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We consider the problem of model selection type aggregation in the context of density estimation.

We first show that empirical risk minimization is sub-optimal for this problem and it shares this

property with the exponential weights aggregate, empirical risk minimization over the convex

hull of the dictionary functions, and all selectors. Using a penalty inspired by recent works on

the Q-aggregation procedure, we derive a sharp oracle inequality in deviation under a simple

boundedness assumption and we show that the rate is optimal in a minimax sense. Unlike the

procedures based on exponential weights, this estimator is fully adaptive under the uniform

prior. In particular, its construction does not rely on the sup-norm of the unknown density. By

providing lower bounds with exponential tails, we show that the deviation term appearing in

the sharp oracle inequalities cannot be improved.

Keywords: aggregation, concentration inequality, density estimation, minimax lower bounds,

minimax optimality, model selection, sharp oracle inequality.

1. Introduction

We study the problem of estimation of an unknown density from observations. Let (X , µ)
be a measurable space. We are interested in estimating an unknown density f with
respect to the measure µ given n independent observations X1, . . . , Xn drawn from f .
We measure the quality of estimation of f by the L2 squared distance

‖ĝ − f‖2
=

∫

(f − ĝ)2dµ = ‖ĝ‖2 − 2

∫

ĝfdµ+ ‖f‖2
, (1.1)

for any ĝ ∈ L2(µ) possibly dependent on the data X1, . . . , Xn. Since the term ‖f‖2
is

constant for all ĝ, we will consider throughout the paper the risk

R(ĝ) = ‖ĝ‖2 − 2

∫

ĝfdµ. (1.2)

An estimator ĝ minimizes R(·) if and only if it minimizes (??).

∗ This work was supported by GENES and by the grant Investissements d’Avenir (ANR-11-IDEX-
0003/Labex Ecodec/ANR-11-LABX-0047).
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2

Given M functions f1, . . . , fM ∈ L2(µ), we would like to construct a measurable
function ĝ of the observations X1, . . . , Xn that is almost as good as the best function
among f1, . . . , fM . The model may be misspecified, which means that f may not be one
of the functions f1, . . . , fM . We are interested in deriving oracle inequalities, either in
expectation

ER(ĝ) ≤ C min
j=1,...,M

R(fj) + δn,M ,

or with high probability, i.e., for all ε > 0, with probability greater than 1 − ε

R(ĝ) ≤ C min
j=1,...,M

R(fj) + δn,M + dn,M (ε),

where δn,M is a small quantity and dn,M (·) is a function of ε that we call the deviation
term. We are only interested in sharp oracle inequalities, i.e., oracle inequalities where
the leading constant is C = 1, since it is essential to derive minimax optimality results.

We consider only deterministic functions for f1, . . . , fM . They cannot depend on the
data X1, . . . , Xn. A standard application of this setting was introduced in Wegkamp [26]:
given m + n i.i.d. observations drawn from f , use the first m observations to build M
estimators f̂1, . . . , f̂M , and in a second step use the remaining n observations to select
the best among the preliminary estimators f̂1, . . . , f̂M . A related problem is selecting the
best estimator from a family f̂1, . . . , f̂M where these estimators are built using the same
data used for model selection or aggregation. Such problems were recently considered in
Dalalyan and Salmon [4] and Dai et al. [3] for the regression model with fixed design.

We are also interested in deriving sharp oracle inequalities with prior weights on
the model {f1, . . . , fM}. To be more precise, for some prior probability distribution

π1, . . . , πM over the finite set {f1, . . . , fM} and any ǫ > 0, our estimator f̂n should
satisfy with probability greater than 1 − ε

R(f̂n) ≤ min
j=1,...,M

(

R(fj) +
β

n
log

1

πj

)

+ dn,M (ε), (1.3)

for some positive constant β and some deviation term dn,M (·). The Mirror Averaging
algorithm [8, 6] is known to achieve a similar oracle inequality in expectation. The analysis
of Juditsky et al. [8] shows that the constant β scales linearly with the sup-norm of the
unknown density, which is also the case for the results presented here. Model selection
techniques with prior weights were used in order to derive sparsity oracle inequalities
using sparsity pattern aggregation [23, 20, 6].

Another related learning problem is that of model selection when the model is finite
dimensional with a specific shape, for example a linear span of M functions or the convex
hull of M functions. This is the aggregation framework and it has received a lot of
attention in the last decade to construct adaptive estimators that achieve the minimax
optimal rates, especially for the regression problem [24, 17, 23, 11, 20] but also for density
estimation [27, 10, 21].

The main contribution of the present paper is the following.
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Optimal exponential bounds for aggregation of density estimators 3

• We provide sharp oracle inequalities and the corresponding tight lower bounds for
two procedures: empirical risk minimization over the discrete set {f1, . . . , fM} and
the penalized procedure (3.1) with the penalty (3.2). Here, tight means that neither
the rate nor the deviation term of the sharp oracle inequalities can be improved.
The sharp oracle inequalities are given in Theorem 2.2 and Corollary 3.1 and the
tight lower bounds are given in Theorem 2.1 and Theorem 3.2. These results lead
to a definition of minimax optimality in deviation, which is discussed in Section 4.

While proving the above results, we extend several aggregation results that are known
for the regression model to the density estimation setting. Let us relate these results of
the present paper to the existing literature on the regression model:

• In Theorem 2.2, we derive a sharp oracle inequality in deviation for the empirical
risk minimizer over the discrete set {f1, . . . , fM }. This is new in the context of
density estimation, and an analogous result is known for the regression model [20].

• In Theorem 3.1, we derive a sharp oracle inequality in deviation for penalized em-
pirical risk minimization with the penalty (3.2). With the uniform prior, this yields
the correct rate (logM)/n of model selection type aggregation. This penalty is in-
spired by recent works on the Q-aggregation procedure [14, 2] where similar oracle
inequalities in deviation were obtained for the regression model. The first sharp
oracle inequalities that achieve the correct rate of model selection type aggregation
were obtained in expectation for the regression model in [27, 1].

• We extend several lower bounds known for the regression model to the density
estimation setting. We show that any procedure that selects a dictionary function
cannot achieve a better rate than

√

(logM)/n and that the rate of model selection
type aggregation is of order (logM)/n. We also show that the exponential weights
aggregate and the empirical risk minimizer over the convex hull of the dictionary
functions cannot be optimal in deviation, with an unavoidable error term of order
1/

√
n. Earlier results for the regression model can be found in [24, 20] for lower

bounds on model selection type aggregation and the performance of selectors, while
[12, 2, 13] contain earlier lower bounds on the performance of exponential weights
and empirical risk minimization over the convex hull of the dictionary.

An aspect of our results is not present in the previous works on the regression model.
In the literature on aggregation in the regression model, lower bounds are proved either
in expectation or in probability in the form

P

(

R(T̂n) > min
j=1,...,M

R(fj) + ψn,M

)

> c, (1.4)

for any estimator T̂n, a risk function R(·), a rate ψn,M and some absolute constant c > 0,
usually c = 1/2. The tight lower bounds presented in Theorem 2.1 and Theorem 3.2
contrast with lower bounds of the form (??) as they yield for any estimator T̂n,

∀x > 0, P

(

R(T̂n) > min
j=1,...,M

R(fj) + ψn,M +
x

n

)

> c exp(−x), (1.5)
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4

i.e., they provide lower bounds for any probability estimate in an interval (0, 1/c) where
c > 0 is an absolute constant. Moreover, these lower bounds show that the exponential
tail of of the excess risk of the estimators from Theorem 2.2 and Theorem 3.1 cannot be
improved. The tools used in the present paper to prove lower bounds of the form (??), in
particular Lemma 5.1, can be used to prove similar results for regression model. The tight
lower bounds of the present paper contrast with the existing literature on the regression
model, since to our knowledge, there is no lower bound of the form (??) available for
regression.

