈Z

|rn(x, z)| ≤ C1|
max(− ln(

∏p
l=1 hl), ln lnn)

n
∏p

l=1 hl
+ max

l=1,...,p
hsl | a.e., and

sup
x∈R,z∈Z

|F̂k(x|z)− Fk(x|z)| ≤ C2

(
max(− ln(

∏p
l=1 hl), ln lnn)

n
∏p

l=1 hl

)1/2

+ C3 max
l=1,...,p

hsl , a.e.

(2.18)
for some positive constants C1, C2 and C3.

Proof. By straightforward calculations, we get

rn,k(x, z) = r
(1)
n,k(x, z) + r

(2)
n,k(x, z),

r
(1)
n,k(x, z) =

Eĥ(x, z)(ĝ − Eĝ)2(z)

(Eĝ)2ĝ(z)
− (ĥ− Eĥ)(x, z)(ĝ − Eĝ)(z)

ĝ(z)Eĝ(z)
,

r
(2)
n,k(x, z) =

Eĥ(x, z)

Eĝ(z)
− F (xk|z),

ĥ(x, z) =
1

n

n∑
j=1

K (Zj − z,h) .1(Xj,k ≤ x), ĝ(z) =
1

n

n∑
j=1

K (Zj − z,h) ,

that tends typically to g = fZ and h(x, z) = P (Xk ≤ x|Z = z)g(z). By invoking the
equations (3.7) and (3.8) in the proof of Theorem 2 in Einmahl and Mason (2005), we get

3To be specific, this kernel has to be “regular” in the sense of Einmahl and Mason (2005), i.e. it has
to satisfy their assumptions K.i−K.iv.
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the uniform convergence of ĥ (resp. ĝ) towards Eĥ (resp. Eĝ) almost surely, at the same
rate un, where

u2
n :=

n
∏p

l=1 hl
max(− ln(

∏p
l=1 hl), ln lnn)

·

Note their remark 8 justifies the choice of different bandwidths for every component of Z.

Moreover, by usual limited expansion of Eĝ−g and Eĥ−h, we can deal with the bias
term. Due to our assumptions concerning the order of the kernel K and the regularity
conditions on the underlying laws, we obtain easily that r(2)

n,k(x, z) = O(maxl=1,...,p h
s
l ),

providing the result.

As a consequence, the condition (2.3) is satisfied for the nonparametric versions on Û i

and for a wide range of bandwiths. Let us denote the associated estimator by β̂(2).

Between the two previous polar cases, there exist a lot of candidates. For instance, to
avoid the curse of dimension, it may be assumed that some marginal conditional distribu-
tion, say the k-th, will be given by a particular single-index model, but with a parameter
βk ∈ Rmk that is different of β. Assume the latter index βk is estimated consistently by
β̂k. Then, we can adapt easily the previous nonparametric kernel estimator: for any real
number y,

F̂k,β̂k(x|y) =
n∑
j=1

wβ̂k,j,n(y)1(Xj,k ≤ x),

where

wβ̂k,j,n(y) = K

(
β̂′kZj − y

h

)
/

n∑
l=1

K

(
β̂′kZ l − y

h

)
,

for some kernel functionK : R→ R and some bandwidth h > 0. Obviously, F̂k,β̂k(x|y) pro-
vides a nonparametric estimator of the cdf Fk,βk(x|y). In this case, Uk,z = Fk(Xk|β′kz). To
deal with pseudo-observations, we set Ui,k,βk = Fk,βk(Xi,k|β′kZi), and Ûi,k = F̂k,β̂k(Xi,k|β̂′kZi).
For some conditions of regularity, (2.13) can be verified, see for example Du and Akritas
(2002) for such a representation in the more general case where censored data is present.
When all margins are assumed single-index, let us denote by β̂(3) the corresponding β
estimator.

Now, let us check the conditions of Theorem 2.2, particularly Assumption 3, in some
particular cases.

2.4 Examples

Let us illustrate the previous ideas with a few standard copula models.
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Example 1: the Gaussian copula

Let us consider a d-dimensional conditional copula model: for every u and z and with
usual notations, the true underlying copula is

Cβ0(u|Z = z) = CG
Σ(z)(u) = ΦΣ(z)

(
Φ−1(u1), . . . ,Φ−1(ud)

)
,

where the correlation matrix Σ(z) = [θk,l(z)]1≤k,l≤d depends on the index β′0z only. With
our previous notations, Σ(z) = ψ(β0, β

′
0z). It is well-known that every component θk,l(z)

of Σ(z) is a function of a Kendall’s tau: θk,l(z) = sin(πτk,l(β0, β
′
0z)/2), the conditional

Kendall’s tau that is associated to (Xk, Xl), knowing β′0Z = β′0z. The latter quantity can
be estimated by standard nonparametric techniques, and then

ψ̂(β, β′z) =
[
sin(

π

2
τ̂k,l(β, β

′z))
]
.

To be specific, we can choose

τ̂k,l(β, y) := 4

∫
Ĉk,l(u, v|β′Z = y) Ĉk,l(du, dv|β′Z = y)− 1,

for some estimator Ĉk,l(·|β′Z = y) of the conditional copula of (Xk, Xl) given β′Z = y.
Alternatively, we can invoke an asymptotically equivalent estimator

τ̂k,l(β, β
′z) := 4

n∑
i=1

n∑
j=1

wi,h(β
′z)wj,h(β

′z)1(Xk,i < Xk,j, Xl,i < Xl,j)− 1,

for some weights, for instance the standard Nadaraya-Watson kernel

wi,h(y) := K

(
y − β′Zi

h

)
/

n∑
l=1

K

(
y − β′Z l

h

)
.

See Gijbels et al. (2011) for alternative weights and estimators.

Once we have stated ψ̂, it remains to set the marginal cdfs’ Ûk, k = 1, . . . , d, to be able
to calculate our estimator β̂. To fix the ideas, we rely on the standard univariate kernel-
based conditional distributions, as given in (2.15): Ûi,k := F̂ (Xi,k|Zi) and our estimator
is then β̂(2).

Concerning Assumption 2, the only thing to check is (2.1). This is guaranteed when
the random matrix Σ−1(Z) is staying "under control", for instance when all eigenvalues
of Σ(Z) are uniformly bounded from below almost surely. It is sufficient to assume that

sup
z∈Z

sup
β∈B

λmin(ψ(β, β′z)) ≥ λ > 0, (2.19)
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where λmin(Σ) denotes the smallest eigenvalue of any nonnegative matrix Σ. In this case, it
is easy to bound the log-density of X (conditional on Z) from above, and to satisfy (2.1).

Assumption 3 is the most tricky one. In Section 4.1, some sufficient conditions are
given to satisfy (2.2). It remains to check (2.3). We can apply our Lemma 2.3: under its
conditions and if all the bandwidths we consider in Û i behave as the same power of n,
say n−π (the usual case), there exists a constant C s.t.

sup
i=1,...,n

|Û i −U i|.1(Zi ∈ Z) ≤ C
(√

ln(n)n−(1−pπ)/2 + n−πs
)

:= δn a.s.

Note that, for consistency purpose, we can choose any π s.t. π < 1/p. And νn can be
chosen arbitrarily as long as we have νn >> δn, and then the condition (2.3) is satisfied.

Assumption 4 is satisfied for the Gaussian copula, as in most usual copula fami-
lies. In our case and under (2.19), we choose r(u) ∝

∏d
k=1 (Φ−1(uk))

2, and r̃k(u) ∝
Φ−1(uk)

∏d
l=1,l 6=k (Φ−1(ul))

2
/ (φ ◦ Φ−1(uk)).

Therefore, the estimator β̂(2) is consistent under the Gaussian copula framework.

Example 2: the Clayton copula

The Clayton copula is often useful in finance, because it induces left tail dependence,
a common feature of asset returns. When the values of its parameter are strictly positive,
the conditional Clayton copula is written

C(u|z) =

(
d∑

k=1

u
−θ(z)
k − d+ 1

)−1/θ(z)

, u ∈ (0, 1)d,

with θ(z) = ψ(β, β′z) under the single-index assumption. As with the Gaussian copula
model, we can evaluate ψ̂ with conditional Kendall’s tau, because of their one-to-one
mapping. Indeed, invoking Example 1 in Genest et al. (2011), the Kendall tau of a
Clayton model is equal to

τd =
1

2d−1 − 1

{
−1 + 2d

d−1∏
k=0

(
1 + kθ

2 + kθ

)}
.

