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Agents' Behavior on Multi-Dealer-to-Client Bond Trading

Platforms∗

Jean-David Fermanian†, Olivier Guéant‡, Arnaud Rachez§

Abstract

For the last two decades, most �nancial markets have undergone an evolution toward elec-

troni�cation. The market for corporate bonds is one of the last major �nancial markets to

follow this unavoidable path. Traditionally quote-driven (that is, dealer-driven) rather than

order-driven, the market for corporate bonds is still mainly dominated by voice trading, but

a lot of electronic platforms have emerged that make it possible for buy-side agents to simul-

taneously request several dealers for quotes, or even directly trade with other buy-siders.

The research presented in this article is based on a large proprietary database of requests

for quotes (RFQ) sent, through the multi-dealer-to-client (MD2C) platforms operated by

Bloomberg Fixed Income Trading and Tradeweb, to one of the major liquidity providers in

European corporate bonds. Our goal is (i) to model the RFQ process on these platforms and

the resulting competition between dealers, (ii) to use the RFQ database in order to implicit

from our model the behavior of both dealers and clients on MD2C platforms, and (iii) to

study the in�uence of several bond characteristics on the behavior of market participants.

1 Introduction

For many years, the trading of corporate bonds1 on the secondary market only took place

over the counter via private negotiations on the phone. The organization of the market cor-

responded to a classical quote-driven one, where market participants are divided into two

groups: clients (the buy-side), i.e. institutional investors, wealth management companies,

∗This research has been conducted with the support of the Research Initiative �Nouveaux traitements

pour les données lacunaires issues des activités de crédit� under the aegis of the Europlace Institute of Fi-

nance. The authors would like to thank Philippe Amzelek, Joe Bonnaud, Laurent Carlier, Stéphane Gai�as,

Jean-Michel Lasry, Jiang Pu, Robin Ryder, Andrei Serjantov, and Vladimir Vasiliev for the discussions they

had on the subject.
†Ensae-Crest, 3 avenue Pierre Larousse, 92245 Malako� Cedex, France. Email:

jean-david.fermanian@ensae.fr
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§Institut Europlace de Finance, 28 Place de la Bourse, 75002 Paris, France. Email:
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1In this article, the term �corporate bonds� encompasses most non-government bonds, issued by �nancial

institutions or other corporates.
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and hedge funds in general, who call dealers (the sell-side) � mainly investment banks � to

buy or sell bonds. In this economic environment, dealers act as market makers or liquidity

providers, whereas clients are liquidity-taker agents. The market was also divided into two

segments: the dealer-to-client (D2C) segment, where transactions occur between dealers

and clients, and the interdealer-broker (IDB) segment.

This traditional description of the corporate bond market is still valid in many ways, but

the way corporate bonds are traded is evolving constantly. Recent evolutions are due to at

least two factors: technological innovation and �nancial regulation.

The electroni�cation of �nancial markets has dramatically changed the way most securities

are traded, and subsequently the organization of most �nancial markets. Electronic order

books are now the norm for a lot of asset classes: stocks obviously, but also U.S. Trea-

suries and foreign exchanges. Although many historically dealer-driven markets eventually

adopted the order-driven paradigm,2 it is di�cult to imagine a similar market organization

for corporate bonds today. One major di�erence between bonds and stocks, to remain in

the �eld of cash markets, has to do with heterogeneity and liquidity. There is usually one

stock for a given company while there are often dozens of bonds for the same company,

corresponding to di�erent maturities, di�erent coupons, and di�erent seniorities. A nat-

ural consequence is that most corporate bonds are illiquid. The Securities Industry and

Financial Markets Association (SIFMA) estimates indeed (see [16]) that the total market

value of stocks is twice the market value of corporate bonds, but that there are more than

six times more listed corporate bonds than listed stocks, and furthermore, the global aver-

age daily volume is assumed to be $17.9 billion for corporate bonds vs. $112.9 billion for

stocks. Even worse, MarketAxess Research (see [11]) estimates that, in 2012, 38% of the

37,000 TRACE-eligible bonds did not trade, even once, and only 1% of these 37,000 bonds

traded every day. The lack of standardization and the illiquidity of most corporate bonds,

along with the buy-and-hold strategy of many investors, make it di�cult the emergence of a

match-based model with order books similar to those of equity markets, except perhaps for

the most liquid corporate bonds. However, electroni�cation occurs, and new models emerge

that are di�erent from those of equity markets.

Technological innovation occurs in the D2C market segment which is �electronifying� in-

creasingly, whereas trades in the IDB market segment remain almost entirely executed via

voice.3 Several types of platforms have emerged. The most important and successful ones

are multi-dealer-to-client (MD2C) trading platforms. Examples of such MD2C platforms

are those proposed by Bloomberg Fixed Income Trading (FIT), Tradeweb and MarketAxess.

They clearly dominate the landscape of electronic trading. With these platforms, there is

still a distinction between dealers and clients, but clients can send simultaneously a request

for quotes to several dealers who have streamed prices to the platforms. Another kind of

2In the case of the UK, the transition occurred in 1997, with the creation of the SETS.
3Although it is still high, the volume of the IDB market segment has been constantly decreasing for

years. The IDB segment is not the purpose of this paper.

2



MD2C electronic platform that is used by many buy-siders (especially small ones) consists

of executable quotes, but only for odd lots. Single-dealer electronic platforms have also

emerged to replace the telephone. Crossing systems, and platforms proposing all-to-all cen-

tral limit order books (CLOB) also exist. They try to revolutionized the classical distinction

between dealers who provide liquidity and clients who take liquidity, but they are still very

rarely used in practice.

An interesting study carried out in [11] shows that the current market structure is far from

being stabilized, given the di�erent viewpoints of market participants on the future organi-

zation of the market. If it is believed that the market will remain for years a dealer-driven

one, with MD2C RFQ platforms holding the lion's share of electronic trading, the evolution

of �nancial regulation will have a lot of in�uence on the market structure and the role of the

di�erent participants. It is already clear that Basel III capital requirement deters invest-

ment banks from holding large inventories. Therefore, their traditional role as dealers may

change from being market makers to simply providing access to the market. This might

encourage all-to-all platforms and give a new roles to large asset managers as specialists

on these platforms. In addition to Basel III, the question of pre-trade transparency for

corporate bonds has been raised in the debate on MiFID 2: the European landscape may

change to apply new rules.

In this paper, we focus on the current state of the market, and on the dominant MD2C

platforms, where buy-siders send quotes to a swath of dealers on a speci�c bond. More

precisely, the process works as follows in the case of a client who wants to buy/sell a given

bond:4

1. The client connects to a platform and sees the bid and o�er prices streamed by the

dealers for the security. These prices, streamed by dealers, correspond to prices for a

given reference size. These streamed prices are not �rm/binding prices.

2. The client selects dealers (up to 6 dealers on Bloomberg FIT for instance), and sends

one RFQ through the platform to these dealers, with a precise volume (notional), and

the side (�buy� order or �sell� order).

3. Requested dealers can answer a price to the client for the transaction (not necessarily

the price he/she has streamed). Dealers know the identity of the client (contrary to

what happens in the case of most of the systems organized around a CLOB) and the

number of requested dealers (the degree of competition for this request). However,

they do not see the prices that are streamed by other dealers. They only see a

composite price at the bid and o�er, based on some of the best streamed prices.

These composite prices in the case of Bloomberg FIT are called the CBBT bid price

and the CBBT o�er price.

4. The client progressively receives the answers to the RFQ. He/She can deal at any time

with the dealer who has proposed the best price, or decide not to trade.

4Sometimes, clients send RFQs with no intention to buy or sell bonds, but only to get information.
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5. Each dealer knows whether a deal was done (with him/her, but also with another

dealer � without knowing the identity of this dealer) or not. If a transaction occurred,

the best dealer usually knows the cover price, if there is one.

The electroni�cation of the request process between supply-siders and liquidity providers

generates a lot of data. For each RFQ they receive, dealers can record information. There-

fore, dealers now have a complete history of their interaction with their clients, in a very

standardized fashion, and they even get noti�ed of trades occurring with competitors when

they participate to a RFQ process.

The work presented in this article is based on a database of RFQs received through Bloomberg

FIT and Tradeweb. It has been supplied by one of the most important dealers in European

corporate bonds (BNP Paribas), that will be called the �reference dealer� in this paper, even

though it does not play a particular role in this market. The proprietary database we got

access to represents a fraction of the RFQs received by this dealer over one year (part of 2013

and 2014). For each RFQ, we observe its characteristics (date, hour, id of the client, Isin of

the bond, buy/sell side, notional, number of dealers requested, etc.), contextual information

(prices streamed and answered by the reference dealer, CBBT bid and o�er prices, etc.),

and the outcomes of the RFQ (whether there was a deal or not, the cover price � if there is

one � in the case of a trade with the reference dealer, etc.).

We build a parsimonious model for the RFQ process, in which the (unobserved) prices an-

swered by other dealers follow an unknown distribution, and where clients decide to trade

or not to trade depending on a (unobserved) reservation value following another unknown

distribution. We apply a Markov chain Monte Carlo (MCMC) method on the database of

RFQs to estimate these distributions for the quotes answered by the dealers, and for the

reservation value of the clients. These distributions are parameterized to take account of

the information available. Therefore, we address questions such as the dependence of the

behavior of dealers on the number of dealers requested, the type of bonds, etc. Similarly,

we analyze how buy-siders behave depending on the context.

Applications of our work are numerous. Assessing the behavior of competitors is indeed

of the utmost importance for a dealer. By modelling the behavior of his competitors in a

better way, a dealer can expect to better analyze/manage hit ratios, and better estimate

the probability to trade at a given price. Competition can also be analyzed: the behavior of

dealers answering a RFQ indeed depends on the degree of competition, i.e. the number of

dealers requested. A good model to estimate the reservation value of clients with respect to

a bond is also key for a dealer: it is one of the most important inputs for choosing the quote

he/she answers to the client in the RFQ process. Our model leads to very general input

functions for market making models. In a nutshell, the goal of market makers / dealers,

is to quote bid and o�er prices so as to make money out of the spread between these two

prices, while mitigating the risk of price changes on the value of the inventory. Old market

making models include those of Ho and Stoll [8, 9]. More recently, Avellaneda and Stoikov

[1] (see also [6] for closed-form expressions for the optimal quotes) proposed a model that
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could be applied to quote-driven markets such as the corporate bond market.5 However,

the exponential form of the execution intensities used in [1] and [6] is at odds with reality.

The more general model presented in the appendix of Guéant and Lehalle [5] or in [7] goes

beyond the case of exponential intensities, and it may be adapted to incorporate the �ndings

of this paper in a dynamic market making model.

In Section 2, we describe our model for the RFQ process. In Section 3, we present the

features of our dataset and some adapted estimation methods. Empirical results are shown

in Section 4. In particular, we discuss the in�uence of several covariates to explain the

behavior of both dealers and clients. In Section 5, we discuss possible extensions of our

model.