In the regression model with random design, given a class of functions G, a penalty
pen(·), a coefficient ν > 0 and observations (X1, Y1), ..., (Xn, Yn), penalized empirical risk
minimization solves the optimization problem

min
g∈G

1

n

n
∑

i=1

(g(Xi) − Yi)
2 + ν pen(g). (1.6)

But if the distribution of the design is known, the statistician can compute the quantity
E[g(X)2] for all g ∈ G and solve the following minimization problem that slightly differs
from (??):

min
g∈G

E[g(X)2] − 2

n

n
∑

i=1

g(Xi)Yi + ν pen(g). (1.7)

In the regression model, the distribution of the design is rarely known so the penalized
ERM that solves (??) has not received as much attention as the procedure (??) when
the distribution of the design is not known. The density estimation setting studied in
the present paper is closer to the regression setting with known design (??) than to the
regression setting with unknown design (??) studied in [14]. There are differences with
respect to the choice of coefficient of the penalty (3.2), and to the form of the empirical
process that appears in the analysis. These differences are more thoroughly discussed in
Section 3.4.

The paper is organized as follows. In Section 2 we show that empirical risk minimiza-
tion achieves a sharp oracle inequality with slow rate, but this rate cannot be improved
among selectors. Two classical estimators, the exponential weights aggregate and empir-
ical risk minimization over the convex hull of the dictionary functions, are shown to be
suboptimal in deviation. In Section 3, we define a penalized procedure that achieves the
optimal rate log M

n in deviation, and we provide a lower bound that shows that neither
the rate nor the deviation term can be improved. Section 4 proposes a definition of min-
imax optimality in deviation and shows that it is satisfied by the procedures given in
Sections 2 and 3. Section 5 is devoted to the proofs.
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Optimal exponential bounds for aggregation of density estimators 5

2. Sub-optimality of selectors, ERM and exponential

weights

2.1. Selectors

Define a selector as a function of the form fĴ where Ĵ is measurable with respect to
X1, . . . , Xn with values in {1, . . . ,M}. It was shown in the regression framework [8, 20]

that selectors are suboptimal and cannot achieve a better rate that σ
√

log M
n where σ2

is the variance of the regression noise. The following theorem extends this lower bound
for selectors to density estimation. The underlying measure µ is the Lebesgue measure
on Rd for d ≥ 1.

Theorem 2.1 (Lower bounds for selectors). Let L > 0, and M ≥ 2, n ≥ 1, d ≥ 1 be
integers. Let F be the class of all densities f with respect to the Lebesgue measure on Rd

such that ‖f‖∞ ≤ L. Let x ≥ 0 satisfying

log(M) + x

n
< 3.

Then there exist f1, . . . , fM ∈ L2(Rd) with ‖fj‖∞ ≤ L such that the following lower
bound holds:

inf
Ŝn

sup
f∈F

Pf

(

‖Ŝn − f‖2 − inf
j=1,...,M

‖fj − f‖2 ≥ L√
3

√

x+ logM

n

)

≥ 1

24
exp(−x)

where Pf denotes the probability with respect to n i.i.d. observations with density f and

the infimum is taken over all selectors Ŝn.

The proof of Theorem 2.1 is given in Section 5. It can be extended to other measures
as soon as the underlying measurable space allows the construction of an orthogonal
system such as the one described in Proposition 5.4 below.

For any g ∈ L2(µ), define the empirical risk

Rn(g) = ‖g‖2 − 2

n

M
∑

j=1

g(Xi). (2.1)

The empirical risk (??) is an unbiased estimator of the risk (??). In order to explain
the idea behind the proof of our main result described in Theorem 3.1, it is useful the
prove the following oracle inequality for the empirical risk minimizer over the discrete
set {f1, . . . , fM }.
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Theorem 2.2. Assume that the functions f1, . . . , fM ∈ L2(µ) satisfy ‖fj‖∞ ≤ L0 for
all j = 1, . . . ,M . Define

Ĵ ∈ argmin
j=1,...,M

(

‖fj‖2 − 2

n

n
∑

i=1

fj(Xi)

)

.

Then for any x > 0, with probability greater than 1 − exp(−x),

R(fĴ) ≤ min
j=1,...,M

R(fj) + L0

(

4
√

2

√

x+ logM

n
+

8(x+ logM)

3n

)

.

Together with Theorem 2.1, Theorem 2.2 shows that empirical risk minimization is
optimal among selectors. Unlike the oracle inequality of Theorem 3.1 below, this result
applies for any density f , with possibly ‖f‖∞ = ∞. Its proof relies on the concentration
of Rn(g) −R(g) around 0 for fixed functions g with ‖g‖∞ ≤ L0.

Proof of Theorem 2.2. We will use the following notation that is common in the
literature on empirical processes. For any g ∈ L2(µ), define

Pg =

∫

gfdµ, (2.2)

Png =
1

n

n
∑

i=1

g(Xi).

With this notation, the difference between the real risk (??) and the empirical risk (??)
can be rewritten

R(g) −Rn(g) = (P − Pn)(−2g). (2.3)

Let J∗ be such that R(fJ∗) = minj=1,...,M R(fj). The definition of Ĵ yields Rn(fĴ) ≤
Rn(fJ∗). Using (??), it can be rewritten

R(fĴ) −R(fJ∗) ≤ (P − Pn)(−2fĴ + 2fJ∗).

We can control the right hand side of the last display using the concentration inequality
(5.1) with a union bound over j = 1, . . . ,M . For any t > 0, with probability greater than
1 −M exp(−t),

(P − Pn)(−2fĴ + 2fJ∗) ≤ max
j=1,...,M

(P − Pn)(−2fj + 2fJ∗),

≤ σ

√

2t

n
+

8L0t

3n
,

where σ2 = maxj=1,...,M P (−2fj + 2fJ∗)2 ≤ 16L2
0. Setting x = t − logM yields the

desired oracle inequality.
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Optimal exponential bounds for aggregation of density estimators 7

By inspecting the short proof above, we see that the slow rate term
√

x+log M
n comes

from the variance term in the concentration inequality (5.1).
We can draw two conclusions from Theorems 2.1 and 2.2.

• In order to achieve faster rates than
√

log M
n , we need to look for estimators taking

values beyond the discrete set {f1, . . . , fM}. In Section 3, we will consider estimators
taking values in the convex hull of this discrete set.

• The proof of Theorem 2.2 suggests that a possible way to derive an oracle inequality
with fast rates is to cancel the variance term in the concentration inequality (5.1). In
order to do this, we need some positive gain on the empirical risk of our estimator.
Namely, for some oracle J∗ we would like our estimator f̂n to satisfy Rn(f̂n) ≤
Rn(fJ∗) minus some positive value. This value is given by the strong convexity of
the empirical objective in Proposition 3.1.

Define the simplex in RM :

ΛM =







θ ∈ RM ,

M
∑

j=1

θj = 1, ∀j = 1 . . .M, θj ≥ 0







. (2.4)

Given a finite set or dictionary {f1, . . . , fM}, define for any θ ∈ ΛM

fθ =
M
∑

j=1

θjfj. (2.5)

In particular, fj = fej
where e1, . . . , eM are the vectors of the canonical basis in RM .