It is to check that the latter mapping between τ and θ is one-to-one. The density of the
Clayton copula with parameter θ > 0 is given by

ln cθ(u|z) =
d−1∑
k=1

ln(1 + kθ)− (θ + 1)
d∑

k=1

ln(uk)−
(

1

θ
+ d

)
ln

(
d∑

k=1

u−θk − 1

)
.
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Assume that there exists θ and θ s.t., for every z ∈ Z and every β ∈ B, θ ≤ ψ(β, β′z) ≤
θ. Then Assumption 2 is satisfied. Indeed, note that

0 ≤ ln

(
d∑

k=1

u−θk − d+ 1

)
≤

d∑
k=1

ln
(
du−θk

)
≤ d ln(d)− θ

d∑
k=1

ln (uk) .

Denoting V a r.v. that is uniform on (0, 1), we have

E[ln(Fk(Xk|Z))] = EZ

[
E
Xk|Z [ln(Fk(Xk|Z))|Z]

]
= EZ

[
E
Xk|Z [lnV ]

]
= (−1),

and (2.1) follows.

Assumption 3 is satisfied with the same arguments as for the Gaussian copula. As-
sumption 4 can be checked relatively easily. Concerning ∇θ ln cθ(u|z), the relevant repro-
ducing u-shaped function is given by the product of the functions rk(u) ∝ − ln(uk)1(uk ∈
(0, 1/2])−ln(1−uk)1(uk ∈ (1/2, 1)), k = 1, . . . , d. To see this, use the following inequality:
for every u ∈ (0, 1)d,

|
∑d

k=1 u
−θ
k lnuk|∑d

k=1 u
−θ
k − d+ 1

≤ max
k
u−θk ·

∑d
k=1 | lnuk|∑d

k=1 u
−θ
k − d+ 1

≤ −
d∑

k=1

lnuk.

To manage ∇uk ln cθ(u|z), the relevant reproducing u-shaped function is obtained by
replacing rk above by r̄k(u) ∝ u−1

k (1 − uk)−1. Assumption 4 follows by setting r̃k(u) =

r̄k(uk)
∏

l 6=k rl(ul).

Example 3: the Gumbel copula

The d-dimensional Gumbel copula is given by

Cθ(u) := exp

−[ d∑
k=1

(− lnuk)
θ

]−1/θ
 ,

for some parameter θ > 1. It exhibits right tail dependence.

Its Kendall’s tau in dimension d, as defined by (2.11) has been calculated in Genest
et al. (2011):

τd =
1

2d − 1

[
−1 + 2d

∑
C~m

(m− 1)!

(d− 1)!

(
1

2θ

)m−1 d∏
q=1

(
q−1∏
l=1

(k − 1/θ)

)mq]
,

where ~m := (m1, . . . ,md), m = m1+. . .+md, and the summation is taken over all d-uplets
of integers s.t. m1 + 2m2 + . . . ,+dmd = d. For every ~m, C~m denotes a positive constant.
But note that(

1

θ

)m−1 d∏
q=1

(
q−1∏
l=1

(k − 1/θ)

)mq

=

(
1

θ

)d−1 d∏
q=2

(
q−1∏
l=1

(kθ − 1

)mq

:= χ~m(θ),
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and

(lnχ~m)′(θ) ∝ −(d− 1) +
d∑
q=2

q−1∑
k=1

kmq

k − 1/θ

> −(d− 1) +
d∑
q=2

q−1∑
k=1

mq = 0.

Therefore, every function χ~m above is invertible, and the mapping between θ and τ is
one-to-one, as usual. We can use the empirical (conditional) Kendall’s tau to evaluate the
under parameter θ (or θ(z) more generally).

The Gumbel copula density is a linear combination of the functions

cj(u) := Cθ(u)

[
d∑

k=1

(− lnuk)
θ

]j/θ−d d∏
k=1

(− lnuk)
θ−1

uk
,

for some j = 1, . . . , d. In the single-index model, θ is a function of z. Assume that θ(z)

belongs to a fixed interval [θ, θ] ⊂]1,+∞[ almost everywhere. Therefore, the density cθ(z)

of a Gumbel copula satisfies

cθ(z)(u) ≤ Cst.C(u) max
θ∈{θ,θ}


[

d∑
k=1

(− lnuk)
θ

]j/θ−d d∏
k=1

(− lnuk)
θ−1

uk

 ,

for every u ∈ (0, 1)d and some constant Cst. By taking the logarithm of the previous
r.h.s., it is easy to check that (2.1), and then Assumption 2, are satisfied.

Assumption 3 is satisfied with the same arguments as above. After lengthly calcula-
tions, we can check Assumption 4 too, by noticing that

sup
θ∈[θ,θ]

|∂ukcθ(u)| ≤ Cst.hk(u)Cθ(u)/u2
k := r̃k(u),

for some slowly varying functions hk (deduced from the powers of the functions ul 7→ lnul,
l = 1, . . . , d). The function r̃k belongs to Rd since Cθ(u) behaves as uk when uk tends to
zero. Therefore E[Uk(1− Uk)r̃k(U )] <∞.

3 Asymptotic normality

3.1 Notations and assumptions

For convenience, we will denote ψi = ψ(β0, β
′
0Zi) and ψ̂i = ψ̂(β0, β

′
0Zi).
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Introduce the set of indicator functions

H =
{
g : [0, 1]d × Rp → [0, 1], (u, z) 7→ 1(u ∈ Ba,b, z ∈ B̃c,d),

for some Ba,b :=
d∏

k=1

[ak, bk] ⊂ [0, 1]d and B̃c,d :=

p∏
k=1

[ck, dk] ⊂ Rp

}
.

Since all the subsets we consider in H are boxes, it is simple to check that H is universally
Donsker (for instance, see Example 2.6.1 and apply Lemma 2.6.17 in van der Vaart and
Wellner (1996)).

Assumption 5 For every z ∈ Z, assume that ψz : B → Θ, β 7→ ψ(β, β′z) is three
times continuously differentiable. Moreover, set ln c : (0, 1)d × Θ → R, (u, θ) 7→ ln cθ(u).
Assume that ∇u∇2

θ ln cθ(u) exists on (0, 1)d ×Θ.

Assumption 6 Let the functions on (0, 1)d ×Z defined by

f(u, z) =
∇θcθ
cθ |θ=ψ(β0,β′0z)

(u), and f̂(u, z) =
∇θcθ
cθ |θ=ψ̂(β0,β′0z)

(u).

For almost every realization, the functions f and f̂ belong to a Donsker class for the
underlying law of (X,Z), that will be denoted by F1.

Assumption 7 Let the functions on Z defined by

p : z → p(z) = ∇βψ(β, β′z)|β=β0 , and p̂ : z → p̂(z) = ∇βψ̂(β, β′z)|β=β0 .

For almost every realization, the functions p and p̂ belong to a Donsker class for the
underlying law of (X,Z), that will be denoted by F2.

Assumption 8 Assume that

E

[
sup
θ∈Θ
|∇j

θ ln cθ(UZ)|.1(Z ∈ Z)

]
< +∞, j = 2, 3.

Moreover, for every (u,u′) ∈ (0, 1)2d, we have

|∇θ ln cθ(u)−∇θ ln cθ′(u)| ≤ Φ(u).|θ − θ′|, (3.1)∣∣∇2
θ ln cθ(u)−∇2

θ ln cθ′(u)
∣∣ ≤ Φ(u).|θ − θ′|, (3.2)

for some function Φ s.t. E[Φ(U )] <∞.
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Assumption 9 Assume that, for every (β1, β2) ∈ B2 and j = 1, 2,

sup
z∈Z
|∇j

βψ(β1, β
′
1z)−∇j

βψ(β2, β
′
2z)| ≤ C.|β1 − β2|,

where C is a finite constant.