2 The model for dealers' quotes and clients' behavior

We have described above the RFQ process on platforms such as Bloomberg FIT. Now, let

us specify the model we propose for the behavior of dealers and clients, along with the

associated notations.

To simplify, we consider in what follows the case of a RFQ i corresponding to a �buy� order6

(the mechanism is similar for a �sell� order):

1. A (prospective) client has identi�ed a speci�c corporate bond that may be of interest

for him/her. He/she sees the prices streamed by dealers for this bond, and believes

that it is worth sending a (buy) RFQ.7 We denote by Vi the client's view on the value

of the bond.

2. This client sends a RFQ to ni + 1 dealers � ni ∈ {0, . . . , 5} � to buy a number of

bonds corresponding to a speci�c amount of cash.8 Each dealer k = 0, . . . , ni sees the

CBBT bid and o�er prices which are composite prices based on the prices streamed

by dealers. Dealer k also has his/her own evaluation of the bond price, and we assume

that he/she answers a price Wk,i to the client,9 without collusion between dealers.

These prices are binding, in the sense that Wk,i will be the transaction price if the

dealer k is chosen by the client for this deal. Therefore, the ni + 1 dealers compete

with each other to be chosen by the client.

5The model was initially built for market making on stock markets, but it is better suited for market

making on quote-driven markets.
6A �buy� (resp. �sell�) order means that the client sends a request to buy (resp. sell) the bond. The

dealer then answers a quote to sell (resp. buy) the bond.
7The client may believe that the value of this bond is likely to increase in the future, and he/she expects

to sell it back. Alternatively, he may think that a buy-and-hold strategy is pro�table, given the current

evaluation of the market for that corporate bond.
8This amount is called the notional of the RFQ.
9This is a strong assumption because some dealers do not answer or do not have the time to answer.

This assumption will be revisited in Section 5.
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3. We assume that a deal occurs if and only if a dealer proposes a bond price that is lower

than Vi.
10 In that case, the transaction occurs between the client and a dealer chosen

by the client amongst the dealers who have proposed the lowest price. In particular,

the deal price is mink=0,...,ni
Wk,i.

Obviously, the whole previous process depends on the bond characteristics and the public

market information at the time of the RFQ. We assume that this information is summarized

into a σ-algebra Ωi.

In full generality, the quoting processes of dealers for �buy� and �sell� orders should not

be identical, because inventory management and business-related incentives di�er. This

should be the case on the client side too, although this is less intuitive. We model both the

reservation value Vi of clients and the price answered by dealers Wk,i by random variables.

Throughout this paper, F (or in fact F (· |Ωi)) refers to the cumulative distribution func-

tion of the variable Wk,i, and G (or in fact G(· |Ωi)) refers to the cumulative distribution

function of the variable Vi, in the case of a �buy� RFQ.11 In the case of a �sell� RFQ, the

same notations are used, with a star: F ∗, G∗, etc. Note that the distributions of dealers'

quotes are assumed to be the same across dealers. Moreover, for the sake of simplicity, we

assume this is the case for clients too, even though it is possible � and easy � to associate

di�erent functions G and G∗ to di�erent clients.

To complete the model speci�cations, we need to state our assumptions concerning the

functional form of the functions F and G, and similarly for F ∗ and G∗.

Because the CBBT bid and o�er prices constitute reference prices, and because the streamed

bid-to-mid ∆i (i.e., half the streamed bid-ask spread12) constitutes a proxy of liquidity �

which is crucially linked to the level of risk aversion associated with bond quoting �, it is con-

venient to work with �reduced quotes�: (Vi−CBBTi)/∆i for clients, and (Wk,i−CBBTi)/∆i

for dealers, where CBBTi is the CBBT o�er price in the case of a �buy� RFQ, and the CBBT

bid price in the case of a �sell� RFQ.

In other words, it makes sense to assume that

F (ξ|Ωi) = F0

(
ξ − CBBTi

∆i

)
, F ∗(ξ|Ωi) = F ∗

0

(
ξ − CBBTi

∆i

)
, (2.1)

G(ξ|Ωi) = G0

(
ξ − CBBTi

∆i

)
, G∗(ξ|Ωi) = G∗

0

(
ξ − CBBTi

∆i

)
, (2.2)

for some cumulative distribution functions F0, F
∗
0 , G0, and G∗

0.
13

10For that reason, we refer to Vi as the reservation price or reservation value of the client.
11We denote by f and g the corresponding probability density functions.
12One could alternatively use the CBBT bid-ask spread.
13The CBBT bid and o�er prices and the streamed bid-to-mid spread are both included into Ωi.
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Furthermore, we may want to include some bond characteristics, or evaluate the e�ect of

some covariates (volume, investment grade/high-yield, maturity, issuer, inventory, etc.).

These covariates can be stacked into a vector Z that contains two subgroups of variables,

i.e. Z := [Z1, Z2]
′: the variables indexed by 1 have a direct in�uence on the quotes/prices,

whereas the variables indexed by 2 have to be compared to reduced quotes. This leads to:

F (ξ|Ωi) = F0

(
ξ − CBBTi − Z ′

i,1bD

∆i
− Z ′

i,2cD

)
,

F ∗(ξ|Ωi) = F ∗
0

(
ξ − CBBTi − Z ′

i,1b
∗
D

∆i
− Z ′

i,2c
∗
D

)
, (2.3)

G(ξ|Ωi) = G0

(
ξ − CBBTi − Z ′

i,1bC

∆i
− Z ′

i,2cC

)
,

G∗(ξ|Ωi) = G∗
0

(
ξ − CBBTi − Z ′

i,1b
∗
C

∆i
− Z ′

i,2c
∗
C

)
, (2.4)

for some vectors of parameters bD, b
∗
D, bC , b

∗
C , cD, c

∗
D, cC , and c∗C (to be estimated).

In (2.1) and (2.2), there is no dependency on the number of dealers. In what follows, we

often consider instead the following speci�cation:14

F (ξ|Ωi) = F0

(
ξ − CBBTi

∆i
;ni

)
, F ∗(ξ|Ωi) = F ∗

0

(
ξ − CBBTi

∆i
;ni

)
, (2.5)

G(ξ|Ωi) = G0

(
ξ − CBBTi

∆i
;ni

)
, G∗(ξ|Ωi) = G∗

0

(
ξ − CBBTi

∆i
;ni

)
, (2.6)

for some cumulative distribution functions F0(·;n), F ∗
0 (·;n), G0(·;n), and G∗

0(·;n), where
n ∈ {0, . . . , 5}, correspond to the numbers of dealers requested in addition to the reference

dealer.

In this paper, we rely on a parametric speci�cation of the above distributions. To estimate

the model, we have used a large sample of RFQs obtained from one of the dealers (the

�reference dealer�). All the prices answered by this dealer are denoted by the letter Y . In

other words, the price answered by the reference dealer for the RFQ i is Yi.

We have observed that the empirical distribution of ((Yi − CBBTi)/∆i)i is leptokurtic (fat

tailed), very spiky around the composite price and asymmetric. We guess most dealers

should behave similarly. Therefore, we would like to exhibit a �exible parametric family

with such features. For that purpose, we promote the use of the skew exponential power

distribution (SEP), for which the skewness and the kurtosis have been shown to belong to

rather wide intervals.

14We can also add the same covariates as above, obviously.
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As a preliminary, let us recall the exponential power distribution (see [17]) whose probability

density function is

fEP (x;µ, σ, α) =
1

cσ
exp (−|z|α/α) , x ∈ R,

where α > 1, µ ∈ R, σ > 0, z := (x− µ)/σ and c := 2α1/α−1Γ(1/α).15

The density of the SEP distribution is deduced from the general methodology to accommo-

date asymmetry proposed by Azzalini in [2]: one introduces an additional parameter λ ∈ R
that re�ects asymmetry, and the density of the SEP distribution is given by

fSEP (x) = 2Φ (w) fEP (x;µ, σ, α), x ∈ R, (2.7)

where w := sign(z)|z|α/2λ(2/α)1/2, and Φ is the cumulative distribution function of the

standard normal distribution. Such a distribution is denoted by SEP (µ, σ, α, λ).

We stack all the SEP parameters into a vector θ := (µ, σ, α, λ). The SEP reduces to the

exponential power when λ = 0, to the skew normal when α = 2, and to the normal when

(λ, α) = (0, 2). In what follows, we always consider α ≤ 2, because we want our distribu-

tions to be fat-tailed. We refer the interested reader to Azzalini [3] and DiCiccio and Monti

[4] for detailed results concerning this family of distributions.

It must be noted that µ and σ are not the mean and standard deviation of a SEP (µ, σ, α, λ)

distribution. These parameters are called �location� and �scale� instead. The even moments

of a random variable Z ∼ SEP (0, 1, α, λ) are given by

E[Z2m] = α2m/αΓ((2m+ 1)/α)/Γ(1/α),m ∈ N, (2.8)

and the odd moments by

E[Z2m+1] =
2α(2m+1)/αλ

√
πΓ(1/α)(1 + λ2)s+1/2

∞∑
n=0

Γ(s+ n+ 1/2)

(2n+ 1)!!

(
2λ2

1 + λ2

)n

, (2.9)

where s = 2(m+ 1)/α and (2n+ 1)!! := 1 · 3 · · · (2n− 1) · (2n+ 1) � see [4]. In particular,

when λ ≥ 0, E[Z] ≥ 0.

Hereafter, we always assume that the cumulative distribution functions F0, F
∗
0 , F0(·;n) and

F ∗
0 (·;n) are all of the skew exponential power type, n = 0, . . . , 5.

As far as clients are concerned, we do not have any empirical intuition for the form of the

distribution of reservation values. Therefore, by default, we propose to use a rather naive

distribution. We assume that Vi is Gaussian conditionally to Ωi: in the case of a �buy�

(resp. �sell�) order, G0(· |Ωi) (resp. G∗
0(· |Ωi)) is the cumulative distribution function of

a Gaussian random variable N (ν, τ2) (resp. N (ν∗, (τ∗)2)). When a client is interested in

15Despite the presence of an absolute value, this density is di�erentiable with respect to its parameters

because of the constraint α > 1. In other words, the maximum likelihood estimator satis�es the �rst order

conditions.
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buying (resp. selling) a particular bond, we expect that he/she thinks that the bond is

underpriced (overpriced) by the market. In other words, we expect ν > 0 and ν∗ < 0. That

will be con�rmed empirically (see Section 4).

3 Estimation of the model parameters

3.1 The dataset

If all the quotes Vi and Wk,i and the �nal outcomes of (a subset of) RFQs were available, it

would be easy to infer F and G. Unfortunately, this is not the case. Actually, every dealer

faces a partial information problem, because the amount of information he/she can retrieve

from the RFQs is strongly constrained and limited. For convenience, let us adopt the point

of view of the �reference dealer�.

