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Abstract

This paper deals with aggregation of estimators in the context fixed design regression,
with heteroscedastic and subgaussian noise. We derive sharp oracle inequalities in
deviation for model selection type aggregation of affine estimators when the noise
is subgaussian. Explicit numerical constants are given for Gaussian noise and the
procedure is robust to variance misspecification. Then we present a new concentration
result that is sharper than the Hanson-Wright inequality under the Bernstein condition
on the noise. This allows us to improve the sharp oracle inequality obtained in the
subgaussian case. Finally, we show that up to numerical constants, the optimal sparsity
oracle inequality previously obtained for Gaussian noise holds in the subgaussian case.
The exact knowledge of the variance of the noise is not needed to construct the estimator
that satisfies the sparsity oracle inequality.

1 Introduction
We study the problem of recovering an unknown vector f = (f1, ..., fn)T ∈ Rn from noisy
observations

Yi = fi + ξi, i = 1, ..., n, (1.1)

where the noise random variables ξ1, ..., ξn are zero-mean, subgaussian random variables.
We measure the quality of estimation of the unknown vector f with the squared euclidean
norm in Rn:

‖f − f̂‖22,

for any estimator f̂ of f . When the noise random variables are normal, this is the Gaussian
sequence model, which has been extensively studied [30].
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Two related statistical problems are tackled in the present paper: sparsity oracle
inequalities and aggregation of affine estimators. Given a design matrix X with p columns,
an estimator µ̂ of f is said to achieve a sparsity oracle inequality if it satisfies

‖µ̂− f‖22 ≤ min
θ∈Rp

(
C ‖Xθ − f‖22 + ∆(|θ|0)

)
, (1.2)

with high probability or in expectation. In (1.2), C ≥ 1, |θ|0 is the number of non-zero
coefficients of θ and ∆ is an increasing function, which may also depend on problem
parameters such as the variance of the noise or the design matrix X. See (1.3) below for a
typical example of such function ∆(·). Results similar to (1.2) are of mainstream interest in
theoretical statistics, in particular when the number of covariates p exceed the number of
observations. First approach to get such results can be found in [21], and in an expanded
form in [8, 9], under Gaussian noise with a leading constant C > 1. The drawback of having
C > 1 cannot be repaired for these penalized model selection procedures [23, Section 6.4.2
and Proposition 6.1]. More recently, aggregation methods based on exponential weights
[36, 35, 41] and then Q-aggregation [14] were shown to achieve sharp oracle inequalities
similar to (1.2). Here, sharp means that the oracle inequality has leading constant C = 1.
These sharp oracle inequalities were proved for Gaussian noise with known variance. In
Section 4.2, we propose a new aggregation method that satisfies the optimal sharp oracle
inequality, under Subgaussian noise (the Gaussianity assumption is relaxed), and only an
upper bound on the variance is needed to construct the estimator whereas previous methods
require the exact knowledge of the variance.

The second problem tackled in this paper is the aggregation of affine estimators. Several
estimators have been proposed to recover the unknown vector f from the observations:
the Ordinary Least Squares, the Ridge regressors, the Stein estimator and the procedures
based on shrinkage, to name a few. Several of these estimators depend on a parameter that
must be chosen carefully to obtain satisfying error bounds. These available estimators have
different strengths and weaknesses in different scenarios, so it is important be able to mimic
the best among a given family of estimators, without any assumption on the unknown
regression vector f . The problem of mimicking the best estimator in a given finite set is
the problem of model-selection type aggregation, which was introduced in [34, 42]. More
precisely, let µ̂1, ..., µ̂M be M estimators of f based on the data Y1, ..., Yn. The goal is to
construct a new estimator or aggregate f̂ with the same data Y1, ..., Yn, which satisfies with
probability greater than 1− ε the sharp oracle inequality∥∥∥f̂ − f

∥∥∥2

2
≤ min

j=1,...,M
‖µ̂j − f‖22 + δn,M (ε),

where δn,M (·) is a function of ε that should be small.
A first approach to mimic the best estimator in a given family is to use independence by

assuming that the estimators µ̂1, ..., µ̂n are independent of the observations Y1, ..., Yn used
for the aggregation step. For example, assume that two independent samples (Y1, ..., Yn)
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and (Y ′1 , ..., Y ′n) are available, with Yi and Y ′i independent and identically distributed
for all i = 1, ..., n. Then one can use the sample Y1, ..., Yn to construct the estimators
µ̂1, ..., µ̂M and use the independent sample Y ′1 , ..., Y ′n to aggregate them. For the aggregation
step, conditionally on Y1, ..., YM , the estimators µ̂1, ..., µ̂M can be considered deterministic,
thanks to independence. It is possible to obtain such independent samples when the noise
is Gaussian and the variance is known, with sample cloning [41, Lemma 2.1], at the cost of
a factor 2 in the variance of the observations. However, this technique is specific to the
Gaussian case and cannot be used when the noise is only assumed to be subgaussian as in
the present paper.

Among the procedures available to estimate f , several are linear in the observations
Y1, ..., Yn. It is the case for example of the Least Squares and the Ridge regressors, whereas
the shrinkage estimators and the Stein estimator are non-linear functions of the observations.
A description of the estimators that are linear or affine in the observations is given in [15,
Section 1.2], [1] and references therein. This linear behavior of the estimators µ̂1, ..., µ̂M
makes it possible to explicitly treat the dependence between the estimators µ̂1, ..., µ̂M and
the data Y1, ..., Yn used to aggregate them. Leung and Barron [32] studied the problem of
aggregation of projection estimators, and derived sharp oracle inequalities in expectation
with a procedure based on exponential weights. Then, Dalalyan and Salmon [15] and Dai
et al. [14] gave insights on how to construct an aggregate to mimic the best candidate among
a set or affine estimators. Here we also consider affine estimators. Let y = (Y1, ..., Yn)T
be the vector of observations. An affine estimator is of the form µ̂j = Ajy + bj for a
deterministic matrix Aj of size n× n and a deterministic vector bj ∈ Rn.

We consider in Section 3 that the variances of the noise random variables ξ1, ..., ξn are
known and in Section 4.2 that an upper bound on the subgaussian norm of the noise vector
is known. We refer the reader to [24] and the survey [25] for the problem of estimating the
unknown vector f when the variance of the noise is unknown, which is outside of the scope
of the present paper.

As in the papers [15, 14], we consider the problem of aggregation of M affine estimators
with a prior probability distribution π1, ..., πM on the finite set of indices {1, ...,M}. Prior
weights is a common ingredient in deriving sharp oracle inequalities for model-selection
type aggregation [16, 13, 31, 5]. An example of such an oracle inequality is (1.4) below.
The use of sparsity-inducing prior weights is crucial to prove sparsity oracle inequalities via
sparsity pattern aggregation [36, 35, 14, 41]. When the noise is Gaussian with variance σ2,
the following sparsity oracle inequality was shown in [14] for an estimator µ̂ and a design
matrix X with p columns: with probability greater than 1− 2 exp(−x),

‖µ̂− f‖22 ≤ min
θ∈Rp

(
‖Xθ − f‖22 + c σ2|θ|0 log

(
ep

1 ∨ |θ|0

))
+ c′σ2x, (1.3)

where c, c′ > 0 are absolute constants and |θ|0 denotes the number of non-zero coefficients
of θ. A similar result in expectation was shown in [36, 41], also with the assumption that
the noise random variables are normal with known variance. In Section 4.2, we propose an
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estimator that achieves a similar sparsity oracle inequality in deviation, but we only assume
that the noise vector is subgaussian. It extends the previous results [36, 35, 14, 41] to the
subgaussian setting and the statistician does not need to know the exact knowledge of the
variance to construct the estimator.

The papers [15, 14] derived different procedures that satisfy sharp oracle inequalities
for the problem of aggregation of affine estimators when the noise random variable are
Gaussian. Dalalyan and Salmon [15] proposed an estimator µ̂EW based on exponential
weights, for which a sharp oracle inequality holds in expectation:

E
∥∥∥f − µ̂EW ∥∥∥2

2
≤ min

j=1,...,M

(
E ‖µ̂j − f‖22 + β log 1

πj

)
, (1.4)

where β is a constant proportional to the largest variance of the noise random variables.
This oracle inequality in expectation holds for µ̂EW under a commutativity assumption on
the matrices Aj , which is enough to apply this oracle inequality to orthogonal projectors on
a set of coordinates. In the case where the matrices Aj are not symmetric, [15] achieved a
similar oracle inequality by symmetrizing the affine estimators before the aggregation step,
which suggests that the symmetry assumption can be relaxed. Although the estimator µ̂EW
achieves this inequality in expectation, it was shown in [13] that this procedure cannot
achieve a similar result in deviation, with an unavoidable error term of order

√
n. In Dai

et al. [14], a sharp oracle inequality in deviation is derived for an estimator µ̂Q based on
Q-aggregation [13]. Namely, the estimator µ̂Q satisfies with probability greater than 1− δ:

∥∥∥f − µ̂Q∥∥∥2

2
≤ min

j=1,...,M

(
‖µ̂j − f‖22 + 4σ2Tr(Aj) + β log 1

πj

)
+ β log 1

δ
, (1.5)

where β is a constant and the noise random variables are i.i.d. with variance σ2. This
bound shows that it is possible to achieve oracle inequalities in deviation in the context of
aggregation of affine estimators. However the extra term 4σ2Tr(Aj) may be large in common
situation where the trace of some matrices Aj is large. For example, if one aggregates the
estimators µ̂1 = λ1y, ..., µ̂M = λMy, for some positive real numbers λ1, ..., λM with the
uniform prior πj = 1/M for all j = 1, ...,M , then the remainder term 4σ2Tr(Aj) in the
above oracle inequality is of order σ2nλj for each j = 1, ...,M , which is large relatively
to the optimal rate σ2 logM . This term 4σ2Tr(Aj) makes the previous oracle inequality
suitable only for scenarios where the matrices Aj have small trace.

The contributions of the present paper are the following:

• We propose in Theorem 3.1 an estimator that satisfies a sharp oracle inequality in
deviation. The remainder term only involves log(π−1

j ), as opposed to (1.5) where
the remainder term has an extra term proportional to σ2Tr(Aj). Thus our estimator
is suitable for situations involving matrices Aj with large trace, and it recovers the
optimal rate proportional to logM when the uniform prior is used. The assumptions
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on the matrices A1, ..., AM are relaxed. In particular, they can be non-symmetric and
have negative eigenvalues.

• In Theorem 3.2, we prove that this procedure is robust to variance misspecification.

• We show in Theorem 3.3 that the result of Theorem 3.1 can be extended to subgaussian
noise. In earlier results [15, 14], only Gaussian noise was considered. The noise
distributions under which Theorem 3.3 holds are given in Assumptions 3.1, 3.2 and
3.3.

• In order to prove Theorem 3.3 under Assumption 3.3, we derive in Theorem 3.4 a
new concentration result for quadratic forms of independent random variables. It is
sharper than the Hanson-Wright inequality under Assumption 3.3.

• Using sparsity pattern aggregation, we derive a sparsity oracle inequality in deviation
when the noise vector is subgaussian, without assuming independence of the noise
components. Theorem 4.1 recovers up to absolute constants the sparsity oracle
inequality obtained when the noise is Gaussian [36, 35, 14].

The paper is organized as follows. In Section 2 we define the notation used throughout
the paper. Section 3 defines an estimator and shows that it achieves sharp oracle inequalities
in deviation for aggregation of affine estimators under three different assumptions on the
noise. In Section 4, we derive sparsity oracle inequalities. The concentration inequalities
used in the paper are given in Appendix A and the proofs are given in Appendix B.

2 Notation
We study an aggregation problem for the regression model with fixed design and het-
eroscedastic subgaussian noise. A random variable X is said to be subgaussian if and only
if the quantity

‖X‖ψ2 = sup
p≥1

p−1/2 (E|X|)1/p

is finite. Several other definitions are used in the literature, see [43, Section 5.2.3] for a
review of their equivalence.

Let (f1, ..., fn)T ∈ Rn be an unknown regression vector. We observe n random variables
(1.1) where ξ1, ..., ξn are subgaussian random variables, with E[ξi] = 0 and E[ξ2

i ] = σ2
i .

The model is heteroscedastic, which means that the random variables ξ1, ..., ξn may have
different variances. It can be rewritten in the vector form y = f + ξ where y = (Y1, ..., Yn)T ,
f = (f1, ..., fn)T and ξ = (ξ1, ..., ξn)T .

