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Given a set of moment restrictions that characterize a parameter θ, we in-

vestigate a semiparametric Bayesian approach for estimation of θ that imposes

these moment restrictions in the nonparametric prior for the data distribu-

tion. As main contribution, we construct a degenerate Gaussian process prior

for the density function associated with the data distribution F that imposes

overidentifying restrictions. We show that this prior is computationally conve-

nient. Since the likelihood function is not specified by the model we construct

it based on a linear functional transformation of F that has an asymptotically

Gaussian empirical counterpart. This likelihood is used to construct the pos-
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1 Introduction

Econometric models are often formulated in terms of moment restrictions that hinge

on economic restrictions. These restrictions provide the only information available about

the parameter of interest θ and the data distribution. Given a set of moment restrictions

that characterize θ, this paper builds a semiparametric Bayesian inference procedure for θ

that imposes these moment restrictions in the nonparametric prior distribution for the data

distribution and that is computationally convenient. Apart from these moment restrictions,

the data distribution is left unrestricted.

A main advantage of Bayesian inference consists in providing a well-defined posterior

distribution that is important for many decision problems and for predictive analysis. On

the other hand, constructing Bayesian inference procedures for moment restrictions-based

models presents two difficulties. A first difficulty is due to the fact that a likelihood is not

available. A second difficulty arises because imposing overidentifying moment restrictions

on the prior distribution for the data distribution is challenging. The contribution of this

paper is to propose an elegant approach that allows to deal with these two difficulties. As

a by-product we show that the quasi-likelihood of some Laplace-type procedures arises as

the limit of our Bayesian procedure.

The model we consider is as follows. Let x be an observable random element in R
m

with distribution F and x1, . . . , xn be an i.i.d. sample of x. The parameter θ ∈ Θ ⊂ Rp is

linked to the data generating process (DGP) F through the moment restrictions

EF [h(θ, x)] = 0, (1.1)

where h(θ, x) = (h1(θ, x), . . . , hd(θ, x))
T and the functions hj(θ, x), j = 1, . . . , d are real-

valued and known. We assume d ≥ p and our main interest is the case where d > p, which

is in general more challenging than the case d = p. Apart from (1.1), F is completely

unrestricted. The Bayesian procedure proposed in this paper constructs a nonparametric

prior for F with support equal to the subset of distributions that satisfy the moment re-

strictions for a given θ. Because the moment restrictions are imposed in the prior for F ,

the distributions generated from the prior satisfy (1.1) by construction.

Imposing moment restrictions via semiparametric priors may be challenging depending

on the relationship existing between θ and F . More precisely, when the model is just-

identified (i.e. p = d), and under mild conditions, (1.1) characterizes θ as an explicit

function of F : θ = b(F ), where b is a function defined on the set of probability distribu-

tions. Thus, for a particular transformation b, the prior of θ may be recovered from an

unrestricted nonparametric prior on F , and the (θ, F )s generated by this prior automati-

cally satisfy the constraints.

On the contrary, in an overidentified model where d > p, θ cannot be expressed as
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an explicit function of F . Indeed, (1.1) imposes constraints on F and the existence of a

solution θ to (1.1) is guaranteed only for a subset of distributions F . Therefore, a restricted

nonparametric prior on F must be specified conditionally on θ and the support of this prior

is a proper subset of the set of probability distributions. It turns out that incorporating

overidentifying moment restrictions in a semiparametric prior for (θ, F ) is not straightfor-

ward. In this paper we propose a way to construct a semiparametric prior that incorporates

the overidentifying moment restrictions.

Our strategy is based on a degenerate Gaussian process (GP) prior with restricted sup-

port which is easy to deal with and that works as follows. The DGP F is assumed to admit

a density function f with respect to some positive measure Π chosen by the econometrician

(for instance the Lebesgue measure). Then, we endow f with a GP prior conditional on θ.

The (overidentifying) moment restrictions are incorporated by constraining the prior mean

and prior covariance of this GP in an appropriate way. Because this prior imposes the mo-

ment restrictions, it will be degenerate on a proper subset of the set of probability density

functions. The reason for the appropriateness of a GP prior in such a framework is due to

the fact that the moment equations in (1.1) are linear in f and the linearity of the model

matches extremely well with a GP prior. An advantage of our method is that, in both

the just-identified and overidentified cases, the moment restrictions are imposed directly

through the GP prior of f given θ without requiring a second step projection over the set

of density functions satisfying the moment restrictions. To the best of our knowledge a GP
prior has not been used yet in the moment estimation framework.

Our Bayesian procedure, that we call the GP-approach, is constructed as follows. In

the overidentified case we first specify a prior on θ and then a GP prior on f conditional on

θ. In the just-identified case we may either proceed as in the overidentified case or specify

an unrestricted GP prior on f and then deduce from it the prior for θ through the explicit

relationship θ = b(f ). We circumvent the difficulty of the likelihood function specification,

which is not available, by constructing a linear functional transformation of the DGP F

such that its empirical counterpart, say rn, has an asymptotic Gaussian distribution. This

will be used as the sampling model. Therefore, our model is approximately conjugate and

allows easy computations while being nonparametric in F .

We provide a closed-form expression for the marginal posterior distribution of θ (ob-

tained by integrating out f ) and propose the maximum of this distribution as an estimator

for θ. The maximum a posteriori of θ is usually not available in closed-form but can be

easily computed via drawn from the marginal posterior. We show that the quasi-likelihood

function (also called limited information likelihood) used, among others, by Kim [2002]

and Chernozhukov and Hong [2003], can be obtained as the limit of the marginal posterior

distribution for θ when the GP for f is allowed to become diffuse. In addition, when the

prior for f becomes noninformative, the marginal posterior distribution for θ becomes the
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same (up to constants) as the GEL objective function with quadratic criterion and is a

monotonic transformation of the continuous updating GMM objective function (Hansen

et al. [1996]).

Finally, we provide a frequentist validation of our method by showing: (i) frequen-

tist consistency of the maximum a posteriori estimator, (ii) posterior consistency and (iii)

asymptotic normality of the posterior distribution of θ.

Related literature. Estimation of a parameter by exploiting the only information con-

tained in moment restrictions is at the core of econometrics and statistical literature. Since

Hansen [1982] and Hansen and Singleton [1982], the generalized method of moments (GMM)

estimator and its variants have been extensively applied in econometrics. Alternative fre-

quentist estimators to the GMM and the continuous updating GMM estimators includes

the empirical likelihood (EL), exponential tilting, exponentially tilted EL and generalized

empirical likelihood (GEL) estimators (e.g. Owen [1988], Qin and Lawless [1994], Smith

[1997], Kitamura and Stutzer [1997], Kitamura [1997], Imbens et al. [1998], Newey and

Smith [2004], Schennach [2007], Kitamura [2007]).

Since the works of Florens and Rolin [1994] and Zellner [1996], much attention has been

devoted to construct posterior distributions for Bayesian inference and predictive analysis

in presence of moment restrictions. There are two ways to construct a semiparametric

Bayesian procedure to make inference on θ by only using the information contained in

the moment restrictions (1.1). The first way consists in constructing a quasi-likelihood by

exponentiating the generalized method of moments (GMM) criterion function. The corre-

sponding approach is quasi-Bayesian and has been investigated e.g. by Kwan [1999], Kim

[2002], Chernozhukov and Hong [2003], Liao and Jiang [2011], Gallant [2015] and Gallant

et al. [2015] among others. Our paper shows that the quasi-likelihood used in this type of

approach arises as the limit of our GP prior as it becomes diffuse. We provide thus a pure

Bayesian justification to this approach.

The second way is purely Bayesian and consists in imposing the moment restrictions

in the prior for (θ, F ) while leaving the likelihood completely unrestricted. The approach

proposed in this paper is of this type and constructs a constrained prior distribution that is

different with respect to the priors proposed so far. Previous contributions include Cham-

berlain and Imbens [2003] who use a Dirichlet prior, Lazar [2003] who studies the validity

of EL as the basis for Bayesian inference, and Schennach [2005] who proposes a Bayesian

exponentially tilted EL which relies on a non-informative prior, different from a Dirichlet

process, on the space of distributions. Recent contributions are Kitamura and Otsu [2011]

and Shin [2014]. They propose to first specify an unrestricted Dirichlet process mixture

(DPM) prior for F and a mixture of Dirichlet Process prior, respectively. Then, in a second
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step they select the distribution that, among all the distributions satisfying the moment

restrictions, minimizes the Kullback-Leibler divergence to the F generated by the Dirichlet

prior. A nonparametric prior constructed by minimizing the Kullback-Leibler divergence

is also proposed by Ragusa [2007]. Finally, Bornn et al. [2015] use Hausdorff measures to

build probability tools for dealing with moment estimation.

The paper is organized as follows. The GP-approach is described in section 2, which

contains our main contribution. In section 3 we analyze asymptotic properties of the

posterior distribution of θ and of the maximum a posteriori estimator. In section 4 we

show the link existing between our approach and some frequentist approaches to moment

estimations. In section 5 we detail how to implement our method for both the just identified

and the overidentified case through simulation studies. All the proofs are gathered in the

Appendix.

2 The Gaussian Process (GP) -approach

Let x be a continuous random element in S ⊆ R
m with distribution F and x1, . . . , xn

be an i.i.d. sample of x. Assume that F is absolutely continuous with respect to some

positive measure Π (e.g. the Lebesgue measure) with density function f . In other words,

conditionally on f the data are drawn from F : x1, . . . , xn|f ∼ F . The set of probability

density functions on S with respect to Π is denoted by M .

Let θ ∈ Θ ⊆ R
p be the parameter of interest characterized by (1.1). By adopting a

frequentist point of view, we denote, throughout the paper, the true value of θ by θ∗, the

true DGP by F∗ and its density with respect to Π by f∗. The model is assumed to be

well-specified, that is, EF∗(h(θ∗, x)) = 0 holds. We endow S ⊆ R
m with the trace of the

Borelian σ-field BS and specify Π as a positive measure on this subset. We denote by

E = L2(S,BS ,Π) the Hilbert space of square integrable functions on S with respect to Π

and by BE the Borel σ-field generated by the open sets of E . The scalar product and norm

on this space are defined in the usual way and denoted by 〈·, ·〉 and || · ||, respectively.
The parameters of the model are (θ, f ), where f is the nuisance parameter, and the

parameter space is

Λ =

{
(θ, f ) ∈ Θ× EM ;

∫
h(θ, x)f (x)Π(dx) = 0

}
, EM := E ∩M,

where h : Θ×R
m → R

d is a known function. In the following of the paper we maintain the

following assumption.

Assumption 2.1. (i) The true f∗ satisfies f∗ ∈ EM := E ∩M ; (ii) the moment function

h(θ, ·) is such that hi(θ, ·) ∈ E for every i = 1, . . . , d and for every θ ∈ Θ, where hi denotes
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the i-th component of h; (iii) d ≥ p.

Assumption 2.1 (i) restricts f∗ to be square integrable with respect to Π and is for

instance verified if f∗ is bounded and Π is a bounded measure. The model is made up of

three elements that we detail in the next two subsections: a prior on θ, denoted by µ(θ), a

conditional prior on f given θ, denoted by µ(f |θ) and the sampling model. In the following,

we shorten “almost surely” by “a.s.” and omit the probability which “a.s.” refers to. We

denote by EF the expectation taken with respect to F and by E∗ the expectation taken

with respect to F∗.

2.1 Prior distribution

We specify a prior probability measure µ for (θ, f ) of the form µ(θ, f ) = µ(θ)µ(f |θ).
By abuse of notation, µ(θ) will also denote the density of the prior distribution of θ with

respect to the Lebesgue measure in the case it admits it. The prior µ(θ) may either be flat

(non-informative) or incorporate any additional information available to the econometrician

about θ.

Given a value for θ, the conditional prior µ(f |θ) is specified such that its support equals

the subset of probability density functions in EM that satisfy (1.1) for this particular value

of θ. At the best of our knowledge, the construction of such a conditional prior µ(f |θ) is
new in the literature and we now explain it in detail.

Construction of the conditional prior µ(f |θ). We construct the conditional prior

distribution µ(f |θ) of f , given θ, as a GP onBE with mean function f0θ ∈ EM and covariance

operator Ω0θ : E → E . We restrict f0θ and Ω0θ to guarantee that the trajectories f generated

by µ(f |θ) are such that the corresponding F (which is given by F = fΠ) integrates to 1

and satisfies equation (1.1) with probability 1. The two sets of restrictions that we impose

are the following (one on f0θ and one on Ω0θ):

Restriction 1 (Restriction on f0θ). The prior mean function f0θ ∈ EM is chosen such that

∫
h(θ, x)f0θ(x)Π(dx) = 0. (2.1)

Restriction 2 (Restriction on Ω0θ). The prior covariance operator Ω0θ : E → E is chosen

such that

{
Ω
1/2
0θ h(θ, x) = 0

Ω
1/2
0θ 1 = 0

(2.2)

where Ω
1/2
0θ : E → E and Ω0θ = Ω

1/2
0θ Ω

1/2
0θ .

6



The covariance operator Ω0θ is linear, self-adjoint and trace-class.1 Due to Restriction

2, Ω0θ is not injective. In fact, the null space of Ω0θ, denoted by N(Ω0θ), is not trivial and

contains effectively the constant 1 – which implies that the trajectories f generated by the

prior integrate to 1 a.s. (with respect to Π) – and the function h(θ, x) – which implies that

the trajectories f satisfy the moment conditions a.s. This means that Ω0θ is degenerate

in the directions along which we want that the corresponding projections of f and f0θ are

equal. Therefore, the support of µ(f |θ) is a proper subset of E . equal. This is the meaning

of the next lemma.

Lemma 2.1. The conditional GP prior µ(f |θ), with mean function f0θ and covariance

operator Ω0θ satisfying Restrictions 1 and 2, generates trajectories f that satisfy µ(f |θ)-
a.s. the conditions

∫
f (x)Π(dx) = 1 and

∫
h(θ, x)f (x)Π(dx) = 0.

Remark 2.1. Restrictions 1 and 2 imply that the trajectories generated by µ(f |θ) in-

tegrates to 1 (with respect to Π) and satisfy (1.1) a.s. but they do not guarantee non-

negativity of the trajectories. Thus, the support of µ(f |θ) is smaller than E but bigger

than EM . To impose non-negativity we could: (i) either project the prior on the space of

non-negative functions or (ii) write f = g2, g ∈ E , and specify a conditional prior distribu-

tion, given θ, for g instead of for f . The resulting prior distribution would not be Gaussian

anymore and the resulting posterior for θ would not be available in closed form which is

instead one of the main advantages of our procedure. Because our goal is to make inference

on θ, and f is a nuisance parameter, failing to impose the non-negativity constraint is not

an issue as long as our procedure is shown to be consistent for θ (which we show in section

3).

From a practical implementation point of view, a covariance operator satisfying Restric-

tion 2 may be constructed as follows. Let (λj)j∈N be a decreasing sequence of non-negative

numbers accumulating at 0 such that
∑

j λj < ∞, and (ϕj)j∈N be a basis for E . Then,

∀φ ∈ E : Ω0θφ =
∑∞

j=0 λj〈φ,ϕj〉ϕj . Remark that (λj)j∈N and (ϕj)j∈N correspond to the

eigenvalues and eigenfunctions of Ω0θ, respectively.

Since the null space N(Ω0θ) ⊂ E is spanned by {1, h1(θ, ·), . . . , hd(θ, ·)}, we can set

the first eigenfunctions of Ω0θ equal to the elements of any basis of N(Ω0θ). Restric-

tion 2 is then fulfilled by setting the corresponding eigenvalues equal to 0. For instance,

if {1, h1(θ, ·), . . . , hd(θ, ·)} are orthonormal as elements of E , then N(Ω0θ) has dimension

d + 1, the first eigenvalues are (ϕ0, ϕ1, . . . , ϕd)
T = (1, hT )T and the corresponding eigen-

values are λj = 0, ∀j = 0, 1, . . . , d. Remark that in this case, necessarily,
∫
Π(dx) = 1. If

1A trace-class operator is a compact operator with eigenvalues that are summable. Remark that
this guarantees that the trajectories f generated by µ(f |θ) satisfy

∫
f2dΠ <∞ a.s.
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{1, h1(θ, ·), . . . , hd(θ, ·)} are not orthonormal then one can use their orthonormalized coun-

terparts as the first eigenfunctions of Ω0θ. The latter is the method we use to implement

our procedure. The remaining components (ϕj)j>d are chosen such that (ϕj)j≥0 forms an

orthonormal basis of E and (λj)j>d are chosen such that
∑

j>d λj <∞. Hence,

∀φ ∈ E , Ω0θφ =
∞∑

j=d+1

λj〈φ,ϕj〉ϕj .

Examples of choices for (λj)j>d are, for some constant c > 0: (i) λj = cj−a with a > 1, (ii)

λj = ce−j . In section 5 we provide some examples that clarify the construction of Ω0θ.