Assumption 10 Assume that

sup
β∈B,z∈Z

∣∣∣ψ(β, β′z)− ψ̂(β, β′z)
∣∣∣ = oP (1), (3.3)

sup
β∈B,z∈Z

∣∣∣∇βψ(β, β′z)−∇βψ̂(β, β′z)
∣∣∣ = oP (1), (3.4)

sup
β∈B,z∈Z

∣∣∣∇2
βψ(β, β′z)−∇2

βψ̂(β, β′z)
∣∣∣ = oP (1). (3.5)

Assumption 11 For every k = 1, . . . , d, there exists a function Γk ∈ Rd s.t.

sup
θ∈Θ
|∂uk∇θ(ln cθ)(u)|+ sup

θ∈Θ

∣∣∂uk∇2
θ(ln cθ)(u)

∣∣ ≤ Γk(u),

E
[
Uα
k (1− Uk)αΓk(UZ).1(Z ∈ Z)

]
<∞,

for some α ∈ [0, 1[.

Assumption 12 Assume that

sup
z∈Z
|ψ̂(β0, β

′
0z)− ψ(β0, β

′
0z)| = OP (η1n),

sup
z∈Z
|p̂(z)− p(z)| = OP (η2n),

with δ1−α
n ηjn = o(n−1/2), for j = 1, 2, and η1nη2n = o(n−1/2).

Assumption 13 Assume that β 7→M(β) is twice continuously differentiable. Its Hessian
matrix at point β0 is denoted by Σ = ∇2

βM(β0), and is invertible.

Assumption 14 For any u ∈ Rd, set

g(u, z) := sup
θ∈B(θ0(z),η1,n)

sup
v∈B(u,δn)

|∇θ ln cθ(v)|,

where B(u, δ) (resp. B(θ, η)) denotes the closed ball of center u (resp. θ) and radius δ
(resp. η). Assume

sup
k=1,...,d

E[g(U i,Zi) · 1(Zi ∈ Z, |Ui,k − νn| < δn)] = o(n−1/2), (3.6)

and similarly after having replaced νn by 1− νn.
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The latter assumption is usually satisfied with a lot of usual copula models. Broadly
speaking and when cθ is continuous wrt its arguments and θ itself, it means that

δn

∫
|∇θcθ(u−k, νn|z)|θ=θ0(z)|.1(z ∈ Z) du−k dPZ(z) = o(n−1/2),

and the same replacing νn by 1−νn. Obviously, we denote by (u−k, νn) the d-dimensional
vector whose components are uj, when j 6= k, and whose k-th component is νn.

3.2 Main results

Theorem 3.1 Under Assumptions 1 to 14,

(β̂ − β0) = −Σ−1 · 1

n

n∑
i=1

ωi,n
∇θcθ
cθ |θ=ψi

(Û i)∇βψ(β, β′Zi)|β=β0 + oP (n−1/2).

Proof. By definition of β̂, ∇βMn(β̂) = 0. Next, a first order Taylor expansion leads
to

−∇βMn(β0) = (β̂ − β0)∇2
βMn(β̃),

where β̃ = β0 + oP (1), using the consistency of β̂.
From Lemma A.3, we have ∇2

βMn(β̃) = ∇2
βM(β̃)+oP (1). Moreover, from Assumption

13 and the consistency of β̂ (hence the consistency of β̃), we get ∇2
βMn(β̃) = Σ + oP (1).

Next, we have

∇βMn(β0) =
1

n

n∑
i=1

∇θcθ
cθ |θ=ψ̂i

(Û i)∇βψ̂(β, β′Zi)|β=β0ω̂i,n.

a. Switch from the trimming functions ω̂i,n to ωi,n.

Under Assumption 14, we can apply Lemma A.1 with the function

χ(U i,Zi) := sup
θ∈Bi,θ

sup
v∈Bi,d

∇θ ln cθ(v) · sup
β∈B

sup
z∈Z
|∇βψ(β, β′z)|, with

Bi,θ := B(θ0(Zi), η1n), Bi,d := B(U i, δn).

This implies

∇βMn(β0) =
1

n

n∑
i=1

∇θcθ
cθ |θ=ψ̂i

(Û i)∇βψ̂(β, β′Zi)|β=β0ωi,n + oP (n−1/2).

Now, decompose

∇βMn(β0) = A1n + A2n +R1n +R2n +R3n,
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where

A1n :=
1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(U i)∇βψ(β, β′Zi)|β=β0ωi,n,

A2n :=
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψi

(Û i)−
∇θcθ
cθ |θ=ψi

(U i)

}
∇βψ(β, β′Zi)|β=β0ωi,n,

R1n :=
1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(Û i)
{
∇βψ̂(β, β′Zi)|β=β0 −∇βψ(β, β′Zi)|β=β0

}
ωi,n,

R2n :=
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψ̂i

(Û i)−
∇θcθ
cθ |θ=ψi

(Û i)

}
∇βψ(β, β′Zi)|β=β0ωi,n,

R3n :=
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψ̂i

(Û i)−
∇θcθ
cθ |θ=ψi

(Û i)

}{
∇βψ̂(β, β′Zi)|β=β0 −∇βψ(β, β′Zi)|β=β0

}
ωi,n.

In this decomposition, we will show that only the first two terms (A1n and A2n) matter,
and that the Rjn, j = 1, 2, 3 are oP (n−1/2).

b. Study of R1n.

First observe that

R1n =
1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(U i){p̂(Zi)− p(Zi)}ωi,n +R′1n,

R′1n =
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψi

(Û i)−
∇θcθ
cθ |θ=ψi

(U i)

}
{p̂(Zi)− p(Zi)}ωi,n.

By a limited expansion, we have

R′1n =
1

n

n∑
i=1

(
∇u∇θ(ln cθ)|θ=ψi(U

∗
i ).(Û i −U i)

)
{p̂(Zi)− p(Zi)}ωi,n,

for some U ∗i s.t. |U ∗i −U i| < |Û i−U i|. In addition, invoking Assumptions 11, note that

|Ûi,k − Ui,k| ≤ Uα
i,k(1− Ui,k)α|Ûi,k − Ui,k|1−α,

for n sufficiently large, uniformly wrt i = 1, . . . , n and k = 1, . . . , d. Thanks to Assump-
tion 12, we deduce

R′1n = OP

(
sup
i
|Û i −U i|1−α · ‖p̂− p‖∞

)
= OP (δ1−α

n η2n) = oP (n−1/2).

Moreover, with obvious notations, R1n can be rewritten as

R1n =
1

n

n∑
i=1

{g̃n(X i,Zi)− g̃(X i,Zi)}ωi,n +R′1n,
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where g̃n and g̃ both belong to F3 = F1.F2.H, which is a Donsker class of functions.
Indeed, the fact that F3 is a Donsker class follows from the permanence properties of
Examples 2.10.10 and 2.10.7 in van der Vaart and Wellner (1996). Moreover, from As-
sumption 12,

sup
x∈Rd,z∈Z

|g̃n(x, z)− g̃(x, z)| = oP (1).

Therefore, the asymptotic equicontinuity of Donsker classes (see section 2.1.2 in van der
Vaart and Wellner (1996) yields,

R1n =

∫
∇θcθ
cθ |θ=ψ(β0,β′0z)

(u){p̂(z)− p(z)}ωn(u, z)dP(U ,Z)(u, z) + oP (n−1/2).

We can replace ωn(u, z) above by 1(z ∈ Z) if

η2n

∫
|∇θcθ(u)|θ=ψ(β0,β′0z)| · |ωn(u, z)− ω∞(u, z)| du dPZ(z) = o(n−1/2).

This is guaranteed under our assumption 14.

Then, under our assumptions, we can apply Fubini’s theorem. This provides∫
∇θcθ
cθ |θ=ψ(β0,β′0z)

(u){p̂(z)− p(z)}1(z ∈ Z)dP(U ,Z)(u, z)

=

∫
{p̂(z)− p(z)}dPZ(z)

(∫
∇θcθ
cθ |θ=ψ(β0,β′0z)

(u)1(z ∈ Z)dP(U |Z=z)(u)

)
= 0,

by definition of ψ(β0, β
′
0z), which maximizes E[ln cθ(Uz)|Z = z] with respect to θ, for

any z ∈ Z. This shows that R1n = oP (n−1/2), and is therefore negligible.

c. Study of R2n.