For any estimator f̂n of f , we measure the quality of estimation of f with the loss
‖f − f̂n‖22 where ‖·‖2 denotes the Euclidean norm in Rn. Let M ≥ 2. As in [15, 14], we
consider M affine estimators of the form

µ̂j = Ajy + bj , j = 1, ...,M.
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The matrices A1, ..., AM and the vectors b1, ..., bM ∈ Rn are deterministic. Define the
simplex in RM :

ΛM =
{
θ ∈ RM ,

M∑
j=1

θj = 1, ∀j = 1 . . .M, θj ≥ 0
}

and for any θ ∈ ΛM , let µ̂θ = ∑M
j=1 θjµ̂j . Let e1, ..., eM be the vectors of the canonical basis

in RM . Then µ̂j = µ̂ej for all j = 1, ...,M .
Finally, for any n× n real matrix A = (ai,j)i,j=1,...,n, define the operator norm of A, the

Hilbert-Schmidt (or Frobenius) norm of A and the nuclear norm of A respectively by:

|||A|||2 = sup
x 6=0

‖Ax‖2
‖x‖2

, ‖A‖HS =
√ ∑
i,j=1,...,n

a2
i,j , ‖A‖1 = Tr

(√
ATA

)
.

3 Model-selection type oracle inequalities

3.1 A penalized procedure over the simplex

For any θ ∈ ΛM define

Ĥn(θ) = ‖µ̂θ‖22 − 2yT µ̂θ + 2
M∑
j=1

θjTr(DσAjDσ) (3.1)

+ 1
2 p̂en(θ) + β

M∑
j=1

θj log 1
πj
,

where β > 0 is a constant, Dσ = diag(σ1, ..., σn) and

p̂en(θ) =
M∑
j=1

θj ‖µ̂θ − µ̂j‖22 . (3.2)

We consider the estimator µ̂θ̂ where

θ̂ ∈ argmin
θ∈ΛM

Ĥn(θ). (3.3)

When θ is fixed and deterministic, the term

‖µ̂θ‖22 − 2yT µ̂θ + 2
M∑
j=1

θjTr(DσAjDσ) (3.4)

in the definition of Ĥn is an unbiased estimate of the quantity

‖µ̂θ‖22 − 2fT µ̂θ = ‖µ̂θ − f‖22 − ‖f‖
2
2 , (3.5)
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which is the quantity of interest ‖µ̂θ − f‖22 up to the additive constant ‖f‖22. The term
involving the trace of the matrices DσAjDσ comes from the quadratic term in ξ:

M∑
j=1

θjTr(DσAjDσ) = E[
M∑
j=1

θjξ
TAjξ] = E[ξT µ̂θ].

The estimators from [32, 15, 14] are all obtained with an unbiased estimate of the quantity
(3.5), so the term (3.4) comes as no surprise in the definition of Ĥn.

The penalty (3.2) is borrowed from the Q-aggregation procedure, which is a powerful tool
to derive sharp oracle inequalities in deviation when the loss is strongly convex [13, 31, 5].
Since the estimators µ̂1, ..., µ̂M depend on the data, the penalty (3.2) is data-driven, which
is not the case when the estimators to aggregate are deterministic vectors as in [13]. In
order to give some geometric insights on the penalty (3.2), let c ∈ Rn satisfies the M linear
equations 2cT µ̂j = ‖µ̂j‖22 and assume only in the rest of this paragraph that c is well defined,
even though this assumption cannot be fulfilled for M > n. Then

p̂en(θ) =
M∑
j=1

θj ‖µ̂j‖22 − ‖µ̂θ‖
2
2 = 2cT µ̂θ − ‖µ̂θ‖22 = ‖c‖22 − ‖µ̂θ − c‖

2
2 . (3.6)

Assume also only in this paragraph that the function θ → µ̂θ is bijective from the simplex
ΛM to the convex hull of {µ̂1, ..., µ̂M}. Then we can write p̂en(θ) = g(µ̂θ) for some function
g defined on the convex hull of {µ̂1, ..., µ̂M}. Equation (3.6) shows that the level sets of the
function g are euclidean balls centered at c. The function g is non-negative, it is minimal
at the extreme points µ̂1, ..., µ̂M since g(µ̂j) = 0 for all j = 1, ...,M and g is maximal at
the projection of c on the convex hull of {µ̂1, ..., µ̂M}. Intuitively, the penalty (3.2) pushes
θ away from the center of the simplex towards the vertices. Thus, the level sets of the
function θ → p̂en(θ) in RM are ellipsoids centered at θc, where θc is the unique point in
RM such that µ̂θc = c. If M > n or if the vector c is not well defined, the level sets of
p̂en(·) are more intricate and cannot be described as simply.

Finally, the term

β
M∑
j=1

θj log 1
πj

(3.7)

allows to weight the candidates µ̂1, ..., µ̂M with the prior probability distribution (πj)j=1,...,M
based on some prior knowledge about the estimators µ̂1, ..., µ̂M . In many practical cases,
no prior knowledge is available and uniform weights (πj = 1/M for all j = 1, ...,M) will
be used, in that case the term (3.7) is constant which means that β does not appear in
the definition of the procedure. Note that the prior probability distribution (πj)j=1,...,M
is deterministic and cannot depend on the data Y1, ..., Yn. For example, if the estimators
are projection estimators, one can set prior weights that decrease with the rank of the
projections [35], we use this strategy in Section 4.2. The same term is used in [31] whereas
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[14] uses the Kullback-Leibler divergence of θ from π. It is shown in [13] that for aggregation
of deterministic vectors, one may use a quantity of the form β

∑M
j=1 θj log(ρ(θj)/πj) where

ρ(·) satisfies ρ(t) ≥ t and t → t log(ρ(t)) is convex. This suggests that we could use the
Kullback-Leibler divergence of θ from π instead of (3.7), but in their current form, our
proofs only hold with the “linear entropy” (3.7).

Finally, notice that the function Ĥn is convex, as it has the form Ĥn(θ) = 1
2 ‖µ̂θ‖

2
2 +lin(θ)

where lin(·) is a linear function. This can be seen using (B.2) with g = 0. Thus minimizing
Ĥn over the simplex is a quadratic program for which efficient algorithms are available.
The convexity of Ĥn also proves that θ̂ is well defined, although it may not be unique (for
example if all µ̂j are the same then Ĥn is constant on the simplex).

Under homoscedastic Gaussian noise, the estimator (3.3) becomes (3.8) below and
satisfies the following oracle inequality. Theorem 3.1 is proved in Appendix B.2.

Theorem 3.1. Let M ≥ 2. For j = 1, ...,M , consider the estimator µ̂j = Ajy + bj and
assume that |||Aj |||2 ≤ 1. Let (π1, ..., πM )T ∈ ΛM . Assume that the noise random variables
ξ1, ...ξn are i.i.d. N (0, σ2). Let

θ̂ ∈ argmin
θ∈ΛM

‖µ̂θ − y‖22 + 2σ2
M∑
j=1

θjTr(Aj) + 1
2 p̂en(θ) + 34σ2

M∑
j=1

θj log 1
πj
. (3.8)

Then for all x > 0, with probability greater than 1− 2 exp(−x),

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
j=1,...,M

(
‖µ̂j − f‖22 + 68σ2 log 1

πj

)
+ 34σ2x. (3.9)

The sharp oracle inequality in deviation given in [14] presents an additive term pro-
portional to σ2Tr(Aj), as in (1.5). An improvement of the present paper is the absence of
this additive term which can be large for matrices Aj with large trace. Our analysis shows
that the quantities σ2Tr(Aj) are not meaningful for the problem of aggregation of affine
estimators, and Theorem 3.1 improves upon the earlier result of [14]. When the uniform
prior is used, i.e., πj = 1/M for all j = 1, ...,M , the sharp oracle inequality (3.17) matches
the lower bound from [36, Proof of Theorem 5.3 with S = 1] showing that 3.17 is optimal
in a minimax sense.

We relax all assumptions on the matrices A1, ..., AM , for instance they may be non-
symmetric and have negative eigenvalues. Earlier works studied projection matrices [32],
assumed some commutativity property of the matrices [15] or their symmetry and positive
semi-definiteness [14]. Although it is shown in [12] that all admissible linear estimators are
symmetric with non-negative eigenvalues, some linear estimators used in practice are not
symmetric. For example, the last example of [15, Section 1.2] (“moving averages”), exhibits
linear estimators that need not be symmetric: if two neighbors of the graph i, j have a
different number of neighbours, then aij 6= aji. Our result also shows that the restrictions
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on the matrices A1, ..., AM present in [32, 15, 14] were not intrinsic to the problem of
aggregation of affine estimators.

For clarity we assume in Theorem 3.1 that the operator norm of each matrix is bounded
by 1. This assumption is not restrictive since all linear estimators of the form Ay satisfy
|||A|||2 ≤ 1 [12]. This assumption can be relaxed, as seen in Theorem 3.3 below.

The next section provides a similar result when the variance is not known, and Section 3.3
generalizes Theorem 3.1 to non-Gaussian noise distributions.

3.2 Robustness to variance misspecification

In order to construct the estimator (3.8), the knowledge of the variance of the noise is
needed. However, the following proposition shows that the procedure (3.8) is robust to
variance misspecification, i.e., the result holds if the variance is replaced by an estimator σ̂2

as soon as σ̂2 is consistent in a weak sense defined below.

Theorem 3.2 (Aggregation under variance misspecification). Let M ≥ 2 and δ > 0. For
j = 1, ...,M , consider the estimator µ̂j = Ajy + bj. Let (π1, ..., πM )T ∈ ΛM . Assume that
the noise random variables ξ1, ...ξn are i.i.d. N (0, σ2). Let σ̂2 be an estimator possibly
constructed with the observation y, and assume that

∀j = 1, ...,M, Aj = ATj = A2
j , δ := P

(
|σ2 − σ̂2| > 1

8σ
2
)
< 1. (3.10)

Let β̂ = (448/7)σ̂2 and let θ̂ = argminθ∈ΛM Wn(θ) where

Wn(θ) := ‖µ̂θ‖22 − 2yT µ̂θ + 2σ̂2
M∑
j=1

θjTr(Aj) + 1
2 p̂en(θ) + β̂

M∑
j=1

θj log 1
πj
. (3.11)

Then for all x > 0, with probability greater than 1− δ − 2 exp(−x),

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
j=1,...,M

(
‖µ̂j − f‖22 + 144σ2 log 1

πj

)
+ 56σ2x. (3.12)

The proof of Theorem 3.2 is given in Appendix B.3. In the condition (3.10), the
matrices A1, ..., AM are assumed to be orthogonal projectors, so Theorem 3.2 is a result for
aggregation of Least Squares estimators. As soon as an estimator σ̂2 satisfies with high
probability |σ̂2 − σ2| ≤ σ2/8, optimal aggregation of Least Squares estimators is possible.
This condition is weaker than consistency, as any estimator σ̂2 that converges to σ2 in
probability satisfies this condition for n large enough. But broader families of matrices
can be aggregated as well. By looking at the proof (in particular (B.13)), one can see that
condition (3.10) can be replaced by

γ ≤ min
j,k=1,...,M : Tr(Aj−Ak)6=0

‖Aj −Ak‖2HS
|Tr(Aj −Ak)|

, δ := P
(
|σ2 − σ̂2| > γ

8σ
2
)
< 1,

9
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for some γ > 0. Then by setting β̂ = 448σ̂2/(7γ) in (3.11), the estimator µ̂θ̂ satisfies a
sharp oracle inequality similar to (3.12). Lemma B.1 ensures that the inequality on the left
of the previous display holds with γ = 1.

The papers [24, 25, 3] aim at performing aggregation of Least Squares estimators when
σ2 is unknown, but unlike Theorem 3.2 the sharp oracle inequalities obtained have a leading
constant greater than 1.

In the following, we describe several situations where an estimator σ̂2 is accessible.
Example 3.1 (An independent estimator σ̂2 is accessible). In [15, Section 3.1], two contexts
are given where an unbiased estimator of the covariance matrix, independent from y, is
available. First, the noise level can be estimated independently if the signal is captured
multiple times by a single device, or if several identical devices capture the same signal.
Second, it is shown that one can construct an estimator σ̂2 if the noise comes from the
device: one can use a known signal in order to evaluate the noise.
Example 3.2 (Difference based esimators). In nonparametric regression where the non-
random design points are equispaced in [0, 1], a well known estimator of the noise level is
the difference based estimator 1/(2n− 2)∑n−1

i=1 (yi+1 − yi)2. This technique can be refined
with more complex difference sequences [26, 20], and is efficient when the design points lie
in a multidimensional space [33]. For images, where the underlying space is 2-dimensional,
efficient methods which require no multiplication are available [29].
Example 3.3 (Consistent estimation of σ2 in high-dimensional linear regression). In a
high-dimensional setting, it is possible to estimate σ2 under classical assumptions in
high-dimensional regression. First, the scaled LASSO [40] allows a joint estimation of the
regression coefficients and the noise level σ2. The estimator σ̂2 of the scaled LASSO converges
in probability to the true noise level σ2 [40, Theorem 1], and σ̂2/σ2 is asymptotically normal
[40, Equation (19)]. Second, [6] proposes to estimate σ2 with with a recursive procedure
that uses LASSO residuals, and non-asymptotic guarantees are proved [6, Supplementary
material]. Third, [7] provides non-asymptotic bounds on the estimation of σ2 by the
residuals of the Square-Root LASSO [7, Theorem 2] and these bounds imply consistency. In
Theorem 3.2, we require that |σ̂2/σ2 − 1| ≤ 1/8 with high-probability and this requirement
is far weaker than the guarantees obtained in [6, 40].