Remark 2.2. In the just-identified case where d = p and the moment restrictions (1.1)

can be solved explicitly for θ (that is, θ = b(f ), for some functional b), then the prior

for (θ, f ) may be constructed in an alternative way: one can first specify a prior for f

and then recover from it the prior for θ. When b is a linear functional and θ can take

any value in R
p, one can specify a GP prior µ(f ) for f (independent of θ) with a mean

function f0 restricted only to be a pdf and a covariance operator Ω0 restricted only to

satisfy Ω
1/2
0 1 = 0. Then, the prior for θ is obtained through the transformation b(·) and

will be Gaussian. Because the support of this prior is R
p, then this approach is feasible if

every value in R
p is plausible for θ. For example, if θ = EF (x) and the support of x is Rp,

then b(f ) = 〈f, ι〉 and µ(θ) = N (〈f0, ι〉, 〈Ω0ι, ι〉), where ι ∈ E denotes the identity function

ι(x) = x.

2.2 The sampling model

Given the observed i.i.d. sample (x1, . . . , xn), the likelihood function is
∏n
i=1 f (xi).

While apparently simple, using this likelihood for Bayesian inference on θ makes the anal-

ysis of the posterior distribution complicated. This is because to compute the posterior

for θ one has to marginalize out f . Since a GP prior is not a natural conjugate of the

i.i.d. model then, marginalization of f has to be carried out through numerical, or Monte

Carlo, integration on a functional space, which may be computationally costly. To avoid

this difficulty, we propose an alternative and original way to construct the sampling model

that allows for a conjugate analysis and prevents from numerical integration. Our approach

is based on a functional transformation rn of the sample x1, . . . , xn.

This transformation rn is chosen by the researcher and must have the following charac-

teristics: (I) rn is an observable element of an infinite-dimensional Hilbert space F (to

be defined below), for instance a L2-space; (II) rn converges weakly towards a Gaus-

sian process in F ; (III) the expectation of rn, conditional on f , defines a linear operator

K : E → F such that EF (rn) = Kf , where F is an infinite-dimensional separable Hilbert
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space. Moreover, rn ∈ F is a Hilbert space-valued random variable (H-r.v.). We recall

that, for a complete probability space (Z,Z,P), rn is a H-r.v. if it defines a measurable

map rn : (Z,Z,P) → (F ,BF ), where BF denotes the Borel σ-field generated by the open

sets of F .

Construction of rn. Let T ⊆ R
l, l > 0. To construct rn we first select a function

k(t, x) : T × S → R (or in C) that is measurable in x for every t ∈ T and that is non-

constant in (t, x). The transformation rn is then taken to be the expectation of k(t, ·)
under the empirical measure:

rn(t) =
1

n

n∑

i=1

k(t, xi), ∀t ∈ T.

Define F = L2(T,BT, ρ) where ρ is a measure on T and BT denotes the Borel σ-field

generated by the open sets of T. The scalar product and norm on F are defined in the

usual way and denoted by 〈·, ·〉 and ‖·‖, respectively, with the same notation as for the inner

product and norm in E . The function k(t, x) defines also a bounded operator K : E → F
and must be such that, for every ϕ ∈ E , Kϕ ∈ F and rn is an H-r.v. with realizations in

F . Hence,

K : E → F
ϕ 7→

∫
k(t, x)ϕ(x)Π(dx).

(2.3)

For every f ∈ EM , Kf is the expectation of k(t, ·) under F : (Kf )(t) = EF (k(t, x)). Under

the true distribution F ∗ the expectation of rn is Kf∗ and the covariance function of rn is:

∀s, t ∈ T,

1

n
σ(t, s) = E∗rn(t)rn(s) =

1

n
[E∗ (k(t, x)k(s, x)) −E∗(k(t, x))E∗(k(s, x))] .

If the class of functions {k(t, ·), t ∈ T} is Donsker then, as n → ∞, the conditional distri-

bution of
√
n(rn − Kf∗) weakly converges to a GP with covariance operator Σ : F → F

defined as

∀ψ ∈ F , (Σψ)(t) =

∫
σ(t, s)ψ(s)ρ(ds) (2.4)

which is one-to-one, linear, positive definite, self-adjoint and trace-class. In the following

we assume that {k(t, ·), t ∈ T} is Donsker such that rn is approximately Gaussian: rn ∼
GP(Kf∗,Σn) where Σn = 1

nΣ. In our analysis we treat f∗ as the realization of the random

parameter f and Σn as known. Therefore, the sampling distribution of rn|f is P f =

GP(Kf,Σn) and we construct the posterior distribution based on it. In practice, Σn must
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be replaced by its empirical counterpart. In finite sample, P f is an approximation of the

true sampling distribution but the approximation error vanishes as n→ ∞.

Example 2.1 (Empirical cumulative distribution function (cdf).). Let (x1, . . . , xn) be an

i.i.d. sample of x ∈ R. A possible choice for k(t, x) is k(t, x) = 1{x ≤ t}, where 1{A}
denotes the indicator function of the event A. In this case, rn(t) = Fn(t) :=

1
n

∑n
i=1 1{xi ≤

t} is the empirical cdf and the operator K is (Kϕ)(t) =
∫
S 1{s ≤ t}ϕ(s)Π(ds), ∀ϕ ∈ E . By

the Donsker’s theorem, Fn(·) is asymptotically Gaussian with mean the true cdf F∗(·) and
covariance operator characterized by the kernel: 1

n(F∗(s ∧ t)− F∗(s)F∗(t)).

Example 2.2 (Empirical characteristic function). Let (x1, . . . , xn) be an i.i.d. sample of

x ∈ R. Let k(t, x) = eitx, so that rn(t) = cn(t) := 1
n

∑n
j=1 e

itxj is the empirical char-

acteristic function. In this case, the operator K is (Kϕ)(t) =
∫
S e

itsϕ(s)Π(ds), ∀ϕ ∈ E .
By the Donsker’s theorem, cn(·) is asymptotically a Gaussian process with mean the true

characteristic function c(·) ≡ E∗[eitx] and covariance operator characterized by the kernel:
1
n(c(s + t)− c(s)c(t)).

The following lemma gives an useful characterization of the operator Σ in terms of

K and its adjoint K∗. We recall that the adjoint K∗ of a bounded and linear operator

K : E → F is defined as the operator from F to E that satisfies 〈Kϕ,ψ〉 = 〈ϕ,K∗ψ〉,
∀ϕ ∈ E and ∀ψ ∈ F . In our case, an elementary computation shows that (K∗ψ)(t) =∫
T
k(t, x)ψ(t)ρ(dt), ∀ψ ∈ F .

Lemma 2.2. Let K : E → F be a bounded and linear operator defined as in (2.3) and

K∗ : F → E be its adjoint, that is, (K∗ψ)(t) =
∫
T
k(t, x)ψ(t)ρ(dt), ∀ψ ∈ F . The operator

Σn = 1
nΣ, with Σ : F → F defined in (2.4) takes the form

∀ψ ∈ F , Σψ = KMfK
∗ψ − (KMf1)〈Mf ,K

∗ψ〉 (2.5)

where Mf : E → E is the multiplication operator Mfϕ = f∗ϕ, ∀ϕ ∈ E.

We denote by D the subset of E whose elements integrate to 0 with respect to Π:

D :=

{
g ∈ E ;

∫

S
g(x)Π(dx) = 0

}
.

Remark that D contains the functions in E that are the difference of pdf s of F with respect

to Π. Moreover, R(Ω
1/2
0θ ) ⊂ D, where R(·) denotes the range of an operator, and

R(Ω
1/2
0θ ) ⊆

{
ϕ ∈ E ;

∫

S
ϕ(h)h(θ, x)Π(dx) = 0 and

∫

S
ϕ(x)Π(dx) = 0

}
.

Remark that the equality holds when the sequence (λj)j>d, used to construct Ω0θ, is strictly
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positive. Let Σ1/2 : F → F be such that Σ = Σ1/2Σ1/2. The following lemma states the

relationship between the range of Σ1/2 and the range of K restricted to D.

Lemma 2.3. Let K : E → F be the operator defined in (2.3), and denote by K|D the

operator K restricted to D ⊂ E . Then, if K|D is injective we have

R(K|D) = D(Σ− 1
2 ).

2.3 Posterior distribution

The Bayesian model defines a joint distribution on (the Borel σ-field) of Λ and can be

summarized in the following way:

θ ∼ µ(θ)

f |θ ∼ µ(f |θ) = GP(f0θ,Ω0θ),

∫
h(θ, x)f0θ(x)Π(dx) = 0 and Ω

1
2
0θ(1, h(θ, ·)T )T = 0

rn|f, θ ∼ rn|f ∼ P f = GP(Kf,Σn) (2.6)

where we use the GP approximation P f . Theorem 1 in Florens and Simoni [2012] shows

that the joint distribution of (f, rn), conditional on θ, is:

(
f

rn

)∣∣∣∣∣ θ ∼ GP
((

f0θ

Kf0θ

)
,

(
Ω0θ Ω0θK

∗

KΩ0θ Σn +KΩ0θK
∗

))
(2.7)

where (Σn + KΩ0θK
∗) : F → F , Ω0θK

∗ : F → E and KΩ0θ : E → F . The marginal

sampling distribution of rn conditional on θ, obtained by integrating out f , is:

rn|θ ∼ P θn ∼ GP(Kf0θ,Σn +KΩ0θK
∗). (2.8)

We now discuss the posterior distribution, denoted by µ(·|rn). Recovering the posterior

distribution of f is an ill-posed inverse problem. Since f is a nuisance parameter we discuss

in the main text only the posterior distribution of the parameter of interest θ. We postpone

to Appendix A the discussion about the conditional posterior distribution µ(f |rn, θ) of f

given θ.

2.3.1 Posterior distribution of θ

The marginal posterior for θ, denoted by µ(θ|rn), is obtained by using the marginal

sampling distribution P θn given in (2.8). We first have to characterize the likelihood of

P θn with respect to an appropriate dominating measure that will be denoted by P 0
n . The

11



following theorem characterizes a probability measure P 0
n which is equivalent to P θn as well

as the corresponding likelihood of P θn with respect to P 0
n . Denote by (ljθ, ρj(θ), ψj(θ))j≥0

the singular value decomposition of the operator Σ−1/2KΩ
1/2
0θ . Remark that by the result

in Lemma 2.3 this operator is well defined.

Theorem 2.1. Let P 0
n be a Gaussian measure with mean Kf∗ and covariance operator

n−1Σ, i.e. P 0
n = GP(Kf∗, n−1Σ) with Σ defined in (2.4). For n fixed, if K|D is injective,

then P 0
n and P θn are equivalent. Moreover, assume that ∀j ≥ 0 and ∀θ ∈ Θ, ψj(θ) ∈

R(Σ1/2). Then, the Radon-Nikodym derivative is given by

pnθ(rn; θ) :=
dP θn
dP 0

n

(rn) (2.9)

=

∞∏

j=0

√
n−1

n−1 + l2jθ
exp



−1

2

∞∑

j=0

(
Zj − 〈√nK(f0θ − f∗),Σ−1/2ψj(θ)〉

)2

1 + nl2jθ



 e{

1
2
‖Z‖2Σ}

where Z :=
√
n(rn −Kf∗), Zj := 〈Z,Σ−1/2ψj(θ)〉 for all j ≥ 0, and ‖Z‖Σ := ‖Σ−1/2Z‖.

The quantity ‖Σ−1/2Z‖2 is defined as the limit in F of the series
∑m

j=0 σ
−2
j 〈Zj , φj〉2

as m → ∞ (where {σ2j , φj}∞j=0 is the eigensystem of Σ). By using (2.9), the (marginal)

posterior distribution of θ takes the form (after simplifying the terms that do not depend

on θ):

µ(θ|rn) =
pnθ(rn; θ)µ(θ)∫

Θ pnθ(rn; θ)µ(θ)dθ
(2.10)

=

∏∞
j=0

√
1

n−1+l2jθ
exp

{
−1

2

∑∞
j=0

(Zj−〈√nK(f0θ−f∗),Σ−1/2ψj(θ)〉)
2

1+nl2jθ

}
µ(θ)∫

Θ

∏∞
j=0

√
1

n−1+l2jθ
exp

{
−1

2

∑∞
j=0

(Zj−〈√nK(f0θ−f∗),Σ−1/2ψj(θ)〉)
2

1+nl2jθ

}
µ(θ)dθ

and can be used to compute a point estimator of θ. We propose to use the maximum a

posterior (MAP) estimator θn defined as

θn = argmax
θ∈Θ

µ(θ|rn)

= argmax
θ∈Θ

∞∏

j=0

√
1

n−1 + l2jθ
exp



−1

2

∞∑

j=0

(
Zj − 〈√nK(f0θ − f∗),Σ−1/2ψj(θ)〉

)2

1 + nl2jθ



µ(θ)

= argmax
θ∈Θ

∞∏

j=0

√
1

n−1 + l2jθ
exp



−1

2

∞∑

j=0

(
〈√n(rn −Kf0θ),Σ

−1/2ψj(θ)〉
)2

1 + nl2jθ



µ(θ) (2.11)
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or the posterior mean estimator E(θ|rn) :=
∫
Θ θµ(θ|rn)dθ.

Remark 2.3. We have already discussed in Remark 2.2 the possibility of using a different

prior scheme when we are in the just-identified case and θ can be written as a linear

functional of f . If one uses this different prior scheme, then given a GP prior for f as

described in Remark 2.2, the posterior distribution for θ is recovered from the GP posterior

of f through the transformation b(f ).

2.3.2 Properties of the posterior distribution of θ

Before concluding this section, we show two important results. The first one establishes

that expression (2.9) is invariant to the choice of Π and therefore the marginal posterior of

θ is invariant to the choice of Π. More precisely the following proposition holds.

Proposition 2.1. For a positive measure Π1 on S, let EΠ1 = L2(S,BS ,Π1) and z = dΠ
dΠ1

.

Let ϕ : E → EΠ1 be the transformation ϕ(f ) = f z and Φ be the set of the measurable

transformations defined as

Φ :=

{
ϕ : E → EΠ1 ; ϕ(f ) = f z, Π1 is a positive measure and sup

x∈S

dΠ1(x)

dΠ(x)
<∞

}
.

Then, the marginal posterior distribution µ(θ|rn) of θ is Φ-invariant.

This result shows that, once we integrate out the nuisance parameter f , the posterior

distribution of θ is not affected by the choice of the dominating measure Π which only

causes a transformation of the nuisance parameter. In particular, if supx∈S
dF∗(x)
dΠ(x) < ∞

then the singular values ljθs in (2.9) are equal to the λ
1/2
j s used to construct the prior

covariance operator Ω0θ which simplifies the expression for µ(θ|rn) to:

µ(θ|rn) =
exp

{
−1

2

∑∞
j=0

〈√n(rn−Kf0θ),Σ−1/2ψj(θ)〉2
1+nλj

}
µ(θ)∫

Θ
exp

{
−1

2

∑∞
j=0

〈√n(rn−Kf0θ),Σ−1/2ψj(θ)〉2
1+nλj

}
µ(θ)dθ

. (2.12)

Moreover, given the result in Proposition 2.1, to show properties of µ(θ|rn) we may use a

positive measure different from Π as long as the induced transformation belongs to Φ.

The second result we are going to show2 establishes a link between our Bayesian pro-

cedure, GEL estimators with quadratic criterion and the continuous updating GMM esti-

mator. This relationship, given in Theorem 2.2 below, holds when the GP prior for f |θ is

allowed to become diffuse. More precisely, let us rescale the prior covariance operator of

2We thank Yuichi Kitamura for having suggested this research question.
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f |θ by a positive scalar c so that the prior of f |θ may be written

µ(f |θ, c) ∼ GP(f0θ, cΩ0θ),

∫
h(θ, x)f0θ(x)Π(dx) = 0, Ω

1/2
0θ (1, h(θ, ·)T )T = 0, c ∈ R+.

Theorem 2.2. Assume that supx∈S
dF∗(x)
dΠ(x) < ∞, hj(θ, x) ∈ R(K∗), ∀j = 1, . . . , d and

∀θ ∈ Θ, and that E∗[h(θ, xi)h(θ, xi)T ] is nonsingular ∀θ ∈ Θ. Let µ(f |θ, c) ∼ GP(f0θ, cΩ0θ),

with f0θ and Ω0θ satisfying Restrictions 1 and 2, and c ∈ R+. Let µ(θ|rn, c) denote the

(marginal) posterior of θ obtained by integrating out f from P f with respect to µ(f |θ, c).
Then,

lim
c→∞

µ(θ|rn, c) ∝ exp



−1

2

(
1√
n

n∑

i=1

h(θ, xi)

)T
Vn(θ)

−1

(
1√
n

n∑

i=1

h(θ, xi)

)
µ(θ)

where Vn(θ) =
1
n

∑n
i=1 h(θ, xi)h(θ, xi)

T .