Write, from Assumption 11 and with obvious notations,

R2n =
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψ̂i

(U i)−
∇θcθ
cθ |θ=ψi

(U i)

}
∇βψ(β, β′Zi)|β=β0ωi,n +R′2n, (3.7)
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where

R′2n =
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψ̂i

(Û i)−
∇θcθ
cθ |θ=ψi

(Û i)

}
∇βψ(β, β′Zi)|β=β0ωi,n

− 1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψ̂i

(U i)−
∇θcθ
cθ |θ=ψi

(U i)

}
∇βψ(β, β′Zi)|β=β0ωi,n

=
1

n

n∑
i=1

{
∇2
θ(ln cθ)|θ=ψi(Û i)−∇2

θ(ln cθ)|θ=ψi(U i)
}
.(ψ̂i − ψi)∇βψ(β, β′Zi)|β=β0ωi,n

+
1

2n

n∑
i=1

{
∇3
θ(ln cθ)|θ=ψ∗i (Û i)−∇3

θ(ln cθ)|θ=ψ̃i(U i)
}
.(ψ̂i − ψi)(2)∇βψ(β, β′Zi)|β=β0ωi,n

=
1

n

n∑
i=1

∇u∇2
θ(ln cθ)|θ=ψi(U

∗
i ).(Û i −U i).(ψ̂i − ψi)∇βψ(β, β′Zi)|β=β0ωi,n

+ OP

(
sup
i
|ψ̂i − ψi|2

)
,

for some U ∗i , ψ∗i and ψ̃i s.t. |U ∗i −U i| < |Û i −U i|, |ψ∗i − ψi| < |ψ̂i − ψi| and |ψ̃i − ψi| <
|ψ̂i − ψi|. Note that we have invoked Assumption 8 to bound the last term on the r.h.s.
The main term on the r.h.s. is OP (η1nδ

1−α
n ) = oP (n−1/2) from Assumptions, 12 and 11

We deduce R′2n = oP (n−1/2).

Next, invoking assumptions 12 and 11, the first term on the right-hand side of (3.7)
can be rewritten as

1

n

n∑
i=1

{hn(U i,Zi)− h(U i,Zi)}ωi,n,

where supu,z |hn(u, z)− h(u, z)| = oP (1), and hn and h both belong to F4 = p.H.F1, as
a consequence of Assumption 6. This is a Donsker class from Example 2.10.10 in van der
Vaart and Wellner (1996). The asymptotic equicontinuity of the Donsker class F4 allows
to write

R2n =

∫ {
∇θcθ
cθ |θ=ψ̂(β0,β′0z)

(u)− ∇θcθ
cθ |θ=ψ(β0,β′0z)

(u)

}
∇βψ(β, β′z)|β=β0

· ωn(u, z)dP(U ,Z)(u, z) + oP (n−1/2).

Decompose ωn(u, z) as ων(u)ωM(z), where ων(u) = 1mink min(1−uk,uk)≥νn , and ωM(z) =

1|z|≤M . The function

φn(z) =

∫ {
∇θcθ
cθ |θ=ψ̂(β0,β′0z)

(u)− ∇θcθ
cθ |θ=ψ(β0,β′0z)

(u)

}
ων(u)dP(U |Z=z)(u),
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is a function of β′0z only. This is due to the fact that the distribution of U given Z only
depends on β′0Z, due to the single-index assumption. With a slight abuse in notations,
we will denote φn(z) = φn(β′0z). This leads to

R2n =

∫
φn(v)

[∫
∇βψ(β, β′z)|β=β0ωM(z)dP(Z |β′0Z)(z|v)

]
dP

β′0Z
(v) + oP (n−1/2).

Next, as a consequence of Lemma A.5, use that∫
∇βψ(β, β′z)|β=β0ωM(z)dP(Z |β′0Z=v)(z) = 0.

This implies R2n = oP (n−1/2).

d. Study of R3n. By the same reasoning as for R2n, we get

R3n =
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψ̂i

(U i)−
∇θcθ
cθ |θ=ψi

(U i)

}
·
{
∇βψ̂(β, β′Zi)|β=β0 −∇βψ(β, β′Zi)|β=β0

}
ωi,n + oP (n−1/2).

Due to Assumption 12 and Assumption 8 (see equation (3.1)), we obtain R3n = oP (n−1/2).

Now, we need to introduce the way we estimate U i by pseudo-observations Û i. There-
fore, additional assumptions are required to achieve asymptotic normality.

Assumption 15 For every k = 1, . . . , d, x ∈ R and z ∈ Z, we can write

F̂k(x|z)− Fk(x|z) =
1

n

n∑
j=1

ak,n(Xj,Zj, x, z) + rn(x, z), (3.8)

for some particular functions ak,n and for some sequence (rn) s.t.

sup
x∈R

sup
z∈Z
|rn(x, z)| = OP (n−1/2).

The latter assumption implies that, for every i = 1, . . . , n and k = 1, . . . , d,

Ûi,k − Ui,k =
1

n

n∑
j=1

ak,n(Xj,Zj, Xi,k,Zi) + rn,i, n
1/2 sup

i
|rn,i| = OP (1).

We will denote an(Xj,Zj,X i,Zi) (or even shorter ai,j) the d-vector whose components
are ak,n(Xj,Zj, Xi,k,Zi), k = 1, . . . , d.

In the case of the kernel-based estimates F̂k of Lemma 2.3, Assumption 15 is satisfied
by using s-order kernels K s.t. supk hk = O(n−1/(2s)) and n1/2

∏p
k=1 hk >> na for some

a > 0. If hk = n−π for all k, this necessitates s ≥ p and π ∈ [1/(2s); 1/(2p)[.
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Assumption 16 Assume that there exists a function W such that

sup
x∈Rd,z∈Z

|E [an(Xj,Zj,x, z)]−W (z,x)| = o(n−1/2),

and such that

E

[∥∥∥Λ
ψ(β0,β′0Z i)

(U i).W (Z,X)∇βψ(β, β′Zi)|β=β0

∥∥∥2

.1(Zi ∈ Z)

]
<∞,

with
Λψ(β0,β′0z) := ∇u∇θ(ln cθ)|θ=ψ(β0,β′0z).

In the case of the kernel-based estimates F̂k of Lemma 2.3, we see that

E [an(Xj,Zj,x, z)] = W (z,x) = 0,

and Assumption 16 is automatically satisfied. This is most often the case with parametric
marginal models too.

Assumption 17 For every k = 1, . . . , d, there exists a function ζk ∈ Rd s.t.

sup
θ∈Θ

∣∣∂2
uk
∇θ(ln cθ)(u)

∣∣ ≤ ζk(u),

E
[
Uγ
k (1− Uk)γζk(UZ).1(Z ∈ Z)

]
<∞,

for some γ ∈ [0, 1]. Moreover, δ2−γ
n = o(n−1/2).

Assumption 18 Assume that

v2
n := E

[
‖an(Xj,Zj,X i,Zi)− E[an(Xj,Zj,X i,Zi) |X i,Zi]‖2

]
<∞.

and v2
n/n = o(1).

Corollary 3.2 Under Assumptions 1 to 18, we have

n1/2
{

Σ.(β̂ − β0) + bn

}
=⇒ N (0, S),

where S = E[ω1M1M′
1], where

M1 =
∇θcθ
cθ |θ=ψ1

(U 1)∇βψ(β, β′Z1)|β=β0 +Λ
ψ(β0,β′0Z1)

(U 1).W (Z1,X1)∇βψ(β, β′Z1)|β=β0 ,

bn = E[(ω1,n − ωi)M1] = E[1(U 1 ∈ [0, 1]d En,Z1 ∈ Z)M1].