To our knowledge, Theorem 3.2 is the first aggregation result, with leading constant 1,
that is robust to variance misspecification.

3.3 Robustness to non-Gaussian noise distributions

We state here the three different assumptions under which Theorem 3.1 can be generalized.
The value of β given below is used in the construction of the estimator θ̂ defined in (3.3).
The value of β depends on the assumption on the noise.

The constant L > 0 is independent of the noise and its role will be specified in
Theorem 3.3. It can be chosen equal to supj,k=1,...,M |||Aj −Ak|||2/2 so its value is always

10
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known by the practitioner. For example, for projection estimators L = 1 is a suitable choice.

Assumption 3.1 (Gaussian noise). Assume that the noise components ξ1, ...ξn are normal,
independent, zero-mean, and ξi has variance σ2

i . In this case, let

β = (12 + 16L+ 6L2)
(

max
i=1,...,n

σ2
i

)
. (3.13)

Assumption 3.2 (Subgaussian noise). Let K > 0 and assume that the noise components
ξ1, ..., ξn are independent, zero-mean, ‖ξi‖ψ2 ≤ K and ξi has variance σ2

i . Here, let

β = K2
(
cw1(2 + L)2L+ 2c2

h(1 + L)2 + 1
2c

2
w2 max

i=1,...,n

‖ξi‖2ψ2

σ2
i

(2 + L)2
)
, (3.14)

where cw1 , cw2 and ch are the absolute constants given in Propositions A.2 and A.3.

Assumption 3.3 (Bernstein condition on ξ2
1 , ..., ξ

2
n). Let K > 0 and assume that the noise

components ξ1, ..., ξn are independent and satisfy

∀p ≥ 1, E|ξi|2p ≤ 1
2 p! σ

2
i K

2(p−1). (3.15)

Here, let
β = 392 + 1408L+ 608L2. (3.16)

Assumption 3.3 is the natural assumption to derive a Bernstein concentration inequality
for the sum of random variables ξ2

1 + ... + ξ2
n. Although Assumption 3.3 is less common

than Assumptions 3.1 and 3.2, its interest resides in the concentration inequality given in
Theorem 3.4, which is sharper than the Hanson-Wright inequality. Under this assumption,
it is possible to remove the expression maxi=1,...,n ‖ξi‖ψ2/σi from the value of β.

Theorem 3.3. Let L > 0 be a positive real number and M ≥ 2. For j = 1, ...,M , consider
the estimators µ̂j = Ajy + bj with bj ∈ Rn and Aj a real matrix of size n× n. Assume that
the matrices A1, ..., AM satisfy |||Aj −Ak|||2 ≤ 2L for any j, k.

Assume one of the Assumptions 3.1, 3.2 or 3.3 on the noise ξ = (ξ1, ..., ξn) and set the
value of β accordingly. Once β is set, let θ̂ be defined in (3.3). Then for all x > 0, with
probability greater than 1− 2 exp(−x),

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
j=1,...,M

(
‖µ̂j − f‖22 + 2β log 1

πj

)
+ βx. (3.17)

In most practical cases where uniform prior weights are used, the value of β is not
needed to construct the procedure (3.3) since the term (3.7) is constant. The proof of
Theorem 3.3 is given in Appendix B.2.

Theorem 3.3 is a generalization of Theorem 3.1. Hence it also improves upon earlier
results: all assumptions on the matrices are relaxed and the remainder term of the oracle

11
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inequality is independent of the trace of the matrices A1, ..., AM , as opposed to the bound
(1.5) proved in [14].

One of the contribution of the present paper is to provide a sharp oracle inequality
such as (3.17) under Subgaussian noise. To our knowledge, (3.17) is the first result on
sharp oracle inequality in deviation for model selection type aggregation obtained without
assuming that the noise is Gaussian.

Under Assumption 3.2 (Subgaussian noise), our analysis leads to a remainder term
that can be large for random variables that have pathologically small variance relatively
to their subgaussian norm: β defined in (3.14) is proportional to maxi=1,...,n ‖ξi‖ψ2/σi.
Under Assumption 3.3 which is slightly stronger and prevents the variance from being
pathologically small, this issue can be fixed. We will come back to Assumption 3.3 in
Section 3.5 below.

The constant β in the oracle inequality is of the order K2(1 ∨ L2), where K2 is the
supremum of the variances or the supremum of the squared subgaussian norms, and 2L
upper bounds the operator norms of all Aj − Ak for j, k = 1, ...,M . In most practical
cases, L will be smaller than 1 since all admissible estimators of the form Ajy satisfy
|||Aj |||2 ≤ 1 [12], thus the fact that β is proportional to 1 ∨ L2 is not an issue. Interestingly,
the operator norm of the matrices A1, ..., AM does not appear in the sharp oracle inequality
in expectation given in [15], while it plays a crucial role here. On the other hand, the factor
K2 may be more problematic, especially for heteroscedastic noise: β is proportional to the
largest variance (resp. the largest subgaussian norm) even if most of the noise random
variables have small variance (resp. small subgaussian norm).

3.4 Outline of the proof of Theorem 3.3

The following lemma shows that we can derive a sharp oracle inequality for the estimator
µ̂θ̂ by controlling the concentration of terms of the form ξTQξ and ξT v, where Q is a n× n
deterministic matrix and v is a deterministic vector in Rn. The following lemma proved in
Appendix B.1.

Lemma 3.1. Let θ̂ be defined in (3.3). Then almost surely,

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
J∗=1,...,M

(
‖µ̂J∗ − f‖22 + 2β log 1

πJ∗

)
+ max
j,k=1,...,M

ζj,k

where

ζj,k = ξTQj,kξ − E[ξTQj,kξ]
+ ξT vj,k

− β log 1
πkπj

− 1
2 ‖(Ak −Aj)Dσ‖2HS −

1
2 ‖(Ak −Aj)f + bk − bj‖22 , (3.18)

12
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and the matrix Dσ, the matrices Qj,k and the vectors vj,k are defined by

Dσ := diag(σ1, ..., σn),
Qj,k := 2(Ak −Aj)− 1

2(Ak −Aj)T (Ak −Aj), (3.19)

vj,k := 2
(
In×n − 1

2(Ak −Aj)T
)

((Ak −Aj)f + bk − bj) . (3.20)

In Appendix B.2, we prove Theorem 3.3 by applying Lemma 3.1 and controlling the
concentration of terms of the form ξTQj,kξ and ξT vj,k under the different Assumptions 3.1,
3.2 and 3.3.

A sketch of the proof of Theorem 3.3 under Assumption 3.1 (Gaussian Noise) goes as
follows. The quantity W linear

j,k := 1
2 ‖(Ak −Aj)f + bk − bj‖22 in (3.18) is of the order of the

variance of ξT vj,k. Using (A.1) applied to v = vj,k, it is shown that for all t > 0, with
probability greater than 1− exp(−t),

ξT vj,k −W linear
j,k ≤ γβt,

where γ ∈ (0, 1) and β is the constant given in (3.13). Similarly, the quantity W quad
j,k :=

1
2 ‖(Ak −Aj)Dσ‖2HS in (3.18) is of the order of the variance of ξTQj,kξ. Using the con-
centration inequality (A.2) applied to Qj,k, we prove that with probability greater than
1− exp(−t),

ξTQj,kξ − E[ξTQj,kξ]−W quad
j,k ≤ (1− γ)βt.

For fixed j and k, these concentration inequalities and the union bound lead to

∀t > 0, P
(
ζj,k + β log 1

πjπk
> βt

)
≤ 2 exp(−t).

Finally, the non-random term −β log 1
πkπj

is used to perform the union bound on j, k =
1, ...,M , such that for all x > 0,

P
(

max
j,k=1,...,M

ζj,k > βx

)
≤

∑
j,k=1,...,M

P
(
ζj,k + β log 1

πjπk
> β(x+ log 1

πjπk
)
)

≤
∑

j,k=1,...,M
πjπk2 exp(−x) = 2 exp(−x).

The proof is similar under the two other assumptions 3.2 and 3.3, but different concentration
inequalities are used. The proof of Lemma 3.1 can be found in Appendix B.1 and the proof
of Theorem 3.3 is given in Appendix B.2.
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3.5 Assumption 3.3: examples and concentration inequality

The goal of this section is to present the motivation behind Assumption 3.3 and to present
the concentration inequality of Theorem 3.4. This concentration inequality is of independent
interest as it provides sharper bounds than the Hanson-Wright inequality.

This assumption is sufficient to remove the quantity maxi=1,...,n ‖ξi‖ψ2/σi from the
expression (3.14) of β in the sharp oracle inequality of Theorem 3.3. It was the weakest
assumption we could find that allowed us to remove the quantity maxi=1,...,n ‖ξi‖ψ2/σi.
Example 3.4. Centered variables almost surely bounded by K and zero-mean Gaussian
random variables with variance smaller than K2 satisfy (3.15).
Example 3.5 (Log-concave random variables). In [38], the authors consider a slightly stronger
condition [38, Definition 1.1]. They consider random variables Z satisfying for any integer
p ≥ 1 and some constant K:

E[|Z|p] ≤ p K E[|Z|p−1], (3.21)

and they showed in [38, Section 7] that any distribution that is log-concave satisfies (3.21).
Thus, if X2 is log-concave then our assumption (3.15) holds. See [2, Section 6] for a
comprehensive list of the common log-concave distributions.

The next theorem provides a concentration inequality for quadratic forms of independent
random variables satisfying the moment assumption (3.15). It is sharper than the Hanson-
Wright inequality given in Proposition A.3.

Theorem 3.4. Assume that the noise random variable ξ = (ξ1, ..., ξn)T satisfies Assump-
tion 3.3 for some K > 0. Let A be any n× n real matrix. Then for all t > 0,

P
(
ξTAξ − E[ξTAξ] > t

)
≤ exp

(
−min

(
t2

192K2 ‖ADσ‖2HS
,

t

256K2|||A|||2

))
, (3.22)

where Dσ = diag(σ1, ..., σn). Furthermore, for any x > 0, with probability greater than
1− exp(−x),

ξTAξ − E[ξTAξ] ≤ 256K2|||A|||2x+ 8
√

3K ‖ADσ‖HS
√
x. (3.23)

The proof of Theorem 3.4 is given in the supplementary material. A key ingredient
to prove this concentration result is a decoupling inequality [19, 18]. A simple decoupling
inequality for quadratic forms can be found in [44] or [22, Theorem 8.11], and we use this
result in order to prove Theorem 3.4.

When t is small, the right hand side of (3.22) becomes

exp
(
− t2

192K2 ‖ADσ‖2HS

)
,

14
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whereas the right hand side of the Hanson-Wright inequality (A.4) yields

exp
(
−c t2

K4 ‖A‖2HS

)
,

for some absolute constant c > 0. The element of the diagonal matrix Dσ are bounded by K,
so Theorem 3.4 gives a sharper bound than the Hanson-Wright inequality in this regime. Un-
der the moment assumption (3.15), we were able to remove the factor maxi=1,...,n(‖ξi‖ψ2/σi)
using the concentration inequality from Theorem 3.4.

In particular, the sharp oracle inequality (3.17) with β given in (3.16) holds for all the
noise distributions described in Examples 3.4 and 3.5.

3.6 Simulations

In this section we implement the procedure (3.3) on synthetic data and compare its
performance with that of exponential weights estimator. The uniform prior is used.
Experiment 3.1 (Well specified least squares). Let n = 100, f = 2σe1, M = n and for all
j = 1, ...,M , µ̂j = (eTj y)ej , i.e., µ̂j is the projection on the j-th coordinate.

Experiment 3.2 (Small misspecifications). Let n = 100, f = 2σ∑10
i=1 ei. The set {µ̂1, ..., µ̂M}

is ∪r=0,2,4 ∪n−ri=1 {
∑i+r
k=i(eTk y)ek} and M = 3n− 6.

Experiment 3.3 (Medium misspecifications). Let n = 100, f = 2σ∑20
i=1 ei, M and µ̂1, ..., µ̂M

are the same as in Experiment 3.2.
Experiment 3.4 (High misspecifiations). Let n = 100, f = 0 andM = 8

√
n. Let µ̂1 = σ

√
ne1

and µ̂j = σ(
√
n+ 1)e2 for all j ≥ 2. This example is inspired by [13, Section 2.1].