Remarks that in the theorem the limit c→ ∞ is taken after f has been marginalized out.

The result in the theorem deserves some comments. First, it shows that, as the (condi-

tional) prior on f becomes more and more diffuse, our marginal likelihood becomes the

quasi-likelihood function (also called limited information likelihood in the literature) that

has been used often in the literature, for instance by Chernozhukov and Hong [2003] and

Kim [2002]. Therefore, the quasi-likelihood naturally arises from a nonparametric Bayesian

procedure, which places a Gaussian Process prior on the set of probability density func-

tions, as the nonparametric prior becomes noninformative.

Second, Theorem 2.2 shows that, as the prior on f becomes noninformative, the

MAP objective function is the same (up to constants) as the GEL objective function with

quadratic criterion, see the proof of Theorem 2.1 in Newey and Smith [2004]. Moreover, as

it can be deduced from Newey and Smith [2004, Theorem 2.1], the MAP objective function

becomes a monotonic transformation of the continuous updating GMM objective function.

3 Asymptotic Analysis

In this section we focus on the frequentist asymptotic properties of our approach for

n→ ∞. For this analysis we use the true probability measure P ∗ which corresponds to the

true DGP F∗. We analyze three issues: (i) frequentist consistency of the MAP estimator

θn (Theorem 3.1), (ii) consistency of the posterior of θ (Theorem 3.2), (iii) convergence

in Total Variation distance of µ(θ|rn) towards a normal distribution (section 3.2). In the

following, for every θ̃ ∈ Θ and δ > 0 we denote by B(θ̃, δ) the closed ball centered in θ̃ with

radius δ, that is, B(θ̃, δ) = {θ ∈ Θ; ‖θ − θ̃‖ ≤ δ}, where here ‖ · ‖ denotes the Euclidean
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norm in R
p. Moreover, denote δn = n−1/2 and

ln(θ) =

∞∑

j=0

log

√
1

n−1 + l2jθ
− 1

2

∞∑

j=0

[(
Zj − 〈√nK(f0θ − f∗),Σ−1/2ψj(θ)〉

)2

1 + nl2jθ

]
.

3.1 Frequentist Consistency

In this section we first establish frequentist consistency of the MAP estimator θn in

Theorem 3.1. For this, we need the following assumptions.

A1. The true parameter θ∗ belongs to the interior of a compact convex subset Θ of Rd and

is the unique solution of E∗[h(θ, x)] = 0.

A2. The singular functions {ψj(θ), ρj(θ)} and singular values {ljθ} are continuous functions
of θ.

A3. The prior mean function f0θ is continuous in θ.

A4. At least one of the following holds: (i) the eigenvalues {l2jθ} do not depend on θ and

the prior µ(θ) is flat or (ii) the eigenvalues {l2jθ} do depend on θ and µ(θ) is chosen

such that
∏∞
j=0

1
√

n−1+l2jθ
µ(θ) → 1 as n→ ∞.

Assumption A1 is a standard assumption in the literature on moment estimation. Assump-

tions A2 and A3 can be easily satisfied since f0θ and the operators Ω0θ, K and Σ are chosen

by the econometrician. Assumption A4 (ii) is verified for instance if we set µ(θ) ∝∏∞
j=0 ljθ.

Theorem 3.1. Under Assumptions A1-A4:

θn
p−→ θ∗

in P ∗-probability as n→ ∞.

The second result of this section establishes consistency of the posterior distribution of

θ. For that, we introduce the following assumptions:

B1. There exists a constant C > 0 such that for any sequence Mn → ∞,

P ∗
(

sup
θ∈B(θ∗,δnMn)c

[ln(θ)− ln(θ∗)] ≤ −CM2
n

)
→ 1 as n→ ∞.

B2. There exists a constant C > 0 such that for any sequence Mn → ∞,

P ∗
(∫

Θ
eln(θ)−ln(θ∗)µ(θ)dθ ≤ e−CM

2
n/2

)
→ 0 as n→ ∞.
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Assumption B1 is a standard identifiability condition that controls the behavior of the

likelihood at a distance from θ∗, see e.g. Lehmann and Casella [1998, Condition (B.3) of

Theorem 6.8.2] and Bickel and Kleijn [2012, Lemma 6.1]. Assumption B2 is satisfied if ln(θ)

is continuous in a suitable neighborhood of θ∗ and the prior assigns enough mass to this

neighborhood. Lemma D.1 in Appendix D provides primitive conditions for Assumption

B2. The next theorem gives concentration of the posterior distribution around θ∗ and

around θn.

Theorem 3.2. Let Assumptions B1-B2 be satisfied, then for any prior µ(θ) thick at θ∗ and

any sequence Mn → ∞,

µ
(√

n‖θ − θ∗‖ > Mn|rn
)
→ 0 (3.1)

in P ∗-probability as n→ 0, for anyMn → ∞. Moreover, under the assumptions of Theorem

3.1

µ
(√
n‖θ − θn‖ > Mn|rn

)
→ 0 (3.2)

in P ∗-probability as n→ 0, for any Mn → ∞.

3.2 Asymptotic Normality

In this section we first establish asymptotic normality of µ(θ|rn) for the Bayesian model

described in (2.6). We refer to it as the overidentified case to stress that this result applies

to the case d > p (which is our main interest), but of course it applies also to the just-

identified case. Then, in section 3.2.2 we establish asymptotic normality of µ(θ|rn) for the
Bayesian model described in Remarks 2.2 and 2.3 where the prior for θ is deduced from the

prior for f .

3.2.1 Convergence in Total Variation: the overidentified case

For some τ ∈ R
p let

sn(τ) = pn,θ∗+δnτ (rn; θ∗ + δnτ).

We assume that there exist a random vector ˜̀∗ and a nonsingular matrix Ĩ−1
∗ (that depend

on the true θ∗ and f∗) such that the sequence ˜̀∗ is bounded in probability, and satisfy

log
sn(τ)

sn(0)
=

1√
n
τT Ĩ∗ ˜̀∗ −

1

2
τT Ĩ∗τ + op(1) (3.3)

for every random sequence τ which is bounded in P ∗-probability. Condition (3.3) is known

as the integral local asymptotic normality assumption which is used to prove asymptotic
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normality of semiparametric Bayes procedures, see e.g. Bickel and Kleijn [2012]. In Ap-

pendix D.3 we prove that, if supx∈S
dF∗(x)
dΠ(x) <∞, then equation (3.3) holds with

Ĩ∗ = −E∗
[
∂h(θ∗, x)

∂θ

] [
E∗h(θ∗, x)h(θ∗, x)

T
]−1

E∗
[
∂h(θ∗, x)
∂θT

]

if
[
E∗h(θ∗, x)h(θ∗, x)T

]
is nonsingular. For two probability measures P1 and P2 absolutely

continuous with respect to a positive measure Q, define the total variation (TV) distance

as

||P1 − P2||TV =
1

2

∫
|f1 − f2|dQ

where f1 and f2 are the Radon-Nikodym derivatives of P1 and P2, respectively, with respect

to Q. The following theorem shows that under (3.3) the posterior distribution of
√
n(θ−θ∗)

converges in the TV distance to a Normal distribution with mean ∆∗ :=
1√
n
˜̀∗ and variance

Ĩ−1
∗ .

Theorem 3.3. Assume that A1-A3, (3.1) and (3.3) hold and that the prior µ(θ) puts

enough mass in a neighborhood of θ∗. If µ(
√
n(θ−θ∗)|rn) denotes the posterior of

√
n(θ−θ∗),

then:

‖µ(√n(θ − θ∗)|rn)−N (∆∗, Ĩ
−1
∗ )‖TV → 0 (3.4)

in P ∗-probability as n→ ∞.

3.2.2 Convergence in Total Variation for linear functionals: the just-

identified case

In this section we consider the just-identified case where: d = p, the moment restriction

(1.1) can be solved explicitly for θ, that is, θ = b(f ), and b : E → R
p is a bounded linear

functional. Denote by Ep the cartesian product Πp
i=1E . Hence, by the Riesz theorem, there

exists a unique g ∈ Ep such that:

θ = b(f ) =

∫

S
g(x)f (x)Π(dx), ∀f ∈ E .

If θ can take any value in R
p, then the prior distribution of θ can be deduced from the GP

prior of f as described in Remark 2.2: θ ∼ µ(θ) = N (〈f0, g〉, 〈Ω0g, g〉) with Ω
1/2
0 1 = 0 and

all the eigenvalues of Ω0 but the first one are different from 0. In this section we consider

this type of prior. The posterior distribution of θ is then given by

µ(θ|rn) = N (θrn,Ωn) ,

where θrn = 〈f0 + A(rn −Kf0), g〉, and Ωn = 〈(Ω0 − AKΩ0)g, g〉 (3.5)
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and A : F → E is a continuous and linear operator whose expression is given in Lemma A.1

in the Appendix. In the following, we implicitly assume that the conditions of Lemma A.1

are satisfied. When this is not the case, then the asymptotic result of Theorem 3.4 below is

still valid, under minor modifications, if we replace the exact posterior µ(f |θ, rn) with the

regularized posterior distribution discussed in Remark A.3 in the Appendix and introduced

by Florens and Simoni [2012].

By using the usual notation for empirical processes, we denote by θ̂ = b(Pn) :=

n−1
∑n

i=1 g(xi) the method of moments estimator and by V the variance of
√
nb(Pn) under

F∗. The efficient influence function g̃ : S → R
p takes the form g̃ = g − E∗g and then

V = E∗(g̃g̃T ). The next theorem states that the TV distance between µ
(√

n(θ − θ̂)
∣∣∣ rn
)

and N (0, V ) converges to 0 in probability.

Theorem 3.4. Let θ = b(f ) = 〈g, f 〉, θ̂ = b(Pn) := n−1
∑n

i=1 g(xi) and consider the

Gaussian model (2.7) without θ: rn|f ∼ GP(Kf,Σn +KΩ0K
∗) and f ∼ GP(f0,Ω0) where

f0 is a pdf, Ω
1/2
0 1 = 0 and all the eigenvalues of Ω0 but the first one are different from 0.

If f
−1/2
∗ ∈ R(K∗), V is nonsingular and g ∈ C∞, then

∥∥∥µ
(√

n(θ − θ̂)
∣∣∣ rn
)
−N (0, V )

∥∥∥
TV

→ 0

in P ∗-probability as n→ ∞.

The result of this theorem, while similar to the result of Theorem 3.3, is obtained by

using a proof different from the one used to obtain Theorem 3.3 and that works only in

d = p case.

4 The case with span{1, h1(θ, ·), . . . , hd(θ, ·)} indepen-

dent of θ

In this section, we consider the particular case where the space spanned by {1, h1(θ, ·),
. . . , hd(θ, ·)}, namely N(Ω0θ), does not depend on θ. This arises for instance when the

moment functions {hj(θ, x)}dj=1 are separable in θ and x. In this case, one can choose any

orthonormal basis (o.n.b.) with respect to Π that spans N(Ω0θ) and that does not depend

on θ. Denote this basis by {ϕj}dj=0, where we assume that N(Ω0θ) has dimension d+1. The

orthogonal space N(Ω0θ)
⊥ is also independent of θ and is spanned by an o.n.b. {ϕj}j>d

that is independent of θ as well. Thus, the prior covariance operator Ω0θ does not depend

on θ and writes:

∀φ ∈ E , Ω0θφ = Ω0φ =
∑

j>d

λj〈φ,ϕj〉ϕj .
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On the other hand, the prior mean function f0θ does depend on θ. An example where

span{1, h1(θ, ·), . . . , hd(θ, ·)} does not depend on θ is the case where h(θ, x), after nor-

malization, is of the form: h(θ, x) = a(x) − b(θ) for some vector-valued functions a(x) =

(a1(x), . . . , ad(x))
T and b(θ) = (b1(θ), . . . , bd(θ))

T .

Let {ψj}j≥0 be an o.n.b. in F and {λjK}j≥0 be a square-summable sequence of positive

real numbers. We can then construct the operator K and the transformation rn as:

∀φ ∈ E , (Kφ)(t) =

∞∑

j=0

λjK〈φ,ϕj〉ψj(t) =
∫ ∞∑

j=0

λjKφ(x)ϕj(x)ψj(t)Π(dx)

rn =
1

n

n∑

i=1

∞∑

j=0

λjKϕj(xi)ψj(t).

Hence, the kernel k(x, t) characterizing the operatorK writes: k(x, t) =
∑∞

j=0 λjKϕj(x)ψj(t).

Remark that this describes a Donsker class if, for instance,
∑∞

j=0 λ
2
jK ≤ 1, see van der Vaart

and Wellner [1996, Theorem 2.13.2]. The adjoint of K, denoted by K∗, writes: ∀φ ∈ F ,

(K∗φ)(x) =
∑∞

j=0 λjK〈φ,ψj〉ϕj(x). Remark that K, K∗, rn and Σ do not depend on θ.

By Proposition 2.1, our inference procedure is invariant to the choice of Π. Then, if

supx∈S f∗(x) < ∞ we can fix Π = F∗ so that E = L2(S,BS , F∗) and f∗ = 1. Therefore,

{ϕj}j≥0 is an o.n.b. with respect to F∗ and V ar(h(θ, x)) = Id, where Id denotes the d-

dimensional identity matrix.

The operator Σ has eigenfunction {ψj}j≥0 and eigenvalues {0, λ2jK , j ≥ 1}, that is:

Σψj = λ2jKψj for j ≥ 1 and Σψ0 = 0. To see this, let us write Σ in the form given in

Lemma 2.2: Σ· = KMfK
∗ · −(KMf1)〈Mf ,K

∗·〉, and since f∗ = 1 we have:

∀j 6= 0, Σψj = KK∗ψj − (K1)〈K1, ψj〉 = λjKKϕj − λ20Kψ0〈ψ0, ψj〉
= λ2jKψj

Σψ0 = λ20Kψ0 − (λ0Kψ0)〈K1, ψ0〉 = λ20K − λ20K = 0.

This result is obtained by using the fact that 〈K1, ψj〉 = λ0K〈ψ0, ψj〉 = 0 for j ≥ 1 and

〈ψ0, ψ0〉 = 1.

Remark 4.1. The intuition behind the fact that Σ has an eigenvalue equal to 0 comes

from Lemma 2.3. We know from this lemma that when K|D is injective, R(Σ1/2) is equal

to the range of the restriction of K to D, that is R(K|D). Since ϕ0 is orthogonal to D

because ϕ0 = 1, the eigenfunction ψ0, which is the transformation of ϕ0 through K, does

not belong to R(K|D) and so neither to R(Σ) (since R(Σ) ⊂ R(Σ1/2)). Therefore, it

must be that the eigenvalue corresponding to ψj be zero because R(Σ) is spanned by the

eigenfunctions corresponding to the nonzero eigenvalues, that is {ψj}j≥1. Finally, because
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Σ has one eigenvalue equal to 0 it is not injective.

Trivial computations show that, in this particular case, the eigenvalues l2jθ and eigen-

functions ψj(θ) in (2.9) are as follows:

l2jθ =

{
0 for j = 0, . . . , d

λj for j > d
and ψj(θ) = ψj for j = 0, 1, . . . . (4.1)

It follows that the likelihood in (2.9) can be simplified and the MAP writes as:

θn = argmax
θ∈Θ

µ(θ|rn) = argmax
θ∈Θ

(log pnθ(rn; θ) + log µ(θ))

= argmax
θ∈Θ

(
−

d∑

j=1

1

λ2jK
〈√n(rn −Kf0θ), ψj〉2 −

∑

j>d

1

λ2jK
〈√n(rn −Kf0θ), ψj〉2

1

1 + nλj

−
∑

j>d

log(nλj + 1) + 2 log µ(θ)
)1
2

= argmin
θ∈Θ




d∑

j=1

n

λ2jK
〈rn −Kf0θ, ψj〉2 +

∑

j>d

n

λ2jK
〈rn −Kf0θ, ψj〉2

1

1 + nλj
− 2 log µ(θ)




= argmin
θ∈Θ

( d∑

j=1

(
1

n

n∑

i=1

ϕj(xi)− 〈f0θ, ϕj〉
)2

+
∑

j>d

(
1

n

n∑

i=1

ϕj(xi)− 〈f0θ, ϕj〉
)2

1

1 + nλj
− log µ(θ)

)
(4.2)

where we have eliminated the terms that do not depend on θ and we have used the fact

that 1
λ2jK

〈rn − Kf0θ, ψj〉2 =
(
1
n

∑n
i=1 ϕj(xi)− 〈f0θ, ϕj〉

)2
. According to Assumption A4,

in the particular case considered in this section the prior can be chosen independent of θ.

Equation (4.2) is quite useful and allows to emphasize several aspects of our methodology.