Two classical estimators, the ERM over the convex hull of f1, ..., fM and the exponen-
tial weights aggregate, are known to be sub-optimal in the regression setting [2, 12, 15, 13].
In the following we show that the same conclusions hold for density estimation with the
L2 risk.

2.2. ERM over the convex hull

A first natural estimator valued in the convex hull of the dictionary functions is the
ERM. However, as in the regression setting [12], this estimator is suboptimal with an
unavoidable error term or order 1/

√
n.

Proposition 2.1. Let X = R and µ be the Lebesgue measure on R. There exist absolute
constants C0, C1, C2, C3 > 0 such that the following holds. Let L > 0. For any integer
n ≥ 1, there exist a density f bounded by L and a dictionary {f1, ..., fM} of functions
bounded by 2L, with C0

√
n ≤ M ≤ C1

√
n, such that with probability greater than 1 −

12 exp(−C2M),
∥

∥fθ̂ERM − f
∥

∥

2 ≥ min
j=1,...,M

‖fj − f‖2 +
C3L√
n
,

where θ̂ERM := argminθ∈ΛM Rn(fθ).
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The proof of Proposition 2.1 can be found in Section 5.5.2.

2.3. Exponential Weights

The exponential weights aggregate is known to achieve optimal oracle inequalities in
expectation when the temperature parameter β > 0 is chosen carefully [16, 5, 8]. Given
prior weights (π1, ..., πM )T ∈ ΛM , it can be defined as follows:

f̂EW
β =

M
∑

j=1

θ̂EW,β
j fj, θ̂EW,β ∈ ΛM , θ̂EW,β

j ∝ πj exp

(

−n

β
Rn(fj)

)

.

The following proposition shows that it is suboptimal in deviation for any temperature,
with a error term of order at least 1/

√
n. This phenomenon was observed in the regression

setting [2, 12], and Proposition 2.2 shows that it also holds for density estimation. As
opposed to [2], the following lower bound requires only 3 dictionary functions.

Proposition 2.2. There exist absolute constants C0, C1, N0 > 0 such that the following
holds. Let X = R and µ be the Lebesgue measure on R. For all n ≥ N0, L > 0, there
exist a probability density f with respect to µ, a dictionary {f1, f2, f3} and prior weights
(π1, π2, π3) ∈ Λ3 such that with probability greater than C0,

∥

∥

∥
f̂EW

β − f
∥

∥

∥

2

≥ min
j=1,2,3

‖fj − f‖2 +
C1L√
n
,

Furthermore, ‖f‖∞ ≤ L, and ‖fj‖∞ ≤ 3L for j = 1, 2, 3.

The following proposition shows that the optimality in expectation cannot hold if the
temperature is below a constant, extending a result from [12] to the density estimation
setting.

Proposition 2.3. Let X = R and µ be the Lebesgue measure on R. There exist absolute
constants c0, c1, c2 > 0 such that the following holds. Let L > 0. For any odd integer
n ≥ c0, there exist a probability density f with respect to µ with ‖f‖∞ ≤ L, and a
dictionary {f1, f2} with fj : X → R and ‖fj‖∞ ≤ L for j = 1, 2 for which the following
holds:

E

∥

∥

∥f̂EW
β − f

∥

∥

∥

2

≥ min
j=1,2

‖fj − f‖2
+
c2L√
n

if β ≤ c1L.

The proofs of Proposition 2.2 and Proposition 2.3 can be found in Section 5.5.3.
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Optimal exponential bounds for aggregation of density estimators 9

3. Optimal exponential bounds for a penalized

procedure

3.1. From strong convexity to a sharp oracle inequality

In this section we derive a sharp oracle inequality for the estimator fθ̂ where θ̂ is defined

in (3.1). Define the empirical objective Hn and the estimator θ̂ by

Hn(θ) =

(

‖fθ‖2 − 2

n

n
∑

i=1

fθ(Xi)

)

+
1

2
pen(θ) +

β

n

M
∑

j=1

θj log
1

πj
, (3.1)

θ̂ ∈ argmin
θ∈ΛM

Hn(θ), (3.2)

for some positive constant β and

∀θ ∈ ΛM , pen(θ) =

M
∑

j=1

θj ‖fθ − fj‖2
. (3.3)

The simplex ΛM and fθ are defined in (??) and (??).
The term

β

n

M
∑

j=1

θj log
1

πj

is a penalty that assigns different weights to the functions fj according to some prior
knowledge given by π1, ..., πM , in order to achieve an oracle inequality such as (??).

The penalty (3.2) as well as the present procedure are inspired by recent works on Q-
aggregation in regression models [22, 2, 14]. The choice of the coefficient 1

2 for the penalty
(3.2) is explained in Remark 3.1 below. An intuitive interpretation of the penalty (3.2)
can be as follows. A point fθ is in the convex hull of {f1, . . . , fM} if and only if it is the
expectation of a random variable taking values in {f1, . . . , fM}. The penalty (3.2) can
be seen as the variance of such a random variable whose distribution is given by θ. More
precisely, let η be a random variable with P (η = j) = θj for all j = 1, . . . ,M . Denote by
Eθ the expectation with respect to the random variable η. Then Eθ[fη] = fθ and

pen(θ) = Eθ ‖fη − Eθ[fη]‖2
,

which is the variance of the random point fη. The penalty (3.2) vanishes at the extreme
points:

∀j = 1, . . . ,M, pen(ej) = 0,

and pen(θ) increases as θ moves away from an extreme point ej . Thus we convexify the
optimization problem over the discrete set {f1, . . . , fM} by considering the convex set
{Eθ[fη], θ ∈ ΛM} which is exactly the convex hull of {f1, . . . , fM}, and we penalize by
the variance of the random point fη.
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It is also possible to describe the level sets of the penalty (3.2). Assume only in this
paragraph that the Gram matrix of f1, ..., fM is invertible and let c ∈ L2(µ) be in the

linear span of f1, ..., fM such that for all j = 1, ...,M ,
∫

2cfjdµ = ‖fj‖2
. Then simple

algebra yields
pen(θ) = ‖c‖2 − ‖c− fθ‖2 .

Thus the level sets of the penalty (3.2) are euclidean balls centered at c.
Last, note that fθ̂ coincides with the Q-aggregation procedure from [2] since

(

‖fθ‖2 − 2

n

n
∑

i=1

fθ(Xi)

)

+
1

2
pen(θ) = Rn(θ) +

1

2
pen(θ) =

1

2



Rn(θ) +

M
∑

j=1

θjRn(fj)



 .

We propose an estimator fθ̂ based on penalized empirical risk minimization over the

simplex, with θ̂ defined in (3.1). This estimator satisfies the following oracle inequality.

Theorem 3.1. Assume that the functions f1, . . . fM satisfy ‖fj‖∞ ≤ L0 for all j =

1, . . . ,M , and assume that the unknown density f satisfies ‖f‖∞ ≤ L. Let θ̂ be defined
in (3.1) with

β = 4L+
8L0

3
.

Then for any x > 0, with probability greater than 1 − exp(−x),

R(fθ̂) ≤ min
j=1,...,M

(

R(fj) +
β

n
log

1

πj

)

+
βx

n
. (3.4)

The following proposition specifies the property of strong convexity of the objective
function Hn(·) defined in (??), which is key to prove Theorem 3.1.