Moreover, if

E
[
Λ
ψ(β0,β′0Z1)

(U 1).W (Z1,X1)∇βψ(β, β′Z1)|β=β0

· {1(|Uk,1 − νn| < δn) + 1(|1− Uk,1 − νn| < δn)}] = o(n−1/2), (3.9)

for every k = 1, . . . , d, then n1/2bn = o(1) and n1/2(β̂ − β0) =⇒ N (0,Σ−1SΣ−1).
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Note that the bias bn cannot be removed in general, even if E[ai,j] = 0. Indeed, the
trimming part E[(ωi,n−ωi)Mi] is of order δn typically, that has no reasons to be o(n−1/2).
To remove the asymptotic bias, we need (3.9). The latter condition is easily satisfied with
purely parametric or nonparametric estimates, because W (Z,X) is zero or most often
negligible in such cases.

Proof. We use the same notations as in the proof of Theorem 3.1. Recall that

A2,n =
1

n

n∑
i=1

{
∇θcθ
cθ |θ=ψi

(Û i)−
∇θcθ
cθ |θ=ψi

(U i)

}
∇βψ(β, β′Zi)|β=β0ωi,n,

which can be rewritten as

A2,n =
1

n

n∑
i=1

Λψi(U i).[Û i −U i]∇βψ(β, β′Zi)|β=β0ωi,n +OP (δ2−γ
n )

=: A′2,n + oP (n−1/2),

invoking Assumption 17. Next, under (3.8), we have

A′2,n =
1

n2

n∑
j=1

n∑
i=1

Λψi(U i).ai,j.∇βψ(β, β′Zi)|β=β0ωi,n + oP (n−1/2).

The leading term in A′2,n can be decomposed into A′21 + A′22 where

A′21 =
1

n2

n∑
j=1

n∑
i=1

Λψi(U i).E [ai,j|Zi,X i]∇βψ(β, β′Zi)|β=β0ωi,n, and

A′22 =
1

n2

n∑
j=1

n∑
i=1,i 6=j

Λψi(U i). {ai,j − E [ai,j|Zi,X i]} .∇βψ(β, β′Zi)|β=β0ωi,n + oP (n−1/2).

Due to Assumption 16,

A′21 =
1

n

n∑
i=1

Λψi(U i).W (Zi,X i)∇βψ(β, β′Zi)|β=β0ωi,n + oP (n−1/2).

Next, observe that A′22 is of the form
∑

i<j U(Zi,X i,Zj,Xj), after symmetrization, where

E [U(Zi,X i,Zj,Xj)|Zj,Xj] = E [U(Zi,X i,Zj,Xj)|Zi,X i] = 0.

So, A′22 is a degenerate U−process of order 2. It can be checked easily that its expectation
is zero and

V ar(A′22) = O

(
v2
n

n2
·
∫
|Λψ(β0,β′0z)(u)|2.|∇βψ(β, β′z)|β=β0 |2ωn(u, z) dP

(U ,Z)
(u, z)

)
.
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Under Assumptions 16 and 18, we get A′22 = oP (n−1/2).

We have obtained

A1n + A2n =
1

n

n∑
i=1

ωi,n
∇θcθ
cθ |θ=ψi

(U i)∇βψ(β, β′Zi)|β=β0

+
1

n

n∑
i=1

ωi,nΛψi(U i).W (Zi,X i)∇βψ(β, β′Zi)|β=β0 + oP (n−1/2)

=: n−1

n∑
i=1

ωiMi +Bn + oP (n−1/2),

by introducing a bias term Bn := n−1
∑n

i=1{ωi,n−ωi}Mi, due to the trimming procedure.
Its expectation is denoted by bn = E[(ω1,n − ωi)M1], and its variance is O(n−1δn). The
asymptotic bias is negligible under (3.9), by recalling assumption 14, and then applying
Lemma A.1.

In every case, the result follows from a standard CLT, recalling the expansion of
Theorem 3.1.

3.3 Examples cont’d

Let us check whether the conditions above apply to get the asymptotic normality of β̂ in
the case of the copula families in Subsection 2.4.

Example 1 cont’d: the Gaussian copula.

Obviously, Assumptions 5, 8 and 9 are satisfied. This is the case for Assumption 6
too, because Σ 7→ ln(|Σ|) is Lipschitz under (2.19) and invoking Example 19.7 in van der
Vaart (2007).

To deal with Assumption 7, note that p and p̂ are Lipschitz transforms of conditional
Kendall’s tau τ(β, β′z) and τ̂(β, β′z) respectively. Due to Example 19.20 in van der Vaart
(2007), it is sufficient to show that the functions z 7→ ∇βτ(β0, β

′
0z) and z 7→ ∇β τ̂(β0, β

′
0z)

belong to a Donsker class a.e., assuming the underlying dimension d is two. It follows
from Lemma A.4 and from the relation τ(β0, β

′
0z) = 4

∫
Cβ0(u|β′0z)Cβ0(du|β′0z)− 1 that

∇βτ(β0, β
′
0z) = f1(β′0z) + zf2(β′0z), z ∈ Z,
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with

f1(v) = −E[Z|β′0Z = v,Z ∈ Z]

{∫
c0(u, v)Cβ0(du|v) +

∫
Cβ0(u|v)c0(du, v)

}
,

f2(v) = Z

{∫
c0(u, v)Cβ0(du|v) +

∫
Cβ0(u|v)c0(du, v)

}
,

using the notations of Lemma A.4. In a Gaussian copula family, z 7→ fj(β
′
0z) and

z 7→ f ′j(β
′
0z), are uniformly bounded on Z. Therefore, ∇βτ(β0, β

′
0z) belongs to the class

G = {z ∈ Z → f(β′0z) + zg(β′0z), f, g ∈ C(M)}, with C(M) = {f : ‖f‖∞ + ‖f ′‖∞ ≤
M}. C(M) is a Donsker class from Theorem 2.7.1 in Van der Vaart and Wellner (1996).
Moreover, G is Donsker from Examples 2.10.7 and 2.10.8 in Van der Vaart and Wellner
(1996).

It is also the case for ∇β τ̂ . Indeed, with the notations of Section 4, we can write

τ̂(β, β′z) =
4

n2f̂ 2
β(β′z)

n∑
i,j=1

1(Xj ≤X i)K̃h̃ (β′Zj − β′z) K̃h̃ (β′Zi − β′z)− 1.

A differentiation with respect to β easily shows that ∇β τ̂(β0, β
′
0z) is of the form

∇β τ̂(β0, β
′
0z) = f̂1(β′0z) + zf̂2(β′0z).

The results of Section 4 allow to show that supz∈Z |f̂j(β′0z) − fj(β
′
0z)| = OP (h̃2

n +

[log n]1/2n−1/2h̃
−3/2
n ), and that supz∈Z |f̂ ′j(β′0z)−f ′j(β′0z)| = OP (h̃2

n+[log n]1/2n−1/2h̃
−5/2
n ),

for j = 1, 2. Therefore, z ∈ Z 7→ ∇β τ̂(β0, β
′
0z) belongs to the Donsker class G when

nh̃5
n → 0.

Assumption 10 is coming from the results of Section 4, and simple calculations prove
that Assumption 11 is satisfied for every α > 0.

Recalling the notations of Section 4, we have

sup
z∈Z
|τ̂(β0, β

′
0z)− τ(β0, β

′
0z)| = OP (h̃s̃ + [log n]1/2n−1/2h̃−1/2) := OP (η1n), and

sup
z∈Z
|∇β τ̂(β, β′0z)−∇β0τ(β0, β

′
0z)| = OP (h̃s̃ + [log n]1/2n−1/2h̃−3/2) := OP (η2n).