To be speci�c, the reference dealer gets the following information with RFQ i:16

• The output Ii of the RFQ:
17

� Ii = 1 (Done), when the RFQ resulted in a trade with the reference dealer,

� Ii = 2 (Traded Away), when the RFQ resulted in a trade, but with another

dealer.18

� Ii = 3 (Not Traded), when the RFQ resulted in no trade.

• The second best dealer price Ci, called the �cover price�, when the reference dealer

has made the deal, and when there was another answer.

• Yi, the price/quote answered by the reference dealer for this RFQ. Note that this is

the price of the deal when Ii = 1, i.e. when the reference dealer has been chosen by

the client.

• ni, the number of dealers requested during this RFQ, in addition to our reference

dealer (ni ≤ 5 with this convention).19

16More information is available, in particular, the identity of the client is known by the dealer before he

answers a price. We have not used this information in this paper.
17We only considered the RFQs for which the reference dealer has answered a quote.
18Additional information is actually available when a RFQ has been �traded away� (Ii = 2). Indeed,

another discrete dummy variable Ji ∈ {1, 2, 3, 4} is then available:

∗ Ji = 1 means �Tied� (traded away), i.e. the reference dealer has proposed exactly the same price as

the winner, but has not been chosen.

∗ Ji = 2 means �Covered� (traded away), i.e. the reference dealer has proposed the second best price,

and was the only dealer to propose this price.

∗ Ji = 3 means �Tied covered� (traded away), i.e. the reference dealer has proposed the second best

price, but another dealer has been in exactly the same situation.

∗ Ji = 4 is the �Other� traded away case, that corresponds to the other con�gurations.

19We only considered the cases ni ≥ 1, because ni = 0 is speci�c.
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• Zi, a vector of bond characteristics.

Our dataset contains a N -sample of such information. After �ltering, the number N of

�buy� (resp. �sell�) RFQs is equal to 192,855 (resp. 228,903).

The available information Ωi for all market participants, includes the variables ni, Zi and

the standard market information (news, Bloomberg quotes, etc.), in addition to CBBT

prices. The information of a given RFQ is assumed to be independent of other RFQs. In

particular, we assume no �learning� e�ect, i.e. the clients do not learn from past RFQs. The

dealers propose prices (Wk,i)k drawn independently from the same conditional distribution

F (·|Ωi) � or F ∗(·|Ωi) �, that depend on the bond characteristics and on the number of

dealers maybe. These quotes and Vi are chosen independently, conditionally on the whole

market information.

Let us concatenate the information into an i.i.d sample SN = (Yi, ni, Ci, Ii, Ji, Zi)
N
i=1 :=

(Xi)i=1,...,N . Our goal is to estimate the conditional distributions F (· |Ωi) , G(· |Ωi) , F
∗(· |Ωi)

and G∗(· |Ωi) .

3.2 Maximum likelihood inference

The usual maximum likelihood methodology can be invoked for evaluating all the unknown

model parameters. However, the di�culties are twofold:

1. Computing the full log-likelihood LN of the N -sample is cumbersome. In practice, it

involves the numerical approximation of numerous univariate and bivariate integrals.

2. The maximization of LN must be carried out over a large number of model parameters,

even though the optimization has to be carried out for the �buy� case and the �sell�

case separately. In the former (resp. latter) case, the parameters are stacked into

a vector ζ (resp. ζ∗). When some usual conditions of regularity are satis�ed, the

likelihood function could be estimated by some classical algorithms (BFGS, simulated

annealing,...), at least in theory.

Details of the full log-likelihood are given in Appendix A. When it is feasible in practice,

the estimator ζ̂ is consistent and asymptotically normal: when N tends to the in�nity,20

√
N
(
ζ̂ − ζ

)
law−→ N

(
0, J−1IJ−1

)
, where (3.1)

I = E[∂ζL1(θ)∂ζ′L1(θ)]#
1

N

N∑
i=1

∂ζ lnLi(ζ̂)∂ζ′ lnLi(ζ̂),

J = E[∂2
ζ,ζL1(ζ)]#

1

N

N∑
i=1

∂2
ζ,ζ lnLi(ζ̂).

20Similar results apply to ζ̂∗.
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3.3 Estimation by Markov chain Monte Carlo

Inference with partially observed data can be managed nicely with a Bayesian approach

and Markov chain Monte Carlo techniques. See Appendix B for a quick reminder of the

methodology.

In the case of a �buy� RFQ, the underlying vector of model parameters ζ can be decom-

posed as ζ := (α̃, β̃), where α̃ (resp. β̃) is the vector of parameters de�ning the distribution

of client's reservation values G (resp. dealers' quotes F ). In particular, the previous SEP

parameter θ is a sub-vector of β̃, and (ν, τ) are parts of α̃.

Under a Bayesian point of view, all quotes are seen as unknown parameters, a situation

that is in line with our data constraints. In the situation at hand, we have to estimate the

following parameters: α̃, β̃, as well as the latent variables V and W that concatenate all

the non-observable quotes of the RFQs in the sample. We wish to simulate from the joint

posterior π(α̃, β̃,V,W|X,Ω), where the main information coming from the data is included

in X, particularly the quotes Y of the reference dealer and the results I of the RFQ process.

Estimation can be done through Gibbs sampling, i.e. sequential draws from the model

conditional distributions. Some of these conditional distributions can be simulated easily;

the others can be simulated by using accept-reject sampling.

For sampling from the posterior distribution, we use Algorithm 1:

Algorithm 1 Speci�c Gibbs sampler

Initialize (e.g. at random) (α̃0, β̃0,V0,W0)

for iteration t=1 to T do

Simulate α̃t from the conditional distribution π(α̃|β̃t−1,Vt−1,Wt−1,X,Ω)

Simulate β̃t from the conditional distribution π(β̃|α̃t,Vt−1,Wt−1,X,Ω)

Simulate Vt from the conditional distribution π(V|α̃t, β̃t,Wt−1,X,Ω)

Simulate Wt from the conditional distribution π(W|α̃t, β̃t,Vt,X,Ω)

end for

It is well-known that the Markov chain (α̃t, β̃t,Vt,Wt)t=1,...,T converges in law towards

its stationary distribution given the data. We deduce the law of (α̃, β̃) given (X,Ω) (the

�posterior�). Note that when simulating a (sub)vector, one can either simulate all the values

of the (sub)vector jointly when it is possible, or simulate them sequentially, as in the other

steps of the algorithm.

A particular and non-standard stage is the random draw of a random variable X ∼ SEP (µ, σ, α, λ).

In DiCiccio and Monti [4], Section 4, a simulation procedure is proposed:

1. Draw Y := R1(−αB lnU)1/α, where U is uniformly distributed on (0, 1), B is Beta

distributed with parameters (1/α, 1−1/α) and R1 is uniformly distributed on {−1, 1}.
All the three latter random variables are mutually independent.
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2. Let Z := R2Y , where R2 = 1 with probability Φ(W ), and R2 = −1 with probability

1− Φ(W ), W := sign(Y )|Y |α/2λ(2/α)1/2. Then Z follows a SEP (0, 1, α, λ).

3. Set X = µ+ σZ.

Choice of priors

Since we do not have strong a priori information about the model parameters, two principles

were used for the choice of their prior distributions:

1. Whenever possible, conjugate priors were preferred for computational ease. For the

Gaussian model, this corresponds to a Gaussian prior for the mean parameter, and

an Inverse Gamma distribution for the standard deviation one. Several di�erent rea-

sonable parameter values have been tried in the prior, without any strong impact on

the posterior.

2. Otherwise, we used �at improper priors (see Appendix B). But improper priors are

not an issue here, since the posterior distribution is still proper.

Simulating from the conditional distributions

Several conditional distributions are truncated. For instance, knowing Ii,Wi, α̃, β̃, Yi,Ωi,

the reduced quote (reservation price) (Vi−CBBTi)/∆i of the client i is drawn from a trun-

cated Gaussian distribution. For sampling from such truncated distributions, we used a

simple rejection method.

Some of the conditional distributions are not easily available, especially those for the regres-

sion parameters in the model with covariates. When it was necessary, we used a Metropolis-

within-Gibbs approach: instead of updating using the conditional distribution, we updated

the relevant parameter using an iteration of the Metropolis-Hastings algorithm. For exam-

ple, in our Gibbs algorithm, if the conditional distribution of β̃ is not available easily � i.e.

cannot be simulated directly �, then the following algorithm also samples from the same

posterior:

Algorithm 2 Metropolis-within-Gibbs sampler

Initialize (e.g. at random) (α̃0, β̃0)

for iteration t=1 to T do

Simulate α̃t from the conditional distribution π(α̃|β̃t−1,X)

Propose β̃∗ ∼ N (β̃t−1, ε2) (ε chosen by the user)

Compute r = min
(
1, π(β̃∗|α̃t,X)

π(β̃t−1|α̃t,X)

)
Set β̃t = β̃∗ with probability r, and β̃t = β̃t−1 with probability 1− r.

end for

12



4 Empirical results

4.1 Model without covariates

4.1.1 General results

In the following paragraphs, we analyze the estimates of the parameters obtained with the

MCMC algorithm described previously. We start with the model with no covariates (Equa-

tions (2.1) and (2.2)). Visually, the MCMC algorithm leads to stable realizations of the

random parameters (α̃, β̃) relatively quickly, for sure after at most 1000 iterations.

We exhibit in Table 1 the means, standard deviations and quartiles21 of the realizations

of the parameters which characterize the SEP distributions of the dealers' quotes.22 We

also exhibit the same statistics for the realizations of the parameters which characterize the

Gaussian distributions of the clients' reservation values.23

dealers clients

α λ µ σ ν τ

�buy� RFQs mean 1.41 1.35 -0.61 2.90 1.10 2.41

q25% 1.39 1.32 -0.63 2.88 1.08 2.39

q50% 1.40 1.35 -0.61 2.90 1.10 2.42

q75% 1.42 1.38 -0.60 2.93 1.11 2.44

std dev. 0.03 0.05 0.03 0.04 0.02 0.03

α∗ λ∗ µ∗ σ∗ ν∗ τ∗

�sell� RFQs mean 1.06 -0.73 0.35 2.23 -1.09 2.15

q25% 1.05 -0.74 0.34 2.21 -1.10 2.13

q50% 1.07 -0.72 0.35 2.22 -1.09 2.15

q75% 1.08 -0.71 0.37 2.24 -1.07 2.17

std dev. 0.02 0.02 0.02 0.02 0.02 0.03

Table 1: Estimation of the model parameters for the �buy� and �sell� RFQs, by MCMC.

Statistics computed over the last 1500 iterations among 3000.