Proposition 3.1 (Strong convexity of Hn). Let Hn and θ̂ be defined by (??) and (3.1),
respectively. Then for any θ ∈ ΛM ,

Hn(θ̂) ≤ Hn(θ) − 1

2

∥

∥fθ − fθ̂

∥

∥

2
. (3.5)

For any θ ∈ ΛM , empirical risk minimization only grants the simple inequality

Rn(θ̂) ≤ Rn(θ),

but with Proposition 3.1 we gain the extra term 1
2

∥

∥fθ − fθ̂

∥

∥

2
. To prove Theorem 3.1, we

will use this extra term to compensate the variance term of the concentration inequality
(5.2). Strong convexity plays an important role in our proofs, and we believe that our
arguments would not work for loss functions that are not strongly convex such as the
Hellinger distance, the Total Variation distance or the Kullback-Leibler divergence.

The proof of Proposition 3.1 is given in Section 5.3. We now give the proof of our
main result, which is close to the proof of Theorem 2.2 except that we leverage the
strong convexity of the empirical objective Hn.
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Optimal exponential bounds for aggregation of density estimators 11

Proof of Theorem 3.1. Note that pen(ej) = 0 for j = 1, . . . ,M and let

J∗ ∈ argmin
j=1,...,M

(

‖fj‖2 − 2

∫

fjfdµ+
β

n
log

1

πj

)

= argmin
j=1,...,M

E [Hn(ej)] .

Using (??) of Proposition 3.1

Hn(θ̂) −Hn(eJ∗) ≤ −1

2

∥

∥fJ∗ − fθ̂

∥

∥

2
,

Rn(θ̂) +
β

n

M
∑

j=1

θ̂j log
1

πj
−Rn(eJ∗) − β

n
log

1

πJ∗

≤ −1

2

∥

∥fJ∗ − fθ̂

∥

∥

2 − 1

2
pen(θ̂),

= −1

2

M
∑

j=1

θ̂j ‖fj − fJ∗‖2
,

where we used Proposition 5.1 with g = fJ∗ for the last display. Using (??), we get

R(fθ̂) −R(fJ∗) − β

n
log

1

πJ∗

≤ Zn

where

Zn = (P − Pn)(−2fθ̂ + 2fJ∗) − β

n

M
∑

j=1

θ̂j log
1

πj
− 1

2

M
∑

j=1

θ̂j ‖fj − fJ∗‖2

and the notation P and Pn is defined in (??) and (??). The quantity Zn is affine in θ
and an affine function over the simplex is maximized at a vertex, so almost surely,

Zn ≤ max
θ∈ΛM



−2(P − Pn)(fθ − fJ∗) − 1

2

M
∑

j=1

θj ‖fJ∗ − fj‖2 − β

n

M
∑

j=1

θj log
1

πj



 ,

= max
k=1,...,M

(

−2(P − Pn)(fk − fJ∗) − 1

2
‖fk − fJ∗‖2 − β

n
log

1

πk

)

. (3.6)

Let k = 1, . . . ,M fixed. Applying Proposition 5.3 with g = −2(fk − fJ∗) and π = πk

yields

P

(

−2(P − Pn)(fk − fJ∗) − 1

2
‖fk − fJ∗‖2 − β

n
log

1

πk
>
βx

n

)

≤ πk exp(−x).

To complete the proof, we use a union bound on k = 1, . . . ,M together with
∑M

j=1 πj = 1
and (??):

P

(

Zn >
βx

n

)

≤
M
∑

k=1

πk exp(−x) = exp(−x).
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Remark 3.1 (Choice of the coefficient of the penalty (3.2)). Let ν ∈ (0, 1). With minor
modifications to the proof of Theorem 3.1, it can be shown that the oracle inequality
(??) still holds with

β =
2L

min(ν, 1 − ν)
+

8L0

3
,

Hn(θ) =

(

‖fθ‖2 − 2

n

n
∑

i=1

fθ(Xi)

)

+ ν pen(θ) +
β

n

M
∑

j=1

θj log
1

πj
,

θ̂ ∈ argmin
θ∈ΛM

Hn(θ).

The oracle inequality (??) is best when β is small. Thus the choice ν = 1
2 is natural since

it minimizes the value of β.

The optimization problem (3.1) is a quadratic program, for which efficient algorithms
exist. We refer to [2, Section 4] for an analysis of the statistical performance of an algo-
rithm that approximately solves a optimization problem similar to (3.1) in the regression
setting.

The estimator θ̂ of Theorem 3.1 is not adaptive since its construction relies on L, an
upper bound of the sup-norm of the unknown density. However, in the case of the uniform
prior πj = 1/M for all j = 1, . . . ,M , Corollary 3.1 below provides an estimator which
is fully adaptive: its construction depends only on the functions f1, . . . , fM and the data
X1, . . . , Xn. A similar adaptivity property was observed in [14] in the regression setting.

Corollary 3.1 (Adaptive estimator). Assume that the functions f1, . . . fM satisfy ‖fj‖∞ ≤
L0 for all j = 1, . . . ,M , and assume that the unknown density f satisfies ‖f‖∞ ≤ L. Let

θ̂ ∈ argmin
θ∈ΛM

(

‖fθ‖2 − 2

n

n
∑

i=1

fθ(Xi)

)

+
1

2
pen(θ). (3.7)

Then for any x > 0, with probability greater than 1 − exp(−x),

R(fθ̂) ≤ min
j=1,...,M

R(fj) +

(

4L+
8L0

3

)

log(M) + x

n
.

Proof of Corollary 3.1. With the uniform prior, πj = 1/M for all j = 1, . . . ,M , the
quantity

β

n

M
∑

j=1

θj log
1

πj
=
β

n
logM

is independent of θ ∈ ΛM . The minimizer (??) is also a minimizer of the empirical
objective (??) used in Theorem 3.1. Thus, the estimator fθ̂ satisfies (??) which completes
the proof.
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Optimal exponential bounds for aggregation of density estimators 13

Corollary 3.1 is in contrast to methods related to exponential weights such as the
mirror averaging algorithm from [8] as these methods rely on the knowledge of the sup-
norm of the unknown density. The method presented here is an improvement in two
aspects. First, the estimator of Corollary 3.1 is fully data-driven. Second, the sharp
oracle inequality is satisfied not only in expectation, but also in deviation.

However, the method of Theorem 3.1 loses this adaptivity property when a non-
uniform prior is used, and we do not know if it is possible to build an optimal and
fully adaptive estimator for non-uniform priors.

3.2. A lower bound with exponential tails

The following lower bound shows that the sharp oracle inequality of Corollary 3.1 cannot
be improved both in the rate and in the tail of the deviation.

Theorem 3.2 (Lower bounds with optimal deviation term). Let M ≥ 2, n ≥ 1 be two
integers and let a real number x ≥ 0 satisfy

log(M) + x

n
< 3.

Let L > 0 and d ≥ 1. Let F be the class of densities f with respect to the Lebesgue
measure on Rd such that ‖f‖∞ ≤ L.

Then there exist M functions f1, . . . , fM in L2(Rd) with ‖fj‖∞ ≤ L satisfying

inf
T̂n

sup
f∈F

Pf

(

∥

∥

∥T̂n − f
∥

∥

∥

2

− min
j=1,...,M

‖fj − f‖2
>

L

24

(

log(M) + x

n

))

≥ 1

24
exp(−x)

where the infimum is taken over all estimators T̂n and Pf denotes the probability with
respect to n i.i.d. observations with density f .