Figure 1 shows the performance of Exponential weights and the procedure of the present
paper, denoted by Q-pen in the figure. Exponential weights are computed with temperature
parameters 2σ2, 4σ2 and 8σ2 (the temperature 4σ2 is recommended in [32, 17] and the
temperature 8σ2 is recommended in [15]). The procedure (3.3) is implemented with the true
value of σ and with a data-driven estimate σ̂2 = mad(y) where mad is the normalized Mean
Absolute Deviation which provides a rough upper bound of the variance. The procedure
(3.3) is implemented using the default quadratic program solver of cvxopt. We perform
S = 10000 replications. For different estimators µ̂, Figure 1 shows the empirical tail of the
excess risk given by

t→ 1
S

S∑
k=1

1k
({
‖µ̂− f‖2 − min

j=1,...,M
‖µ̂j − f‖2 > σ2t

})
,

where 1k(E) = 1 if the event E holds at the k-th replication, and 0 otherwise. Note that since
the estimators are valued in the convex hull of {µ̂1, ..., µ̂M}, the excess risk may be smaller
than 0. This explains the negative values in Figure 1. Exponential weights outperform the
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Figure 1: Empirical tail of the excess risk for Exponential Weights and Q-pen in Ex-
periments 3.1 (top-left), 3.2 (top-right), 3.3 (bottom-left) and 3.4 (bottom-right). For
Experiments 3.1 and 3.4, the two Q-pen curves are the same.
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procedure of the present paper when the model is well specified (Experiment 3.1). When
the model presents small misspecifications (Experiments 3.2 and 3.3), the procedure of
the present paper outperforms exponential weights. In the case of large misspecifications
(Experiment 3.4), exponential weights are clearly suboptimal and present a large risk on an
event of small probability, confirming the theoretical results of [13, Section 2.1]. In these
experiments, a data-driven estimate for the variance in the procedure Q-pen performs
similarly to the procedure with known variance.

4 Sparsity oracle inequality
The goal of this section is to prove sparsity oracle inequalities. We are given p deterministic
vectors in Rn that are the columns of a n × p real matrix X, and the goal is to find an
estimator θ̂ ∈ Rp such that the quantity ‖Xθ̂ − f‖22 is close to ‖Xθ∗ − f‖22 for some sparse
θ∗ ∈ Rp for which Xθ∗ is a good approximation of the unknown regression vector f .

4.1 Adaptation to the variance

First, we derive a sharp oracle inequality under one of the assumptions from Section 3.3 for
homoscedastic noise, assuming that a sparsity parameter k ≥ 1 is known. This parameter k
is an upper bound on the sparsity of some vector θ∗ such that Xθ∗ is a good approximation
of f .

Consider the family of estimators {µ̂1, ..., µ̂M} where for each j = 1, ...,M , µ̂j = Ajy
and Aj is the projection matrix on a linear span of k linearly independent columns of X. In
particular, M ≤

(p
k

)
. The estimator µ̂j is also the least squares estimator on the subspace

Vj of dimension k generated by these k columns of X.
Now consider the estimator θ̂(k)

M ∈ RM defined by

θ̂
(k)
M = argmin

θ∈ΛM

(
‖µ̂θ‖22 − 2yT µ̂θ + 1

2 p̂en(θ)
)
,

where p̂en(·) is the penalty (3.2). It is exactly the procedure (3.3) from Theorem 3.3 with
the uniform prior (πj = 1/M for all j = 1, ...,M) since the noise random variables ξ1, ..., ξn
have the same variance and the projection matrices A1, ..., AM have the same trace equal
to k. This procedure is fully adaptive with respect to the unknown variance of the noise.
The following result is a direct consequence of Theorem 3.3.

Corollary 4.1. Let k ≥ 1. Assume that the variance of the noise components are the same:
E[ξ2

i ] are equal for all i = 1, ..., n. Assume one of the Assumptions 3.1, 3.2 or 3.3 on the
noise ξ = (ξ1, ..., ξn) and set the value of β accordingly with L = 1. Let θ̂(k)

M be the estimator
defined above. Then for all x > 0, with probability greater than 1− 3 exp(−x),∥∥∥∥µ̂θ̂(k)

M

− f
∥∥∥∥2

2
≤ min

θ∈Rp, |θ|0≤k

(
‖Xθ − f‖22

)
+ c β

(
k log

(
ep

k

)
+ x

)
,
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for some absolute constant c > 0.

Thus, we see that the knowledge of the variance is not needed to get a sharp oracle
inequality when the parameter k (an upper bound on the sparsity) is known.

4.2 Adaptation to sparsity

Here, we propose a new aggregation method that is adaptive to the sparsity and only
requires an estimator K̂2 that upper bounds the subgaussian norm of the noise with high
probability. We will make the following assumption on the noise.

Assumption 4.1 (Subgaussian noise). Let K > 0 and assume that the random vector ξ
satisfies:

∀α ∈ Rn, E exp(αT ξ) ≤ exp
(
‖α‖22K2

2

)
.

Contrary to the previous section, the components of ξ are not assumed to be independent.
The same assumption is made in [13] for aggregation of deterministic vectors. Under this
assumption, the authors of [28] proved the concentration inequality (A.8) and we use this
concentration result to prove the following oracle inequality for aggregation of Least Squares
estimators. Given an estimator K̂2, define for any θ ∈ ΛM

V̂n(θ) = ‖µ̂θ‖22 − 2yT µ̂θ + 1
2 p̂en(θ) + 32K̂2

M∑
j=1

θj log 1
πj
,

where p̂en(·) is the penalty (3.2). We consider the estimator µ̂θ̂ of f where

θ̂ ∈ argmin
θ∈ΛM

V̂n(θ). (4.1)

The function V̂n is equal to the sum of Ĥn (3.1) and some linear function of θ. Thus V̂n is
also convex and minimizing V̂n over the simplex is a quadratic program.

Proposition 4.1. Let K > 0 be the smallest positive number such that the random vector
ξ satisfies Assumption 4.1. For all j = 1, ...,M , let bj ∈ Rn and let Aj be a square matrix
of size n that satisfies Aj = ATj = A2

j . Let (π1, ..., πM ) ∈ ΛM such that for all j = 1, ...,M ,
Tr(Aj) ≤ log(π−1

j ). Let K̂ > 0 be a given estimator and let θ̂ be defined in (4.1). Let
δ := P(K̂2 < K2). Then for all x > 0, with probability greater than 1− δ − 2 exp(−x),

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
j=1,...,M

(
‖µ̂j − f‖22 + 64K̂2 log 1

πj

)
+ 28K2x. (4.2)
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Proposition 4.1 is proved in Appendix B.4. Compared to (3.17), this oracle inequality
holds for orthogonal projectors under the constraint Tr(Aj) ≤ log(π−1

j ) for all j = 1, ...,M .
However, this oracle inequality presents some advantages. First, it holds under Assump-
tion 4.1 which is weaker that the noise assumptions of Section 3 since the noise coordinates
do not need to be independent. Second, the quantity maxi=1,...,n ‖ξi‖ψ2/σi appearing in
(3.14) is not present here, which is possible thanks to the constraint Tr(Aj) ≤ log(π−1

j ).
Finally, one does not need to know the variance of the noise in order to compute the
proposed estimator; its construction only relies on K̂ which can be any estimate that upper
bounds the subgaussian norm of the random vector ξ. For instance, assume that ξ is
zero-mean Gaussian with covariance matrix σ2In×n, and assume that an estimator σ̂2 of σ2

is accessible, and that this estimator has bounded bias. Let γ > 1 and ε = P(σ̂2 < σ2/γ).
The quantity ε is likely to be small if σ̂2 has a bounded bias and γ is large enough. Then one
can use the upper bound K̂2 = γσ̂2 in Proposition 4.1, which yields that with probability
greater than 1− 3ε,

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
j=1,...,M

(
‖µ̂j − f‖22 + 64γσ̂2 log 1

πj

)
+ 28σ2 log(1/ε).

Thus, γ is used to perform a trade-off between the probability estimate and the remainder
term of the oracle inequality. By using an upper bound for K̂2 in Proposition 4.1 the
oracle inequality holds with slightly worse constants but with high probability. Examples
of estimators σ̂2 are given in Section 3.2.

We now use the oracle inequality (4.2) to perform sparsity pattern aggregation [36,
35, 14, 41]. For each subset J ⊂ {1, ..., p}, let µ̂LSJ be the Least Squares estimator on the
linear span of the columns of X whose indices are in J . This estimator satisfies the oracle
inequality (B.14) with d ≤ |J |, where |J | denotes the cardinal of J and d is the dimension of
the linear span of the columns whose indices are in J . We aggregate these 2p Least Squares
estimators using the method (4.1) and the prior distribution given by πJ ∝ e−|J |

( p
|J |
)−1. As

sparsity pattern aggregation is not central in the present paper, we keep this presentation
short and refer the reader to [36, 35, 14, 41] for more details on sparsity pattern aggregation
and the construction of Least Squares estimators.

Given a subset J ⊂ {1, ..., p}, the Least Squares estimator µ̂LSJ is of the form µ̂LSJ = AJy
for some projection matrix AJ and the inequality Tr(AJ) ≤ |J | ≤ log(π−1

J ) holds [35,
Section 5.2.1, the normalizing constant is greater than 1]. Define θ̂SPA such that

Xθ̂SPA = µ̂θ̂, (4.3)

where θ̂ is the estimator from (4.1) and µ̂θ̂ is obtained by aggregating the M = 2p estimators
(µ̂LSJ )J⊂{1,...,p}. Then the following sparsity oracle inequality holds, where |θ|0 is the number
of non-zero coefficients of θ.

Theorem 4.1. Let X be a deterministic design matrix with p columns Let K > 0 be the
smallest positive real number such that the noise random ξ satisfies Assumption 4.1. Let K̂
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be a given estimator and let δ := P(K̂2 < K2). Then, the sparsity pattern aggregate θ̂SPA
defined in (4.3) satisfies with probability greater than 1− δ − 3 exp(−x),

∥∥∥Xθ̂SPA − f
∥∥∥2

2
≤ inf

θ∈Rp

[
‖Xθ − f‖22 + 31K2x

+ (64K̂2 + 4K2)
(1

2 + 2|θ|0 log
(

ep

1 ∨ |θ|0

))]
. (4.4)

Theorem 4.1 is proved in Appendix B.4. It improves upon the previous results on
sparsity pattern aggregation [14, 36, 35, 41] in several aspects.

First, the noise ξ is only assumed to be subgaussian and its components need not be
independent, whereas previous results only hold under Gaussianity and independence of
the noise components. Theorem 4.1 shows that the optimal bounds previously known for
Gaussian noise [14, 36, 35, 41] are of the same form when the noise is only assumed to be
subgaussian.

Second, to construct the aggregates in [14, 36, 35, 41] one needs the exact knowledge of
the covariance matrix of the noise. In Theorem 4.1, only an upper bound of the subgaussian
norm of the noise is needed to construct the estimator.

Third, we do not split the data in order to perform sparsity pattern aggregation, as
opposed to the “sample cloning” approach [41, Lemma 2.1]. Sample cloning is possible only
for Gaussian noise when the variance is known; it cannot be used here as ξ can be any
subgaussian vector.

The estimator of Theorem 4.1 achieves the minimax rate for any intersection of `0
and `q balls, where q ∈ (0, 2). This can be shown by applying the arguments of [14, 41]
and bounding the right hand side of (4.4). Indeed, although [14, 41] consider only normal
random variables, the argument does not depend on the noise distribution.

The result above holds without any assumption on the design matrix X, as opposed to
the LASSO or the Dantzig estimators which need assumptions on the design matrix X to
achieve sparsity oracle inequalities similar but weaker than (4.4).

The interest of the LASSO and the Dantzig estimators is that they can be computed
efficiently for large p. The sparsity pattern aggregate based on exponential weights can
also be computed efficiently usind MCMC methods [36]. The estimator θ̂SPA proposed
here suffers the same drawback as [8] or the sparsity pattern aggregate performed with
Q-aggregation [14]: it is not known whether these estimators can be computed in polynomial
time, which makes them useful only for relatively small p.

A Concentration inequalities
In this appendix, we gather the concentration inequalities used to prove Theorem 3.3.
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A.1 Gaussian concentration

Let X be a zero-mean Gaussian random variable with variance σ2. A standard bound on
the Gaussian tail is

∀x > 0, P
(
X > σ

√
2x
)
≤ exp(−x).

Let v ∈ Rn and let ξ1, ..., ξn be zero-mean independent Gaussian random variables with
E[ξ2

i ] = σ2
i for all i. Then vT ξ is Gaussian with variance ‖Dσv‖22 and thus

∀x > 0, P
(
vT ξ > ‖Dσv‖2

√
2x
)
≤ exp(−x). (A.1)

Proposition A.1 (Gaussian chaos of order 2). Let ξ1, ..., ξn be independent zero-mean
normal random variables with for all i = 1, ..., n, E[ξ2

i ] = σ2
i . Let A be any n×n real matrix.

Then for any x > 0,

P
(
ξTAξ − E[ξTAξ] > 2 ‖DσADσ‖HS

√
x+ 2|||DσADσ|||2x

)
≤ exp(−x). (A.2)

A proof of this concentration result is given in [10, Example 2.12] for diagonal-free
matrices. A slightly modified version is available in [39, Theorem 2.2] for positive semi-
definite matrices. It can be easily extended to the general case via the following argument.