All these random parameters have very tight distributions, as indicated through closed quar-

tiles and small standard deviations. Moreover, the means and medians of the parameters

are close to one another: this is a nice feature for stating their most likely value.

The probability density functions for dealers' quotes and clients' reservation prices are plot-

ted in Figures 1 and 2 � the parameters being �xed to their empirical means (as provided

in Table 1).

21The statistics are estimated empirically over a su�ciently large number of the last iterations of the

Markov process.
22We have assumed that all dealers have the same behavior, i.e. they draw their quotes from the same

SEP distribution. This assumption is questionable in practice � see below.
23All clients are assumed to behave similarly here. We have observed empirically signi�cant di�erences

across clients, but such results cannot be detailed in this document for compliance reasons.
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Figure 1: Distributions F0 and G0 estimated using the �buy� RFQs. Red line: SEP distri-

bution for the dealers' quotes. Green line: Gaussian distribution for the clients' reservation

prices.
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Figure 2: Distributions F ∗
0 and G∗

0 estimated using the �sell� RFQs. Red line: SEP distri-

bution for the dealers' quotes. Green line: Gaussian distribution for the clients' reservation

prices.

We see in Figures 1 and 2 that the distributions of the dealers' quotes are clearly asymmet-

ric. To understand the rationale of this empirical result, let us consider the case of a �buy�

RFQ. For the dealers, there is almost no di�erence between answering a high price and a

very high price: in both cases, the price will be too high to be accepted by the dealer, and
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there will be no trade. However, there is a signi�cant di�erence between answering a low

price and a very low price: in both cases a trade may occur, and the trade price is the price

answered by the dealer. The same reasoning applies in the case of a �sell� RFQ, mutatis

mutandis. This explains the skewness of the distributions of the dealers' quotes.

These distributions are also heavy-tailed (see the value of α and α∗ in Table 1). This is an

important feature, but it has to be considered with care. A reason why there is a fat tail

on the right-hand side (resp. left-hand side) for �buy� (resp. �sell�) RFQs is indeed linked

to one of the assumptions of our model. In practice, contrary to what we have assumed

in the model, some of the requested dealers do not answer e�ectively: some dealers do not

answer fast enough, some other dealers simply do not want to answer, because they are not

interested in trading the requested bond, or not interested in dealing with the client who

has sent the RFQ. In our model, that is equivalent to answering very conservative prices,

hence an e�ect on the right-hand side (resp. left-hand side) tail.

A visual comparison between the buy and sell cases is made possible by changing the sign, in

the �sell� case, of the location and asymmetry parameters µ∗ and λ∗ of the SEP distribution

of dealers' quotes, and the mean ν∗ of the Gaussian distribution of clients' reservation values

� see Figure 3.24 It is noteworthy that the probability density function for the dealers' quotes

is relatively more �spiky� in the case of �sell� RFQs.
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Figure 3: Comparison of the distributions of dealers' quotes and clients' reservation prices

for �buy� and �sell� RFQs. Red: SEP distributions for the dealers. Green: Gaussian

distributions for the clients. Solid lines represent the case of �buy� RFQs. Dotted lines

represent the case of �sell� RFQs, after symmetrization.

24In other words, in Figure 3, the parameters of the dotted red curve are (α, λ, µ, σ) =

(1.06, 0.73,−0.35, 2.23), and those of the dotted green curve are (ν, τ) = (1.09, 2.15).
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The parameters (α, λ, µ, σ) and (α∗, λ∗, µ∗, σ∗) characterize the SEP distributions of the

dealers' quotes. However, as highlighted in Section 2, these parameters are related in a

complex way to the moments of the distributions. In particular, µ (resp. µ∗) and σ (resp.

σ∗) do not correspond to the mean and the standard deviation of the SEP distributions,

because of asymmetry and fat tails. We exhibit the �rst four moments of F0 and F ∗
0 �

computed by applying Equations (2.8) and (2.9) � in Table 2.

mean variance skewness kurtosis

�buy� RFQs 1.660 6.188 0.550 2.471

�sell� RFQs -1.304 6.360 -1.395 9.851

Table 2: First four moments of the distributions of the dealers' quotes (when the model

parameters are �xed to their means � see Table 1).

In the case of �buy� RFQs, dealers tend to answer bond prices above the market price

(CBBT): the average bond price answered by dealers, as estimated in our model � see Ta-

ble 2 �, is CBBTo�er+1.66×bid-to-mid spread. As far as clients are concerned, the average

reservation price is estimated to be CBBTo�er + 1.10× bid-to-mid spread. For �sell� RFQs,

the analysis is similar: the average bond price answered by dealers is CBBTbid − 1.304 ×
bid-to-mid spread. As far as clients are concerned, the average reservation price is estimated

to be CBBTbid − 1.09 × bid-to-mid spread. In particular, this con�rms our intuition

that clients willing to buy (resp. sell) bonds tend to think that they are underpriced (resp.

overpriced). It is also noteworthy that the agreement between both sides should be reached

more easily for �sell� RFQs than for �buy� RFQs, on average.

The signs of the skewness are not surprising, given the asymmetry observed in Figures 1

and 2. The larger kurtosis in the case F ∗
0 is linked to the spike around the CBBT, and to

what happens in the tail of the distributions. A dealer who really wants to trade with a

client tends to quote more aggressively in the case of a �sell� RFQ than in the case of a

�buy� RFQ: in Figure 3, more mass appears on the l.h.s. for the dotted red curve than for

the solid red curve.25

The di�erence between �buy� and �sell� RFQs is less signi�cant as far as clients' reservation

prices are concerned. The average reservation prices ν > 0 and ν∗ < 0 have almost the

same absolute value, and, more generally, the distributions of ν and −ν∗ are very similar in

the MCMC simulations � see Table 1. Moreover, the distributions of the standard deviation

parameters τ and τ∗ are very similar in the MCMC simulations, even though τ∗ is slightly

lower on average. Overall, this means that there is a symmetry property between the

(optimistic) views of the clients who send �buy� RFQs and the (pessimistic) views of the

clients who send �sell� RFQs.

25Di�erences in the tails on the other side are less meaningful.
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4.1.2 The in�uence of competition

We now turn to the results of our MCMC method on the di�erent subsamples of RFQs cor-

responding to di�erent numbers of dealers requested. In other words, instead of estimating

F0, F
∗
0 , G0 and G∗

0, we estimate the distributions F0(·;n), F ∗
0 (·;n), G0(·;n), and G∗

0(·;n),
de�ned in Equations (2.5) and (2.6) � n ∈ {1, . . . , 5}.

It is likely that the behavior of dealers and clients depends on the level of competition.

In what follows, we aim at answering questions such as: (i) how does the distribution of

answered quotes depend on the number of dealers requested?, (ii) are the distributions of

clients' reservation prices similar for clients requesting a few dealers and clients requesting

a lot of dealers?, (iii) do clients obtain better prices by requesting more dealers?, etc.

We exhibit in Tables 3 and 4 the means, standard deviations and quartiles of the realizations

of the parameters which characterize the SEP distributions of the dealers' quotes, and the

Gaussian distributions of the clients' reservation prices, for �buy� and �sell� RFQs with

di�erent numbers of requested dealers.

dealers clients

α λ µ σ ν τ

ni = 1 mean 1.33 0.22 -0.04 0.91 0.27 3.46

q25% 1.24 0.18 -0.06 0.89 0.23 3.14

q50% 1.32 0.21 -0.03 0.91 0.27 3.31

q75% 1.40 0.24 -0.01 0.93 0.32 3.68

std dev. 0.12 0.06 0.04 0.04 0.07 0.47

ni = 2 mean 1.42 0.68 -0.27 1.59 0.87 3.40

q25% 1.36 0.64 -0.30 1.56 0.79 3.23

q50% 1.42 0.68 -0.27 1.59 0.86 3.38

q75% 1.48 0.72 -0.24 1.62 0.93 3.54

std dev. 0.09 0.07 0.05 0.05 0.10 0.24

ni = 3 mean 1.51 1.23 -0.56 2.37 1.11 2.82

q25% 1.45 1.15 -0.60 2.33 1.05 2.71

q50% 1.50 1.22 -0.56 2.37 1.10 2.81

q75% 1.56 1.29 -0.52 2.42 1.17 2.92

std dev. 0.08 0.11 0.06 0.07 0.09 0.15

ni = 4 mean 1.31 1.18 -0.56 2.72 1.92 3.39

q25% 1.28 1.14 -0.58 2.70 1.85 3.29

q50% 1.31 1.17 -0.56 2.72 1.91 3.37

q75% 1.34 1.21 -0.54 2.75 1.98 3.46

std dev. 0.05 0.06 0.03 0.04 0.10 0.13

ni = 5 mean 1.46 1.85 -0.85 3.58 1.72 2.90

q25% 1.43 1.76 -0.88 3.54 1.66 2.81

q50% 1.46 1.83 -0.85 3.58 1.71 2.88

q75% 1.49 1.92 -0.83 3.62 1.79 2.97

std dev. 0.05 0.11 0.04 0.05 0.11 0.13

Table 3: Estimation of the model parameters for the �buy� RFQs, by MCMC. The subsam-

ples correspond to RFQs with di�erent (�xed) numbers of dealers (ni = 1 to 5, i.e. from

two to six dealers). The statistics are computed over the last 5000 iterations among 10000.
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dealers clients

α∗ λ∗ µ∗ σ∗ ν∗ τ∗

ni = 1 mean 1.28 0.10 0.07 0.89 0.28 3.23

q25% 1.20 0.04 0.02 0.87 0.25 3.03

q50% 1.27 0.10 0.06 0.89 0.29 3.19

q75% 1.36 0.15 0.11 0.91 0.32 3.41

std dev. 0.12 0.08 0.08 0.03 0.06 0.31

ni = 2 mean 1.16 -0.41 0.26 1.40 -1.42 3.94

q25% 1.12 -0.43 0.23 1.38 -1.54 3.71

q50% 1.16 -0.41 0.26 1.40 -1.39 3.89

q75% 1.21 -0.38 0.28 1.42 -1.29 4.15

std dev. 0.07 0.04 0.04 0.03 0.21 0.39

ni = 3 mean 1.10 -0.59 0.29 1.77 -1.58 3.12

q25% 1.05 -0.61 0.26 1.75 -1.67 2.96

q50% 1.09 -0.58 0.28 1.77 -1.57 3.11

q75% 1.14 -0.55 0.31 1.80 -1.46 3.24

std dev. 0.07 0.05 0.04 0.04 0.17 0.24

ni = 4 mean 1.05 -0.71 0.37 2.21 -1.94 3.04

q25% 1.03 -0.73 0.35 2.19 -2.00 2.95

q50% 1.04 -0.71 0.37 2.21 -1.92 3.02

q75% 1.07 -0.69 0.39 2.24 -1.86 3.11

std dev. 0.03 0.03 0.02 0.03 0.13 0.14

ni = 5 mean 1.23 -1.20 0.70 2.84 -2.00 2.77

q25% 1.22 -1.22 0.69 2.82 -2.07 2.71

q50% 1.24 -1.20 0.70 2.84 -2.00 2.77

q75% 1.25 -1.17 0.71 2.87 -1.94 2.84

std dev. 0.03 0.04 0.02 0.03 0.09 0.09

Table 4: Estimation of the model parameters for the �sell� RFQs, by MCMC. The subsam-

ples correspond to RFQs with di�erent (�xed) numbers of dealers (ni = 1 to 5, i.e. from

two to six dealers). The statistics are computed over the last 5000 iterations among 10000.