I. The first term in (4.2) accounts for the moment restrictions. Minimization of this

term corresponds to the classical GMM. In fact, by construction
∫
ϕj(x)f0θ(x)Π(dx)

is not 0 because we are using transformations of the moment functions. Thus,[
1
n

∑n
i=1 ϕj(xi)−

∫
ϕj(x)f0θ(x)Π(dx)

]2
depends on θ through f0θ. Remark that if

we do the inverse transformation from {ϕj}dj=1 to {hj(x, θ)}dj=1 then the term involv-

ing f0θ will be zero and the term ϕj(xi) will be written in terms of θ. For instance,

in the separable case where hj(θ, x) = aj(x)− bj(θ):
∫
ϕj(x)f0θ(x)Π(dx) = bj(θ) and

so
[
1
n

∑n
i=1 ϕj(xi)−

∫
ϕj(x)f0θ(x)Π(dx)

]2
=
[
1
n

∑n
i=1 hj(θ, xi)

]2
.
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II. The second term in (4.2) accounts for the extra information that we have, namely, the

information contained in the subspace of E orthogonal to span{1, h1(θ, ·), . . . , hd(θ, ·)}.
This information, which is in general not exploited by the classical GMM estima-

tion, can be exploited thanks to the prior distribution and the prior mean f0θ if the

prior is not fixed but varies with n (see comment III below). On the contrary, if

the prior is fixed then, as n → ∞, the second term of (4.2) converges to 0 since

n−1
∑n

i=1 ϕj(xi) → E∗[ϕj(X)] a.s. and E∗[ϕj(X)] = 0 because ϕj is orthogonal to 1

for j > d and since (1 + nλj)
−1 → 0.

III. Expression (4.2) makes an explicit connection between the parametric case (infinite

number of moment restrictions) and the semiparametric case (when only the first d

moment conditions hold). The semiparametric case corresponds to the classical GMM

approach while the parametric case corresponds to the maximum likelihood estimator

(MLE). Indeed, the prior distribution for f specifies a parametric model for f0θ which

satisfies the d moment restrictions and eventually other “extra” moment restrictions.

The eigenvalues λj of the prior covariance operator play the role of weights of the

“extra” moment restrictions and represent our “beliefs” concerning these restrictions.

When we are very confident about these “extra” conditions, or equivalently we believe

that f0θ is close to f∗, then the λjs are close to zero or converge to 0 faster than n−1

as n → ∞. So, the prior distribution for f is degenerate on f0θ (as n increases)

when the parametric model is the true one. In that case, the MAP estimator will

essentially be equivalent to the MLE that we would obtain if we use the prior mean

function f0θ as the likelihood. When we are very uncertain about f0θ then the λjs

are very large and may tend to +∞ (uninformative prior). In this case the MAP

estimator will be close to the GMM estimator (up to a prior on θ).

4.1 Testing and moment selection procedures

Remark III in section 4 is important if one is interested in constructing testing pro-

cedures or doing moment selection. We are not going to develop a formal test/selection

procedure here as this will make the object of a separated paper, but we would like to

point out that our procedure suggests an easy way to test a parametric model against a

semiparametric one characterized by a finite number of moment restrictions. We can deal

with the two following situations:

1. We know that the distribution of the data satisfies d moment restrictions and we

want to test that it has a particular parametric form. In this case, for a given pdf

g ∈ EM such that
∫
h(θ, x)g(x)Π(dx) = 0 for a known vector of functions h(θ, x), the

null hypothesis is H0 : f∗ = g. An example is the univariate linear regression model:
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Y = Zθ + ε, where f∗ is the true joint pdf of X := (Y,Z)T and E∗(Y |Z) = Zθ. We

may want to test that f∗ belongs to a particular parametric class.

2. There are d moment restrictions of which we are sure and we want to test the validity

of the other moment restrictions. The null hypothesis writes H0 : E∗(hj(θ, x)) =

0 for some j > d.

To treat the first situation, we have to specify f0θ = g. Then, for both the situa-

tions, the natural approach would be to treat the λjs corresponding to the extra conditions

(namely, the λj for j > d) as hyperparameters for which a prior distribution is specified.

The null hypothesis, in both the cases above, writes as H0 : λj = 0 for all (or for some)

j > d. Then, the posterior distribution of λj may be used to draw a conclusion on the test:

either by considering posterior odds ratio or by constructing encompassing tests.

To construct a prior for the λjs let us write: λj = cρj where c = trΩ0 and
∑∞

j=0 ρj = 1.

We propose two alternatives priors.

Dirichlet prior. Suppose that we want to test the nullity of some λjs, say λj for

d < j < J < ∞. Then we specify a Dirichlet prior for (ρd+1, . . . , ρJ−1):

µρ(ρd+1, . . . , ρJ−1|ν) ∝
J−1∏

j=d+1

ρ
νj−1
j


1−

J−1∑

j=d+1

ρj



νJ−1

J−1∏

j=d+1

I(ρj ≥ 0)I



J−1∑

j=1

ρj ≤ 1




where ν = (νd+1, . . . , νJ).

Prior on c > 0. Suppose that we want to test that all the moment restrictions are

true (that is, test of a parametric model against a semiparametric one). Thus, the null

hypothesis is H0 : c = 0. Remark that the {λj}dj=1 corresponding to the first d moment

restrictions do not affect the trace of Ω0 since they are equal to 0. A prior for c will be any

distribution with support contained in the positive real semi-axis, for example an inverse

gamma distribution.

5 Implementation

In this section we show, through the illustration of several examples, how our method

can be implemented in practice. We start with a toy example. The interest in using a GP
prior will be made evident in the more complicated examples where there are overidentifying

restrictions which we show can be easily dealt with by using Gaussian priors.
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5.1 Just identification and prior on θ through µ(f)

Let the parameter θ of interest be the population mean with respect to f , that is,

θ =
∫
xf (x)dx and h(θ, x) = (θ− x). This example considers the just identified case where

θ is a linear functional of f that can take every value in R and the prior of θ is deduced from

the prior of f , denoted by µ(f ). The prior µ(f ) is a GP which is unrestricted except for the

fact that it must generate trajectories that integrate to 1 a.s., namely, µ(f ) ∼ GP (f0,Ω0)

where f0 is a pdf and Ω0 is such that Ω
1/2
0 1 = 0. Therefore, the prior distribution of θ is

Gaussian with mean 〈f0, ι〉 and variance 〈Ω0ι, ι〉. The posterior distribution of θ is

θ|rn ∼ N (〈f0, ι〉+ 〈Ω0K
∗C−1

n (rn −Kf0), ι〉, 〈[Ω0 − Ω0K
∗C−1

n KΩ0]ι, ι〉)

where C−1
n =

(
n−1Σ+KΩ0K

∗)−1
and ι denotes the identity functional, that is, ι(x) = x.

We illustrate now how to construct in practice the covariance operator Ω0 in this case

where the support of F∗ is R, so that θ can take every value in R. Let S = R; the Hermite

polynomials {Hj}j≥0 form an orthogonal basis of L2(R,B,Π) for dΠ(x) = e−x
2/2dx and

can be used to construct the eigenfunctions of Ω0. The first few Hermite polynomials are

{1, x, x2 − 1, (x3 − 3x), . . .} and an important property of these polynomials is that they

are orthogonal with respect to Π:
∫
R
Hl(x)Hj(x)e

−x2/2dx =
√
2πn!δlj, where δlj is equal to

1 if l = j and to 0 otherwise. The operator Ω0 is constructed as

Ω0· = σ0

∞∑

j=0

λj
1√
2πn!

〈Hj , ·〉Hj

where Hj+1(x) = xHj(x)− jHj−1(x), λ0 = 0 and {λj , j ≥ 1} = {aj , j ≥ 1} with a < 1.

In our simulation exercise we generate n = 1000 i.i.d. observations (x1, . . . , xn) from a

N (1, 1) distribution and construct the function rn = n−1
∑n

i=1 e
txi as the empirical Laplace

transform. Therefore, f∗(x) = 1√
2π
e−(1−2x)/2 and θ∗ = 1. We set T = R and ρ = Π. Thus,

the operators K and K∗ take the form

∀φ ∈ E , Kφ =

∫

R

etxφ(x)e−x
2/2dx and ∀ψ ∈ F , K∗ψ =

∫

R

etxψ(t)e−t
2/2dt.

The prior mean function f0 is set equal to a N (%, 1) distribution. We show in Figure 1 the

prior and posterior distribution of θ. We also show the prior mean (magenta asterisk), the

posterior mean (blue asterisk) and the MAP (red asterisk) of θ. The posterior mean of θ

is computed by discretizing the inner product 〈E(f |rn), ι〉. The pictures are obtained for

n = 1000, f0(x) =
1√
2π
e−(%2−2%x)/2, % = 2, a = 0.3 and σ0 = 1. The number of discretization

points, used to approximate the integrals, is equal to 1000 for all the simulation schemes.
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Figure 1: Prior and posterior distributions and means of θ. The true value of θ is θ∗ = 1.

5.2 Just identification and prior on θ

We consider the same framework as in the previous example where the parameter θ of

interest is the population mean: θ =
∫
xf (x)dx and h(θ, x) = (θ − x), but now we specify

a joint proper prior distribution on (θ, f ). We specify a marginal prior µ(θ) on θ and a

conditional prior on f given θ. While the first one can be arbitrarily chosen, the latter is

specified as a GP constrained to generate functions that integrate to 1 and that have mean

equal to θ a.s., as described in section 2.1.

Compared to the approach in section 5.1, this approach allows to easily incorporate any

prior information that one may have about θ. In fact, incorporating the information on θ

through the prior distribution of f is complicated while to incorporate such an information

directly in the prior distribution of θ results to be very simple. In particular, the approach

of this section works even when θ takes values only in a compact subset of Rp, while the

approach of section 5.1 does not work in this case.

Let us suppose thatm = 1, S = [−1, 1] and let Π and ρ be the Lebesgue measure. Then,

the covariance operator Ω0θ can be constructed by using Legendre polynomials since the

second Legendre polynomial P1(x) = x allows to implement the constraint on θ. Because

the moment function is separable in θ and x, the prior covariance operator does not depend

on θ (see section 4), so that we denote it by Ω0. The first few Legendre polynomials are

{1, x, (3x2−1)/2, (5x3 −3x)/2, . . .} and an important property of these polynomials is that

they are orthogonal with respect to the L2 inner product on [−1, 1]:
∫ 1
−1 Pl(x)Pj(x)dx =

2/(2j + 1)δlj , where δlj is equal to 1 if l = j and to 0 otherwise. Moreover, the Legendre

polynomial obey the recurrence relation (j +1)Pj+1(x) = (2j +1)xPj(x)− jPj−1(x) which

is useful for computing Ω0 in practice. The normalized Legendre polynomials form a basis

for L2[−1, 1] so that we can construct the operator Ω0 as

Ω0· = σ0

∞∑

j=2

λj
2j + 1

2
〈Pj , ·〉Pj
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where we have set λ0 = λ1 = 0 in order to implement the constraints. The remaining λj ,

j ≥ 2 can be chosen in an arbitrary way provided that
∑

j≥2 λj <∞. The constant σ0 can

be set to an arbitrary value and has the purpose of tuning the size of the prior covariance.

Many orthogonal polynomials are suitable for the construction of Ω0θ and they may be

used to treat cases where S is different from [−1, 1].

We perform two simulations exercises: the first one makes use of the empirical cumu-

lative distribution function to construct rn: rn(t) = Fn(t) := n−1
∑n

i=1 1{xi ≤ t} and the

second one uses the empirical moment generating function rn(t) = n−1
∑n

i=1 e
txi . In both

the simulations we use Legendre polynomials and we generate n = 1000 i.i.d. observations

(x1, . . . , xn) from a N (0, 1) distribution truncated to the interval [−1, 1]. The prior distri-

bution for θ is uniform over the interval [−1, 1]. The prior mean function f0θ is taken equal

to the pdf of a Beta distribution with parameters pθ and q and with support [−1, 1]:

f0θ(x) =
(x+ 1)pθ−1(1− x)q−1

B(pθ, q)2pθ+q−1
. (5.1)

We use the notation pθ to stress the dependence on θ of this shape parameter. We fix q = 2

and recover pθ such that
∫ 1
−1 xf0θ(x)dx = θ. It is easy to see that for our Beta distribution:∫ 1

−1 xf0θ(x)dx = pθ−q
pθ+q

. The covariance operator Ω0θ is constructed by using the Legendre

polynomials, λj = j−1.7 and σ0 = 5.

Since the posterior distribution µ(θ|rn) can not be computed in a closed-form we sim-

ulate from it by using a Metropolis-Hastings algorithm, see for instance Robert [2002]. To

implement this algorithm we have to selected an auxiliary pdf ga. We summarize the

simulation schemes for the two cases.

1. Draw a n i.i.d. sample (x1, . . . , xn) from f∗ (where f∗ is a N (0, 1) truncated to

[−1, 1]);

2. compute rn = Fn or rn = n−1
∑n

i=1 e
txi ;

3. draw θ ∼ U [−1, 1] and denote it θ̃;

4. compute pθ as pθ =
(θ̃+1)2

1−θ̃ (where we have fixed q = 2);

5. compute f0θ as in (5.1) with parameters (pθ, q = 2);

6. draw θ from the marginal posterior distribution of θ by using a Metropolis-Hasting

algorithm with the following auxiliary pdf (triangular distribution):

ga(ξ; θ) =
ξ + 1

θ + 1
I{ξ ∈ [−1, θ)} + 1− ξ

1− θ
I{ξ ∈ [θ, 1]}.
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We draw 10000 values and discard the first 5000. The initial value for the algorithm

is θ = 0.5.

We represent in Figure 2a the results for the simulation with rn(t) = Fn(t) and in

Figure 2b the results for rn = n−1
∑n

i=1 e
txi : the blue asterisk represent the posterior mean

estimate while the red asterisk represents the MAP estimate. These figures also show the

marginal posterior distribution of θ (dashed blue line) approximated by using a kernel

smoothing and 5000 drawings from the posterior. In both the simulations, n = 1000 and

the number of discretization points, used to approximate the integrals, is equal to 1000.
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Figure 2: Estimations of θ based on the posterior distribution: posterior mean and MAP.

The true value of θ is θ∗ = 0 and n = 1000.

5.3 Overidentified case

Let us consider the case in which x is univariate and the one-dimensional parameter

of interest θ is characterized by the moment conditions EF (h(θ, x)) = 0 with h(θ, x) =

(x− θ, 2θ2 − x2)T . For instance, this arises when the true data generating process F is an

exponential distribution with parameter θ. The prior µ(θ) is specified as a U [θ∗−1, θ∗+1].

The moment conditions are incorporated in the prior µ(f |θ) for f as described in sec-

tion 2.1. We chose Π(dx) = e−xdx and the empirical cumulative distribution function

to construct rn, that is, rn(t) = Fn(t). We first orthonormalize the moment functions 1,

x− θ, 2θ2 − x2 with respect to Π and then complete the bases by using the Gram-Schmidt

orthonormalization process. The inner products in E are approximating by using the trape-

zoidal rule on equally spaced subintervals of the interval [minxi − 1,max xi + 1]. We use

polynomially decreasing eigenvalues for Ω0θ: λj = j−1.7. Finally, to construct Ω0θ we trun-

cate the series at J = 300 since after that the value of λj is of the order 10−5 and then can

be considered zero.

In our simulation, we generate n = 500 observations x1, . . . , xn from an exponential

26



distribution with parameter θ∗ = 2. Operators K and K∗ are approximated by using the

trapezoidal rule on equally spaced subintervals of the intervals: [min xi − 1,max xi + 1] for

K and [min xi,maxxi] for K
∗. The measure ρ(dt), necessary to construct K∗, is taken

equal to the Lebesgue measure. The operator Σ is approximated in a similar way. Because

of this discretization, the operator Σ is ill-conditioned and hence we regularize it by adding

to it the identity matrix scaled by n−1.

The prior mean function f0θ is chosen by using a two-step procedure where in the first

step we compute f̃ = (0.1I +K∗K)−1K∗rn and in the second step we project it on Λ(θ)

for a given θ.

To draw from the posterior distribution of θ, we use a Metropolis-Hastings algorithm.

To implement this algorithm we use, as auxiliary distribution, a χ2
dθe distribution. The

posterior distribution, its mean and its mode obtained in this simulation are plotted in

Figure 3a. The posterior density function has been obtained by kernel smoothing with a

Gaussian kernel and a bandwidth equal to 0.3.