Proof of Proposition A.1. First, notice that if the result holds for standard normal random
variables with variance 1, then by considering the random variables ξ′i = ξi/σi and the
matrix M = DσADσ, the result also holds when ξ1, ..., ξn have variances different than 1.
Thus in the following we assume without loss of generality that σi = 1 for all i = 1, ..., n.

Second, if the result holds for all symmetric matrices A, then for a non-symmetric
matrix A one can consider B = A+AT

2 which is symmetric. Then ξTBξ = ξTAξ and by the
triangle inequality,

|||B|||2 ≤
|||A|||2 +

∣∣∣∣∣∣∣∣∣AT ∣∣∣∣∣∣∣∣∣
2

2 = |||A|||2, ‖B‖HS ≤
‖A‖HS +

∥∥∥AT ∥∥∥
HS

2 = ‖A‖HS .

Thus if the concentration inequality (A.2) holds for the symmetric matrix B, it will also
hold for the non-symmetric matrix A. Without loss of generality, we can consider only
symmetric matrices.

Let ξ1, ..., ξn be standard normal random variables and let A be a symmetric matrix.
There exists an invertible square matrix U with UT = U−1 such that A = UTΛU for some
diagonal matrix Λ = diag(µ1, ..., µn). By rotational invariance of the normal distribution,
if (X1, ..., Xn)T = Uξ then X1, ..., Xn are i.i.d. standard normal random variables. As
E[ξTAξ] = TrA = ∑n

i=1 µi,

ξTAξ − E[ξTAξ] =
n∑
i=1

µi(X2
i − 1).

21



version 798a216

The rest of the proof can be treated exactly as in the proof of [10, Example 2.12], using the
bound

∀λ ∈ (0, 1/2), logE exp(λ(ξ2
i − 1) ≤ λ2

1− 2λ,

without assuming that A is diagonal-free.

A.2 Subgaussian concentration

Again, we present tools to control terms of the form ξTQξ and vT ξ that appear in Lemma 3.1.
Proposition A.2 below provides a concentration result for the latter.

Proposition A.2 (Hoeffding-type inequality [43, Section 5.2.3]). There exists an absolute
constant CH > 0 such that the following holds. Let n ≥ 1 and ξ1, ..., ξn be independent
zero-mean subgaussian random variables with maxi=1,...,n ‖ξi‖ψ2 ≤ K for some real number
K > 0. Let v ∈ Rn.

Then for any x > 0, with probability greater than 1− exp(−x),

ξT v ≤ CHK ‖v‖2
√
x (A.3)

where ξ = (ξ1, ..., ξn)T .

The concentration result for a quadratic form of independent zero-mean subgaussian
random variables given in Proposition A.3 below is known as the Hanson-Wright inequality.
First versions of this inequality can be found in Hanson and Wright [27] and Wright [45],
although with a weaker statement than Proposition A.3 below since these results involve
||| (|aij |) |||2 instead of |||A|||2. Recent proofs of this concentration inequality with |||A|||2
instead of ||| (|aij |) |||2 can be found in Rudelson and Vershynin [37] or Barthe and Milman
[4, Theorem A.5].

Proposition A.3 (Hanson-Wright inequality [37]). There exist absolute constants cw1 , cw2 , c >
0 such that the following holds. Let n ≥ 1 and ξ1, ..., ξn be independent zero-mean subgaus-
sian random variables with maxi=1,...,n ‖ξi‖ψ2 ≤ K for some real number K > 0. Let A be
any n× n real matrix. Then for all t > 0,

P
(
ξTAξ − E[ξTAξ] > t

)
≤ exp

(
−cmin

(
t2

K4 ‖A‖2HS
,

t

K2|||A|||2

))
(A.4)

where ξ = (ξ1, ..., ξn)T . Furthermore, for any x > 0, with probability greater than 1 −
exp(−x),

ξTAξ − E[ξTAξ] ≤ cw1K
2|||A|||2x+ cw2K

2 ‖A‖HS
√
x. (A.5)

22



version 798a216

A.3 Concentration under Assumption 3.3

Proposition A.4. Let v ∈ Rn and K > 0. Let ξ1, ..., ξn be n independent random variables
satisfying the moment assumption (3.15). The following Hoeffding-type inequality holds:

P
(
vT ξ > 2K ‖v‖2

√
x
)
≤ exp(−x). (A.6)

Proposition A.4 is proved in the supplementary material.

A.4 Concentration of subgaussian vectors

A direct consequence of Assumption 4.1 on the random vector ξ is the following Hoeffding-
type concentration inequality:

P
(
αT ξ > K ‖α‖2

√
2x
)
≤ exp(−x). (A.7)

Under Assumption 4.1, the following concentration inequality was proven in [28].

Proposition A.5 (One sided concentration [28]). Let ξ be a random vector in Rn satisfying
Assumption 4.1 for some K > 0. Let A be a real n × n positive semi-definite symmetric
matrix. Then for all x > 0, with probability greater than 1− exp(−x),

ξTAξ ≤ K2 (TrA+ 2 ‖A‖HS
√
x+ 2|||A|||2x

)
. (A.8)

This result is remarkable as it holds with the same constants as in the Gaussian case
(A.2), under the weak Assumption 4.1. Similar results are obtained in a different form
in [39]. Unlike the previous concentration results given in Appendix A used in Section 3,
the above inequality is only one-sided, and it is not known if the above result holds as
a two-sided inequality or without the positive semi-definiteness of A. Another difference
with the concentration inequalities of Appendix A is that the term TrA in (A.8) is an
upper bound on the expectation of ξTAξ up to constants. It is not known whether this
concentration inequality holds with the constant term K2TrA replaced by E[ξTAξ]. The
following corollary extends Proposition A.5 to general matrices.

Corollary A.1 (Corollary of Proposition A.5 for any real matrix A). Under Assumption 4.1
and for any real matrix A, with probability greater than 1− exp(−x), the following holds:

ξTAξ ≤ K2 (‖A‖1 + 2 ‖A‖HS
√
x+ 2|||A|||2x

)
. (A.9)

Proof. To see this, let As := 1
2(A+AT ) and consider |As| :=

√
A2
s, the unique square root

of the positive semi-definite matrix A2
s. By definition of |As| and the triangle inequality,

ξTAξ = ξTAsξ ≤ ξT |As|ξ, Tr(|As|) = ‖As‖1 ≤ ‖A‖1 ,
||||As||||2 = |||As|||2 ≤ |||A|||2, ‖|As|‖HS = ‖As‖HS ≤ ‖A‖HS .

Thus applying (A.8) to the matrix |As| proves (A.9).
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B Proofs

B.1 Proof of Lemma 3.1

We start with some preliminary remarks. If Rn(θ) :=
∥∥µ̂θ̂∥∥2

2 − 2yT µ̂θ̂, Rn(·) is differentiable
and the following identify holds for any j = 1, ...,M and θ ∈ ΛM :

∇Rn(θ)T (ej − θ) = ‖µ̂j − f‖22 − ‖µ̂θ − f‖22 − 2ξT (µ̂j − µ̂θ)− ‖µ̂θ − µ̂j‖22 . (B.1)

The penalty (3.2) satisfies for any g ∈ Rn and any θ ∈ ΛM :

M∑
j=1

θj ‖µ̂j − g‖22 = ‖µ̂θ − g‖22 + p̂en(θ). (B.2)

This can be shown by using simple properties of the Euclidean norm, or by noting that the
equality above is a bias-variance decomposition. The function p̂en(·) is differentiable and
for any j = 1, ...,M , and θ ∈ ΛM , one can check that

1
2∇ p̂en(θ)T (ej − θ) = 1

2 ‖µ̂θ − µ̂j‖
2
2 −

1
2 p̂en(θ),

= ‖µ̂θ − µ̂j‖22 −
1
2

M∑
k=1

θk ‖µ̂j − µ̂k‖22 , (B.3)

where we used (B.2) with g = µ̂j for the last equality.

Proof of Lemma 3.1. Let J∗ = 1, ...,M be a deterministic integer. Since θ̂ minimizes Ĥn

over the simplex and Ĥn is convex and differentiable, a simple consequence of the KKT
conditions [11, 4.2.3, equation (4.21)] yields:

∇Ĥn(θ̂)T (eJ∗ − θ̂) ≥ 0. (B.4)

Let W := ∇Ĥn(θ̂)T (eJ∗ − θ̂). By simple algebraic calculations using (B.1) and (B.3), we
have

W = ‖µ̂J∗ − f‖22 −
∥∥µ̂θ̂ − f

∥∥2
2 − 2ξT (µ̂J∗ − µ̂θ̂)

+ 2Tr(DσAJ∗Dσ)−
M∑
k=1

θ̂kTr(DσAkDσ)

− 1
2

M∑
k=1

θ̂k ‖µ̂k − µ̂J∗‖22 + β log 1
πJ∗
− β

M∑
k=1

θ̂k log 1
πk
.

Since for all j = 1, ...,M , Tr(DσAjDσ) = E[ξTAjξ], (B.4) can be rewritten
∥∥µ̂θ̂ − f

∥∥2
2 ≤ ‖µ̂J∗ − f‖22 + 2β log 1

πJ∗
+ Z(J∗, θ̂), (B.5)
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where for all J∗ = 1, ...,M and θ ∈ ΛM ,

Z(J∗, θ) := 2ξT (µ̂θ − µ̂J∗)− 2
M∑
k=1

θkE[ξT (Ak −AJ∗)ξ]

− 1
2

M∑
k=1

θk ‖µ̂J∗ − µ̂k‖22 − β
M∑
k=1

θk log 1
πk
− β log 1

πJ∗
.

The quantity Z(J∗, θ) is affine in its second argument θ ∈ ΛM thus it is maximized at a
vertex of ΛM , and the following upper bounds hold:

Z(J∗, θ̂) ≤ max
θ∈ΛM

Z(J∗, θ) = max
k=1,...,M

Z(J∗, ek) ≤ max
j,k=1,...,M

Z(j, ek). (B.6)

Let ζj,k := Z(j, ek) for all j, k = 1, ...,M . From (B.5) and (B.6),

∥∥µ̂θ̂ − f
∥∥2

2 ≤ ‖µ̂J∗ − f‖22 + 2β log 1
πJ∗

+ max
j,k=1,...,M

ζj,k,

where
ζj,k = 2ξT (µ̂k − µ̂j)− 2E[ξT (Ak −Aj)ξ]− 1

2 ‖µ̂k − µ̂j‖
2
2 − β log 1

πkπj
.

Let Bjk = Ak −Aj , so that µ̂k − µ̂j = Bjkξ + (Bjkf + bk − bj). Then

‖µ̂k − µ̂j‖22 = ‖Bjkξ‖22 + ‖Bjkf + bk − bj‖22 + 2ξTBT
jk(Bjkf + bk − bj). (B.7)

After some algebra, we get

ζj,k = ξTQj,kξ − E[ξTQj,kξ] + ξT vj,k

− β log 1
πkπj

− 1
2 ‖BjkDσ‖2HS −

1
2 ‖Bjkf + bk − bj‖22

where we used the equality ‖BjkDσ‖2HS = E[‖Bjkξ‖22] and where Qj,k and vj,k are defined
in (3.19) and (3.20), respectively.

B.2 Proof of Theorem 3.3

Theorem 3.1 is a direct consequence of Theorem 3.3 for homoscedastic Gaussian noise, with
L = 1.

In order to prove Theorem 3.3, we need the following notation. We refer the reader
to Appendix B.3 for a proof with similar arguments and less notational complexity. Let
K,CW1 , CW2 , CH > 0 and a diagonal matrix D̄ be parameters that are specified below
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for each assumption. For any v ∈ Rn and any real matrix Q, consider the following
concentration inequalities: ∀x > 0,

P
(
vT ξ > CHK ‖v‖22

)
≤ exp(−x), (B.8)

P
(
ξTQξ − E[ξTQξ] > CW2K

∥∥∥QD̄∥∥∥
HS

√
x+ CW1K

2|||Q|||2x
)
≤ exp(−x). (B.9)

Let (d̄i)i=1,..., be the diagonal elements of the matrix D̄ and let

β = K2
(
CW1(2 + L)2L+ 2C2

H(1 + L)2 + 1
2C

2
W2 max

i=1,...,n

d̄2
i

σ2
i

(2 + L)2
)
. (B.10)

The above concentration inequalities are satisfied under the three assumptions on the noise,
with different constants:

• Under Assumption 3.1, set K = maxi=1,...,n σi, D̄ = Dσ and CH =
√

2, CW1 = 2,
CW2 = 2. With this choice of constants, the value of β (B.10) is equal to the value
(3.13), (B.8) becomes exactly (A.1) and (B.9) is a consequence of (A.2) applied to
the matrix Q and the random vector ξ.

• Under Assumption 3.2, K is given in the assumption, set

D̄ = diag(‖ξ1‖ψ2 , ..., ‖ξn‖ψ2),

CH = ch, CW1 = cw1 and CW2 = cw2 where ch, cw1 and cw2 are the numerical
constants from Propositions A.2 and A.3. With this choice of constants, the value
of β (B.10) is equal to the value (3.14), (B.8) becomes exactly (A.3) and (B.9) is a
direct consequence of (A.5) applied to the random vector ( ξ1

‖ξ1‖ψ2
, ..., ξn

‖ξn‖ψ2
) and the

matrix D̄QD̄.