Notice that the restriction log(M)+x
n < 3 is natural since the estimator T̂ ∗

n ≡ 0 achieves

a constant error term and is optimal in the region log(M)+x
n > c for some absolute constant

c. Indeed, as the unknown density satisfies ‖f‖∞ ≤ L, we have with probability 1:

∥

∥

∥T̂ ∗
n − f

∥

∥

∥

2

= ‖f‖2 ≤ L ≤ inf
j=1,...,M

‖f − fj‖2
+ L, (3.8)

R(T̂ ∗
n) ≤ inf

j=1,...,M
R(fj) + L.

Thus it is impossible to get the lower bound of Theorem 3.2 for arbitrarily large x+log M
n .

3.3. Weighted loss and unboundedness

The previous strategy based on penalized risk minimization over the simplex can be
applied to handle unbounded densities or unbounded dictionary functions, if we use a
weighted loss.
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Let w : X → R+ be a measurable function with respect to µ. Define the norm (or
semi-norm if w is zero on a set of positive measure)

‖g‖2
w =

∫

g2wdµ, ∀g ∈ L2(µ).

Then we can define the estimator fθ̂ where

θ̂ = argmin
θ∈ΛM

Vn(θ), Vn(θ) = Pn



‖fθ‖2
w − 2

n

n
∑

i=1

fθ(Xi)w(Xi) +
1

2

M
∑

j=1

θj ‖fj − fθ‖2
w



 .

The function Vn is strongly convex with respect to the new norm ‖·‖2
w. As in the proof

of Theorem 3.1,this leads to

∥

∥fθ̂ − f
∥

∥

2

w
≤ ‖fJ∗ − f‖2

w+ max
k=1,...,M

δk, δk := (P−Pn)(−2(fJ∗−fk)w)−1

2
‖fJ∗ − fk‖2

w .

If for some L,L0 > 0, ‖wf‖∞ ≤ L and maxj=1,...,M ‖wfj‖∞ ≤ L0, then

δk ≤ −2(P − Pn)((fk − fJ∗)w) − 1

2L
E[(fk(X) − fJ∗(X))2w(X)2].

We apply (5.2) to the random variables (fk − fJ∗)(Xi)w(Xi), which are almost surely
bounded by L0. Using the union bound on k = 1, ...,M we obtain maxk=1,...,M δk ≤
β(x+ logM)/n with probability greater than 1 − exp(−x). and thus

∥

∥fθ̂ − f
∥

∥

2

w
≤ ‖fJ∗ − f‖2

w + β

(

x+ logM

n

)

,

where β = c (L+ L0) for some numerical constant c > 0.

3.4. Differences and similarities with regression problems

Here we discuss differences and similarities between aggregation of density and regression
estimators. Some notation is needed in order to compare these settings.

We first define some notation related to the Density Estimation (DE) framework
studied in the present paper. Let X be a random variable with density f absolutely
continuous with respect to the measure µ, let Dde = {f1, ..., fM } be a subset of L2(µ)
and define for all g ∈ L2(µ) and x ∈ X ,

‖g‖2 =

∫

g2dµ, lde

g (x) = ‖g‖2 − 2g(x), g∗ = argmin
g∈Dde

‖g − f‖2 = argmin
g∈Dde

E[lde

g (X)].

Given n i.i.d. observationsX1, ..., Xn and some fixed function g, one can use the empirical
risk Pn(lde

g ) =
∑n

i=1
1
n l

de

g (Xi).
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Optimal exponential bounds for aggregation of density estimators 15

We now define similar notation for the regression problem with the L2 loss. Let (X,Y )
be a random couple valued in X × R, let PX be the probability measure of X , let f be
the true regression function defined by f(x) = E[Y |X = x], let Dr = {f1, ..., fM } be a
subset of L2(PX) and define for all g ∈ L2(PX),

‖g‖2
PX

= E[g(X)2], g∗ = argmin
g∈Dr

‖g − f‖2
PX
.

For Regression with Unknown Design (RUD) i.e., when the distribution of the design X
is not known to the statistician, a natural choice for the loss function lg is

lrud

g (x, y) = (g(x) − y)2, ∀x, y ∈ X × R,

and the oracle g∗ defined above satisfies g∗ = argming∈Dr E[lrud

g (X,Y )]. For Regression

with Known Design (RKD), the quantity ‖g‖2
PX

is accessible for all g. Thus we can define
the loss

lrkd

g (x, y) = ‖g‖2
PX

− 2g(x)y, ∀x, y ∈ X × R,

and the oracle g∗ satisfies g∗ = argming∈Dr E[lrkd

g (X,Y )]. Thus, two natural functions
lg arise in the regression context, depending on whether the distribution of the design
is known or unknown. Given n i.i.d. observations (Xi, Yi) with the same distribution
as (X,Y ), the empirical quantities Pn(lrud

g ) and Pn(lrkd

g ) can be used to infer the true
regression function f . An estimator constructed using the quantity Pn(lrkd

g ) is used, for
example, in [24] for the problem of linear and convex aggregation.

Linear or quadratic empirical process. The empirical process (Pn − P )(lg − lg∗)
indexed by g plays an important role in the proofs of Theorem 2.2 and Theorem 3.1. This
empirical process also appears in the analysis [14] for regression with unknown design
with the loss lrud

g . For density estimation and regression with known design, this empirical
process is linear in g:

(Pn−P )(lde

g −lde

g∗ ) = −2(Pn−P )(g−g∗), (Pn−P )(lrkd

g −lrkd

g∗ ) = −2(Pn−P )[(g−g∗)ẏ],

where the function ẏ(·) above is defined by ∀x, y ∈ X × R, ẏ(x, y) = y. For regression
when the design is unknown, the empirical process is quadratic in the class member g. To
control the behavior of this quadratic empirical process, the contraction principle is used
in [14], whereas this principle is not needed for density estimation or regression when the
distribution of the design is known.

The penalty (3.2) and its coefficient. In the regression problem when the distri-
bution is known, given a dictionary of potential regression functions {f1, ..., fM }, the
quantity

M
∑

j=1

θj ‖fj − fθ‖2
PX

, (3.9)

is accessible and a procedure similar to the one proposed in Theorem 3.1 and Corol-
lary 3.1 can be constructed, with the penalty coefficient 1/2 which is a natural choice as
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explained in Remark 3.1. For regression with unknown design, the above penalty cannot
be computed: the procedure [14] for the L2 loss is the estimator fθ̂ where

θ̂ = argmin
θ∈ΛM

(

Pn

(

lrud

fθ

)

+ νPn(fj − fθ)2
)

,

= argmin
θ∈ΛM

(

1

n

n
∑

i=1

(Yi − fθ(Xi))
2 +

ν

n

n
∑

i=1

(fj − fθ)2(Xi)

)

,

for some coefficient ν ∈ (0, 1) and where we chose the uniform prior for clarity. Thus
the procedure [14] can be formulated as a penalized procedure where the penalty is the
empirical counterpart of (??) with the coefficient ν. Although 1/2 is a natural choice for
regression with known design and density estimation, for regression with unknown design
the expression of the optimal coefficient is more intricate [14, Minimize β in (1.4)].

Sketch of proof for the regression model with known design. In order to show
the similarities between density estimation and regression problems when the design is
known, we now give the main ideas to derive an oracle inequality similar to Corollary 3.1
for regression with known design. Note that the framework studied in [14] does not cover

the estimator defined below, since the function lrkd

g depends on the quantity ‖g‖2
PX

. Given
n i.i.d. observations (X1, Y1), ..., (Xn, Yn), define

θ̂ = argmin
θ∈ΛM

Vn(θ), Vn(θ) = Pn

(

lrkd

fθ

)

+
1

2

M
∑

j=1

θj ‖fj − fθ‖2
PX

.