To fix the ideas, assume h̃ ∼ n−π̃, for some π̃ > 0. Then, to satisfy η1nη2n = o(n−1/2),
it is sufficient we have 4s̃π̃ > 1, s̃ ≥ 2 and 4π̃ < 1. Recall that we had set δn ∼
n−πs + ln2 n.n

−(1−pπ)/2. To satisfy δ1−α
n ηjn = o(n−1/2), j = 1, 2, it is sufficient to have

1 < (1− α) min(2sπ, 1− pπ) + min(2s̃π̃, 1− 3π̃).
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Concerning Assumption 14, it can be checked that the l.h.s. of (3.6) is O (δnνn[Φ−1(νn)]2).
Nonetheless, Φ−1(νn) ∼ −

√
(−2) ln νn, when νn → 0 (see Dominici, 2003). A sufficient

condition is then δnνn| ln(νn)| = o(n−1/2).
Assumptions 15 and 16 are trivially satisfied because we have chosen nonparametric

marginal cdfs’ and we apply Lemma 2.3, for which we have seen that we set W (z,x) = 0.
Assumption 17 is the most demanding and cannot be obtained by the same reasoning

as for Assumption 14. Actually, we recall that the former one has been requested only in
the proof of Corollary 3.2 to show that

1

n

n∑
i=1

∇u∇2
θ(ln cθ)|θ=ψi(U

∗
i ).[Û i −U i]

2∇βψ(β, β′Zi)|β=β0ωi,n = oP (n−1/2),

for some random vectors U ∗i , |U ∗i −U i| ≤ |Û i−U i|. Due to Assumption 3, it is sufficient
to check that

δ2
nE
[
|∇u∇2

θ(ln cθ)|θ=ψi(U i)∇βψ(β, β′Zi)|β=β0 |ωi,n
]

= o(n−1/2).

Due to the bounded-ness of cθ, the latter expectation is less than a constant times∫ Φ−1(1−νn)

Φ−1(νn)

|t| exp(t2/2) dt.

The latter integral behaves as exp ([Φ−1(νn)]2/2). Since Φ−1(νn) ∼ −
√

(−2) ln νn, it is
sufficient to satisfy

δ2
n/νn = o(n−1/2).

Usual variance calculations for kernel densities prove that Assumption 18 is true when
nhp = n1−pπ →∞, i.e. when pπ < 1.

Gathering all the previous constraints, we can exhibit explicit combinations of param-
eters. For instance, we can set

s = 2p, s̃ = 4, π = 1/(2s+ p), π̃ = 1/9, hn ∼ n−1/(2s+p) = n−1/5p, h̃n = n−4/9, α < 1/2,

implying δn ∼ n−2/5 and we choose ν = n−1/5. Note that we need high-order kernels in
general, even in the bivariate case (p = 2).

Similar reasonings allow to exhibit explicit tuning parameters to manage Clayton
and/or Gumbel copula models. They are left to the reader as an exercise.
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4 Conditional Kendall’s Tau

In this section, we show how to check Assumptions 10 and 12 in general, when the condi-
tional margins are estimated non-parametrically. Incidentally, we prove some theoretical
results related to the estimation of conditional Kendall’s tau, that are valuable per se.

We consider the situation of a d-dimensional random vector X, whose conditional
copula will be parameterized by τ(β, β′z), the conditional Kendall’s tau coefficient of this
vector as defined in (2.10) when d = 2, and (2.11) more generally. In other words, we
consider the case where ψ(β, β′z) = Φ(τ(β, β′z)) for some “sufficiently regular” function
Φ. Indeed, Kendall’s tau are commonly used for inference purpose of parametric copulae,
particularly Archimedean and elliptical copulae. Moreover, as explained in Subsection 2.2,
(A1) and (A2) are satisfied in such cases. Finally, we do not suffer from the curse of
dimension because conditional Kendall’s tau are those associated to the copula of X

knowing β′Z.

Introducing a kernel estimator F̂β of Fβ(x|y) = P(X ≤ x|β′Z = y) as F̂β(x|y) =

Ĥβ(x,∞|y) (recall (2.12)), define

τ̂(β, β′z) =
1

2d − 1

{
2d
∫
F̂β(x|β′z)F̂β(dx|β′z)− 1

}
.

In Lemma 4.1 below, we show that the uniform consistency of the conditional Kendall’s
tau coefficient is obtained, provided that we have some convenient convergence rates for
F̂β.

Lemma 4.1 Assume that

sup
x∈Rd,β∈B,z∈Z

|F̂β(x|β′z)− Fβ(x|β′z)| = OP (εn,0). (4.1)

Then,
sup

β∈B,z∈Z
|τ̂(β, β′z)− τ(β, β′z)| = OP (εn,0).

Proof. Decompose

(2d − 1) {τ̂(β, β′z)− τ(β, β′z)} = 2d
∫
{F̂β(x|β′z)− Fβ(x|β′z)}F̂β(dx|β′z)

+ 2d
∫
Fβ(x|β′z){F̂β(dx|β′z)− Fβ(dx|β′z)}.

The first term is OP (εn) due to (4.1). For the second, observe that∫
Fβ(x|β′z){F̂β(dx|β′z)−Fβ(dx|β′z)} = (−1)d−1

∫
{F̂β(x|β′z)−Fβ(x|β′z)}F (dx|β′z),
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which is less than supx,β,z |F̂β(x|β′z)− Fβ(x|β′z)|, and we use again (4.1).

Lemma 4.1 provides some tools to check the first part of Assumptions 10 and 12, if
one assumes that the function Φ is regular enough (that is Hölder with some high enough
Hölder exponent). Similarly, we can derive the uniform consistency of ∇j

β τ̂ for j = 1, 2,

which allows to check the remaining conditions in Assumptions 10 and 12.

Lemma 4.2 Assume that

sup
x∈Rd,β∈B,z∈Z

|∇j
βF̂β(x|β′z)−∇j

βFβ(x|β′z)| = OP (εn,j), (4.2)

for j = 1, 2, and that

sup
j=1,2

∫ ∣∣∇j
βFβ(dx|β′z)

∣∣+
∣∣∣∇j

βF̂β(dx|β′z)
∣∣∣ ≤M,

for some M > 0. Then,

sup
β∈B,z∈Z

|∇β τ̂(β, β′z)−∇βτ(β, β′z)| = OP (max(εn,1, εn,0)), and

sup
β∈B,z∈Z

|∇2
β τ̂(β, β′z)−∇2

βτ(β, β′z)| = OP (max(εn,2, εn,1, εn,0)).

Proof. This is a consequence of applying the ∇−operator to τ̂(β, β′z), and of the com-
pactness of Z.

The next step is to check that, under reasonable conditions, (4.1) and (4.2) hold. To
this aim, let us introduce some assumptions.

Assumption 19 Let K̃ denote a univariate symmetric kernel function of order s̃, s ≥ 2.
It is twice continuously differentiable with bounded derivatives up to order 2. Moreover,
(h̃n) denotes a bandwidth sequence, where h̃n = O(n−a) for some a > 0 and nh̃n →∞.

Note that, in general, the latter triplet (K̃, h̃, s̃) is different from the similar quantities
(K,h, s) that have been invoked to define the pseudo-observations Û i (see Lemma 2.3).

Assumption 20 Let fβ(y) denote the density of β′Z evaluated at point y. Assume that
infβ∈B,z∈Z fβ(y) > c, for some c > 0. Moreover, assume that fβ(u) is s-times continuously
differentiable, with uniformly bounded derivatives.
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The latter assumption is satisfied most of the time, because β′z belongs to a compact
subset when β ∈ B and z ∈ Z 4 In the single-index literature, some authors relaxed
this assumption, by only assuming infz fβ0(u) > c. Nevertheless, Assumption 20 requires
to introduce a trimming procedure, in order to avoid parts of the distribution for which
some fβ(β′Zi) are too close to zero. Such trimming procedures (generally working in
two-steps), that can be extended straightforwardly in our case, have been investigated in
detail for example in Lopez, Patilea, Van Keilegom (2013).

Let A denote a generic set of functions with envelope F . For a probability measure
Q, let N (ε,A, ‖ · ‖2,Q) denote the number of L2(Q)−balls required to cover the set of
functions A, and N(ε,A) = supQ:‖F‖2,Q<∞N (ε‖F‖2,Q,A, ‖ · ‖2,Q).

Assumption 21 A is a class of functions bounded by 1 such that N(ε,A) ≤ Cε−ν .

Moreover, for φ ∈ A, let mφ(y) = E[φ(X,Z)|β′Z = y]. Assume that the functions mφ

are twice continuously differentiable, and their derivatives up to order 2 are bounded by
some finite constant M that does not depend on φ.

We first state Lemma 4.3 that provides consistency rates for kernel weighted sums.

Lemma 4.3 Let L denote a class of functions satisfying Assumption 21. Under Assump-
tion 19, we have

1

nh̃
sup
λ∈L

sup
β∈B,z∈Z

∣∣∣∣∣
n∑
i=1

λ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)
− E

[
λ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)]∣∣∣∣∣
= OP ([log n]1/2n−1/2h̃−1/2).