• Under Assumption 3.3, K is given in the assumption, set D̄ = Dσ and CH = 2,
CW1 = 256, CW2 = 8

√
3. With this choice of constants, the value of β (B.10) is equal

to the value (3.16), (B.8) becomes exactly (A.6) and (B.9) becomes exactly (3.23)
applied to the random vector ξ and the matrix Q.

Proof of Theorem 3.3. Let x > 0. The concentration inequalities (B.8) and (B.9) always
hold, with different constants depending on the assumption on the noise as explained above.

Using Lemma 3.1, it is enough to upper bound maxj,k=1,...,M ζj,k where ζj,k is defined
in (3.18). Let j, k = 1, ...,M be fixed, and let Bj,k = Ak −Aj . We apply the concentration
inequality (B.9) to the matrix Qj,k (3.19) and the concentration inequality (B.8) to the
vector vj,k (3.20). With the union bound, on the event where both concentration inequalities
hold we get that with probability greater than 1− 2 exp(−x),

ζj,k ≤CW1K
2|||Qj,k|||2x+ CW2K

∥∥∥Qj,kD̄∥∥∥HS

√
x+ CHK ‖vj,k‖2

√
x

− β log 1
πkπj

− 1
2 ‖Bj,kDσ‖2HS −

1
2 ‖Bj,kf + bk − bj‖22 . (B.11)
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Using properties of the operator norm and the Hilbert-Schmidt norm with (3.20), (3.19):

‖vj,k‖2 ≤ 2
(
1 + 1

2 |||Bj,k|||2
)
‖Bj,kf + bk − bj‖2 ,

|||Qj,k|||2 ≤
(
2 + 1

2 |||Bj,k|||2
)
|||Bj,k|||2,∥∥∥Qj,kD̄∥∥∥HS

≤ 2
∥∥∥Bj,kD̄∥∥∥HS

+ 1
2

∥∥∥BT
j,kBj,kD̄

∥∥∥
HS
,

≤
(
2 + 1

2 |||Bj,k|||2
) ∥∥∥Bj,kD̄∥∥∥HS

where we used in the last display that for any square matricesM,C, ‖MC‖HS ≤ |||M |||2 ‖C‖HS.
We plug these inequalities in (B.11):

ζj,k ≤
(
2 + 1

2 |||Bj,k|||2
) (
CW1K

2|||Bj,k|||2x+ CW2K
∥∥∥Bj,kD̄∥∥∥HS

√
x
)

+ 2CHK
(
1 + 1

2 |||Bj,k|||2
)
‖Bj,kf + bk − bj‖2

√
x

− β log 1
πkπj

− 1
2 ‖Bj,kDσ‖2HS −

1
2 ‖Bj,kf + bk − bj‖22 .

We apply the inequality st ≤ s2+t2
2 twice, first with

s = CW2K
(
2 + 1

2 |||Bj,k|||2
) ∥∥∥Bj,kD̄∥∥∥HS
‖Bj,kDσ‖HS

√
x

and t = ‖Bj,kDσ‖HS, second with s = 2CHK
(
1 + 1

2 |||Bj,k|||2
)√

x and t = ‖Bj,kf + bk − bj‖2.
In both cases, the term t2

2 cancels and we obtain

ζj,k ≤K2x
(
CW1

(
2 + 1

2 |||Bj,k|||2
)
|||Bj,k|||2 + 1

2C
2
W2

∥∥∥Bj,kD̄∥∥∥2

HS
‖Bj,kDσ‖2HS

(
2 + 1

2 |||Bj,k|||2
)2 )

+ 2C2
HK

2
(
1 + 1

2 |||Bj,k|||2
)2
x− β log 1

πkπj
.

Let (bi,l)i,l=1,...,n be the elements of the matrix Bj,k = Ak − Aj , and (d̄i)i=1,..., be the
diagonal elements of the matrix D̄. Since∥∥∥Bj,kD̄∥∥∥2

HS
‖Bj,kDσ‖2HS

=
∑
i,l d̄

2
i b

2
i,l∑

i,l σ
2
i b

2
i,l

≤ max
i=1,...,n

d̄2
i

σ2
i

,

we obtain ζj,k ≤ βx− β log 1
πkπj

where β is given in (B.10).
For any t > 0, let x = t + log 1

πkπj
. The inequality ζj,k ≤ βt holds with probability

greater than 1 − 2πjπk exp(−t). Using the union bound on j, k = 1, ...,M , we have
maxj,k=1,...,M ζj,k ≤ βt with probability greater than 1−∑j,k=1,...,M 2πjπk exp(−t) = 1 −
2 exp(−t).
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B.3 Proof of Theorem 3.2

The following inequality will be useful.
Lemma B.1 (Projection matrices). Let A,B be two squared matrices of size n with
AT = A = A2 and BT = B = B2. Then

|Tr(A−B)| ≤ ‖A−B‖2HS . (B.12)

Proof. Without loss of generality, assume that TrA ≥ TrB. As ‖A−B‖2HS = ‖A‖2HS +
‖B‖2HS − 2Tr(AB) and ‖A‖2HS = TrA, (B.12) is equivalent to 2Tr(AB) ≤ 2Tr(B). Notice
that for projection matrices, Tr(AB) = ‖AB‖2HS ≤ |||A|||

2
2 ‖B‖

2
HS ≤ ‖B‖

2
HS = Tr(B) and the

proof is complete.

Proof of Theorem 3.2. With the previous notation, Dσ = σIn×n, ATj = Aj = A2
j . We

perform the same calculations as in the proof of Lemma 3.1 and obtain that almost surely∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
J∗=1,...,M

(
‖µ̂J∗ − f‖22 + 2β̂ log 1

πJ∗

)
+ max
j,k=1,...,M

ζj,k,

where

ζj,k = ξTQj,kξ − E[ξTQj,kξ] + ξT vj,k − 1
2 ‖(Ak −Aj)f + bk − bj‖22

+ 2(σ̂2 − σ2)Tr(Aj −Ak)−
σ2

2 ‖Ak −Aj‖
2
HS − β̂ log 1

πkπj
,

the matrices Qj,k and the vectors vj,k are defined in (3.19) and (3.20). Let j, k ∈ {1, ...,M}.
The assumption on σ̂2 and (B.12) yield that on an event Ω0 of probability greater than
1− δ,

2
∣∣(σ̂2 − σ2)Tr(Aj −Ak)

∣∣ ≤ σ2

4 ‖Aj −Ak‖
2
HS . (B.13)

Let β∗ = 56σ2. On the event Ω0, β̂ ≥ β∗ thus

ζj,k ≤ ξTQj,kξ − E[ξTQj,kξ] + ξT vj,k − 1
2 ‖(Ak −Aj)f + bk − bj‖22

− σ2

4 ‖Ak −Aj‖
2
HS − β

∗ log 1
πkπj

.

Note that |||Qj,k|||2 ≤ 6, ‖Qj,k‖HS ≤ 3 ‖Ak −Aj‖HS and ‖vj,k‖2 ≤ 4 ‖(Ak −Aj)f + bk − bj‖2.
We apply (A.2) to the matrix Qj,k and (A.1) to the vector vj,k. For all x > 0, it yields that
on an event Ωj,k(x) of probability greater than 1− 2 exp(−x),

ξTQj,kξ − E[ξTQj,kξ] ≤ σ2(12x+ 6 ‖Ak −Aj‖HS
√
x),

≤ 48σ2x+ 1
4 ‖Ak −Aj‖HS ,

and ξT vj,k ≤ σ
√
x4 ‖(Ak −Aj)f + bk − bj‖2 ,

≤ 8σ2x+ 1
2 ‖(Ak −Aj)f + bk − bj‖22 .
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On the event Ω0 ∩ Ωj,k(x+ log(1/(πkπj)), we have ζj,k ≤ β∗x. Using the union bound, the
probability of the event Ω0 ∩ (∩j,k=1,...,MΩj,k(x+ log(1/(πkπj)))) is at least

1− δ −
∑

j,k=1,...,M
2 exp(−x)πjπk = 1− δ − 2 exp(−x).

Finally, on this event maxj,k=1,...,M ζj,k ≤ β∗x and 2β̂ ≤ 18β∗/7 = 144σ2 which completes
the proof.

B.4 Sparsity oracle inequality

In [28], the authors prove the following oracle inequality for the Least Squares estimator
µ̂LSV on a d-dimensional linear subspace V of Rn. The Least Squares estimator µ̂LSV is
defined as the orthogonal projection of y on the linear subspace V .

Lemma B.2 ([28]). Under Assumption 4.1, with probability greater than 1− exp(−x):∥∥∥µ̂LSV − f
∥∥∥2

2
≤ min

µ∈V
‖µ− f‖22 +K2(d+ 2

√
dx+ 2x),

≤ min
µ∈V
‖µ− f‖22 +K2(2d+ 3x). (B.14)

We now use this result to prove Proposition 4.1.

Proof of Proposition 4.1. Let β̂ = 32K̂2. Let J∗ = 1, ...,M be a deterministic integer. Since
θ̂ minimizes V̂n over the simplex and V̂n is convex and differentiable, a simple consequence
of the KKT conditions [11, 4.2.3, equation (4.21)] yields:

∇V̂n(θ̂)T (eJ∗ − θ̂) ≥ 0. (B.15)

Let W := ∇V̂n(θ̂)T (eJ∗ − θ̂). Using (B.1), (B.3) and some algebra, we obtain

W = ‖µ̂J∗ − f‖22 −
∥∥µ̂θ̂ − f

∥∥2
2 − 2ξT (µ̂J∗ − µ̂θ̂)

− 1
2

M∑
k=1

θ̂k ‖µ̂k − µ̂J∗‖22 + β̂ log 1
πJ∗
− β̂

M∑
k=1

θ̂k log 1
πk
.

Inequality (B.15) can be rewritten as
∥∥µ̂θ̂ − f

∥∥2
2 ≤ ‖µ̂J∗ − f‖22 + 2β̂ log 1

πJ∗
+ z(J∗, θ̂)

where

z(J∗, θ̂) := 2ξT (µ̂θ̂ − µ̂J∗)− 1
2

M∑
k=1

θ̂k ‖µ̂k − µ̂J∗‖22 − β̂ log 1
πJ∗
− β̂

M∑
k=1

θ̂k log 1
πk
.
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The function z(J∗, ·) is affine in its second argument. Thus it is maximized at a vertex of
ΛM , and

z(J∗, θ̂) ≤ max
θ∈ΛM

z(J∗, θ) = max
k=1,...,M

z(J∗, ek) ≤ max
j,k=1,...,M

z(j, ek).

As it holds for all deterministic J∗ = 1, ...,M , we proved that

∥∥µ̂θ̂ − f
∥∥2

2 ≤ min
J∗=1,...,M

(
‖µ̂J∗ − f‖22 + 2β̂ log 1

πJ∗

)
+ max
j,k=1,...,M

ζjk,

where

ζjk := z(j, ek) = 2ξT (µ̂k − µ̂j)− β̂ log 1
πjπk

− 1
2 ‖µ̂k − µ̂j‖

2
2 .

Let Bjk = Ak−Aj , and note that |||Bjk|||2 ≤ 2 because Ak and Aj are orthogonal projectors.
Using µ̂k − µ̂j = Bjkξ + (Bjkf + bk − bj) and (B.7), we get

ζjk = 2ξT (Ak −Aj)ξ + ξTαjk − 1
2 ‖Bjkf + bk − bj‖22 −

1
2 ‖Bjkξ‖

2
2 − β̂ log 1

πjπk
,

where αjk := 2(In×n − 1
2B

T
jk)(Bjkf + bk − bj). The vector αjk satisfies

‖αjk‖2 ≤ 2(1 + 1
2 |||Bjk|||2) ‖Bjkf + bk − bj‖2 ≤ 4 ‖Bjkf + bk − bj‖2 .

We also have −‖Bjkξ‖22 ≤ 0 almost surely.
Let x > 0. We now apply the concentration inequality (A.9) to the matrix 2Bjk and the

Hoeffding-type inequality (A.7) to the vector αjk. Using the union bound, the following
holds with probability greater than 1− 2 exp(−x):

ζjk ≤ K2 (2 ‖Bjk‖1 + 4|||Bjk|||2x+ 4 ‖Bjk‖HS
√
x
)

+ 2K(1 + 1
2 |||Bjk|||2) ‖Bjkf + bk − bj‖2

√
2x− 1

2 ‖Bjkf + bk − bj‖22
− β̂ log 1

πjπk
.