Analogously to the argument of Proposition 3.1, we note that the function Vn is strongly

convex and Vn(θ̂) ≤ Vn(eJ∗) − 1
2

∥

∥fJ∗ − fθ̂

∥

∥

2

PX
for any J∗ = 1, ...,M . As in the proof of

Theorem 3.1, this leads to

∥

∥fθ̂ − f
∥

∥

2

PX
≤ ‖fJ∗ − f‖2

PX
+ max

k=1,...,M
δk, δk := (P−Pn)(lrkd

fk
−lrkd

fJ∗
)−1

2
‖fJ∗ − fk‖2

PX
.

As explained above, when the distribution of the design is known, the empirical process
is linear in fk − fJ∗ :

δk = −2(P − Pn)((fk − fJ∗)ẏ) − 1

2
‖fk − fJ∗‖2

PX
.

If for some b > 0, |Y | ≤ b and maxj=1,...,M |fj(X)| ≤ b almost surely, then

δk ≤ −2(P − Pn)((fk − fJ∗)ẏ) − 1

2b2
E[Y 2(fk(X) − fJ∗(X))].

Using (5.2) and the union bound on k = 1, ...,M , we obtain maxk=1,...,M δk ≤ β(x +
logM)/n with probability greater than 1 − exp(−x) and thus

∥

∥fθ̂ − f
∥

∥

2

PX
≤ ‖fJ∗ − f‖2

PX
+ β

(

x+ logM

n

)

,
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Optimal exponential bounds for aggregation of density estimators 17

where β = c b2 for some numerical constant c > 0.
In conclusion, the density estimation framework studied in the present paper is close

to the regression problem when the distribution of the design is known, while it presents
several differences with the regression problem when the design is not known.

4. Minimax optimality in deviation

The goal of this section is to state a minimax optimality result based on the lower bound
of Theorem 3.2 and the sharp oracle inequality of Corollary 3.1. In this section, the
underlying measure µ is the Lebesgue measure on R

d for some integer d ≥ 1.
Minimax optimality in model selection type aggregation is usually defined in expecta-

tion [24], by studying the quantity

sup
fj∈F

j=1,...,M

inf
T̂n

sup
f∈Fd

(

ER(T̂n) − inf
j=1,...,M

R(fj)

)

where the infimum is taken over all estimators T̂n, F is a class of possible functions for
the dictionary and Fd is the class of all densities satisfying some general constraints.

Let µ be the Lebesgue measure on Rd and for some L > 0, let F = {g ∈ L2(µ), ‖g‖∞ ≤
L} and Fd be the set of all densities f with respect to µ satisfying ‖f‖∞ ≤ L. Then, by
an integration argument, Corollary 3.1 and Theorem 3.2 provide the following bounds
for some absolute constant c, C > 0 and any M ≥ 2, n ≥ 1:

c
L logM

n
≤ sup

fj∈F
j=1,...,M

inf
T̂n

sup
f∈Fd

(

ER(T̂n) − inf
j=1,...,M

R(fj)

)

≤ C
L logM

n
.

This shows that L log M
n is the optimal rate of convergence in expectation for model

selection type aggregation under the boundedness assumption.
But our results are stronger that the above optimality in expectation since the de-

viation term in the sharp oracle inequality of Corollary 3.1 and in the lower bound of
Theorem 3.2 are the same up to a numerical constant.

The central quantity when dealing with optimality in deviation is, for t > 0,

sup
fj∈F

j=1,...,M

inf
T̂n

sup
f∈Fd

P

(

R(T̂n) − inf
j=1,...,M

R(fj) > t

)

.

The results of Section 3 provide upper and lower bounds for this quantity.
We propose the following definition of minimax optimality in deviation.

Definition 4.1 (Minimax optimality in deviation). Let F be a subset of L2(µ) and Fd

be a set of densities with respect to the measure µ. Let En be a set of estimators. Denote
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by P
n,M
En,F ,Fd

(t) the quantity

P
n,M
En,F ,Fd

(t) = sup
fj ∈F

j=1,...,M

inf
T̂n∈En

sup
f∈Fd

P

(

R(T̂n) − inf
j=1,...,M

R(fj) > t

)

.

A function pn,M (·) is called optimal tail distribution over (En,F ,Fd) if for any n ≥
1,M ≥ 2 and any t > 0,

c pn,M (c′t) ≤ P
n,M
En,F ,Fd

(t) ≤ pn,M (t)

where c, c′ > 0 are constants independent of n,M and t.

The following proposition is a direct consequence of Corollary 3.1 and Theorem 3.2.

Proposition 4.1. Let M ≥ 2, n ≥ 1 and L > 0. Let F = {g ∈ L2(Rd), ‖g‖∞ ≤ L}
and Fd be the set of all densities f with respect to the Lebesgue measure on Rd with
‖f‖∞ ≤ L. Let En be the set of all estimators. Define

pn,M (t) = M exp

(

− 3tn

20L

)

1[0,L](t),

where 1A denotes the indicator function of the set A. Then for all t > 0,

1

24
pn,M (160 t) ≤ P

n,M
En,F ,Fd

(t) ≤ pn,M (t) .

Thus, pn,M (·) is an optimal tail distribution over (En,F ,Fd) according to Definition 4.1.

Proof. The regime t > L corresponds to the trivial case where (??) holds and T̂ ∗
n = 0

is an optimal estimator. In this regime pn,M (t) = 0.

For t ≤ L, by setting t = β log(M)+x
n = 20L

3
log(M)+x

n in Corollary 3.1 , we get

P
n,M
En,F ,Fd

≤ pn,M (t)

while Theorem 3.2 implies that

1

24
pn,M

(

24 · 20

3
t

)

≤ P
n,M
En,F ,Fd

(t).

Similarly, the results of Section 2 imply the following proposition.

Proposition 4.2. Let M ≥ 2, n ≥ 1 and L > 0. Let F = {g ∈ L2(Rd), ‖g‖∞ ≤ L}
and Fd be the set of all densities f with respect to the Lebesgue measure on Rd with
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Optimal exponential bounds for aggregation of density estimators 19

‖f‖∞ ≤ L. Let Sn be the set of all selectors, i.e. the measurable functions valued in the
discrete set {f1, . . . , fM}. Define

qn,M (t) = M exp

(

− t2n

L2(4
√

2 + 8/3)2

)

1[0,L](t),

where 1A denotes the indicator function of the set A. Then for all t > 0,

1

24
qn,M

(√
3(4

√
2 + 8/3) t

)

≤ P
n,M
Sn,F ,Fd

(t) ≤ qn,M (t) .

Thus, qn,M (·) is an optimal tail distribution over (Sn,F ,Fd) according to Definition 4.1.

Proof. The regime t > L can be treated similarly as in the proof of Proposition 4.1.

For t ≤ L, let t = L(4
√

2 + 8/3)
√

x+log M
n in Theorem 2.2. For this definition of t and

x, 1 ≥
√

x+log M
n ≥ x+log M

n . Then

P
n,M
Sn,F ,Fd

(t) ≤ qn,M (t)

and Theorem 2.1 implies

1

24
qn,M

(√
3(4

√
2 + 8/3) t

)

≤ P
n,M
Sn,F ,Fd

(t).