Proof. Let

B = sup
β,z,λ

∣∣∣∣∣
n∑
i=1

λ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)
− E

[
λ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)]∣∣∣∣∣ ,
and

Bε = E

[
sup
β,z,λ

∣∣∣∣∣
n∑
i=1

εiλ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)∣∣∣∣∣
]
,

where (εi)1≤i≤n are i.i.d. Rademacher variables. Due to Proposition A.6, we have

P (B ≥ A1(Bε + t)) ≤ 2
{

exp(−A′2t2/(nh̃)) + exp(−A2t)
}
, (4.3)

4For instance, assume the arguments y above belong to a fixed interval [a, b] and that Z follows
a Gaussian N (0,Σ). Then β′Z ∼ N (0, β′Σβ) and fβ(y) = exp(−y2/2(β′Σβ)/[

√
2πβ′Σβ]. Since β′Σβ

belongs to a compact [c, d], c > 0, the latter density is larger than exp(−b2/(2d2))/[
√

2πd > 0.
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where A′2 is a constant. Indeed, since the function λ are uniformly and bounded by one,

sup
β,z,λ

V ar

(
λ(X,Z)K̃

(
β′Z − β′z

h̃

))
= O(h̃).

Next, observe that the class of functions

LK̃ =

{
g : Rd ×Z → R, (x, z) 7→ λ(x, z)K̃

(
β′z − β′u

h̃

)
: u ∈ Z, β ∈ B, h̃ ∈ R+

}
,

satisfies the assumptions of Proposition A.7 with σ2 = O(h) and

N(ε,LK̃) ≤ Cε−ν , (4.4)

for some C and ν. The property (4.4) can be obtained from the following: Lemma 22 in
Nolan and Pollard (1987) shows that N(ε,K) ≤ C2ε

−ν2 , where

K =

{
(x, z) ∈ Rd ×Z 7→ K̃

(
β′z − β′u

h̃

)
: u ∈ Z, β ∈ B, h̃ ∈ R+

}
.

Using Assumption 21 and Lemma A.1 in Einmahl and Mason (2000), we get that LK̃ =

L · K satisfies (4.4).

Therefore, we can apply Proposition A.7 to deduce that

Bε ≤ A′n1/2h̃1/2[log(h̃−1)]1/2 = A′′n1/2h̃1/2[log n]1/2. (4.5)

It follows from (4.5) that, for t1 > 2A1A
′′,

P(B ≥ t1n
1/2h̃1/2[log n]1/2) ≤ P

(
B ≥ A1Bε + t1n

1/2h̃1/2[log n]1/2/2
)
.

Applying (4.3) with t = t1n
1/2h̃1/2[log n]1/2/(2A1), we get

P(B ≥ t1n
1/2h̃1/2[log n]1/2) ≤ 2

{
exp(−A′2t21[log n]/(4A2

1)) + exp(−A2t1n
1/2h̃1/2[log n]1/2/(2A1))

}
,

and the result follows.
This Lemma is the cornerstone of Lemma 4.4 belows, which ensures consistency rates

for F̂β and its derivatives.

Lemma 4.4 Let A denote a class of functions satisfying Assumption 21. Then, under
Assumptions 19 and 20,

sup
φ∈A

sup
β∈B,z∈Z

∣∣∣∣∫ φ(x, z){F̂β(dx|β′z)− Fβ(dx|β′z)}
∣∣∣∣

= OP

(
h̃s̃ + [log n]1/2n−1/2h̃−1/2

)
.
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Proof. Write

m̂φ(β′z) :=

∫
φ(x, z)F̂β(dx|β′z) =

1

nh̃f̂β(β′z)

n∑
i=1

φ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)
,

where

f̂β(β′z) =
1

nh̃

n∑
i=1

K̃

(
β′Zi − β′z

h̃

)
, (4.6)

is an estimator of the density fβ(β′z) of β′Z evaluated at β′z. Let

m̂φ(β′z) =
1

nh̃

n∑
i=1

φ(X i,Zi)K̃

(
β′Zi − β′z

h̃

)
= m̂φ(β′z)f̂β(β′z),

and mφ(β′z) = mφ(β′z)fβ(β′z). It follows from Lemma 4.3 that

sup
β,z,φ

|m̂φ(β′z)− E[m̂φ(β′z)]|+ sup
β,z
|f̂β(β′z)− E[f̂β(β′z)]| = OP (

[log n]1/2

n1/2h̃1/2
).

Moreover, using classical arguments on kernel estimators (and Assumptions 21 and 19),
we have

sup
β,z,φ

|E[m̂φ(β′z)]−mφ(β′z)|+ sup
β,z
|E[f̂β(β′z)]− fβ(β′z)| = O(h̃s̃).

The result of the Lemma follows from the fact that the density fβ(β′z) is bounded away
from zero by Assumption 20.

Lemma 4.4 allows to check condition (4.1) by considering φ(x, z) = 1, showing that, in
this case, εn,0 = h̃s̃+[log n]1/2n−1/2h̃−1/2. It also permits to obtain the uniform consistency
rates for ∇j

βF̂β for j = 1, 2, with

εn,1 = h̃s̃ +
[log n]1/2

nh̃3/2
, εn,2 = h̃s̃ +

[log n]1/2

nh̃5/2
.

Indeed,

∇βm̂φ(β′z) =
1

nh̃2

n∑
i=1

1(X i ≤ x).(Zi − z)K̃ ′
(
β′Zi − β′z

h̃

)
,

and the convergence of this term can be studied using Lemma 4.4, but replacing K̃ by
K̃ ′, and setting φ(X,Z) = 1(X ≤ x).(Z − z). The latter function is indexed by (x, z)

that lives into Rd × Z, defining the convenient class A to apply Lemma 4.4. The other
terms obtained by differentiation can be studied in the same way.

Hence, the latter results allow to check whether Assumptions 10 and 12 hold. Indeed,
under some (light) conditions of regularity, we have obtained that

sup
β∈B,z∈Z

|τ̂(β, β′z)− τ(β, β′z)| = OP (h̃s̃ + [log n]1/2n−1/2h̃−1/2),
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sup
β∈B,z∈Z

|∇β τ̂(β, β′z)−∇βτ(β, β′z)| = OP (h̃s̃ + [log n]1/2n−1/2h̃−3/2), and

sup
β∈B,z∈Z

|∇2
β τ̂(β, β′z)−∇2

βτ(β, β′z)| = OP (h̃s̃ + [log n]1/2n−1/2h̃−5/2).
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A Technical lemmas

Lemma A.1 Assume that there exists a deterministic sequence (δn), δn = o(νn), s.t.

sup
i
|Û i −U i|.1(Zi ∈ Z) ≤ δn a.e. (A.1)

Consider an integrable function χ on (0, 1)d × Z. Assume that there exists a sequence
(ξn), ξn → 0, s.t.

E [|χ(U i,Zi)| · 1(Zi ∈ Z){1(|Ui,k − νn| ≤ δn) + 1(|1− νn − Ui,k| ≤ δn)}] ≤ ξn, (A.2)

for all k = 1, . . . , d. Then

1

n

n∑
i=1

|χ(U i,Zi).(ω̂i,n − ωi,n)| = OP (ξn).
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Proof. Note that

P

(
1

n

n∑
i=1

|χ(U i,Zi)| · |ω̂i,n − ωi,n| > ε

)

≤
d∑

k=1

P

(
1

n

n∑
i=1

|χ(U i,Zi)| · 1(Zi ∈ Z, |Ui,k − νn| ≤ |Ûi,k − Ui,k|) > ε/(2d)

)

+
d∑

k=1

P

(
1

n

n∑
i=1

|χ(U i,Zi)| · 1(Zi ∈ Z, |1− νn − Ui,k| ≤ |Ûi,k − Ui,k|) > ε/(2d)

)

≤ 2d

ε

d∑
k=1

E [|χ(U i,Zi)| · 1(Zi ∈ Z).{1(|Ui,k − νn| ≤ δn) + 1(|1− νn − Ui,k| ≤ δn)}]

≤ 2dξn/ε,

proving the result.