We upper bound the first line of the RHS of the previous display. By the triangle inequality,
and the assumption Tr(Aj) ≤ log(π−1

j ), we have ‖Bjk‖1 ≤ Tr(Aj + Ak) ≤ log((πjπk)−1).
Using simple inequalities,

‖Bjk‖HS
√
x ≤ (‖Aj‖HS + ‖Ak‖HS)

√
x ≤ (‖Aj‖2HS + ‖Ak‖2HS + 2x)/2 ≤ 1

2 log 1
πjπk

+ x.

Thus, 2 ‖Bjk‖1 + 4|||Bjk|||2x+ 4 ‖Bjk‖HS
√
x ≤ K2(12x+ 4 log 1

πjπk
).
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Now we upper bound the second line. We apply the inequality st ≤ s2+t2
2 with

t = ‖Bjkf + bk − bj‖2 and s = 2K(1 + 1
2 |||Bjk|||2)

√
2x:

2K(1 + 1
2 |||Bjk|||2) ‖Bjkf + bk − bj‖2

√
2x− 1

2 ‖Bjkf + bk − bj‖22

= st− t2

2 ≤
s2

2 = 4K2(1 + 1
2 |||Bjk|||2)2x ≤ 16K2x.

For any x′ > 0, let xjk = x′ + 1
πjπk

. By setting x = xjk, the above displays yield the
following bound on ζjk, with probability greater than 1− 2πjπk exp(−x′):

ζjk ≤ 28K2xjk − (β̂ − 4K2) log 1
πjπk

= 28K2x′ − (β̂ − 32K2) log 1
πjπk

.

Using a union bound, we obtain that on an event of probability greater than 1 − δ −
2∑M

j=1
∑M
k=1 πjπk exp(−x′) = 1− δ − 2 exp(−x′), we have β̂ ≥ 32K2 and

max
j,k=1,...,M

ζjk ≤ 28K2x′.

Proof of Theorem 4.1. Let θ̄ ∈ Rp be a minimizer of the right hand side of (4.4) and let
J̄ ⊂ {1, ..., p} be the support of θ̄, hence |θ̄|0 = |J̄ |. Since the RHS of (4.4) is random, θ̄
and its support are also random.

Let t > 0. For each support J ⊂ {1, ..., p}, the oracle inequality (B.14) applied to
x = t+ log(π−1

J ) yields that with probability greater than 1− πJ exp(−t),∥∥∥µ̂LSJ̄ − f
∥∥∥2

2
≤
∥∥∥Xθ̄ − f

∥∥∥2

2
+K2

(
2|θ̄|0 + 3 log

( 1
πJ

)
+ 3t

)
. (B.16)

With the union bound, (B.16) holds simultaneously for all J ⊂ {1, ..., p} with probability
greater than 1− exp(−t) = 1−∑J⊂{1,...,p} πJ exp(−t).

We apply the oracle inequality of Proposition 4.1 and the oracle inequality (B.16) to
µ̂LS
J̄

. With the union bound, we have with probability greater than 1− δ − 3 exp(−t):∥∥∥Xθ̂SPA − f
∥∥∥2

2
≤
∥∥∥µ̂LSJ̄ − f

∥∥∥2

2
+ 64K̂2 log 1

πJ̄
+ 28K2t,

∥∥∥µ̂LSJ̄ − f
∥∥∥2

2
≤
∥∥∥Xθ̄ − f

∥∥∥2

2
+K2

(
2|θ̄|0 + 3 log

(
1
πJ̄

)
+ 3t

)
,

where AJ̄ is the projection matrix such that µ̂LS
J̄

= AJ̄y. The following bound can be found
in with the following bound from [35, Section 5.2.1]:

log 1
πJ̄
≤ 2|θ̄|0 log

(
ep

1 ∨ |θ̄|0

)
+ 1

2 .

Summing the two oracle inequalities above and applying the upper bound on log 1
πJ̄

completes
the proof.

31



version 798a216

Acknowledgement
We would like to thank Alexandre Tsybakov for valuable comments on previous versions of
this manuscript.

References
[1] Sylvain Arlot and Francis R Bach. Data-driven calibration of linear estimators with

minimal penalties. In Advances in Neural Information Processing Systems, pages 46–54,
2009.

[2] Mark Bagnoli and Ted Bergstrom. Log-concave probability and its applications.
Economic theory, 26(2):445–469, 2005.

[3] Yannick Baraud, Christophe Giraud, and Sylvie Huet. Estimator selection in the
gaussian setting. 50(3):1092–1119, 2014.

[4] Franck Barthe and Emanuel Milman. Transference principles for log-sobolev and
spectral-gap with applications to conservative spin systems. Communications in
Mathematical Physics, 323(2):575–625, 2013. ISSN 0010-3616. doi: 10.1007/
s00220-013-1782-2. URL http://dx.doi.org/10.1007/s00220-013-1782-2.

[5] Pierre C. Bellec. Optimal exponential bounds for aggregation of density estimators.
arXiv preprint arXiv:1405.3907, 2014.

[6] Alexandre Belloni and Victor Chernozhukov. Least squares after model selection in high-
dimensional sparse models. Bernoulli, 19(2):521–547, 05 2013. doi: 10.3150/11-BEJ410.
URL http://dx.doi.org/10.3150/11-BEJ410.

[7] Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Pivotal estimation via square-
root lasso in nonparametric regression. Ann. Statist., 42(2):757–788, 04 2014. doi:
10.1214/14-AOS1204. URL http://dx.doi.org/10.1214/14-AOS1204.

[8] Lucien Birgé and Pascal Massart. Gaussian model selection. Journal of the European
Mathematical Society, 3(3):203–268, 2001.

[9] Lucien Birgé and Pascal Massart. Minimal penalties for gaussian model selection.
Probability Theory and Related Fields, 138(1-2):33–73, 2007. ISSN 0178-8051. doi: 10.
1007/s00440-006-0011-8. URL http://dx.doi.org/10.1007/s00440-006-0011-8.

[10] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities:
A nonasymptotic theory of independence. Oxford University Press, 2013.

[11] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2009.

32

http://dx.doi.org/10.1007/s00220-013-1782-2
http://dx.doi.org/10.3150/11-BEJ410
http://dx.doi.org/10.1214/14-AOS1204
http://dx.doi.org/10.1007/s00440-006-0011-8


version 798a216

[12] Arthur Cohen. All admissible linear estimates of the mean vector. The Annals of
Mathematical Statistics, pages 458–463, 1966.

[13] D. Dai, P. Rigollet, and T. Zhang. Deviation optimal learning using greedy Q-
aggregation. The Annals of Statistics, 40(3):1878–1905, 2012.

[14] D. Dai, P. Rigollet, Xia L., and Zhang T. Aggregation of affine estimators. Electon. J.
Stat., 8:302–327, 2014.

[15] Arnak S. Dalalyan and Joseph Salmon. Sharp oracle inequalities for aggregation of
affine estimators. The Annals of Statistics, 40(4):2327–2355, 2012.

[16] Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential weighting
and sharp oracle inequalities. In Learning Theory, volume 4539 of Lecture Notes in
Computer Science, pages 97–111. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-
72925-9. doi: 10.1007/978-3-540-72927-3_9. URL http://dx.doi.org/10.1007/
978-3-540-72927-3_9.

[17] Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation
and langevin monte-carlo. Journal of Computer and System Sciences, 78(5):1423–1443,
2012.

[18] Victor De la Pena and Evarist Giné. Decoupling: from dependence to independence.
Springer, New York, 1999.

[19] Victor H. de la Pena and S. J. Montgomery-Smith. Decoupling inequalities for the
tail probabilities of multivariate u-statistics. The Annals of Probability, 23(2):806–816,
04 1995. doi: 10.1214/aop/1176988291. URL http://dx.doi.org/10.1214/aop/
1176988291.

[20] Holger Dette, Axel Munk, and Thorsten Wagner. Estimating the variance in non-
parametric regression—what is a reasonable choice? Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 60(4):751–764, 1998.

[21] David L Donoho, Iain M Johnstone, Jeffrey C Hoch, and Alan S Stern. Maximum
entropy and the nearly black object. Journal of the Royal Statistical Society. Series B
(Methodological), pages 41–81, 1992.

[22] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing.
Springer, 2013.

[23] Sébastien Gerchinovitz. Prediction of individual sequences and prediction in the statis-
tical framework: some links around sparse regression and aggregation techniques. PhD
thesis, Université Paris Sud-Paris XI, 2011. URL https://tel.archives-ouvertes.
fr/tel-00653550.

33

http://dx.doi.org/10.1007/978-3-540-72927-3_9
http://dx.doi.org/10.1007/978-3-540-72927-3_9
http://dx.doi.org/10.1214/aop/1176988291
http://dx.doi.org/10.1214/aop/1176988291
https://tel.archives-ouvertes.fr/tel-00653550
https://tel.archives-ouvertes.fr/tel-00653550


version 798a216

[24] Christophe Giraud. Mixing least-squares estimators when the variance is unknown.
Bernoulli, 14(4):1089–1107, 2008.

[25] Christophe Giraud, Sylvie Huet, and Nicolas Verzelen. High-dimensional regression with
unknown variance. Statistical Science, 27(4):500–518, 11 2012. doi: 10.1214/12-STS398.
URL http://dx.doi.org/10.1214/12-STS398.

[26] Peter Hall, JW Kay, and DM Titterinton. Asymptotically optimal difference-based
estimation of variance in nonparametric regression. Biometrika, 77(3):521–528, 1990.

[27] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic
forms in independent random variables. The Annals of Mathematical Statistics, 42(3):
1079–1083, 1971.

[28] Daniel Hsu, Sham Kakade, and Tong Zhang. A tail inequality for quadratic forms of
subgaussian random vectors. Electron. Commun. Probab., 17:no. 52, 1–6, 2012. ISSN
1083-589X. doi: 10.1214/ECP.v17-2079. URL http://ecp.ejpecp.org/article/
view/2079.

[29] John Immerkaer. Fast noise variance estimation. Computer vision and image under-
standing, 64(2):300–302, 1996.

[30] I. M. Johnstone. Function estimation and gaussian sequence models. Unpublished
manuscript, 2(5.3):2, 2002.

[31] Guillaume Lecué and Philippe Rigollet. Optimal learning with Q-aggregation. Ann.
Statist., 42(1):211–224, 2014.

[32] Gilbert Leung and Andrew R. Barron. Information theory and mixing least-squares
regressions. Information Theory, IEEE Transactions on, 52(8):3396–3410, 2006.

[33] Axel Munk, Nicolai Bissantz, Thorsten Wagner, and Gudrun Freitag. On difference-
based variance estimation in nonparametric regression when the covariate is high
dimensional. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(1):19–41, 2005.

[34] Arkadi Nemirovski. Topics in non-parametric statistics. In Lectures on probability
theory and statistics (Saint-Flour, 1998), volume 1738 of Lecture Notes in Mathematics.
Springer, Berlin, 2000.

[35] P. Rigollet and A. Tsybakov. Sparse estimation by exponential weighting. Statistical
Science, 27(4):558–575, 2012.

[36] Philippe Rigollet and Alexandre Tsybakov. Exponential screening and optimal rates of
sparse estimation. The Annals of Statistics, 39(2):731–771, 2011.

34

http://dx.doi.org/10.1214/12-STS398
http://ecp.ejpecp.org/article/view/2079
http://ecp.ejpecp.org/article/view/2079


version 798a216

[37] Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian
concentration. Electron. Commun. Probab., 18:no. 82, 1–9, 2013. ISSN 1083-589X. doi:
10.1214/ECP.v18-2865. URL http://ecp.ejpecp.org/article/view/2865.

[38] Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for
polynomials of independent random variables. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 437–446. SIAM, 2012.

[39] Vladimir Spokoiny and Mayya Zhilova. Sharp deviation bounds for quadratic forms.
Mathematical Methods of Statistics, 22(2):100–113, 2013.

[40] Tingni Sun and Cun-Hui Zhang. Scaled sparse linear regression. Biometrika, 2012.

[41] A.B. Tsybakov. Aggregation and minimax optimality in high-dimensional estimation.
In Proceedings of the International Congress of Mathematicians, Seoul, 2014. To
appear.

[42] Alexandre B. Tsybakov. Optimal rates of aggregation. In Learning Theory and Kernel
Machines, pages 303–313. Springer, 2003.

[43] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010.

[44] Roman Vershynin. A simple decoupling inequality in probability theory. 2011. URL
http://www-personal.umich.edu/~romanv/papers/decoupling-simple.pdf.

[45] Farrol Tim Wright. A bound on tail probabilities for quadratic forms in independent
random variables whose distributions are not necessarily symmetric. The Annals of
Probability, 1(6):1068–1070, 1973.

35

http://ecp.ejpecp.org/article/view/2865
http://www-personal.umich.edu/~romanv/papers/decoupling-simple.pdf


version 798a216

Supplement: additional proofs
C Bounds on moment generating functions
The condition (3.15) leads to the following bounds on the moment generating functions of
X and X2, which are crucial to prove Theorem 3.4.