mean variance skewness kurtosis

�buy� ni = 1 0.046 1.381 0.004 4.395

ni = 2 0.650 2.560 0.401 4.188

ni = 3 1.169 4.027 0.395 2.127

ni = 4 1.571 6.133 0.683 3.323

ni = 5 2.082 8.193 0.497 1.962

�sell� ni = 1 0.169 1.154 0.109 9.341

ni = 2 -0.402 2.758 -0.656 9.714

ni = 3 -0.856 4.320 -1.146 10.436

ni = 4 -1.285 6.491 -1.490 10.672

ni = 5 -1.628 7.117 -0.878 4.114

Table 5: First four moments of the distributions F0(·;n) and F ∗
0 (·;n) of the dealers' quotes

(when the model parameters are �xed to their means � see Tables 3 and 4).
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Figure 4: SEP distributions (F0(·;n))n for the dealers' quotes on the subsamples of �buy�

RFQs. Blue dashed line: n = 1. Blue solid line: n = 2. Black dash-dotted line: n = 3.

Black dotted line: n = 4. Black solid line: n = 5. Red line: all �buy� RFQs.
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Figure 5: SEP distributions (F ∗
0 (·;n))n for the dealers' quotes on the subsamples of �sell�

RFQs. Blue dashed line: n = 1. Blue solid line: n = 2. Black dash-dotted line: n = 3.

Black dotted line: n = 4. Black solid line: n = 5. Red line: all �sell� RFQs.
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As in the global case, we see in Tables 3 and 4 that the random parameters have very tight

distributions: quartiles are very close and standard deviations are small. Moreover, the

means and medians of the parameters are very close.

For both �buy� and �sell� RFQs, the estimates of the location (µ, µ∗), scale (σ, σ∗), and

asymmetry (λ, λ∗) parameters of the distributions of dealers' quotes tend to behave mono-

tonically with the number of requested dealers.

In Figures 4 and 5, we clearly see that the distribution of dealers' quotes depends on the

number of dealers requested in a very speci�c and ordered way. In particular, in the case

of �buy� (resp. �sell�) RFQs, the more dealers in competition, the higher (resp. lower) their

answered quotes. In other words, the more dealers in competition, the more conservative

their answered quotes. The evolution of the �rst moment (the mean) of the dealers' quotes

distributions corroborates this �nding � see Table 5.

�Discouragement� is a way to explain this phenomenon. When a dealer answers to a RFQ

sent to a few dealers only, he may think that his/her e�ort to propose a good price will

lead to a deal, because competition is not strong. Conversely, in the case of a RFQ sent to

many dealers, he may think that there is little chance for him to be chosen, and therefore

no reason to spend time choosing a relevant non-conservative price.

Another explanation is related to clients. A client requesting only a few dealers may be

a client who has a close/preferential relationship with one or all of the dealers requested.

Therefore, the e�ect under scrutiny may be due to dealers answering better prices to �their�

important clients, than to other clients.

An alternative explanation is related to a selection bias: when a client requests n+1 dealers,

he may simply pick the n+1 dealers who have streamed the best n+1 prices. Therefore, if

we assume that there is a positive correlation between streamed prices and answered prices

� a natural assumption �, then dealers' quotes should be more aggressive (by construction)

when only a few dealers are requested than when a lot of dealers are requested. The latter

explanation requires another model, because dealers' quotes are assumed to be i.i.d. in our

model.

Another �o�-model� possible explanation is related to dealers who do not answer: the larger

the number of requested dealers, the higher the probability that a dealer does not have

time to answer, for instance because the client has traded with an early-answerer. In our

model, this e�ect arti�cially leads to an increase in the estimated probability of conservative

answered quotes.

In Tables 3 and 4, we also see that the Gaussian distributions of the clients' reservation

prices depend on the number of dealers requested � see also Figures 6 and 7. It is note-

worthy that, in the case of �buy� RFQs, the mean parameter ν tends to increase with ni.
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Conversely, in the case of �sell� RFQs, the mean parameter ν∗ tends to decrease with ni.
26
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Figure 6: Gaussian distributions (G0(·;n))n for the clients' reservation values on the sub-

samples of �buy� RFQs. Blue dashed line: n = 1. Blue solid line: n = 2. Black dash-dotted

line: n = 3. Black dotted line: n = 4. Black solid line: n = 5. Green line: all �buy� RFQs.
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Figure 7: Gaussian distributions (G∗
0(·;n))n for the clients' reservation values on the sub-

samples of �sell� RFQs. Blue dashed line: n = 1. Blue solid line: n = 2. Black dash-dotted

line: n = 3. Black dotted line: n = 4. Black solid line: n = 5. Green line: all �sell� RFQs.

26As far as variances τ and τ∗ are concerned, there is no signi�cant pattern: the values are similar for

di�erent ni, and for both �buy� and �sell� RFQs.
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A possible interpretation of this monotonicity property is that clients who are very con�dent

in their views about a bond they want to buy or sell � i.e., based on the streamed prices and

the information they have, they strongly believe that the bond is undervalued or overvalued

� tend to contact more dealers to be sure to quickly obtain an acceptable price. That may

explain part of the e�ect observed, but it does not explain why there is such a di�erence in

the clients' behavior between RFQs involving 2 or 3 dealers and RFQs involving 4, 5, or 6

dealers � see Figures 6 and 7.

Another explanation may be that some (very demanding) clients are sending RFQs to the 2

or 3 dealers who have streamed the most interesting prices, because they do not expect oth-

ers to propose interesting prices. Similarly, opportunistic clients may only send RFQs when

they notice interesting prices streamed by one or several dealers. In that case, they may

contact these speci�c dealer(s), or if there is only one, the speci�c dealer and another one, for

proving they receive best execution. These explanations are coherent with the dependence

of the distributions of dealers' quotes on the number of dealers. However, once again, these

explanation are �o�-model� ones, because we have assumed identically distributed answered

quotes across dealers.

An alternative �o�-model� rationale may also be that some (informal) agreements between

clients and dealers are reached outside of the MD2C platform: an interesting price may be

proposed by a dealer to a client by telephone or chat, and then the formal agreement reached

on the platform after the client had requested a few dealers � for proving they receive best

execution.

Using the distributions of dealers' quotes, it is also possible to compute an estimate of the

distribution of the best price proposed to clients, for the di�erent values of the number of

dealers requested.

In the case of a �buy� RFQ, the probability density function of the minimum of the dealers'

quotes � including the �reference dealer�, who is assumed to behave as a similar additional

dealer � is given by:

δ 7→ (ni + 1)f0(δ;ni) (1− F0(δ;ni))
ni ,

where ni + 1 is the total number of dealers requested (including the reference dealer). This

probability density function is plotted in Figure 8.

For �sell� RFQs, the best price proposed to a client is the maximum of the dealers' quotes.

The associated probability density function is

δ 7→ (ni + 1)f∗
0 (δ;ni)F

∗
0 (δ;ni)

ni ,

when ni dealers are requested in addition to the reference dealer. This probability density

function is plotted in Figure 9.
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Figure 8: Distribution of the best (reduced) quote (mink Wk,i − CBBTi)/∆i proposed to

clients, calculated on each subsample of �buy� RFQs. Blue dashed line: n = 1. Blue solid

line: n = 2. Black dash-dotted line: n = 3. Black dotted line: n = 4. Black solid line:

n = 5.
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Figure 9: Distribution of the best (reduced) quote (maxk Wk,i − CBBTi)/∆i proposed to

clients, calculated on each subsample of �sell� RFQs. Blue dashed line: n = 1. Blue solid

line: n = 2. Black dash-dotted line: n = 3. Black dotted line: n = 4. Black solid line:

n = 5.
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We have seen previously that, on average, dealers are more prone to answer interesting

prices to clients in the case of RFQs involving a few dealers only. Nevertheless, we see in

Figures 8 and 9 that clients should expect to get better prices if they send RFQs to a lot of

dealers. This is not contradictory, because requesting more dealers increases the range of

prices obtained, and clients are eventually only interested in the best price. For the sake of

completeness, we have provided in Table 6 the means of the distributions in Figures 8 and 9.

The average of the best price proposed to the clients tends to behaves monotonically with

the number of dealers requested, as expected through the visual inspection of the previous

�gures.

total number of dealers �buy� RFQs �sell� RFQs

2 −0.611 0.757

3 −0.641 0.917

4 −0.735 1.065

5 −0.940 1.257

6 −0.951 1.197

Table 6: Average of the best (reduced) quotes proposed to clients, for di�erent levels of

competition.

Practitioners like to measure hit ratios. Hit ratios correspond to the probability to trade,

given that the RFQ led to a trade with one of the dealers.

For �buy� RFQs, if ni dealers are requested in addition to the reference dealer, the hit ratio

is the following function of the (reduced) quote answered by the dealer:

δ 7→ (1− F0(δ;ni))
ni .

For �sell� RFQs, if ni dealers are requested in addition to the reference dealer, the hit ratio

is the following function of the (reduced) quote answered by the dealer:

δ 7→ F ∗
0 (δ;ni)

ni .

These hit ratios are plotted in Figures 10 and 11. Unsurprisingly, the hit ratios are mono-

tonic functions of the price answered by the dealer: in the case of a �buy� (resp. �sell�)

RFQ, the probability to propose the best price decreases (resp. increases) with the price.

Furthermore, hit ratios are decreasing functions of the number of requested dealers: the

more dealers, the lower the probability to be the one who o�ers the best price.
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Figure 10: Hit ratios for a �buy� RFQ, as a function of the answered (reduced) quote, for

each possible value of the number of competing dealers. Blue dashed line: n = 1. Blue

solid line: n = 2. Black dash-dotted line: n = 3. Black dotted line: n = 4. Black solid line:

n = 5.
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Figure 11: Hit ratios for a �sell� RFQ, as a function of the answered (reduced) quote, for

each possible value of the number of competing dealers. Blue dashed line: n = 1. Blue

solid line: n = 2. Black dash-dotted line: n = 3. Black dotted line: n = 4. Black solid line:

n = 5.
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In addition to hit ratios, we can also compute the probability to trade, given the price

proposed and the number of dealers requested. For �buy� RFQs, if ni dealers are requested

in addition to the reference dealer, this probability is given, as a function of the dealer's

(reduced) quote, by:

δ 7→ (1− F0(δ;ni))
ni (1−G0(δ;ni)).