5. Proofs

5.1. Bias-variance decomposition

As discussed in Section 3, the penalty can be viewed as the variance of a random element
of the discrete set {f1, . . . , fM} and it satisfies the following bias-variance decomposition.

Proposition 5.1. For any g ∈ L2(µ) and θ ∈ ΛM ,

M
∑

j=1

θj ‖fj − g‖2
= ‖fθ − g‖2

+ pen(θ) (5.1)

where pen(·) is the penalty defined in (3.2).

Proof. Let η be a random variable with P (η = j) = θj for all j = 1, . . . ,M . Denote by
Eθ the expectation with respect to the random variable η. Then Eθ[fη] = fθ and the
bias-variance decomposition yields

Eθ ‖fθ − g‖2
= ‖g − Eθ[fη]‖2

+ Eθ ‖fη − Eθ[fη]‖2
,

which is exactly the desired result.
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5.2. Concentration inequalities

Proposition 5.2. Let Y1, . . . , Yn be independent random variables, such that almost
surely, for all i, |Yi − EYi| ≤ b. Then for all x > 0,

P

(

n
∑

i=1

Yi − EYi >
√

2xv +
bx

3

)

≤ exp(−x), (5.2)

where v =
∑n

i=1 V (Yi).

Proposition 5.2 is close to Bennett and Bernstein inequalities. A proof can be found
in [18, Section 2.2.3, (2.20) with c = b/3].

The following one-sided concentration inequality is a direct consequence of Proposi-
tion 5.2 and the inequality 2

√
uv ≤ u

a +av for all a, u, v > 0. Under the same assumptions
as Proposition 5.2 above, for all x > 0 and any a > 0,

P

(

1

n

n
∑

i=1

Yi − EYi − aV (Yi) >

(

1

2a
+
b

3

)

x

n

)

≤ exp(−x). (5.3)

Proposition 5.3. Let X1, . . . , Xn be i.i.d. observations drawn from the density f with
‖f‖∞ ≤ L. Let g ∈ L2(µ) with ‖g‖∞ ≤ 4L0. Let β = 4L+ 8L0

3 . Define

ζn = (P − Pn)g − 1

8
‖g‖2 − β

n
log

1

π
,

where the notation P and Pn is defined in (??). Then for all x > 0,

P

(

ζn >
βx

n

)

≤ π exp(−x).

Proof of Proposition 5.3. As the unknown density f is bounded by L,

V (g(X1)) ≤ P (g2) =

∫

g2fdµ ≤ L ‖g‖2 ,

−1

8
‖g‖2 ≤ − 1

8L
V (g(X1)) .

Thus almost surely

ζn ≤ (P − Pn)g − 1

8L
V (g(X1)) − β

n
log

1

π
.

Define n i.i.d. random variables Y1, . . . , Yn by

Yi = g(Xi).
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Almost surely, |Yi| ≤ 4L0 and |Yi − EYi| ≤ 8L0. By applying (5.2) to Y1, . . . , Yn with
b = 8L0 and a = 1

8L , we get that for any t > 0 with x = t+ log 1
π ,

P

(

(P − Pn)g − 1

8L
V (g(X1)) >

βx

n

)

≤ exp(−x),

P

(

ζn >
βx

n

)

≤ P

(

(P − Pn)g − 1

8L
V (g(X1)) − β

n
log

1

π
>
βt

n

)

≤ π exp(−t).

5.3. Strong convexity

Proof of Proposition 3.1. We will first prove that for any θ, θ′,

Hn(θ) −Hn(θ′) = 〈∇Hn(θ′), θ − θ′〉 +
1

2
‖fθ − fθ′‖2 . (5.4)

Using the bias-variance decomposition of (??) with g = 0, we get

pen(θ) =
M
∑

j=1

θj ‖fθ − fj‖2 = − ‖fθ‖2 +
M
∑

j=1

θj ‖fj‖2 .

Thus Hn can be rewritten as Hn(θ) = 1
2 ‖fθ‖2

+ L(θ) where L is affine in θ. If we can

prove N(θ)−N(θ′) = 〈∇N(θ′), θ−θ′〉+‖fθ − fθ′‖2
where N(θ) = ‖fθ‖2

, then (??) holds.
By simple properties of the norm,

‖fθ‖2 − ‖fθ′‖2
= 2

∫

fθ′(fθ − fθ′)dµ+ ‖fθ − fθ′‖2
,

= 2θ′TG(θ − θ′) + ‖fθ − fθ′‖2
,

where G is the Gram matrix with elements Gj,k =
∫

fjfkdµ for all j, k = 1, . . . ,M . The

gradient at θ′ of the function θ → ‖fθ‖2
is exactly 2Gθ′ so (??) holds.

The function Hn is convex and differentiable. If θ̂ minimizes Hn over the simplex, then
for any θ ∈ ΛM , 〈∇Hn(θ̂), θ − θ̂〉 ≥ 0 which proves (??).

5.4. Tools for lower bounds

Proposition 5.4. There exists a countable set of functions ǫ1, ǫ2, . . . defined on [0, 1]
such that for all j, k > 0 with k 6= j,

∀u ∈ [0, 1), ǫj(u) ∈ {−1, 1},
∫

[0,1]

ǫj(x)ǫk(x)dx = 0,

∫

[0,1]

ǫ2
j(x)dx = 1.
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Furthermore, if U is uniformly distributed on [0, 1], then ǫ1(U), ǫ2(U), ... are i.i.d. Rademacher
random variables.

See [7, Definition 3.22] for an explicit construction of these functions and a proof a
their properties.

If P ≪ Q are two probability measures defined on some measurable space, define their
Kullback-Leibler divergence and their χ2 divergence by

K(P,Q) =

∫

log

(

dP

dQ

)

dP, χ2(P,Q) =

∫ (

dP

dQ
− 1

)2

dQ.

The following comparison holds

K(P,Q) ≤ χ2(P,Q). (5.5)

Furthermore, if n ≥ 1 and P⊗n denotes the n-product of measures P ,

K(P⊗n, Q⊗n) = nK(P,Q). (5.6)

The proofs of (??) and (??) are given in [25, Lemma 2.7 and page 85].

Lemma 5.1. Let (Ω,A) be a measurable space and m ≥ 1. Let m ≥ 1 and A0, . . . , Am ∈
A be disjoint events: Aj ∩Ak = ∅ for any j 6= k. Assume that Q0, . . . , Qm are probability
measures on (Ω,A) such that

1

m

m
∑

j=1

K(Qj, Q0) ≤ χ < ∞.

Then,

max
j=0,...,m

Qj(Ω \Aj) ≥ 1

12
min(1,m exp(−3χ)).

Lemma 5.1 can be found in [9, Lemma 3]. It is a direct consequence of [25, Proposition
2.3] with τ∗ = min(m−1, exp(−3χ)).

Corollary 5.1 (Minimax lower bounds). Let n ≥ 1 be an integer and s > 0 be a
positive number. Let m ≥ 1 and q0, . . . , qm be a family of densities with respect to the
same measure µ. Assume that for any j 6= k,

‖qj − qk‖2 ≥ 4s > 0. (5.7)

If P⊗n
k denotes the product measure associated with n i.i.d. observations drawn from the

density qk, assume that

1

m

m
∑

j=1

K(P⊗n
j , P⊗n

0 ) ≤ χ

for some finite χ > 0. Then, for any estimator T̂n,

max
k=0,...,m

P
⊗n
k

(

‖T̂n − qk‖2 ≥ s
)

≥ 1

12
min(1,m exp(−3χ)).
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Proof of Corollary 5.1. For any estimator T̂n, for any j = 0, . . . ,m define the events

Aj =

{

∥

∥

∥T̂n − qj

∥

∥

∥

2

< s

}

.