Proposition C.1. Let K > 0 and let ξi be a random variable satisfying (3.15) with
σ2
i = E[ξ2

i ]. Then for all s ∈ R:

E exp(sξi) ≤ exp(s2K2). (C.1)

Furthermore, if 0 ≤ 2sK2 ≤ 1, then

E exp(sξ2
i − sσ2

i ) ≤ exp(s2σ2
iK

2), (C.2)

E exp(sξ2
i ) ≤ exp

(3
2sσ

2
i

)
. (C.3)

Inequality (C.1) shows that a random variable X satisfying the moment assumption
(3.15) is subgaussian and its ψ2 norm is bounded by K up to a multiplicative absolute
constant. The proof of Proposition C.1 is based on Taylor expansions and some algebra.

Proof of Proposition C.1. To simplify the notation, let X = ξi and σ = σi. We first prove
(C.2). We apply the assumption on the even moments of X:

E exp(sX2) = 1 + sσ2 +
∑
p≥2

spEX2p

p! ,

≤ 1 + sσ2 + σ2s

2

∞∑
k=1

(sK2)k = 1 + sσ2 + σ2K2s2

2(1− sK2) ,

and using the inequality 0 < 2sK2 ≤ 1, we obtain:

E exp(sX2) ≤ 1 + sσ2 + σ2s2K2 ≤ exp(sσ2 + s2σ2K2),

which completes the proof of (C.2). Inequality (C.3) is a direct consequence of (C.2) after
applying again the inequality 2sK2 ≤ 1.

We now prove (C.1). Using the Cauchy-Schwarz inequality and the assumption on the
moments for p = 2, we get σ4 ≤ E[ξ4] ≤ σ2K2, so σ ≤ K. Let p ≥ 1. For the even terms of
the expansion of E exp(sX), we get:

s2pEX2p

(2p)! ≤ 1
2(sK)2p p!

(2p)! ≤
1
2

(sK)2p

p! ,
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where for the last inequality we used (p!)2 ≤ (2p)!. For the odd terms, by using the Jensen
inequality for p ≥ 1:

s2p+1EX2p+1

(2p+ 1)! ≤ s2p+1(EX2p+2)
2p+1
2p+2

(2p+ 1)! ≤ |sK|2p+1

(
(p+1)!

2

) 2p+1
2p+2

(2p+ 1)! ,

≤ 1
2 |sK|

2p+1 (p+ 1)!
(2p+ 1)! .

If |sK| > 1, we use the inequality (p+ 1)!2 ≤ (2p+ 1)! to obtain

s2p+1EX2p+1

(2p+ 1)! ≤ |sK|
2(p+1)

2((p+ 1)!) ,

and by combining the inequality for the even and the odd terms:

E exp(sX) = 1 +
∑
p≥1

s2pEX2p

(2p)! + s2p+1EX2p+1

(2p+ 1)! ,

≤ 1 + 1
2
∑
p≥1

(sK)2p

p! + |sK|
2(p+1)

(p+ 1)! ,

≤ 1 +
∑
p≥1

(sK)2p

p! = exp(s2K2).

If |sK| ≤ 1, we use the inequality (p+ 1)!p! ≤ (2p+ 1)! to obtain

s2p+1EX2p+1

(2p+ 1)! ≤ (sK)2p

2(p!) ,

and by combining the inequality for the even and the odd terms:

E exp(sX) = 1 +
∑
p≥1

s2pEX2p

(2p)! + s2p+1EX2p+1

(2p+ 1)! ,

≤ 1 + 1
2
∑
p≥1

(sK)2p

p! + (sK)2p

p! = 1 +
∑
p≥1

(sK)2p

p! = exp(s2K2).

D Proof of Proposition A.4
Proof. It is a direct application of (C.1) combined with the Chernoff bound. Let s =
2K ‖v‖2

√
x. The Chernoff bound and the independence of ξ1, ..., ξn yield, for all λ > 0,

P
(
vT ξ > s

)
≤ exp(−λs)

n∏
i=1

E[exp(λviξi)] ≤ exp(−λs+ λ2K2 ‖v‖22).
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Now set λ =
√
x/(K ‖v‖2) such that the RHS of the previous display is minimized, and the

proof is complete.

E Proof of Theorem 3.4
The goal of this section is to prove Theorem 3.4. We start with preliminary calculations
that will be useful in the proof. Let A be any n× n real matrix. Let λ > 0 satisfy

128|||A|||2K
2λ ≤ 1, (E.1)

and define
η = 32K2λ2. (E.2)

The inequality (E.1) can be rewritten in terms of η:

512K2|||A|||22η ≤ 1. (E.3)

Let A0 be the matrix A with the diagonal entries set to 0. Then, using the triangle inequality
with A0 = A− diag(a11, ..., ann) and |aii| ≤ |||A|||2 for all i = 1, ..., n, we obtain

|||A0|||2 ≤ 2|||A|||2. (E.4)

Let B = AT0 A0 = (bij)i,j=1,...,n and let B0 be the matrix B with the diagonal entries set to
0. Then

∀i = 1, ..., n, 0 ≤ bii =
∑
j 6=i

a2
ji ≤ |||A|||

2
2. (E.5)

By using the decomposition B0 = B − diag(b11, ..., bnn) and the inequality ‖v + v′‖22 ≤
2 ‖v‖22 + 2 ‖v′‖22, (E.5) and (E.4), we have:

‖B0ξ‖22 ≤ 2 ‖Bξ‖22 + 2
n∑
i=1

b2iiξ
2
i ,

≤ 2|||A0|||22 ‖A0ξ‖22 + 2|||A|||22
n∑
i=1

biiξ
2
i ,

≤ 8|||A|||22 ‖A0ξ‖22 + 2|||A|||22
n∑
i=1

biiξ
2
i .

Combining the previous display with (E.3), we obtain for any K > 0:

16K2η2 ‖B0ξ‖22 ≤ (512K2|||A|||22η)
(
η

4 ‖A0ξ‖22 + η

16

n∑
i=1

biiξ
2
i

)
,

≤ η

4 ‖A0ξ‖22 + η

16

n∑
i=1

biiξ
2
i . (E.6)
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Proof of Theorem 3.4. Throughout the proof, let λ > 0 satisfy (E.1). The value of λ will
be specified later.

First we treat the diagonal terms by bounding the moment generating function of

Sdiag :=
n∑
i=1

aiiξ
2
i −

n∑
i=1

aiiσ
2
i .

Using the independence of ξ1, ..., ξn and (C.2) with s = aiiλ with each i = 1, ..., n:

E exp(λSdiag) ≤ exp
(
λ2

n∑
i=1

a2
iiσ

2
iK

2
)
, (E.7)

provided that for all i = 1, ..., n, 2|aii|λK2 ≤ 1 which is satisfied as (E.1) holds and
|aii| ≤ |||A|||2.

Now we bound the moment generating function of the off-diagonal terms. Let

Soff−diag :=
∑

i,j=1,...,n:i 6=j
aijξiξj .

Let the random vector ξ′ = (ξ′1, ..., ξ′n)T be independent of ξ with the same distribution
as ξ. We apply the decoupling inequality [44] (see also [22, Theorem 8.11]) to the convex
function s→ exp(λs):

E exp(λSoff−diag) ≤ E exp

4λ
∑

i,j=1,...,n:i 6=j
aijξ

′
iξj

 .
Conditionally on ξ1, ..., ξn, for each i = 1, ..., n, we use the independence of ξ′1, ..., ξ′n and
(C.1) applied to ξ′i with s = 4∑j=1,...,n:i 6=j aijξj :

E exp

4λ
∑
i 6=j

aijξ
′
iξj

 ≤ E exp

16K2λ2 ∑
i=1,...,n

 ∑
j=1,...,n:i 6=j

aijξj

2
 ,

= E exp
(
16K2λ2 ‖A0ξ‖22

)
= E exp

(
η

2 ‖A0ξ‖22
)
,

where η is defined in (E.2) and A0 is the matrix A with the diagonal entries set to 0. Let
B = AT0 A0 = (bij)i,j=1,...,n. Then ‖A0ξ‖22 = ∑n

i=1 biiξ
2
i +∑

i 6=j bijξiξj .
We use the Cauchy-Schwarz inequality to separate the diagonal terms from the off-

diagonal ones:

(
E exp(η2 ‖A0ξ‖22)

)2
≤ E exp

(
η

n∑
i=1

biiξ
2
i

)
E exp

η∑
i 6=j

bijξiξj

 . (E.8)
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For the off-diagonal terms of (E.8), using the decoupling inequality [44] (see also [22,
Theorem 8.11]) we have:

E exp

η∑
i 6=j

bijξiξj

 ≤ E exp

4η
∑
i 6=j

bijξ
′
iξj

 .
Again, conditionally on ξ1, ..., ξn, for each j = 1, ..., n, we use (C.1) applied to ξ′i and the
independence of ξ′1, ..., ξ′n:

E exp

4η
∑
i 6=j

bijξ
′
iξj

 ≤ E exp

16K2η2
n∑
i=1

 ∑
j=1,...,n: i 6=j

bijξj

2
 ,

= E exp
(
16K2η2 ‖B0ξ‖22

)
,

≤ E exp
(
η

4 ‖A0ξ‖22 + η

16

n∑
i=1

biiξ
2
i

)
,

where we used the preliminary calculation (E.6) for the last display. Finally, the Cauchy-
Schwarz inequality yields

E exp

4η
∑
i 6=j

bijξiξ
′
j

 ≤ √E exp
(
η

2 ‖A0ξ‖22
)√√√√E exp

(
η

8

n∑
i=1

biiξ2
i

)
.

We plug this upper bound back into (E.8). After rearranging, we find

(
E exp(η2 ‖A0ξ‖22)

)3/2
≤ E exp

(
η

n∑
i=1

biiξ
2
i

)√√√√E exp
(
η

8

n∑
i=1

biiξ2
i

)
.

As bii ≥ 0, this implies:

E exp(η2 ‖A0ξ‖22) ≤ E exp
(
η

n∑
i=1

biiξ
2
i

)
.

For each i = 1, ..., n, we apply (C.3) to the variable ξi with s = biiη ≥ 0. Using the
independence of ξ2

1 , ..., ξ
2
n, we obtain:

E exp
(
η

n∑
i=1

biiξ
2
i

)
=

n∏
i=1

E exp(ηbiiξ2
i ),

≤ exp
(

3
2η

n∑
i=1

biiσ
2
i

)
= exp

(3
2η ‖A0Dσ‖2HS

)
.
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provided that for all i = 1, ..., n, 2K2biiη ≤ 1 which is satisfied thanks to (E.1) and (E.5).
We remove η from the above displays using its definition (E.2):

E exp(λSoff−diag) ≤ exp
(
48λ2K2 ‖A0Dσ‖2HS

)
, (E.9)

where A0 is the matrix A with the diagonal entries set to 0.
Now we combine the bound on the moment generating function of Sdiag and Soff−diag,

given respectively in (E.7) and (E.9). Using the Chernoff bound and the Cauchy-Schwarz
inequality: we have that for all λ satisfying (E.1),

P (Sdiag + Soff−diag > t) ≤ exp(−λt)E[exp(λSdiag) exp(λSoff−diag)],

≤ exp (−λt)
√
E[exp(2λSdiag)]

√
E[exp(2λSoff−diag)],

≤ exp
(
−λt+ λ2K2

(
n∑
i=1

σ2
i a

2
ii + 48 ‖A0Dσ‖2HS

))
,

≤ exp
(
−λt+ 48λ2K2 ‖ADσ‖2HS

)
, (E.10)

where for the last display we used the equality

‖ADσ‖2HS =
∑

i,j=1,...,n
a2
ijσ

2
i = ‖A0Dσ‖HS +

n∑
i=1

a2
iiσ

2
i .

It now remains to choose the parameter λ. The unconstrained minimum of (E.10) is attained
at λ̄ = t/(96K2 ‖ADσ‖2HS). If λ̄ satisfies the constraint (E.1), then

P (Sdiag + Soff−diag > t) ≤ exp
(

−t2

192K2 ‖ADσ‖2HS

)
.

On the other hand, if λ̄ does not satisfy (E.1), then the constraint (E.1) is binding and the
minimum of (E.10) is attained at λb = 1/(128|||A|||2K2) < λ̄. In this case,

− tλb + λ2
b48K2 ‖ADσ‖2HS ≤ −tλb + λbλ̄48K2 ‖ADσ‖2HS = −tλb + t

2λb = − t

256K2|||A|||2
.

Combining the two regimes, we obtain

P (Sdiag + Soff−diag > t) ≤ exp
(
−min

(
t2

192K2 ‖ADσ‖2HS
,

t

256K2|||A|||2

))
.

The proof of (3.22) is complete.
Now we prove (3.23). The function

t→ x(t) = min
(

t2

192K2 ‖ADσ‖2HS
,

t

256K2|||A|||2

)
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is increasing and bijective from the set of positive real numbers to itself. Furthermore, for
all t > 0,

t ≤ 8
√

3K ‖ADσ‖HS

√
x(t) + 256K2|||A|||2x(t),

so the variable change x = x(t) completes the proof of (3.23).
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