For �sell� RFQs, if ni dealers are requested in addition to the reference dealer, this probability

is given, as a function of the dealer's (reduced) quote, by:

δ 7→ F ∗
0 (δ;ni)

niG∗
0(δ;ni).

The probability to trade is a monotonic function of the price answered by the dealer: in the

case of a �buy� (resp. �sell�) RFQ, both the probability to propose the best price and to

propose a price that the client is going to accept decrease (resp. increase) with the price.

However, unlike what happens with hit ratios, the probability to trade is an increasing

function of the number of requested dealers. For a given price answered by the dealer, two

e�ects are present: (i) the probability to propose the best price decreases with the number

of competing dealers, and (ii) the probability to propose a price that reaches the client's

reservation value increases with the number of competing dealers � because clients request-

ing only a few dealers tend to be more demanding (see the previous discussions and Figures

6 and 7). We see in Figures 12 and 13 that the latter e�ect dominates.27
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Figure 12: Model probability of closing a �buy� deal, as a function of the answered (reduced)

quote, for each possible value of the number of competing dealers. Blue dashed line: n = 1.

Blue solid line: n = 2. Black dash-dotted line: n = 3. Black dotted line: n = 4. Black solid

line: n = 5.

27Except in the tail, on the irrelevant side.
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Figure 13: Model probability of closing a �sell� RFQ deal, as a function of the answered

(reduced) quote, for each possible value of the number of competing dealers. Blue dashed

line: n = 1. Blue solid line: n = 2. Black dash-dotted line: n = 3. Black dotted line:

n = 4. Black solid line: n = 5.

4.2 Model with covariates

Now, let us introduce in the model some covariates related to the RFQs and the underly-

ing bonds. We choose the speci�cations of Equations (2.3) and (2.4), with the following

variables:

• a single dummy indicator related to bond seniority: it distinguishes �Senior� corporate

bonds from all the other types of bonds (the reference category);

• a continuous variable called �Centered Price�, de�ned as the di�erence between the

bond CBBT and the median of corporate bond prices in the database. The idea is to

measure very roughly the riskiness associated with the bond (e.g. to capture e�ects

speci�c to �junk bonds�), or to capture its atypical features;

• two dummy variables �Investment Grade� and �High-Yield�, directly linked to the usual

corporate bond ratings. The reference category consists of bonds issued by �nancial

institutions (excluded from the classi�cation �Investment Grade�/�High-Yield� in our

database);

• a continuous variable called �LogNotional�, de�ned as the logarithm of the notional of

the RFQ (in euros);

• eight dummy variables that are related to the sector of the issuer: �Bank�, �Financial�,

�Manufacturing�, �Retail�, �Sovereign�, �Telecommunication/Media�, �Transportation�
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and �Utilities�. Bonds issued by �rms from other sectors are merged in the reference

category �Others�.

In Equations (2.3) and (2.4), we separated the variables � stacked in Z1 � that have a di-

rect in�uence on prices, from the variables � stacked in Z2 � that have an in�uence on the

reduced quotes. In the model of this section, all the variables belong to the sub-vector Z2,

except the variable �Centered Price�, which is part of Z1.

By using the MCMC method presented previously (see also Appendix B), we have estimated

the �full� model, i.e. including all these variables simultaneously. The results are gathered

in Tables 7 and 8.

To save space, we have not detailed the new estimates of the parameters characterizing the

SEP distributions of the dealers' quotes and the Gaussian distributions of the clients' reser-

vation prices. They are consistent with the �gures we obtained in the previous subsection,

and can be provided upon request. In particular, the convergence of the MCMC method

is clear for these parameters. Moreover, for each of these parameters, the quartiles of the

distribution are close, and the average value is close to the median.

Senior Centered Price Bond type LogNotional

Investment Grade High-Yield

�Buy� RFQ, dealers mean 0.060 -0.005 0.009 -0.064 0.035

q25% 0.012 -0.005 0.007 -0.051 0.030

q50% 0.028 -0.004 0.010 -0.041 0.035

q75% 0.039 -0.003 0.013 -0.030 0.039

std dev. 0.050 0.000 0.000 0.004 0.011

�Buy� RFQ, clients mean 0.089 0.010 0.109 0.064 -0.344

q25% -0.017 0.006 0.113 0.101 -0.375

q50% 0.038 0.008 0.122 0.121 -0.360

q75% 0.074 0.010 0.129 0.144 -0.339

std dev. 0.093 0.005 0.000 0.036 0.005

�Sell� RFQ, dealers mean -0.072 0.004 -0.004 0.001 -0.020

q25% -0.087 0.004 -0.003 -0.021 -0.022

q50% -0.073 0.005 -0.002 -0.014 -0.021

q75% -0.066 0.006 0.001 -0.007 -0.020

std dev. 0.002 0.000 0.002 0.000 0.000

�Sell� RFQ, clients mean -0.295 -0.016 -0.121 0.035 0.350

q25% -0.277 -0.018 -0.127 0.007 0.331

q50% -0.238 -0.016 -0.119 0.031 0.344

q75% -0.204 -0.014 -0.113 0.051 0.360

std dev. 0.038 0.001 0.021 0.052 0.021

Table 7: Estimation of the e�ect of the covariates, by MCMC. Statistics computed over the

last 5000 iterations among 10000.
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Bank Financial Manufact. Retail Sovereign Tel./Media Transport. Utilities

�Buy� RFQ, mean -0.094 -0.049 0.014 -0.077 -0.072 0.222 -0.091 0.079

dealers q25% -0.157 -0.069 -0.031 -0.081 -0.158 0.207 -0.125 0.033

q50% -0.135 -0.058 -0.022 -0.070 -0.129 0.247 -0.113 0.055

q75% -0.101 -0.043 -0.008 -0.051 -0.096 0.277 -0.098 0.083

std dev. 0.024 0.018 0.020 0.010 0.011 0.071 0.009 0.001

�Buy� RFQ, mean 0.016 -0.098 0.081 0.273 -0.113 -0.019 -0.369 0.061

clients q25% 0.002 -0.160 0.072 0.067 -0.188 -0.115 -0.461 0.034

q50% 0.078 -0.108 0.115 0.150 -0.138 -0.052 -0.359 0.095

q75% 0.128 -0.052 0.181 0.191 -0.087 0.014 -0.291 0.221

std dev. 0.033 0.111 0.091 0.117 0.078 0.121 0.164 0.142

�Sell� RFQ, mean 0.049 0.066 0.156 0.075 -0.068 -0.031 -0.117 -0.036

dealers q25% 0.048 0.070 0.138 0.049 -0.076 -0.053 -0.189 -0.103

q50% 0.059 0.075 0.148 0.054 -0.071 -0.033 -0.167 -0.093

q75% 0.065 0.100 0.154 0.080 -0.065 -0.010 -0.137 -0.064

std dev. 0.015 0.007 0.033 0.010 0.004 0.052 0.000 0.040

�Sell� RFQ, mean -0.425 -0.129 -0.049 -0.324 0.202 0.015 0.060 -0.187

clients q25% -0.466 -0.106 -0.244 -0.377 0.087 0.032 0.122 -0.242

q50% -0.429 -0.070 -0.172 -0.237 0.140 0.059 0.154 -0.207

q75% -0.403 -0.040 -0.111 -0.140 0.181 0.085 0.195 -0.138

std dev. 0.138 0.141 0.080 0.235 0.171 0.041 0.099 0.036

Table 8: Estimation of the in�uence of the sector of the issuer, by MCMC. Statistics com-

puted over the last 5000 iterations among 10000.

As far as the parameters associated with the covariates are concerned, the picture is less rosy.

For some of the parameters, we indeed observe in Tables 7 and 8 a wide spread between the

�rst quartile q25% and the third quartile q75%, and an average value of the parameter outside

of the interval [q25%, q75%]. This invites to regard the median as a more meaningful esti-

mate than the average. Nevertheless, interesting facts can be deduced from our estimations.

We see in Table 7 that clients are, in general, more sensitive than dealers to the bond char-

acteristics and the requested amount. In other words, clients tend to take them more into

account when they evaluate the price at which they are ready to buy or sell a bond, than

dealers take them into account when choosing the quote they answer.

The most interesting phenomenon captured by our model is certainly the in�uence of the

notional. The clients who want to buy a large quantity of bonds require from dealers a large

discount to accept to trade. In other words, a dealer willing to trade with a client who has

sent a �buy� RFQ with a large nominal should be ready to propose a low price. A similar

phenomenon can be observed for �sell� RFQs too, with the same amplitude: the larger the

notional, the higher the reservation price of clients when they want to sell bonds. Dealers,

however, do not seem to be ready to follow these clients' expectations: in the case of �buy�

RFQs with large notional, they tend to shift upward the quotes they answer, while, in the

case of �sell� RFQs with large notional, they tend to shift downward the quotes they an-

swer. Dealers' behavior28 re�ects two risks associated with large transactions: the classical

inventory risk faced by market makers, and a risk related to adverse selection. On aver-

age, reaching agreement between dealers and clients is more complex in the case of RFQs

with large notional. However, in practice, speci�c dealers might be willing to accept the

discount/premium expected by the clients, when the side and the notional of the RFQ is

such that making the transaction would reduce signi�cantly their inventory.

28It is noteworthy that the amplitude of the quote adjustment made by dealers is minor, compared to the

discount/premium expected by clients.
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All other things being equal, clients are ready to accept lower prices for senior corporate

bonds in a �sell� RFQ, and dealers indeed propose lower quotes. For a �buy� RFQ, we

observe the symmetrical e�ect, but a lot weakened.29

The e�ect of the variable �Centered price� is rather weak. This is a bit similar for bond rat-

ings: the only interesting e�ect is that clients tend to accept slightly larger (resp. smaller)

prices for buying (resp. selling) investment grade bonds.

Even though convergence of the parameters are not always insured (see the relatively large

standard deviations), we can analyze the e�ect of the industrial sector. In terms of magni-

tude, the sector can induce a shift of half the bid-to-mid price at most. In our database,30

all other things being equal, clients seem to show an appetite for buying and selling bonds

from the �Retail� sector (which includes large retailers, luxury, clothing, tobacco, packaging,

etc.): they accept to pay more to buy and accept to sell at lower prices. Conversely, they

show an aversion for the �Transportation� sector. Interestingly, when clients want to sell

bonds issued by banks or utilities, they accept a signi�cant discount. As far as dealers are

concerned, they tend to overvalue bonds issued by telecommunication and/or media �rms

(for �buy� RFQs), and those issued by manufacturing (for �sell� RFQs). These conclusions

related to the in�uence of the industrial sectors are fragile and may change over time.