Finally, we have repeated the same Monte Carlo simulation 100 times and have com-

puted the average of the posterior mean estimators and MAP estimators. We report the

results in Figure 3b together with the posterior density, mean and MAP obtained in each

simulation.
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(a) Result for one simulation.
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Figure 3: Overidentified case. Posterior distributions of θ, mean and MAP estimators.

rn = Fn and the true value of θ is θ∗ = 2.
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Appendix

A Conditional posterior distribution of f , given θ

The conditional posterior distribution of f given (rn, θ), µ(f |rn, θ), is a Gaussian pro-

cess, see Florens and Simoni [2014, Theorem 1]. The conditional posterior mean and

variance of f |rn, θ, in general, rise problems due to the infinite dimension of f . While this

point has been broadly discussed in [Florens and Simoni, 2012, 2014] and references therein,

in this section we analyze this problem in the particular case considered in the paper where

the operators take a specific form.

Intuitively, the problem encountered in the computation of the moments of the Gaus-

sian posterior distribution µ(f |rn, θ) is the following. The moments of a conditional Gaus-

sian distribution involve the inversion of the covariance operator of the conditioning variable

rn, that is (Σn +KΩ0θK
∗) in our case. The problem arises because the inverse operator

(Σn +KΩ0θK
∗)−1 is in general defined only on a subset of F of measure zero. Therefore,

in general there is no closed-form available for the mean and variance of µ(f |rn, θ) which
implies that they cannot be computed.

However, for the framework under consideration we determine mild conditions under

which there exists a closed-form for the mean and variance of µ(f |rn, θ). We illustrate these

conditions in the lemmas below where we use the notation B for the Borel σ-field generated

by the open sets of Rp.

Lemma A.1. Consider the Gaussian distribution (2.7) on BE × BF and assume that

f
−1/2
∗ ∈ R(K∗). Then, the conditional distribution on BE conditional on BF ×B, denoted

by µ(f |rn, θ), exists, is regular and a.s. unique. It is Gaussian with mean

E[f |rn] = f0θ + A(rn −Kf0θ) (A.1)

and trace class covariance operator

V ar[f |rn] = Ω0θ − AKΩ0θ : E → E (A.2)

where A := Ω0θM
−1/2
f

(
1
nI − 1

nM
1/2
f 〈M1/2

f , ·〉 +M
−1/2
f Ω0θM

−1/2
f

)−1
((K∗)−1M

−1/2
f )∗ and

Mf : E → E is the multiplication operator Mfϕ = f∗ϕ, ∀ϕ ∈ E. If in addition: either (i)

f
−1/2
∗ ∈ E ∩ C∞ or (ii) the domain D

(
M

− 1
2

f Ω0θM
− 1

2
f

)
is dense in E and

infx∈S

(
M

− 1
2

f Ω0θM
− 1

2
f

)
(x) ≥ C for a constant C > 0 then, A is a continuous and linear

operator from F to E.

Proof. The first part of the theorem follows from Theorem 1 (ii) in Florens and Simoni
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[2014]. From this result, since Σn = 1
nΣ, where Σ : F → F is defined in Lemma 2.2, we

know that E[f |rn] = f0θ + Ω0θK
∗( 1nΣ + KΩ0θK

∗)−1(rn − Kf0θ) and V ar[f |rn] = Ω0θ −
Ω0θK

∗( 1nΣ+KΩ0θK
∗)−1KΩ0θ. Hence, we have to show that Ω0θK

∗( 1nΣ+KΩ0θK
∗)−1 = A

and that A is continuous and linear. Denote M̃ · =
(

1
nI · − 1

nM
1
2
f 〈M

1
2
f , ·〉+M

− 1
2

f Ω0θM
− 1

2
f ·

)−1

and

M̆ · =
(
1

n
KMfK

∗ · − 1

n
(KMf1)〈Mf ,K

∗·〉+KΩ0θK
∗·
)−1

.

By using the result of Lemma 2.2, we can write: Ω0θK
∗( 1nΣ+KΩ0θK

∗)−1 = Ω0θK
∗M̆ and

then

Ω0θK
∗
(
1

n
Σ+KΩ0θK

∗
)−1

= Ω0θM
− 1

2
f M̃((K∗)−1M

− 1
2

f )∗

+Ω0θ

[
K∗M̆ −M

− 1
2

f M̃((K∗)−1M
− 1

2
f )∗

]

= Ω0θM
− 1

2
f M̃((K∗)−1M

− 1
2

f )∗

where the second equality follows because

[
K∗M̆ −M

− 1
2

f M̃((K∗)−1M
− 1

2
f )∗

]
=

[
K∗ −M

− 1
2

f M̃((K∗)−1M
− 1

2
f )∗M̆−1

]
M̆

=M
− 1

2
f M̃

[(
1

n
M

1
2
f − 1

n
M

1
2
f 〈Mf , ·〉+M

− 1
2

f Ω0θ

)
K∗ − ((K∗)−1M

− 1
2

f )∗M̆−1

]
M̆

= 0.

This establishes that Ω0θK
∗( 1nΣ+KΩ0θK

∗)−1 is equal to A. We now show that the operator

A is continuous and linear on F . First, remark that the assumption f
− 1

2∗ ∈ R(K∗) ensures

that (K∗)−1M
− 1

2
f exists and is bounded and that Ω0θf

−1/2
∗ is bounded. By construction,

Ω0θ is trace class. This means that Ω
1
2
0θ is Hilbert-Schmidt, which is a compact operator.

Therefore, since the product of two bounded and compact operators is compact, it follows

that Ω0θ is compact.

Consider the case where (i) holds. Hence, M
− 1

2
f Ω0θM

− 1
2

f is compact. Moreover, it is

easy to show that the operator 1
nM

1
2
f 〈M

1
2
f , ·〉 : E → E is compact since its Hilbert-Schmidt

norm is equal to 1. In particular this operator has rank equal to 1/n since it has only one

eigenvalue different from 0 and which is equal to 1. This eigenvalue corresponds to the

eigenfunction f
1
2∗ . Therefore, the operator ( 1nM

1
2
f 〈M

1
2
f , ·〉 −M

− 1
2

f Ω0θM
− 1

2
f ) is compact. By

the Cauchy-Schwartz inequality we have

∀φ ∈ E , 〈M̃−1φ, φ〉 = 1

n
||φ||2 − 1

n
〈f

1
2∗ , φ〉2 + 〈Ω

1
2
0θf

− 1
2∗ φ,Ω

1
2
0θf

− 1
2∗ φ〉
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≥ 1

n
||φ||2 − 1

n
||f

1
2∗ ||2||φ||2 + ||Ω

1
2
0θf

− 1
2∗ φ||2

≥ ||Ω
1
2
0θf

− 1
2∗ φ||2 ≥ 0 (A.3)

since ||f
1
2∗ ||2 = 1. Therefore, we conclude that M̃ is injective. Then, from the Riesz Theo-

rem 3.4 in Kress [1999] it follows that the operator M̃ : E → E is bounded.

Consider the case where (ii) holds. Hence, by using (A.3) for every φ ∈ D(M
− 1

2
f Ω0θM

− 1
2

f ),

it follows that M̃ : E → E exists and is bounded.

Finally, the operator A is bounded and linear since it is the product of bounded linear

operators. We conclude that A is a continuous operator from F to E .

�

Remark A.1. If f−1
∗ ∈ R(K∗) then the operator A : F → E of Lemma (A.1) may be

written in an equivalent way as: ∀ϕ ∈ F

Aϕ = Ω0θ

(
1

n
I − 1

n
〈f∗, ·〉+ f−1

∗ Ω0θ

)−1

((K∗)−1f−1
∗ )∗. (A.4)

In addition, if either (i) f−1
∗ ∈ E ∩ C∞ or (ii) the domain D(M−1

f Ω0θ) is dense in E and

infx∈S

(
M

− 1
2

f Ω0θM
− 1

2
f

)
(x) ≥ C for a constant C > 0 then, A is a continuous and linear

operator from F to E .

The trajectories of f generated by the conditional posterior distribution µ(f |rn, θ)
verify a.s. the moment conditions and integrate to 1. To see this, first remark that the

posterior covariance operator satisfies the moment restrictions:

[Ω0θ − AKΩ0θ]
1/2(1, hT (θ, ·))T = [I − AK]1/2Ω

1/2
0θ (1, hT (θ, ·))T = 0

where we have factorized out Ω0θ on the right and used (2.2). Second, a trajectory f drawn

from the posterior µ(f |θ, rn) is such that (f − f0θ) ∈ R
(
(Ω0θ − AKΩ0θ)1/2

)
, a.s. Now,

for any φ ∈ R
(
(Ω0θ − AKΩ0θ)

1/2
)
we have 〈φ, h(θ, ·)〉 = 〈[Ω0θ − AKΩ0θ]

1/2ψ, h(θ, ·)〉 =

〈[I − ÃKΩ0θ]
1/2ψ,Ω

1
2
0θh(θ, ·)〉 = 0, for some ψ ∈ E where Ã = K∗(Σn +KΩ0θK

∗)−1, and

〈φ, 1〉 = 0 by a similar argument. This shows that

R
(
(Ω0θ − AKΩ0θ)

1/2
)
⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}

and since the set on the right of this inclusion is closed we have

R
(
(Ω0θ − AKΩ0θ)1/2

)
⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
.
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Therefore, a.s. a trajectory f drawn from µ(f |θ, rn) is such
∫
(f − f0θ)(x)Π(dx) = 0 and∫

(f−f0θ)(x)h(θ, x)Π(dx) = 0 which implies:
∫
f (x)Π(dx) = 1 and

∫
f (x)h(θ, x)Π(dx) = 0.

Remark A.2. The posterior distribution of f conditional on θ revises the prior on f

except in the directions given by the constant and the moment functions h which remain

unchanged.

Remark A.3. [Regularized Posterior Distribution] When neither the conditions of Lemma

A.1 nor the conditions of Remark A.1 are satisfied then we cannot use the exact posterior

distribution µ(f |θ, rn). Instead, we can use the regularized posterior distribution denoted

by µ(f |τ, θ, rn), where τ > 0 is a regularization parameter that must be suitably chosen

and that converges to 0 with n. This distribution has been proposed by Florens and Simoni

[2012] and we refer to this paper for a complete description of it. Here, we only give its

expression: µ(f |τ, θ, rn) is a Gaussian distribution with mean function

E[f |rn, τ ] = f0θ + Aτ (rn −Kf0θ)

and covariance operator V ar[f |rn, τ ] = Ω0θ − AτKΩ0θ : E → E where

Aτ := Ω0θK
∗
(
τI +

1

n
I +KΩ0θK

∗
)−1

: E → E

and I : F → F denotes the identity operator.

B Proofs for Section 2

Proof of Lemma 2.1

LetH(Ω0θ) denote the reproducing kernel Hilbert space associated with Ω0θ and embed-

ded in E and H(Ω0θ) denote its closure. Because f |θ ∼ GP(f0θ,Ω0θ) then (f−f0θ) ∈ H(Ω0θ)

a.s. Moreover, H(Ω0θ) = D(Ω
−1/2
0θ ) = R(Ω

1/2
0θ ) where D and R denote the domain and the

range of an operator, respectively. This means that ∀φ ∈ H(Ω0θ) there exists ψ ∈ E such

that φ = Ω
1
2
0θψ. Moreover, for any φ ∈ H(Ω0θ) we have 〈φ, h(θ, ·)〉 =

∫
φ(x)h(θ, x)Π(dx) =

〈Ω
1
2
0θψ, h(θ, ·)〉 = 〈ψ,Ω

1
2
0θh(θ, ·)〉 = 0 and 〈φ, 1〉 = 0 by a similar argument. Hence,

H(Ω0θ) ⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
. (B.1)

Since the set on the right of this inclusion is closed we have

H(Ω0θ) ⊂
{
φ ∈ E ;

∫
φ(x)h(θ, x)Π(dx) = 0 and

∫
φ(x)Π(dx) = 0

}
.
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We deduce that,

∫
(f − f0θ)(x)Π(dx) = 0 and

∫
(f − f0θ)(x)h(θ, x)Π(dx) = 0 a.s.

Condition (2.1) and the fact that f0θ is a pdf imply the results of the lemma.

�

Proof of Lemma 2.2

The result follows trivially from the definition of the covariance operator Σn : F → F
and from the Fubini’s Theorem: ∀ψ ∈ F ,

Σnψ =
1

n

[ ∫

T

∫

S

(k(t, x)k(s, x)) f∗(x)Π(dx)ψ(t)ρ(dt)

−
∫

T

∫

S

k(t, x)f∗(x)Π(dx)

(∫

S

k(s, x)f∗(x)Π(dx)

)
ψ(t)ρ(dt)

]

=
1

n

[ ∫

S

k(s, x)f∗(x)

∫

T

k(t, x)ψ(t)ρ(dt)Π(dx)

−
∫

S

k(s, x)f∗(x)Π(dx)

(∫

S

∫

T

k(t, x)ψ(t)ρ(dt)f∗(x)Π(dx)

) ]

=
1

n
[KMfK

∗ψ − (KMf1)〈Mf , K
∗ψ〉]

where the second equality has been obtained by using the Fubini’s theorem.

�

Proof of Lemma 2.3

We can rewrite Σ as

∀ψ ∈ F , Σψ =

∫

T

E∗ (v(x, t)v(x, s))ψ(t)ρ(dt)

=

∫

T

∫

S
(v(x, t)v(x, s)) f∗(x)Π(dx)ψ(t)ρ(dt)

where v(x, t) = [k(x, t)−E(k(x, t))]. Then, ∀ψ ∈ F we can write Σψ = RMfR
∗ψ where

R : E → F , Mf : E → E and R∗ : F → E are the operators defined as

∀ψ ∈ F , R∗ψ =

∫

T

v(x, t)ψ(t)ρ(dt)

∀ϕ ∈ E , Mfϕ = f∗(x)ϕ(x)

∀ϕ ∈ E , Rϕ =

∫

S
v(x, t)ϕ(x)Π(dx).

32



Moreover, we have D(Σ− 1
2 ) = R(Σ

1
2 ) = R((RMfR

∗)
1
2 ) = R(RM

1/2
f ).

Let h ∈ R(K), namely, there exists a g ∈ E such that h(t) =
∫
S k(t, x)g(x)Π(dx). Then

h ∈ D(Σ− 1
2 ) if there exists an element ν ∈ E such that h(t) =

∫
S v(x, t)f

1
2∗ (x)ν(x)Π(dx).

By developing this equality, the element ν has to satisfy

∫

S
k(t, x)g(x)Π(dx) =

∫

S
v(x, t)f

1
2∗ (x)ν(x)Π(dx)

⇔
∫

S
k(t, x)g(x)Π(dx) =

∫

S

[
k(x, t) −

(∫

S
k(x, t)f∗(x)Π(dx)

)]
f

1
2∗ (x)ν(x)Π(dx)

⇔
∫

S
k(t, x)g(x)Π(dx) =

∫

S
k(x, t)

[
f

1
2∗ (x)ν(x) − f∗(x)

(∫

S
f

1
2∗ (x)ν(x)Π(dx)

)]
Π(dx).

If K is injective it follows that such an element ν must satisfy

g(x) = f
1
2∗ ν(x)− f∗(x)

(∫

S
f

1
2∗ (x)ν(x)Π(dx)

)

which in turn implies that

∫
S
g(x)Π(dx) = 0, i.e. that h ∈ R(K|D). Therefore, one

solution is ν(x) = f
− 1

2∗ g(x) which proves that the range of the truncated operator K|D in

contained in D(Σ− 1
2 ). On the other side, let h ∈ D(Σ− 1

2 ), then there exists a ν ∈ E such

that h =
∫
S v(x, t)f

1
2∗ (x)ν(x)Π(dx). By the previous argument and under the assumption

that K|D is injective, this implies that h ∈ R(K|D) since there exists g ∈ D such that

g(x) = f
1
2∗ ν(x) − f∗(x)

(∫
S f

1
2∗ (x)ν(x)Π(dx)

)
. This shows the inclusion of D(Σ− 1

2 ) in

R(K|D) and concludes the proof.

�

Proof of Theorem 2.1

In this proof we denote B = Σ−1/2KΩ
1/2
0θ . To prove that P θn and P 0

n are equivalent we

first rewrite the covariance operator of P θn as

(
n−1Σ+KΩ0θK

∗
)

=
1

n
Σ

1
2

[
I + nΣ− 1

2KΩ0θK
∗Σ− 1

2

]
Σ

1
2 .

Then, according to Corollary 3.1, Theorem 3.3 and Theorem 3.4 p.125 in Kuo [1975], P θn

and P 0
n are equivalent if K(f0θ − f∗) ∈ R(Σ1/2) and if

[
I + nΣ− 1

2KΩ0θK
∗Σ− 1

2

]
is positive

definite, bounded, invertible with BB∗ Hilbert Schmidt, where B∗ denotes the adjoint of

B. We now verify these conditions.

1) Since (f0θ−f∗) ∈ D and sinceK|D is injective then, by Lemma 2.3, K(f0θ−f∗) ∈ R(Σ1/2).