Remark A.2 In particular, it is tempting to define, with obvious notations,

ξn := sup
k
E[ sup

uk,|uk−νn|≤δn
|χ(uk,U i,−k,Zi)| · 1(Zi ∈ Z)]

+ sup
k
E[ sup

uk,|uk−1+νn|≤δn
|χ(uk,U i,−k,Zi)| · 1(Zi ∈ Z)],

or even, when it tends to zero,

ξn := sup
k

sup
uk,|uk−νn|≤δn

sup
u−k∈[νn−δn,1−νn+δn]d−1

sup
z∈Z
|χ(uk,u−k, z)|

+ sup
k

sup
uk,|uk−1+νn|≤δn

sup
u−k∈[νn−δn,1−νn+δn]d−1

sup
z∈Z
|χ(uk,u−k, z)|.

Lemma A.3 Under the assumptions of Theorem 3.1,

sup
β∈B
|∇2

βMn(β)−∇2
βM(β)| = oP (1).

Proof. We have

∇2
βMn(β) =

1

n

n∑
i=1

∇θ(ln cθ)|θ=ψ̂i(Û i)∇2
βψ̂(β, β′Zi) ω̂i,n

+
1

n

n∑
i=1

∇2
θ(ln cθ)|θ=ψ̂i(Û i)∇βψ̂i∇β′ψ̂i ω̂i,n

=: B1,n(β) +B2,n(β).
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B1,n(β)− 1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(U i)∇2
βψ̂(β, β′Zi)ω̂i,n =

1

n

n∑
i=1

[
∇θ(ln cθ)|θ=ψ̂i(Û i)

− ∇θ(ln cθ)|θ=ψ̂i(U i) +∇θ(ln cθ)|θ=ψ̂i(U i)−∇θ(ln cθ)|θ=ψi(U i)
]
∇2
βψ̂(β, β′Zi) ω̂i,n

=
1

n

n∑
i=1

[
∇2
u,θ(ln cθ)|θ=ψ̂i(U

∗
i ).(Û i −U i) +∇2

θ,θ(ln cθ)|θ=ψ∗i (U i).(ψ̂i − ψ)
]
∇2
βψ̂(β, β′Zi) ω̂i,n,

for some U ∗i and ψ∗i s.t.

|U ∗i −U i| < |Û i −U i|, |ψ∗i − ψi| < |ψ̂ − ψi|.

From Assumption 11, we get that

sup
β
| 1
n

n∑
i=1

∇2
u,θ(ln cθ)|θ=ψ̂i(U

∗
i ).(Û i −U i)∇2

βψ̂(β, β′Zi) ω̂i,n| = oP (1).

From Assumptions 8 and the uniform consistency of ψ̂(β, β′z) (see (3.5)), we have

sup
β
| 1
n

n∑
i=1

∇2
θ,θ(ln cθ)|θ=ψ∗i (U i).(ψ̂i − ψ)∇2

βψ̂(β, β′Zi) ω̂i,n| = oP (1),

and we deduce

sup
β∈B
|B1,n(β)− 1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(U i)∇2
βψ̂(β, β′Zi)ω̂i,n| = oP (1),

Invoking Assumption 10, equation (3.5), we get

sup
β∈B
|B1,n(β)− 1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(U i)∇2
βψ(β, β′Zi)ω̂i,n| = oP (1).

Since the score function is uniformly integrable (Assumption 4) and applying Lemma A.1
(or the dominated convergence theorem simply), we can replace ω̂i,n by ωi. Therefore,
supβ |B1,n(β)−B1(β)| = oP (1), with

B1(β) =
1

n

n∑
i=1

∇θcθ
cθ |θ=ψi

(U i)∇2
βψ(β, β′Zi)ωi.

Similarly, one can deduce from Assumptions 11 and 10 that supβ |B2,n(β)−B2(β)| =
oP (1), with

B2(β) =
1

n

n∑
i=1

∇2
θ,θ(ln cθ)|θ=ψi(U i)∇βψ(β, β′Zi)∇β′ψ(β, β′Zi)ωi.
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From Assumption 9 and (3.1) and (3.2) in Assumption 8, we can apply Example 19.7 and
Theorem 19.4 in van der Vaart (2007) to deduce that

sup
β∈B
|B1(β)− E[B1(β)] + B2(β)− E[B2(β)]| = oP (1).

Lemma A.4 Let c0(u, v) denote the first order partial derivative of CM
β0

(u|w) with respect
to w evaluated at point w = v, where CM

β (u|w) denotes the conditional copula function of
U conditionally to β′Z and ‖Z‖∞ ≤M (that is Z ∈ Z). We have

∇βCβ(u|β′Z)|β=β0 = c0(u, β′0Z) (Z − E [Z|β′0Z,Z ∈ Z]) .

Proof. The proof is similar to the proof of Lemma 5A in Dominitz and Sherman
(2005), and of Lemma 3.4 in Lopez, Patilea and Van Keilegom (2013). Observe that

CM
β (u|β′Z) = E

[
1U≤u|β

′Z,Z ∈ Z
]

= E
[
E
[
1U≤u|Z

]
|β′Z,Z ∈ Z

]
= E

[
CM
β0

(u|β′0Z)|β′Z,Z ∈ Z
]
,

where we used the single-index assumption for going from line 2 to line 3. Next, let

Γu,Z(β1, β2) = E
[
CM
β0

(u|α(Z, β1) + β′2Z)|β′2Z,Z ∈ Z
]
,

where α(Z, β1) = β′0Z − β′1Z. Hence, CM
β (u|β′Z) = Γu,Z(β, β). As a consequence,

∇βC
M
β (u|β′Z)|β=β0 = ∇1Γu,Z(β, β0)|β=β0 +∇2Γu,Z(β0, β)|β=β0 ,

where ∇j represents the gradient vector with respect to βj. Observe that

∇1Γu,Z(β, β0)|β=β0 = −E [Zc0(u, β′0Z)|β′0Z] .

Moreover, Γu,Z(β0, β) = CM
β0

(u|β′Z), which leads to

∇2Γu,Z(β0, β)|β=β0 = Zc0(u, β′0Z),

and the result follows.

Lemma A.5 Assume that the transformation Ψ is Hadamard differentiable. Then, for
all v, ∫

∇βψ(β, β′z)β=β0dP(Z |β′0Z)
(z|v) = 0.

44



Proof. Let Ψ̇(C(·))[D(·)] denote the Hadamard derivative of Ψ at point C, applied
to function D. Recall that

ψ(β, β′z) = Ψ(CM
β (·|β′z)).

Hence, using Lemma A.4,

∇βψ(β, β′z)|β=β0 = [z − E [Z|β′0Z = β′0z]] Ψ̇
(
CM
β0

(·|β′0z)
)

[c0(·|β′0z)] .

This shows that

∇βψ(β, β′z)|β=β0 = [z − E [Z|β′0Z = β′0z]] Λ(β′0z),

and the result of Lemma A.5 follows.
Finally, Lemma 4.3 invokes two propositions from Einmahl and Mason (2005), that

we recall here.

Proposition A.6 Let G denote a class of functions bounded by 1, and let σ2
G = supg∈G V ar(g(X,Z)).

Then, for all t > 0,

P

(
sup
g∈G

∣∣∣∣∣
n∑
i=1

g(X i,Zi)− E[g(X i,Zi)]

∣∣∣∣∣ ≥ A1(Gε + t)

)
≤ 2

{
exp

(
−A2t

2

nσ2
G

)
+ exp(−A2t)

}
,

for some universal constants A1 and A2, and

Gε := E

[
sup
g∈G
|

n∑
i=1

g(X i,Zi)εi|

]
,

where (εi)1≤i≤n are i.i.d. Rademacher variables independent from (X i,Zi)1≤i≤n.

Proposition A.7 Assume that G is a class of functions satisfying the assumptions of
Proposition A.6 and such that N(ε,G) ≤ Cε−ν for C > 0 and ν > 0. Moreover, assume
that there exists σ2 ≤ 1 such that supg∈G E[g(X,Z)2] ≤ σ2. Then,

Gε ≤ An1/2σ log(1/σ).
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