5 Extensions

The model we have introduced in this paper makes it possible to analyze the behavior

of both dealers and clients. However, we have seen in Section 4 that some of the results

obtained could be related to phenomenons that are incompatible with our initial (simple)

assumptions. In this last section, we propose several ways to extend our model, for it to be

more realistic.

5.1 The �true� number of competing dealers

For a given RFQ i, we suspect that the number of requested dealers ni + 1 will not always

be the number of dealers ready to answer a price. Some of the requested dealers may not

be on their desk when the RFQ is sent. Some may not be interested in dealing with the

client who has sent the RFQ � e.g. because the client is not an important one for them,

or because they fear adverse selection. Some others may not be interested in buying or

selling the bond requested, because of their inventory. This means that the �true� number

of competing dealers, denoted by ñi + 1, has many reasons to be less than ni + 1.

In order to take this phenomenon into account, our model and the associated likelihood

equations have to be modi�ed. If ñi were observable, these equations could be written by

29Figures are however arguable in the case of �buy� RFQs, given the di�erence between the average and

the median of the parameters, and the standard deviations in the MCMC simulation.
30Our database covers part of 2013 and 2014.
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replacing the theoretical quantity ni by the true value ñi. Unfortunately, the latter numbers

are not observable.

In order to enrich our model, a possibility is to assume that the dealers have a given prob-

ability pi (resp. p∗i ) of answering a �buy� (resp. �sell�) RFQ i. More precisely, we can

model the participation of each requested dealer (in addition to the reference dealer31) by a

Bernoulli random variable with parameter pi (resp. p
∗
i ). If we assume that the ni Bernoulli

random variables are independent, with the same value of pi (resp. p∗i ) across dealers,

then the number of dealers who indeed answer to the RFQ i (in addition to the reference

dealer) is a random variable distributed according to a binomial distribution B(ni, pi) (resp.

B(ni, p
∗
i )).

Under this assumption, the likelihood associated with a �buy� RFQ i is given by a mixture

distribution, i.e. it is a weighted average of several likelihoods given ñi:

Li|buy(Xi) =

ni∑
k=0

Ck
ni
pki (1− pi)

ni−kLi|buy(Xi|ñi = k).

Similarly, in the case of a �sell� RFQ i, it is

Li|sell(Xi) =

ni∑
k=0

Ck
ni
p∗i

k(1− p∗i )
ni−kLi|sell(Xi|ñi = k).

An important point is then to choose / estimate the parameters pi and p∗i . They may de-

pend on the identity of the client (some clients are not seen as �strategic� for most dealers,

some clients may be associated with a risk of being adversely selected, etc.), the type of

bond (some bonds may be too illiquid, regarded as too risky, or they may not belong to

the family of securities most dealers are interested in), the notional of the RFQ (RFQs with

large nominal may cause risk management problems), etc.

More importantly, pi or p
∗
i may depend on ni itself. Our analysis of Figures 4 and 5 suggests

that the larger the number of requested dealers, the less likely each dealer really participates

to the RFQ. A simple approach consists in setting pi = p(ni) (resp. p∗i = p∗(ni)). That

leads to 10 new parameters, because ni ∈ {1, . . . , 5}, and because we separate �buy� and

�sell� RFQs.

For estimating these additional parameters, the best suited way is through an adaptation of

our previous Bayesian framework. In that case, the variables ñi are additional unobservable

latent variables which play a similar role as the latent variables Wk,i and Vi. Given a value

of ñi, the underlying distributions of the observations are similar to the ones in our initial

model. Therefore, the MCMC algorithm should be adapted to tackle such an extended

framework.

31We only consider RFQs with a price answered by the reference dealer.
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5.2 A mixture distribution for the dealers' quotes

In the previous paragraphs, we have assumed that, for a given RFQ, some dealers answer

a price and some do not. Another � less parsimonious � way of introducing heterogenous

behaviors among dealers is to assume that the answer of dealers can be of two types:

(i) If a dealer wants to trade with the client and seeks to propose the best price, then

we assume that his/her (aggressive) answered quote is distributed according to F1

(resp. F ∗
1 ).

(ii) If a dealer is not really interested in trading the requested bond with the client, but

still willing to answer a (conservative) price, then his/her answered quote is distributed

according to F2 (resp. F
∗
2 ).

For a given �buy� (resp. �sell�) RFQ i and a given dealer, the probability to be in case (i) is

denoted by qi (resp. q
∗
i ). In other words, in the case of a �buy� RFQ, the quote is distributed

according to F1 with probability qi, and distributed according to F2 with probability 1− qi.

Similarly, in the case of a �sell� RFQ, the quote is distributed according to F ∗
1 with prob-

ability q∗i , and distributed according to F ∗
2 with probability 1 − q∗i . As in Subsection 5.1,

the probabilities qi and q∗i can depend on the client identity, the bond characteristics, etc.

They can also depend on the number of requested dealers ni+1. In particular, by assuming

that the probability to quote conservatively increases with the number of requested dealers,

it may be possible to replicate the phenomenon observed in Figures 4 and 5.

It is noteworthy that the extension proposed in Subsection 5.1 can be regarded as a special

case of this one, because the former boils down to the latter in the limit case where F2 (resp.

F ∗
2 ) is a Dirac mass at +∞ (resp. −∞).

This extended framework leads to a more complex model: it may capture and explain addi-

tional e�ects, but the statistical inference is more challenging. If we choose F1 and F2 (resp.

F ∗
1 and F ∗

2 ) inside the same parametric family of distributions (with di�erent parameters),

then we multiply by two the number of parameters to estimate on the dealer side � and we

also have to estimate qi (resp. q
∗
i ). F2 (resp. F ∗

2 ) can also be chosen in a simpler family of

distributions in order to reduce the number of parameters to estimate.

In all cases, the MCMC algorithm used throughout this paper can be generalized to tackle

this extended framework.

Conclusion

In this paper, we have introduced a model to infer the behavior of dealers and clients on

the corporate bond market from a hitherto unexploited32 database of RFQs.

32Although practitioners have been using this kind of dataset for several years, it is the �rst time an

academic research work is based on such a type of dataset.
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We have modelled in a simple way the RFQ process on MD2C platforms by assuming skewed

exponential power distributions for dealers' quotes and Gaussian distributions for clients'

reservation prices. The model has been estimated by Markov chain Monte Carlo techniques

(Gibbs sampling and Metropolis-Hastings random draws).

We have studied the in�uence of the number of competing dealers, the notional of the RFQ,

and some bond characteristics. Our model sheds light on the dependence of the behaviors

of both clients and dealers on the number of dealers requested.

Some extensions of the model have been proposed to tackle the potential problem of an

unknown number of responding dealers and/or the heterogeneity of their behaviors. These

extensions will be the topic of future research works.
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A The likelihood

Let us detail the likelihood associated with the sample SN .

a. If Ii = 1 (Done), then the likelihood of Xi in the case of a �buy� order is

L(1)
i|buy = P

(
min

k=1,...,ni

Wk,i = Ci, Vi ≥ Yi|Ωi

)
= nif(Ci|Ω)(1−F (Ci |Ωi))

ni−1(1−G(Yi |Ωi)),

if we know the cover price.

In the case of a �sell� order, it is

L(1)
i|sell = P

(
max

k=1,...,ni

Wk,i = Ci, Vi ≤ Yi|Ωi

)
= nif

∗(Ci|Ω)F ∗(Ci |Ωi)
ni−1G∗(Yi |Ωi) ,

if we know the cover price.

When the cover price is unknown, the likelihood of Xi can be written as

L(1)
i|buy = P

(
min

k=1,...,ni

Wk,i ≥ Yi, Vi ≥ Yi|Ωi

)
= (1− F (Yi |Ωi))

ni(1−G(Yi |Ωi)),

for a �buy� RFQ, and

L(1)
i|sell = P

(
max

k=1,...,ni

Wk,i ≤ Yi, Vi ≤ Yi|Ωi

)
= F ∗(Yi |Ωi)

ni G∗(Yi |Ωi) ,

for a �sell� RFQ.

b. If Ii = 2 (Traded Away), then the likelihood of Xi in the �buy� case is

L(2)
i|buy = P

(
min

k=1,...,ni

Wk,i ≤ min(Vi, Yi)|Ωi

)
= E

[(
1− E

[
1mink=1,...,ni

Wk,i≥min(Vi,Yi)|Vi,Ωi

])
|Ωi

]
= E [(1− (1− F (min(Vi, Yi)|Ωi))

ni) |Ωi]

=

∫
(1− (1− F (min(v, Yi)|Ωi))

ni) g(v |Ωi) dv.

In the �sell� case, we get similarly

L(2)
i|sell = P

(
max

k=1,...,ni

Wk,i ≥ max(Vi, Yi)|Ωi

)
= E

[(
1− E

[
1maxk=1,...,ni

Wk,i≤max(Vi,Yi)|Vi,Ωi

])
|Ωi

]
= E [(1− F ∗(max(Vi, Yi)|Ωi)

ni) |Ωi]

=

∫
(1− F ∗(max(v, Yi)|Ωi)

ni) g∗(v |Ωi) dv.
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c. If Ii = 3 (Not Traded), then the likelihood of Xi in the case of a �buy� order is

L(3)
i|buy = P

(
min

k=1,...,ni

Wk,i ≥ Vi, Yi ≥ Vi|Ωi

)
=

∫
1Yi≥v(1− F (v |Ωi))

nig(v |Ωi) dv.

For a �sell� order, it is

L(3)
i|sell = P

(
max

k=1,...,ni

Wk,i ≤ Vi, Yi ≤ Vi|Ωi

)
=

∫
1Yi≤vF

∗(v |Ωi)
ni g∗(v |Ωi) dv.

If we want to take into account the additional information (�Tied�, �Covered�, �Tied Cov-

ered�, �Other�), the part of the likelihood that is related to �Traded Away� RFQs becomes

more complicated.

This part of the total likelihood is now

L(2) :=

N∏
i=1,Ii=2

L(Ii,Ji)
i =

N∏
i=1,Ii=2

4∑
l=1

1Ji=lL
(2,l)
i ,

To write the di�erent terms, let us consider the dealers' quotes (Wk,i)k corresponding to

the RFQ i in ascending order:33 W(1) ≤ W(2) ≤ · · · ≤ W(ni).

Let us start with �buy� RFQs. We recall that the joint probability density function of

(W(1),W(2)) is

f(1),(2)(w(1), w(2) |Ωi) =

ni(ni − 1)

2

(
1− F (w(2) |Ωi)

)ni−2
f(w(1) |Ωi) f(w(2) |Ωi) 1w(1)≤w(2)

.

We can write:

• In the �Tied� case:

L(2,1)
i|buy = P

(
W(1) = Yi ≤ Vi|Ωi

)
= P

(
W(1) = Yi|Ωi

)
P (Yi ≤ Vi|Ωi)

= ni(1− F (Yi |Ωi))
ni−1f(Yi |Ωi) (1−G(Yi |Ωi)).