2) Positive definiteness. It is trivial to show that the operator (I + nBB∗) is self-adjoint,
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i.e. (I + nBB∗)∗ = (I + nBB∗). Moreover, ∀ϕ ∈ F , ϕ 6= 0

〈(I + nBB∗)ϕ,ϕ〉 = 〈ϕ,ϕ〉 + n〈B∗ϕ,B∗ϕ〉 = ||ϕ||2 + n||B∗ϕ|| > 0.

3) Boundedness. By Lemma 2.3, if K|D is injective, the operators B and B∗ are bounded;

the operator I is bounded by definition and a linear combination of bounded operators is

bounded, see Remark 2.7 in Kress [1999].

4) Continuously invertible. The operator (I+nBB∗) is continuously invertible if its inverse

is bounded, i.e. there exists a positive number C such that ||(I + nBB∗)−1ϕ|| ≤ C||ϕ||,
∀ϕ ∈ F . We have ||(I + nBB∗)−1ϕ|| ≤ ||ϕ|| <∞, ∀ϕ ∈ F .

5) Hilbert-Schmidt. We consider the Hilbert-Schmidt norm ||nBB∗||HS = n
√
tr((BB∗)2).

Now, tr((BB∗)2) = tr(Ω0θB̃
∗B̃Ω0θB̃

∗B̃) ≤ tr(Ω0θ)||B̃∗B̃Ω0θB̃
∗B̃|| < ∞ since the operator

B̃ := Σ− 1
2K|R(Ω

1/2
0θ )

has a bounded norm by Lemma 2.3. This shows that P θn and P 0
n are

equivalent.

Next, we derive (2.9). Remark that P θn and P0 are the distributions of the stochastic

process rn. In an equivalent way, Z :=
√
n(rn −Kf∗) is distributed as a GP(

√
nK(f0θ −

f∗), (Σ + nKΩ0θK
∗)) according to P θn and as a GP(0,Σ) according to P0. Let Zj :=

〈√n(rn−Kf∗),Σ−1/2ψj(θ)〉 for j ≥ 0. This variable is defined under the further assumption

that ψj(θ) ∈ R(Σ1/2), ∀j ≥ 0 and ∀θ ∈ Θ. By Theorem 2.1 in Kuo [1975, page 116]:

dP θn
dP 0

n

=
∞∏

j=0

dνj
dµj

where νj denotes the distribution of Zj under P
θ
n (namely,

νj = N
(
〈√nK(f0θ − f∗),Σ

−1/2ψj(θ)〉, (1 + nl2jθ)
)
)

and µj denotes the distribution of Zj under P 0
n (namely, µj = N (0, 1)). By writing down

the likelihoods of νj and µj with respect to the Lebesgue measure and after simplifications

we obtain

dP θn
dP 0

n

(rn) =

∞∏

j=0

√
n−1

n−1 + l2jθ
exp



−1

2

∞∑

j=1

(
Zj − 〈√nK(f0θ − f∗),Σ−1/2ψj(θ)〉

)2

1 + nl2jθ



 e{

1
2
‖Z‖2Σ}

where ‖Z‖2Σ := ‖Σ−1/2Z‖2 and it is defined as the F limit of the series
∑m

j=0 σ
−2
j 〈Zj , φj〉2

as m→ ∞ (where {σ2j , φj}∞j=0 is the eigensystem of Σ).

�
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Proof of Proposition 2.1

Let EΠ1 = L2(S,BS ,Π1) with 〈·, ·〉Π1 the inner product in EΠ1 . Let z = dΠ
dΠ1

and

consider the transformation ϕ and its inverse:

ϕ : E → EΠ1

f 7→ f z
;

ϕ−1 : EΠ1 → E
g 7→ gz−1

.

If supx∈S
dΠ1(x)
dΠ(x) < ∞ then, ϕ−1(EΠ1) ⊂ E which means that EΠ1 is ϕ-stable (see Florens

et al. [1990, Definition 8.2.14]). For every positive measure Π1 such that supx∈S
dΠ1(x)
dΠ(x) <∞

we can define a transformation ϕ. Let Φ be the set of measurable functions defined in

Proposition 2.1. Every ϕ ∈ Φ induces a transformation on the parameter space: ϕ :

Θ× E → Θ× EΠ1 such that ϕ(θ, f ) = (θ, f z). Moreover, define

K1 : EΠ1 → F
g 7→

∫
k(t, x)g(x)Π1(dx).

(B.2)

For every ϕ ∈ Φ, the sampling distribution conditional on the transformed parameter ϕ(f )

is Pϕ(f) = GP(K1ϕ(f ),Σn) and it is easy to see that Pϕ(f) = P f since K1ϕ(f ) = Kf . The

rest of the proof has to be meant for a generic element ϕ ∈ Φ.

Let us look at the prior distribution of the transformed parameter. The prior of θ does

not change as θ is not affected by this transformation. On the other hand, the conditional

prior of ϕ(f ), given θ, is a Gaussian measure on the Borel σ-field of EΠ1 induced by the

prior distribution of f . That is, µ(ϕ(f )|θ) = GP(ϕ(f0θ)z,Ωϕθ) where ϕ(f0θ) = f0θz ∈ EΠ1

and Ωϕθ : EΠ1 → EΠ1 is such that ∀δ1, δ2 ∈ EΠ1 , 〈Ωϕθδ1, δ2〉 = Ef |θ(〈f z, δ1〉Π1〈f z, δ2〉Π1)

where Ef |θ denotes the expectation with respect to µ(f |θ). Hence,

Ef |θ(〈f z, δ1〉Π1〈f z, δ2〉Π1) =

∫

S
z(x)

∫

S
Ef |θ (f (x)f (s)) z(s)δ1(s)Π1(ds)δ2(x)Π1(x)

=

∫

S
z(x)

∫

S

∑

j>d

λjϕjθ(x)ϕjθ(s)z(s)δ1(s)Π1(ds)δ2(x)Π1(x)

= 〈z
∑

j>d

λjϕjθ〈ϕjθz, δ1〉Π1 , δ2〉Π1

which implies that Ωϕθ· =
∑

j>d λj〈ϕjθz, ·〉Π1zϕjθ.

Therefore, by using the new parametrization, the Bayesian experiment is (by using the

notation as in Florens et al. [1990]): (Θ×EΠ1×F ,BΘ⊗BEΠ1
⊗BF , µ(θ)⊗µ(ϕ(f )|θ)⊗Pϕ(f))

where BΘ (resp. BEΠ1
, BF ) denotes the Borel σ-field generated by the open sets of Rp
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(resp. EΠ1 , F). The moment conditions restrict the parameter space to

Λ1 :=

{
(θ, g) ∈ Θ× EM1 ;

∫

S
h(θ, x)g(x)Π1(dx) = 0

}
, EM1 = EΠ1 ∩M.

The marginal Bayesian experiment, obtained by integrating out the parameter ϕ(f ) with

respect to µ(ϕ(f )|θ) is (Θ×F ,BΘ ⊗BF , µ(θ)⊗ P θn,1) where

P θn,1 := GP(K1f0θz,Σn +K1ΩϕθK
∗
1 )

and K∗
1 : F → EΠ1 is such that ∀g ∈ EΠ1 and ∀ψ ∈ F , 〈K1g, ψ〉 = 〈g,K∗

1ψ〉. The adjoint

operator K∗
1 has the same kernel as K∗, that is, ∀ψ ∈ F , K∗

1ψ =
∫
T
k(t, x)ψ(t)ρ(dt). We

now show that K1ΩϕθK
∗
1 = KΩ0θK

∗: by using the fact that z = dΠ
dΠ1

we obtain

K1ΩϕθK
∗
1 · =

∫

S
k(t, x)

∑

j>d

λj〈ϕjθz,K∗
1 ·〉Π1z(x)ϕjθ(x)Π1(dx)

=

∫

S
k(t, x)

∑

j>d

λj〈ϕjθ,K∗
1 ·〉ϕjθ(x)Π(dx)

=
∑

j>d

λj〈ϕjθ,K∗·〉Kϕjθ = KΩ0θK
∗ · .

This implies that P θn,1 = P θn and Σ−1/2K1ΩϕθK
∗
1Σ

−1/2 = Σ−1/2KΩ0θK
∗Σ−1/2 so that

these two operators have the same eigensystem (ljθ, ψj(θ))j∈N. This and the fact that

Kf∗ = K1f∗z imply that Theorem 2.1 applies with P 0
n replaced by P 0

n,1 := GP(K1f∗z, n−1Σ)

and

pnθ,1(rn; θ) :=
dP θn,1
dP 0

n,1

(rn)

=

∞∏

j=0

√
n−1

n−1 + l2jθ
exp



−1

2

∞∑

j=0

(
Z1,j − 〈√nK1(f0θ − f∗)z,Σ−1/2ψj(θ)〉

)2

1 + nl2jθ



 e{

1
2
‖Z1‖2Σ}

(B.3)

where Z1 :=
√
n(rn − K1f∗z), Z1,j := 〈Z1,Σ

−1/2ψj(θ)〉 for all j ≥ 0, and ‖Z‖Σ :=

‖Σ−1/2Z1‖. The previous results imply that pnθ,1(rn; θ) = pnθ(rn; θ), ∀(rn, θ) ∈ F × Θ,

where pnθ(rn; θ) is the expression given in (2.9). Hence, the marginal posterior distribution

of θ is ϕ-invariant. Since the same reasoning carries on for every ϕ ∈ Φ we conclude that

the marginal posterior distribution of θ is Φ-invariant.

�
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Proof of Theorem 2.2

Remark that we may write: Σ = Σ1/2Σ
∗
1/2 where

Σ1/2 : E → F
ϕ 7→ Kf

1/2
∗ ϕ− (Kf∗)〈f 1/2∗ , ϕ〉

Σ∗
1/2 : F → E

ψ 7→ f
1/2
∗ K∗ψ + f

1/2
∗ 〈Kf∗, ψ〉.

(B.4)

Remark that, despite the notation, Σ∗
1/2 is not the adjoint of Σ1/2. Let (Σ∗

1/2)
−1 =

(f
1/2
∗ K∗)−1 − 1

2 (K
∗)−1〈f 1/2∗ , ·〉, it is easy to verify that (Σ∗

1/2)
−1Σ∗

1/2 = I, so that in the

following we use the notation Σ−1/2 = (Σ∗
1/2)

−1 : E → F . Hence, Ω
1/2
0θ K

∗(Σ∗
1/2)

−1f
1/2
∗ ϕl =

λ
1/2
l ϕl for every l > d and Ω

1/2
0θ K

∗(Σ∗
1/2)

−1f
1/2
∗ ϕl = 0 for every l ≤ d. We want to determine

the functions ψj(θ) used in (2.9). These are the eigenfunctions of

[Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗Ω1/2
0θ K

∗(Σ∗
1/2)

−1

where [Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗ denotes the adjoint of the operator Ω
1/2
0θ K

∗(Σ∗
1/2)

−1 which exists

since Ω
1/2
0θ K

∗(Σ∗
1/2)

−1 is bounded if f
1/2
∗ is bounded away from 0 (this is the case if we set

Π = F∗). For every φ1, φ2 ∈ E :

〈Ω1/2
0θ K

∗(Σ∗
1/2)

−1φ1, φ2〉 = 〈φ1,
∑

j>d

λ
1/2
j 〈ϕj , φ2〉f−1/2

∗ ϕj〉

which gives an expression for [Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗. By using this result it is easy to check

that for every l > d:

[Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗Ω1/2
0θ K

∗(Σ∗
1/2)

−1f
1/2
∗ ϕl = λlf

−1/2
∗ ϕl.

By Proposition 2.1, our inference procedure is invariant to the choice of Π. Then, if

supx∈S f∗(x) < ∞ we can fix Π = F∗ so that f∗ = 1 and the eigenfunctions {ψj(θ)}j≥0 are

given by {ϕj}j≥0 (which depend on θ) with corresponding eigenvalues {ljθ}j≥0 = {λj1{j >
d}}j≥0 (which do not depend on θ). Remark that, since Π = F∗, the {ϕj}dj=1 denote

here the moment functions orthonormalized with respect to F∗, that is, (ϕ1, . . . , ϕd)
T (x) =

V∗(θ)−1/2h(θ, x) for every θ ∈ Θ and every x ∈ S and where V∗(θ) = E∗[h(θ, x)h(θ, x)T ].

It follows that if we replace Ω0θ by cΩ0θ, then {ljθ}j≥0 have to be multiplied by c as well,
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so that:

pnθ(rn; θ) = e
−{ 1

2
〈√n(rn−Kf0θ),(Σ∗

1/2
)−11〉2}

exp{−1

2

d∑

j=1

〈√n(rn −Kf0θ), (Σ
∗
1/2)

−1ϕj〉2} ×

∏

j>d

√
n−1

n−1 + cl2jθ
exp



−1

2

∑

j>d

〈√n(rn −Kf0θ), (Σ
∗
1/2)

−1ϕj〉2

1 + cnl2jθ



 e{

1
2
‖Z‖2Σ}

and

µ(θ|rn) =

e
−
{

1
2

∑d
j=0〈

√
n(rn−Kf0θ),(Σ∗

1/2
)−1ϕj〉2

}∏

j>d

√
n−1

1
cn + l2jθ

e
−
{

1
2

∑

j>d

〈√n(rn−Kf0θ),(Σ
∗
1/2

)−1ϕj〉2

1+cnl2
jθ

}

µ(θ)×

[
∫

e
−{ 1

2

∑d
j=0〈

√
n(rn−Kf0θ),(Σ∗

1/2
)−1ϕj〉2}∏

j>d

√
n−1

1
cn + l2jθ

e
−
{

∑

j>d

〈√n(rn−Kf0θ),(Σ
∗
1/2

)−1ϕj〉2

2(1+cnl2
jθ

)

}

× µ(θ)dθ
]−1

.

By taking the limit for c→ ∞ we obtain

µ(θ|rn) → e
−
{

1
2

∑d
j=0〈

√
n(rn−Kf0θ),(Σ∗

1/2
)−1ϕj〉2

}

µ(θ)∫
e
−{ 1

2

∑d
j=0〈

√
n(rn−Kf0θ),(Σ∗

1/2
)−1ϕj〉2}µ(θ)dθ

.

Next, remark that for Π = F∗ and for every j = 1, . . . , d: K∗(Σ∗
1/2)

−1ϕj = ϕj and

(Σ∗
1/2)

−1ϕj = (K∗)−1ϕj which is well defined under the assumption of the theorem. There-

fore, for ϕ := (ϕ1, . . . , ϕd)
T ,

√
n〈Kf0θ, (Σ∗

1/2)
−1ϕ〉 =

√
n〈f0θ(x), V (θ)−1/2h(θ, x)〉 = 0 by

construction of f0θ, and

√
n〈rn, (Σ∗

1/2)
−1ϕ〉 =

√
n〈rn, (K∗)−1ϕ〉

=
1√
n

n∑

i=1

(K∗(K∗)−1ϕ)(xi) =
1√
n

n∑

i=1

V (θ)−1/2h(θ, xi).

Moreover, for j = 0:

exp

{
−1

2
〈√n(rn −Kf0θ), (Σ

∗
1/2)

−1ϕ0〉2
}

= exp

{
−1

2

(
〈√nrn, (Σ∗

1/2)
−1ϕ0〉 −

1

2

)2
}
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which, since it does not depend on θ, simplifies with the denominator. By putting all these

results together, we obtain:

lim
c→∞

µ(θ|rn, c) = lim
c→∞

pnθ(rn; θ)µ(θ)∫
pnθ(rn; θ)µ(θ)dθ

∝ exp



−1

2

d∑

j=1

n

(
1

n

n∑

i=1

ϕj(xi)

)2


µ(θ)

= exp



−1

2
n

(
1

n

n∑

i=1

h(θ, xi)

)T
V∗(θ)

−1

(
1

n

n∑

i=1

h(θ, xi)

)
µ(θ). (B.5)

Since in practice F∗ is unknown, the matrix V∗ has to be replaced by its empirical counter-

part Vn(θ).

�

C Proofs for Section 3

Proof of Theorem 3.1

Let Assumption A4 (ii) be verified (for the case where Assumption A4 (i) is satisfied

the proof is similar and then omitted). Let l(θ) = −1
2

∑∞
j=0〈K(f0θ − f∗),Σ−1/2ψj(θ)〉2 1

l2jθ
,

Zj(θ) := 〈√n(rn −Kf∗),Σ−1/2ψj(θ)〉 for j ≥ 0 where ψj(θ) is as defined in Theorem 2.1.

We make the following decomposition:

|ln(θ)− µ(θ)− l(θ)| =
∣∣∣ log µ(θ)− 1

2

∞∑

j=0

log(n−1 + l2jθ)−
1

2

∞∑

j=0

Z2
j (θ)

1

1 + nl2jθ

− 1

2

∞∑

j=0

〈√nK(f0θ − f∗),Σ
−1/2ψj(θ)〉2

1

1 + nl2jθ

+
∞∑

j=0

〈√nK(f0θ − f∗),Σ
−1/2ψj(θ)〉Zj(θ)

1

1 + nl2jθ
− l(θ)

∣∣∣.