• In the �Covered� case:

L(2,2)
i|buy = P

(
W(1) < Yi < W(2),W(1) ≤ Vi|Ωi

)
= E

[
1W(1)<Yi<W(2)

(1−G(W(1)|Ωi))|Ωi

]
=

∫
1w(1)<Yi<w(2)

(1−G(w(1)|Ωi))f(1),(2)(w(1), w(2) |Ωi) dw(1)dw(2),

if ni > 1. When ni = 1, we have:

L(2,2)
i|buy = P

(
W(1) < Yi,W(1) ≤ Vi|Ωi

)
=

∫
1w(1)<Yi(1−G(w(1)|Ωi))f(w(1) |Ωi) dw(1),

33We skip here the index i of the RFQ.
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• In the �Tied Covered� case:

L(2,3)
i|buy = P

(
W(1) < Yi = W(2),W(1) ≤ Vi|Ωi

)
= E

[
1W(1)<Yi=W(2)

(1−G(W(1)|Ωi))|Ωi

]
=

∫
1w(1)<Yi(1−G(w(1)|Ωi))f(1),(2)(w(1), Yi |Ωi) dw(1).

• In the �Other� case:

L(2,4)
i|buy = P

(
W(2) < Yi,W(1) ≤ Vi|Ωi

)
= E

[
1W(2)<Yi(1−G(W(1)|Ωi))|Ωi

]
=

∫
1w(2)<Yi(1−G(w(1)|Ωi))f(1),(2)(w(1), w(2) |Ωi) dw(1)dw(2).

For dealing with �sell� orders, we recall the joint density of (W(ni),W(ni−1)):

f∗
(ni),(ni−1)(w(ni), w(ni−1) |Ωi) =

ni(ni − 1)

2
F ∗(w(ni−1) |Ωi)

ni−2 f∗(w(ni−1) |Ωi) f
∗(w(ni) |Ωi) 1w(ni−1)≤w(ni)

.

We can write:

• In the �Tied� case:

L(2,1)
i|sell = P

(
W(ni) = Yi ≥ Vi|Ωi

)
= P

(
W(ni) = Yi|Ωi

)
P (Yi ≥ Vi|Ωi)

= niF
∗(Yi|Ωi)

ni−1f∗(Yi|Ωi)G
∗(Yi|Ωi).

• In the �Covered� case:

L(2,2)
i|sell = P

(
W(ni) > Yi > W(ni−1),W(ni) ≥ Vi|Ωi

)
= E

[
1W(ni)

>Yi>W(ni−1)
G∗(W(ni)|Ωi)|Ωi

]
=

∫
1w(ni)

>Yi>w(ni−1)
G∗(w(ni)|Ωi)f

∗
(ni),(ni−1)(w(ni), w(ni−1) |Ωi) dw(ni)dw(ni−1).

if ni > 1. When ni = 1, we have

L(2,2)
i|sell = P

(
W(ni) > Yi,W(ni) ≥ Vi|Ωi

)
=

∫
1w(ni)

>YiG
∗(w(ni)|Ωi)f

∗(w(ni) |Ωi) dw(ni).

• In the �Tied Covered� case:

L(2,3)
i|sell = P

(
W(ni) > Yi = W(ni−1),W(ni) ≥ Vi|Ωi

)
= E

[
1W(ni)

>Yi=W(ni−1)
G∗(W(ni)|Ωi)|Ωi

]
=

∫
1w(ni)

>YiG
∗(w(ni)|Ωi)f

∗
(ni),(ni−1)(w(ni), Yi |Ωi) dw(ni).

37



• In the �Other� case:

L(2,4)
i|sell = P

(
W(ni−1) > Yi,W(ni) ≥ Vi|Ωi

)
= E

[
1W(ni−1)>YiG

∗(W(ni)|Ωi)|Ωi

]
=

∫
1w(ni−1)>YiG

∗(w(ni)|Ωi)f
∗
(ni),(ni−1)(w(ni), w(ni−1) |Ωi) dw(ni)dw(ni−1).
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B Markov chain Monte Carlo and Gibbs sampling

Gibbs sampling is a Markov chain Monte Carlo method. It is used to sample from a joint

posterior distribution of the form π(α̃, β̃|y) when one has an algorithm for sampling from

the conditional distributions π(α̃|β̃, y) and π(β̃|α̃, y). The aim is to construct a Markov

chain (α̃t, β̃t) whose stationary distribution is π(α̃, β̃|y). If we run the Markov chain for

long enough, then the values of the chain will eventually follow the posterior distribution.

Algorithm 3 describes the basic Gibbs sampler (with two parameters).

Algorithm 3 Basic Gibbs sampler

Initialize (e.g. at random) (α̃0, β̃0)

for iteration t=1 to T do

Simulate α̃t from the conditional distribution π(α̃|β̃t−1, y)

Simulate β̃t from the conditional distribution π(β̃|α̃t, y)

end for

Convergence of the method is true under very general conditions. In practice, it is necessary

to check that the algorithm has converged. There are numerous procedures for doing so,

which are out of scope here � the interested reader is referred to [14]. The run of the Markov

chain can then be split into two parts: the initial part of the run, until it reaches station-

arity, is called the burn-in and is usually discarded. The remainder of the run corresponds

to the chain exploring the posterior distribution, and is used for inference, possibly after

sub-sampling to reduce the correlation between iterations.

A complete implementation of the MCMC procedure in Python and Cython with its docu-

mentation is available from our website at http://squad.compmath.fr/doc/

The conditional distributions are derived from the complete likelihood:34

π(I,W ,V, α̃, β̃|X,Ω) =
∏
i

∏
k

g(Vi|α̃,Ωi)f(Wk,i|β̃,Ωi)π(Ii|W i, Vi, Xi) · π(α̃, β̃).

The �complete conditional� distributions for the latent variables depend only on per-quote

information:

π(Wk,i|Ii,W l ̸=k,i, Vi, α̃, β̃, Xi,Ωi) ∝ f(Wk,i|β̃,Ωi)π(Ii|W i, Vi, Xi), (B.1)

π(Vi|Ii,W i, α̃, β̃,Xi,Ωi) ∝ g(Vi|α̃,Ωi)π(Ii|W i, Vi, Xi). (B.2)

As for the parameters, we have

π(β̃|I,W ,V , α̃,X,Ω) ∝ π(β̃)
∏
i

(∏
k

f(Wk,i|β̃,Ωi)

)
, (B.3)

34We only consider here the case of �buy� RFQs.
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π(α̃|I,W ,V , β̃,X,Ω) ∝ π(α̃)
∏
i

g(Vi|α̃,Ωi). (B.4)

The latter distributions require the total information about all quotes, and sampling from

them is thus more demanding computationally.

Sampling latent variables

In our model, G0 is a normal distribution parameterized by α̃ = (να̃, τα̃). Sampling the

latent variables Vi amounts to sampling from the truncated Gaussian distributions:

π

(
Vi − CBBTi

∆i
|Ii,W i, α̃, β̃, Xi,Ωi

)
= N (να̃, τ

2
α̃)1Ii|W i,Vi,Xi

.

F0 is a SEP distribution with parameters β̃ = (µβ̃, σβ̃, αβ̃, λβ̃). Sampling the latent variables

Wk,i amounts to sampling from the truncated SEP distributions:

π

(
Wk,i − CBBTi

∆i
|Ii,Wl ̸=k,i, Vi, α̃, β̃,Xi,Ωi

)
= SEP (µβ̃, σβ̃, αβ̃, λβ̃)1Ii|W i,Vi,Xi

.

Both Wk,i and Vi can be sampled by a simple rejection algorithm. We have veri�ed empiri-

cally that the rejection rates remain acceptable with our dataset under this basic sampling

technique.

Sampling parameters

Using conjugate priors for να̃ and τα̃ leads to a simple form for the posteriors.

As far as the mean is concerned, we have used a Gaussian prior π(να̃) = N (ν0, ϵ
2
0). This

implies

π(να̃|I,W ,V , τα̃,X,Ω) = N (ν̄, ϵ̄2),

where

ν̄ =

(
ν0
ϵ20

+
1

τ2α̃

N∑
i=1

Vi − CBBTi

∆i

)/(
1

ϵ20
+

N

τ2α̃

)
and

1

ϵ̄2
=

(
1

ϵ20
+

N

τ2α̃

)
.

In our experiments, we used ν0 = 0 and ϵ0 = 10.

Regarding τα̃, the conjugate prior is an Inverse Gamma distribution: π(τ2α̃) = IG(a, b).

With this prior, we have:

π(τ2α̃|I,W ,V , να̃,X,Ω) = IG
(
ā, b̄
)
,
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where ā = a+ N
2 and b̄ = b+ 1

2

∑N
i=1

(
Vi−CBBTi

∆i
− να̃

)2
.

We used a = 3 and b = 1 in the experiments presented in this paper.

Sampling the parameters β̃ = (µβ̃, σβ̃, αβ̃, λβ̃) of the SEP is a bit more involved. To palliate

the absence of analytical solution, we resorted to using a Metropolis algorithm to sam-

ple from the posterior. Using a Metropolis step inside a Gibbs sampler is known as the

Metropolis-within-Gibbs algorithm, and retains the convergence properties of Gibbs sam-

pling alone.

Algorithm 2 in Section 3.3 gives a procedural description of the Metropolis-within-Gibbs

algorithm. The distribution

π(β̃|α̃t,X,V,W,Ω) =
π(V,W|β̃, α̃t,X,Ω)π(β̃)

π(V,W|α̃t,X,Ω)

is computed from the likelihood of the data and a prior distribution35 for β̃ = (µβ̃, σβ̃, αβ̃, λβ̃).

The likelihood term π(V,W|β̃, α̃t,X,Ω) was explicited in (B.1) and (B.2). As for the pri-

ors, we initially left β̃ unconstrained using an improper uniform prior on R× R× R+ × R.
Then, we chose to add the constraints µβ̃ ≤ 0 and λβ̃ > 0 (resp. µβ̃ > 0 and λβ̃ < 0)

for the experiments on the �buy� (resp. �sell�) RFQs. This induced more robust inference

procedures and prevented the algorithm from being trapped into a local minimum of the

likelihood.

Sampling covariate coe�cients

Finally, the coe�cients of the linear regressions, i.e. (bD, cD, bC , cC) for the �buy� RFQs,

and (b∗D, c
∗
D, b

∗
C , c

∗
C) for the �sell� RFQs (as described in Equations (2.3) and (2.4)) must

be estimated using a Metropolis-within-Gibbs algorithm as well. We estimated each group

of coe�cients from its own complete conditional distribution (which is equivalent to the

procedure that was used for sampling parameters β̃), and used an (improper) uniform prior

for all the experiments.

35π(α̃t) appears both on the numerator and denominator, and need not be computed.
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