Because Zj = Op(1), ψj(θ) and ljθ are continuous functions of θ, Θ is compact, then by

the Continuous Mapping Theorem applied to (continuous) functions of Zj(θ) it follows

that:
∑∞

j=0Z
2
j (θ)

1
1+nl2jθ

= Op(n
−1) and

∑∞
j=0〈

√
nK(f0θ − f∗),Σ−1/2ψj(θ)〉Zj(θ) 1

1+nl2jθ
=

Op(n
−1/2) uniformly in θ. By Assumptions A2, A3, A4 (ii) and by compactness of Θ:

log µ(θ)− 1
2

∑∞
j=0 log(n

−1 + l2jθ) → 0 uniformly in θ. Moreover,

∞∑

j=0

〈√nK(f0θ − f∗),Σ
−1/2ψj(θ)〉2

1

1 + nl2jθ
=

∞∑

j=0

〈K(f0θ − f∗),Σ
−1/2ψj(θ)〉2

n

1 + nl2jθ
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and it converges to
∑∞

j=0〈K(f0θ−f∗),Σ−1/2ψj(θ)〉2 1
l2jθ

=: −l(θ) uniformly in θ. This shows

that the maximizer of ln(θ)− µ(θ) converges in probability to the maximizer of l(θ).

We now show that the maximizer of l(θ) is θ∗. Let B = Σ−1/2KΩ
1/2
0θ and B∗ be its adjoint

(which exists because B is bounded). First, remark that maximizing l(θ) is equivalent to

minimize
∑∞

j=0〈Σ−1/2K(f0θ − f∗), (B∗)−1ρj(θ)〉2 which in turn is equivalent to find the

value of θ such that this expression exists, i.e. such that

‖B−1Σ−1/2K(f0θ − f∗)‖2 <∞. (C.1)

Because B−1Σ−1/2K = Ω
−1/2
0θ , (C.1) is verified if and only if (f0θ − f∗) ∈ R(Ω

1/2
0θ ). Finally,

we have to show that (f0θ− f∗) ∈ R(Ω
1/2
0θ ) if and only if θ = θ∗. For this, remark that since

Ω
1/2
0θ is a bounded and linear operator:

R(Ω
1/2
0θ ) = N(Ω

1/2
0θ )⊥

=

{
ϕ ∈ E ;

∫
ϕ(x)h(x, θ)Π(dx) = 0 and

∫
ϕ(x)Π(dx) = 0

}
.

Clearly,
∫
(f0θ − f∗)(x)Π(dx) = 0, but

∫
(f0θ − f∗)(x)h(x, θ)Π(dx) = 0 if and only if∫

f∗(x)h(x, θ)Π(dx) = 0. By the identifiability assumption A1, the last equality is sat-

isfied if and only if θ = θ∗. This shows that the maximizer of l(θ) is the true θ∗.

�

Proof of Theorem 3.2

Define the events A1 :=
{
supθ∈B(θ∗,δn)c [ln(θ)− ln(θ∗)] ≤ −CM2

n

}
and

B1 :=

{∫

Θ
eln(θ)−ln(θ∗)µ(θ)dθ > e−CM

2
n/2

}

for some sequence Mn → ∞ and a constant C > 0 as in Assumptions B1-B2. By these

assumptions P ∗(A1) → 1 and P ∗(B1) → 1 as n→ ∞. Hence,

E∗
∫

B(θ∗,δnMn)c
µ(θ|rn)dθ = E∗

[∫

B(θ∗,δnMn)c
µ(θ|rn)dθ

∣∣∣∣∣A1

]
P ∗(A1)

+E∗
[∫

B(θ∗,δnMn)c
µ(θ|rn)dθ

∣∣∣∣∣A
c
1

]
P ∗(Ac1)

≤ E∗
[ ∫

B(θ∗,δnMn)c
exp[ln(θ)− ln(θ∗)]µ(θ)dθ∫

Θ exp[ln(θ)− ln(θ∗)]µ(θ)dθ

∣∣∣∣∣A1

]
P ∗(A1) + o(1)
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≤ E∗
[ ∫

B(θ∗,δnMn)c
exp[ln(θ)− ln(θ∗)]µ(θ)dθ∫

Θ exp[ln(θ)− ln(θ∗)]µ(θ)dθ

∣∣∣∣∣A1 ∩B1

]
P ∗(A1)P

∗(B1) + o(1)

≤ e−CM
2
neCM

2
n/2

∫

B(θ∗,δnMn)c
µ(θ)dθ + o(1) = o(1).

This shows (3.1). To prove (3.2), first remark that

P ∗ (B(θn, δnMn) ∩B(θ∗, δnMn) 6= ∅) = P ∗ (‖θn − θ∗‖ ≤ 2δnMn)

which converges to 1, as n→ ∞, by Theorem 3.1. Then,

E∗[µ(B(θn, δnMn)
c|rn)] = E∗[

∫

B(θn,δnMn)c∩B(θ∗,δnMn)
µ(θ|rn)dθ]

+E∗[
∫

B(θn,δnMn)c∩B(θ∗,δnMn)c
µ(θ|rn)dθ]

≤
∫ ∫

1{θ ∈ B(θn, δnMn)
c ∩B(θ∗, δnMn)}dP ∗(rn)µ(θ|rn)dθ

+ E∗[µ(B(θ∗, δnMn)
c|rn)]

≤ P ∗(B(θn, δnMn)
c ∩B(θ∗, δnMn) 6= ∅) + o(1)

= P ∗(B(θ∗, δnMn)\(B(θn, δnMn) ∩B(θ∗, δnMn)) + o(1)

= P ∗(B(θ∗, δnMn))− P ∗(B(θn, δnMn) ∩B(θ∗, δnMn)) + o(1)

= op(1)

by the first result of this proof.

�

Proof of Theorem 3.3

This proof follows the proof of Theorem 2.1 in Kleijn and van der Vaart [2012]. For

completeness reasons we give here the main steps.

Let K ⊂ R
p be an arbitrary compact set and µτ (·) be the prior for the random sequence

τ =
√
n(θ − θ∗) and µτ (·|rn) be its posterior. Moreover, we denote by Φ the N (∆∗, Ĩ−1

∗ )

distribution, by φ its density with respect to Lebesgue, by ΦK (resp. µKτ (·|rn)) the condi-

tional version of Φ (resp. µτ (·|rn)) conditioned on K. The proof proceeds as follows: we

first prove that µKτ (·|rn) converges to ΦK in total variation and then we use this result to

prove (3.4).

Let U ⊂ Θ be a neighborhood of θ∗. Then, ∀U ⊂ Θ there exists N such that ∀n > N :
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θ∗ + Kn−1/2 ⊂ U . Let Gn : K× K → R be the function

Gn(τ, g) :=

(
1− φ(τ)sn(g)µτ (g)

φ(g)sn(τ)µτ (τ)

)

+

which is well-defined ∀n > N since θ∗ is an interior point of Θ. By assumption (3.3) we

have that, for every random sequence (τn) and (gn), µτ (gn)µ(τn) → 1 as n→ ∞ and

log
φ(τ)sn(g)µτ (g)

φ(g)sn(τ)µτ (τ)
= op(1).

Hence, Gn(τn, gn) → 0.

By continuity of Gn in (τ, g) and because Θ is compact: supτ,g∈KGn(τ, g) → 0 as

n → 0. Let K contain a neighborhood of 0, so that Φ(K) > 0, and define the events

A1 := {µτ (K|rn) > 0} and A2 := {supτ,g∈KGn(τ, g) ≤ η}. Hence, since the TV distance is

upper bounded by 2:

E∗‖µKτ (τ |rn)− ΦK‖TV 1A1 ≤ E∗‖µKτ (τ |rn)− ΦK‖TV 1A1∩A2 + 2P ∗(A1\A2)

= 2E∗
∫ (

1−
∫

K

φ(τ)sn(g)µτ (g)

φ(g)sn(τ)µτ (τ)
dΦK(g)

)

+

µKτ (τ |rn)dτ1A1∩A1 + o(1)

≤ 2E∗
∫ ∫

K

Gn(τ, g)dΦ
K(g)µKτ (τ |rn)dτ1A1∩A1 + o(1)

≤ 2E∗
∫

sup
τ,g∈K

Gn(τ, g)dΦ
K(g)µKτ (τ |rn)dτ1A1∩A1 + o(1) = o(1)

where we have used the fact that the function x 7→ (1 − x)+ is convex and the Jensen’s

inequality. This concludes the first part of the proof.

Next, we use this result to show (3.4). Let Kn be a closed ball centered at 0 with radius

Mn → ∞. The corresponding event A1 := {µτ (Kn|rn) > 0} has P ∗-probability converging

to 1 and so, if Mn → ∞ slow enough, E∗‖µKn
τ (τ |rn)− ΦKn‖TV 1A1 → 0. Moreover, for this

Mn, µτ (K
c
n|rn) → 0. Finally,

E∗‖µτ (τ |rn)−N (∆∗, Ĩ
−1
∗ )‖TV

≤ E∗‖µ(τ |rn)− µKn
τ (τ |rn)‖TV +E∗‖µKn

τ (τ |rn)− ΦKn‖TV +E∗‖ΦKn − Φ‖TV
≤ 2E∗‖µτ (Kcn|rn)‖TV +E∗‖µKn

τ (τ |rn)− ΦKn‖TV + 2E∗‖Φ(Kcn)‖TV = o(1).

�
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Proof of Theorem 3.4

Denote sn :=
√
n(θ − θ̂). Let θrn = 〈E[f |rn], g〉, Ωn = 〈V ar[f |rn]g, g〉 and ŝn :=

√
n(θrn − θ̂). Remark that µ(s|rn) is a N (

√
n(θrn − θ̂), nΩn) distribution. We can upper

bound the TV distance by

∥∥∥µ(s|rn)−N (θ̂, V )
∥∥∥
TV

≤ ‖µ(s|rn)−N (0, nΩn)‖TV + ‖N (0, nΩn)−N (0, V )‖TV
=: A+ B.

We start by considering A. By doing a change of variable it is easy to show that A =∥∥N (0, Ik)−N (−(nΩn)
−1/2ŝn, Ik)

∥∥
TV

. An application of Lemma D.2 and then of Lemmas

D.3 and D.4 allows to conclude that A ≤ 1√
2π
‖(nΩn)−1/2ŝn‖ = op(1).

To bound B we introduce the Kullback-Leibler distance between two probability measures

P1 and P2, denoted by K(P1, P2), and satisfying K(P1, P2) =
∫
log p1

p2
dP1 where p1 and p2

are the densities of P1 and P2, respectively, with respect to the Lebesgue measure. We get

B ≤
√
K (N (0, V ),N (0, nΩn))

=

√√√√
∫

log

(
|V |−1/2e{−

1
2
stV −1s}

|nΩn|−1/2e{−
1
2
st(nΩn)−1s}

)
1

(2π)k/2
|V |−1/2e{−

1
2
stV −1s}ds

=

√
1

2

∫ (
log

|nΩn|
|V | − st[V −1 − (nΩn)−1]s

)
1

(2π)k/2
|V |−1/2e{−

1
2
stV −1s}ds

=

√
1

2
log

|nΩn|
|V | − 1

2
trV [V −1 − (nΩn)−1]

that converges to zero by the result of Lemma D.3.

�

D Technical Appendix

D.1 Proof of (2.12)

If supx∈S
dF∗(x)
dΠ(x) < ∞ then, by the invariance property established in Proposition 2.1

we can fix Π = F∗. Therefore, f∗ = 1 and we may write: Σ = Σ1/2Σ
∗
1/2 where

Σ1/2 : E → F
ϕ 7→ Kϕ− (K1)〈1, ϕ〉

Σ∗
1/2 : F → E

ψ 7→ K∗ψ + 〈K1, ψ〉.
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Let (Σ∗
1/2)

−1 = (K∗)−1− 1
2(K

∗)−1〈1, ·〉, it is easy to verify that (Σ∗
1/2)

−1Σ∗
1/2 = I, so that in

the following we use the notation Σ−1/2 = (Σ∗
1/2)

−1 : E → F . Hence, Ω
1/2
0θ K

∗(Σ∗
1/2)

−1ϕl =

λ
1/2
l ϕl for every l > d and Ω

1/2
0θ K

∗(Σ∗
1/2)

−1ϕl = 0 for every l ≤ d. This shows that l2jθ = λj ,

∀j ≥ 0. By replacing this in (2.9) and simplifying the terms that do not depend on θ gives

the result.

�

D.2 Primitive conditions for Assumption B2

Lemma D.1. Let Assumption A2 be satisfied and
∑∞

j=1 |dljθ/dθ| <∞. Then, there exists

a constant C > 0 such that for any sequence Mn → ∞,

P ∗
(∫

Θ
eln(θ)−ln(θ∗)µ(θ)dθ ≤ e−CM

2
n/2

)
→ 0 as n→ ∞.

Proof. Let µτ be the prior for the random sequence τ =
√
n(θ − θ∗) with support T and

define Sn(τ) := exp{ln(θ∗ + n−1/2τ) − ln(θ∗)}. A second order Taylor expansion around

τ = 0 gives:

log Sn(τ) =
Ṡn(0)

Sn(0)

T

τ − 1

2
τT

[Ṡn(0)]
2 − S̈n(0)Sn(0)

S2
n(0)

τ + o(‖τ‖) (D.1)

where Ṡn(0) (resp. S̈n(0)) denote the first (resp. the second) derivative of Sn evaluated at

τ = 0. Simple algebra allows to show that [Ṡn(0)]2−S̈n(0)Sn(0)
S2
n(0)

= − d2ln(θ)
dθdθT

∣∣∣
θ=θ∗

n−1. By the

Markov inequality:

P ∗
(
d2ln(θ)

dθdθT

∣∣∣∣
θ=θ∗

n−1 >
M2
n

2

)
≤ 2

nM2
n

E∗
∣∣∣∣∣
d2ln(θ)

dθdθT

∣∣∣∣
θ=θ∗

∣∣∣∣∣ (D.2)

which converges to 0 as n → ∞. This implies: −τT [Ṡn(0)]2−S̈n(0)Sn(0)
S2
n(0)

τ ≥ −‖τ‖2M2
n
2 . By

defining TC := {τ ; ‖τ‖ ≤
√
C} we have:

P ∗
(∫

Θ
exp{ln(θ)− ln(θ∗)}µ(θ)dθ ≤ e−CM

2
n/2

)
= P ∗

(∫

T
Sn(τ)µτ (τ)dτ ≤ e−CM

2
n/2

)

≤ P ∗
(∫

TC
exp

{
Ṡn(0)

Sn(0)

T

τ − CM2
n/4

}
µτ (τ)dτ ≤ e−CM

2
n/2

)

≤ P ∗
(
exp

{∫

TC

Ṡn(0)

Sn(0)

T

τµτ (τ)dτ

}
≤ e−CM

2
n/4

)
= P ∗

(
Ṡn(0)

Sn(0)

T ∫

TC
τµτ (τ)dτ ≤ −CM

2
n

4

)
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≤ 4

CM2
n

E∗
∥∥∥∥∥
Ṡn(0)

Sn(0)

∥∥∥∥∥

∣∣∣∣
∫

TC
τµτ (τ)dτ

∣∣∣∣ (D.3)

where the inequality in the third line follows from (D.1) and (D.2), the inequality in

the forth line follows from the Jensen’s inequality and the inequality in the last line fol-

lows from the Chebishev’s inequality. Simple algebra allows to show that E∗
∥∥∥ Ṡn(0)
Sn(0)

∥∥∥ =

E∗‖dln(θ∗)/dθ‖n−1/2 → 0 as n → ∞ if
∑

j |dljθ/dθ| < ∞. Moreover,
∣∣∣
∫
TC τµτ (τ)dτ

∣∣∣
2
=

O(n−1/2) so that the last term of (D.3) converges to 0.

�

D.3 Proof of (3.3)

In this section we prove the integral local asymptotic normality (3.3). Remark that

we may write: Σ = Σ1/2Σ
∗
1/2 where Σ1/2 : E → F and Σ∗

1/2 : F → E are as defined in

(B.4). Remark that, despite the notation, Σ∗
1/2 is not the adjoint of Σ1/2. Let (Σ∗

1/2)
−1 =

(f
1/2
∗ K∗)−1 − 1

2 (K
∗)−1〈f 1/2∗ , ·〉, it is easy to verify that (Σ∗

1/2)
−1Σ∗

1/2 = I, so that in the

following we use the notation Σ−1/2 = (Σ∗
1/2)

−1 : E → F . Hence, Ω
1/2
0θ K

∗(Σ∗
1/2)

−1f
1/2
∗ ϕl =

λ
1/2
l ϕl for every l > d and Ω

1/2
0θ K

∗(Σ∗
1/2)

−1f
1/2
∗ ϕl = 0 for every l ≤ d. We want to determine

the functions ψj(θ) used in (2.9). These are the eigenfunctions of

[Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗Ω1/2
0θ K

∗(Σ∗
1/2)

−1

where [Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗ denotes the adjoint of the operator Ω
1/2
0θ K

∗(Σ∗
1/2)

−1 which exists

since Ω
1/2
0θ K

∗(Σ∗
1/2)

−1 is bounded if f
1/2
∗ is bounded away from 0. For every φ1, φ2 ∈ E :

〈Ω1/2
0θ K

∗(Σ∗
1/2)

−1φ1, φ2〉 = 〈φ1,
∑

j>d

λ
1/2
j 〈ϕj , φ2〉f−1/2

∗ ϕj〉

which gives an expression for [Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗. By using this result it is easy to check

that for every l > d: [Ω
1/2
0θ K

∗(Σ∗
1/2)

−1]∗Ω1/2
0θ K

∗(Σ∗
1/2)

−1f
1/2
∗ ϕl = λlf

−1/2
∗ ϕl. By Proposition

2.1, our inference procedure is invariant to the choice of Π. Then, if supx∈S f∗(x) < ∞ we

can fix Π = F∗ so that f∗ = 1 and the eigenfunctions {ψj(θ)}j≥1 are given by {ϕj}j≥1

(which depend on θ) with corresponding eigenvalues {ljθ}j≥1 = {λj1{j > d}}j≥1 (which

do not depend on θ).

Let us consider the function sn(τ) = pn,θ∗+δnτ (rn; θ∗ + δnτ) which is the localized

integrated likelihood:

sn(τ) =

∫
dP f (

√
nrn)

dP f∗(
√
nrn)

dµ(f |θ∗ + n−1/2τ).
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Its logarithm is equal to (by using (2.9))

log sn(τ) =− 1

2

∑

j>d

log(1 + nλ2j)−
1

2

d∑

j=1

〈√n(rn −Kf0(θ∗+δnτ)), (Σ
∗
1/2)

−1ϕj〉2

− 1

2

∑

j>d

〈√n(rn −Kf0(θ∗+δnτ)), (Σ
∗
1/2)

−1ϕj〉2
1

1 + nλ2j
+

1

2
‖√n(rn −Kf∗)‖2Σ

where we have left implicit the dependence of ϕj on τ , and

log sn(0) =− 1

2

∑

j>d

log(1 + nλ2j)−
1

2

d∑

j=1

〈√n(rn −Kf0θ∗), (Σ
∗
1/2)

−1ϕj〉2

− 1

2

∑

j>d

〈√n(rn −Kf0θ∗), (Σ
∗
1/2)

−1ϕj〉2
1

1 + nλ2j
+

1

2
‖√n(rn −Kf∗)‖2Σ.

A second order Taylor expansion of log sn(τ) around τ = 0 gives (recall that δn = 1/
√
n):

log
sn(τ)

sn(0)
=

1

2

∂
∑d

j=1〈
√
n(rn −Kf0(θ∗+δnτ)), (Σ

∗
1/2)

−1ϕj〉2

∂θT

∣∣∣∣∣
τ=0

τ
1√
n

1

2
τT

[
∂2
∑d

j=1〈
√
n(rn −Kf0(θ∗+δnτ)), (Σ

∗
1/2)

−1ϕj〉2

∂θ∂θT

∣∣∣∣∣
τ=0

]
τ
1

n
+ op(1) (D.4)

where the first and second derivatives of
∑

j>d〈
√
n(rn − Kf0(θ∗+δnτ)), (Σ

∗
1/2)

−1ϕj〉2 1
1+nλ2j

with respect to θ converges to 0 in probability. Remark that f0θ depends on θ implicitly

through the equation
∫
hj(θ, x)f0θΠ(dx) = 0. To compute the derivative we have first to

compute the Gâteaux derivative in the direction of f∗ and then compute the derivative with

respect to θ. Hence,

d
∑d

j=1〈
√
n(rn −Kf0(θ∗+δnτ)), (Σ

∗
1/2)

−1ϕj〉2

dθT
=

d

dθ

d
∑d

j=1〈
√
n(rn −K(f∗ + γ(f0(θ∗+δnτ) − f∗))), (Σ∗

1/2)
−1ϕj〉2

dγ

∣∣∣∣∣
γ=0

+ 2
d∑

j=1

〈√n(rn −Kf∗), (Σ
∗
1/2)

−1ϕj〉〈
√
n(rn −Kf∗), (Σ

∗
1/2)

−1dϕj/dθ〉

= 2
d∑

j=1

〈√n(rn −Kf∗), (Σ
∗
1/2)

−1ϕj〉〈
√
nK

[
(f0θ∗ − f∗)ḟ0θ∗

]⊥
, (Σ∗

1/2)
−1ϕj〉+ op(

√
n)

(D.5)
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where ḟ0θ∗ = df0θ/dθ|θ=θ∗ ,
[
(f0θ∗ − f∗)ḟ0θ∗

]⊥
∈ R(Ω0θ∗)

⊥ ∩D and

d2
∑d

j=1〈
√
n(rn −Kf0(θ∗+δnτ)), (Σ

∗
1/2)

−1ϕj〉2

dθdθT

∣∣∣∣∣
τ=0

= −n
d∑

j=1

〈
(f0θ∗ − f∗)ḟ0θ∗

f
1/2
∗

, ϕj

〉〈
(f0θ∗ − f∗)ḟT0θ∗

f
1/2
∗

, ϕj

〉
+ op(n)

= −n
d∑

j=1

〈
[(f0θ∗ − f∗)ḟ0θ∗ ]

⊥

f
1/2
∗

, ϕj

〉〈
[(f0θ∗ − f∗)ḟT0θ∗ ]

⊥

f
1/2
∗

, ϕj

〉
+ op(n) =: −nĨ∗ + op(n).

(D.6)

Remark that in (D.5) and (D.6) we have used the fact that since (f0θ∗ − f∗)ḟ0θ∗ ∈ D and

(f0θ∗ −f∗)ḟ0θ∗ = [(f0θ∗ −f∗)ḟ0θ∗ ]⊥+[(f0θ∗ −f∗)ḟ0θ∗ ]◦ with [(f0θ∗ −f∗)ḟ0θ∗ ]◦ ∈ R(Ω0θ∗) then

for f∗ = 1:

〈K(f0θ∗ − f∗)ḟ0θ∗ , (Σ
∗
1/2)

−1ϕj〉 =
〈[

(f0θ∗ − f∗)ḟ0θ∗
]⊥

f
1/2
∗

, ϕj

〉
, j = 1, . . . , d.

By replacing (D.5) and (D.6) in (D.4) we get

log
sn(τ)

sn(0)
= τT

d∑

j=1

〈√n(rn −Kf∗), (Σ
∗
1/2)

−1ϕj〉〈f−1/2
∗

[
(f0θ∗ − f∗)ḟ0θ∗

]⊥
, ϕj〉 − τT Ĩ∗τ + op(1).

(D.7)

To show that Ĩ∗ is equal to the inverse of the asymptotic variance of the GMM estimator

remark that the derivative of the moment restriction
∫
hj(θ, x)f0θ(x)Π(dx) = 0 with respect

to θ gives for every j = 1, . . . , d:

∫
∂hj(θ, x)

∂θ

(
f∗(x) + γ(f0θ(x)− f∗(x))

)
Π(dx)+

∫
hj(θ, x)(f0θ(x)− f∗(x))ḟ0θ(x)Π(dx)

∣∣∣∣
γ=0

= 0

↔
∫
∂hj(θ, x)

∂θ
f∗(x)Π(dx) = −

∫
hj(θ, x)(f0θ(x)− f∗(x))ḟ0θ(x)Π(dx)

↔
∫
∂hj(θ, x)

∂θ
f∗(x)Π(dx) = −

∫
hj(θ, x)

[
(f0θ(x)− f∗(x))ḟ0θ(x)

]⊥
Π(dx) (D.8)
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by using the Gâteau derivative in the direction of f∗. Therefore, from (D.6), (D.8), Π = F∗

and ϕj = hj for j = 1, . . . d, it follows that

−Ĩ∗ := −
d∑

j=1

〈
[(f0θ∗ − f∗)ḟ0θ∗ ]

⊥

f
1/2
∗

, ϕj

〉〈
[(f0θ∗ − f∗)ḟT0θ∗ ]

⊥

f
1/2
∗

, ϕj

〉

= −E∗
[
∂h(θ∗, x)

∂θ

] [
E∗h(θ∗, x)h(θ∗, x)

T
]−1

E∗
[
∂h(θ∗, x)
∂θT

]
.

�

D.4 Technical Lemmas

The next lemmas apply to the just identified case described in Remark 2.2 where the

prior covariance operator does not depend on θ and for which we use the notation Ω0.

Lemma D.2. Let Ω0 : E → E be a covariance operator of a GP on BE such that Ω
1/2
0 1 = 0

and all the eigenvalues of Ω0 but the first one are different from 0. Let D ∈ E be defined as

D :=
{
g ∈ E ;

∫
g(x)Π(dx) = 0

}
. Then, R(Ω0) = D.

Proof. Because Ω0 = Ω
1/2
0 Ω

1/2
0 and because Ω

1/2
0 1 = 0 then Ω01 = 0, that is, 1 ∈ N(Ω0).

Hence, if g ∈ R(Ω0) then ∃ν ∈ E such that g = Ω0ν and so

∫
g(x)Π(dx) =

∫
Ω0νΠ(dx) =< ν,Ω01 >= 0.

This shows that R(Ω0) ⊂ D. Now, take g ∈ D (so, < g, 1 >= 0) and suppose that

g /∈ R(Ω0). Then, ∀h ∈ R(Ω0): < g, h >= 0 =< g, 1 > and < g, h − 1 >= 0. Because the

same reasoning holds for every g ∈ D, then: < g, h− 1 >= 0 for every g ∈ D and for every

h ∈ R(Ω0). Hence, it must be h = 1 but this is impossible since 1 /∈ R(Ω0). Therefore, g

must belong to R(Ω0) and so D ⊂ R(Ω0).

�

Lemma D.3. Let Ωn be defined as in (3.5) and V = E∗[(g − E∗(g))(g − E∗(g))T ]. Then,

under the assumptions of Theorem 3.4: (i) nΩn = O(1) and (ii) nΩn → V , as n→ ∞.

Proof. Under the conditions of the theorem the posterior variance writes as in (A.2) with

the operator A defined in Lemma A.1. By using this expression:

Ωn = 〈Ω0 − Ω0f
−1/2
∗

(
1

n
I − 1

n
f
1/2
∗ 〈f 1/2∗ , ·〉+ f

−1/2
∗ Ω0f

−1/2
∗

)−1

f
−1/2
∗ Ω0g, g

t〉

=

〈[
I − Ω0f

−1/2
∗

(
1

n
f
1/2
∗ − 1

n
f∗〈f 1/2∗ , ·〉+Ω0f

−1/2
∗

)−1
]
Ω0g, g

t

〉
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=

〈[
1

n
f
1/2
∗ − 1

n
f∗〈f 1/2∗ , ·〉

](
1

n
f
1/2
∗ − 1

n
f∗〈f 1/2∗ , ·〉 +Ω0f

−1/2
∗

)−1

Ω0g, g
t

〉

=

〈[
1

n
f∗ −

1

n
f∗〈f∗, ·〉

](
1

n
f∗ −

1

n
f∗〈f∗, ·〉 +Ω0

)−1

Ω0g, g
t

〉

=
1

n

〈
T

(
1

n
T +Ω0

)−1

Ω0g, g
t

〉

where T : E → E is the self-adjoint operator defined as Tφ = f∗(φ − E∗φ), ∀φ ∈ E . This

shows (i). To show (ii), by using the previous expression for Ωn and the definition of T , we

write

V − nΩn = −〈T [( 1
n
T +Ω0)

−1Ω0 − I]g, gt〉

= −〈Ω−1/2
0 (

1

n
Ω
−1/2
0 TΩ

−1/2
0 + I)−1 1

n
Ω
−1/2
0 Tg, Tgt〉

=
1

n
〈( 1
n
Ω
−1/2
0 TΩ

−1/2
0 + I)−1ν, νt〉

since T is self-adjoint and since there exists ν ∈ E such that Tg = Ω
1/2
0 ν. This is because

Tg = f∗(g − E∗g) ∈ R(Ω
1/2
0 ). Finally, because ( 1nΩ

−1/2
0 TΩ

−1/2
0 + I)−1 is bounded then

nΩn → V as n→ ∞.

�

Lemma D.4. Let θ̂ be as defined in Theorem 3.4 and θrn be as defined in (3.5). Then,

under the assumptions of Theorem 3.4:
√
n(θrn − θ̂) = op(1).

Proof. We want to show that
√
n(θrn − θ̂) → 0. Define T : E → E as the operator

Tφ = f∗(φ−E∗φ), ∀φ ∈ E . Remark that T is self-adjoint and that R(T ) ⊂ R(Ω0) so that

Ω−1
0 T is well defined.

√
n(θrn − θ̂) =

√
n
(
− b(Pn)

+

〈
f0 +Ω0f

−1/2
∗

(
1

n
I − 1

n
f
1/2
∗ 〈f 1/2∗ , ·〉+ f

−1/2
∗ Ω0f

−1/2
∗

)−1

f
−1/2
∗ K−1(rn −Kf0), g

〉)

=
√
n

〈(
I − Ω0

(
1

n
T +Ω0

)−1
)
f0, g

〉

+
√
n

(
〈Ω0

(
1

n
T +Ω0

)−1

K−1rn, g〉 − b(Pn)

)
. (D.9)
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We consider these two terms separately. Consider the first term:

√
n〈
(
I − Ω0

(
1

n
T +Ω0

)−1
)
f0, g〉 =

√
n〈 1
n
T

(
1

n
T +Ω0

)−1

f0, g〉

=
1√
n

〈(
1

n
(Ω−1

0 T )∗ + I

)−1

f0,Ω
−1
0 Tg

〉
= O(n−1/2)

since (Ω−1
0 T )∗ exists because Ω−1

0 T is bounded and 〈
(
1
n(Ω

−1
0 T )∗ + I

)−1
f0,Ω

−1
0 Tg〉 = O(1).

Consider now the second term in (D.9) and remark that b(Pn) = 1
n

∑n
i=1[(

1
nT +

Ω0)
−1Ω0g](xi) +

1
n

∑n
i=1(g(xi) − [( 1nT + Ω0)

−1Ω0g](xi)). Let δxi be the Dirac measure

that assigns a unit mass to the point xi. Hence, it is possible to identify such a measure

with a distribution Di, namely, a linear functional Di defined on C∞ and continuous with

respect to the supremum norm: g 7→ g(xi) = Di(g), see Schwartz [1966]. We get

1

n

n∑

i=1

(g(xi)− [(
1

n
T +Ω0)

−1Ω0g](xi)) =
1

n

∑

i=1

Di

(
g −

(
1

n
T +Ω0

)−1

Ω0g

)

=
1

n

∑

i=1

Di

(
1

n

(
1

n
T +Ω0

)−1

Tg

)

=
1

n2

∑

i=1

Di

((
1

n
Ω−1
0 T + I

)−1

Ω−1
0 Tg

)
= Op(n

−1)

since Ω−1
0 T is bounded. By using the expression for the operator A given in Lemma A.1

we can write the second term in (D.9) as

√
n

(
〈Ω0

(
1

n
T +Ω0

)−1

K−1rn, g〉 − b(Pn)

)
=

√
n
(
〈Arn, g〉

− 1

n

n∑

i=1

[(
1

n
T +Ω0

)−1

Ω0g

]
(xi)−

1

n

n∑

i=1

(
g(xi)− [

(
1

n
T +Ω0

)−1

Ω0g](xi)

))

=
√
n

(
1

n

n∑

i=1

(
〈k(t, xi), A∗g〉 − [

(
1

n
T +Ω0

)−1

Ω0g](xi)

))
+Op(n

−1/2)

because A is bounded by Lemma A.1 and by the result in the previous display. Remark

that

〈k(t, xi), A∗g〉 = (K∗A∗g)(xi) = ((AK)∗g)(xi)

=

((
Ω0

(
1

n
T +Ω0

)−1
)∗

g

)
(xi) =

(((
1

n
(Ω−1

0 T )∗ + I

)−1
)∗

g

)
(xi)
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=

((
1

n
Ω−1
0 T + I

)−1

g

)
(xi).

By replacing this result in the previous expression we get:

√
n

(
〈Ω0

(
1

n
T +Ω0

)−1

K−1rn, g〉 − b(Pn)

)

=
√
n
( 1
n

n∑

i=1

(((
1

n
Ω−1
0 T + I

)−1

g

)
(xi)−

((
1

n
Ω−1
0 T + I

)−1

g

)
(xi)

))
+Op(n

−1/2)

= 0 + Op(n
−1/2).

�
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