These events are disjoint because of the triangle inequality and (??). Applying Lemma 5.1
completes the proof.

5.5. Lower bound theorems

5.5.1. Lower bounds with exponential tails

Proof of Theorem 3.2. Let ǫ2, . . . , ǫM be M − 1 functions from Proposition 5.4. Con-
sider the dictionary {f1, . . . , fM } such that for all (u1, . . . , ud) ∈ Rd

f1(u1, . . . , ud) =
L

2
1[0,1]

(

L

2
u1

) d
∏

q=2

1[0,1](uq),

and for j ≥ 2

fj(u1, . . . , ud) =
L

2

(

1 +

√

log(M) + x

3n
ǫj

(

L

2
u1

)

)

1[0,1]

(

L

2
u1

) d
∏

q=2

1[0,1](uq).

Since log M+x
n < 3, these functions are densities and satisfy ‖fj‖∞ < L.

For any j 6= k,

‖fj − fk‖2 ≥ L
log(M) + x

6n
(5.8)

and (??) is true with equality when j = 1. If P⊗n
k denotes the probability with respect

to n i.i.d. random variables with density fj, the properties (??) and (??) give that for
any k ≥ 2,

K(P⊗n
k , P⊗n

1 ) = nK(P⊗1
k , P⊗1

1 ),

≤ nχ2(P⊗1
k , P⊗1

1 ),

= n
2

L
‖fk − f1‖2

,

=
log(M) + x

3
.

Applying Corollary 5.1 with m = M − 1 yields that for any estimator T̂n,

sup
j=1,...,M

P⊗n
j

(

∥

∥

∥T̂n − fj

∥

∥

∥

2

≥ L
log(M) + x

24n

)

≥ 1

12
min(1,

M − 1

M
exp(−x)),

≥ 1

24
exp(−x).
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Proof of Theorem 2.1. Let ǫ1, . . . , ǫM be M functions from Proposition 5.4.
For (u1, . . . , ud) ∈ Rd, we define a dictionary {f1, . . . , fM} by

fj(u1, . . . , ud) =
L

2

(

1 + ǫj

(

L

2
u1

))

1[0,1]

(

L

2
u1

) d
∏

q=2

1[0,1](uq),

and we define M densities {d1, . . . , dM}:

dj(u1, . . . , ud) =
L

2

(

1 + γǫj

(

L

2
u1

))

1[0,1]

(

L

2
u1

) d
∏

q=2

1[0,1](uq),

for some γ ∈ (0, 1
2 ) that will be specified later. Due to the properties of the (ǫj), the

following holds for any j 6= k

‖fk − dj‖2 =
L

2
(1 + γ2),

‖fj − dj‖2 =
L

2
(1 − γ)2,

‖dj − dk‖2 = Lγ2.

Thus if Ŝn is any selector taking values in the discrete set {f1, . . . , fM }:

‖Ŝn − dj‖2 − inf
l=1,...,M

‖fl − dj‖2 = ‖Ŝn − dj‖2 − ‖fj − dj‖2 = 2Lγ1Ŝn 6=fj
. (5.9)

Let P⊗n
k be the product measure associated with n i.i.d. random variables drawn from

the density dk. Equation (??) ensures that with probability P
⊗n
j (Ŝn 6= fj), the excess

risk is 2Lγ.
For any k 6= 1, using (??) and (??), we obtain

K(P⊗n
k , P⊗n

1 ) = nK(P⊗1
k , P⊗1

1 ),

≤ nχ2(P⊗1
k , P⊗1

1 ),

≤ 4

L
n ‖dk − d1‖2

,

= 4nγ2,

where we used that d1(u1, . . . , ud) ≥ L/4 almost surely on the common support of dk

and d1.

Now we choose γ = 1
2

√
3

√

x+log M
n such that ∀k 6= 1,K(P⊗n

k , P⊗n
1 ) ≤ x+log M

3 . Let

Ŝn be any estimator with values in the discrete set {f1, . . . , fM}. For any j = 1, . . . ,M ,
define the event Aj = {Ŝn = fj}. The events are disjoint if fj 6= fk for all j 6= k (if
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this is not satisfied, we can always remove the duplicates). By applying Lemma 5.1 with
m = M − 1 and χ = 1

3 (x+ logM), we get

max
j=1,...,M

P
⊗n
j

(

Ŝn 6= fj

)

≥ M − 1

12M
exp(−x).

Since (M − 1)/M ≥ 1/2,

max
j=1,...,M

P
⊗n
j

(

‖Ŝn − dj‖2 − inf
l=1,...,M

‖fl − dj‖2 > 2Lγ

)

≥ M − 1

12M
exp(−x),

≥ 1

24
exp(−x).

5.5.2. ERM over the convex hull

Proof of Proposition 2.1. By homogeneity, it is enough to prove the case L = 2. Let
φ1, ..., φM , φM+1 be M + 1 functions given by Proposition 5.4. Consider the probability
density f = 1[0,1] and the dictionary of 2M + 1 functions

D =
{

1[0,1]

}

∪
{

(1 ± φjφM+1)1[0,1], j = 1, ...,M
}

.

The true density is in the dictionary thus ming∈D ‖f − g‖2
= 0. Also, all the elements of

the dictionary are uniformly bounded by L = 2.
The convex hull of the dictionary is the set

{gλ = (1 + fλφM+1)1[0,1], λ ∈ RM , |λ|1 ≤ 1},

where fλ =
∑M

j=1 λjφj and | · |1 is the ℓ1 norm in RM .

For all λ ∈ RM with |λ|1 ≤ 1, ‖f − gλ‖2 = |λ|22 where | · |2 is the ℓ2 norm in RM .

Let Lλ := ‖gλ‖2 − 2gλ + 2f − ‖f‖2
= |λ|22 − 2fλφM+1. Since the empirical process

is linear in λ, the proof from [12] can be adapted as follows. Given n i.i.d. observations
X1, ..., Xn generated by the density f , [12, Lemma 5.4] states that for every r > 0, with
probability greater than 1 − 6 exp(−C2M),

c0

√

r

M
≤ c1

√

rM

n
≤ sup

λ∈RM ,|λ|2≤√
r

Pn(fλφM+1) ≤ c2

√

rM

n
,≤ c3

√

r

M
,

where c0, c1, c2, c3 > 0 are absolute constants.
Let r ≤ 1/M that will be specified later (such that if |λ|2 ≤ √

r then |λ|1 ≤ 1). On
the one hand,

inf
λ∈RM ,|λ|2≤√

r
PnLλ ≤ r − 2 sup

λ∈RM ,|λ|2≤√
r

Pn(fλφM+1).
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Given that n ∼ M2, using the above high probability estimate, there exists a positive
absolute constant c4 such that for all r ≤ c2

3/(4M), with probability greater than 1 −
6 exp(−C2M), infλ∈RM ,|λ|2≤√

r PnLλ ≤ √
r(

√
r − c3/

√
M) ≤ −c4

√

r/M , where c4 =
c3/2.

On the other hand, if ρ ≤ 1/M , with probability greater than 1 − 6 exp(−C2M),

sup
λ∈RM ,|λ|2≤√

ρ

|(Pn − P )Lλ| = 2 sup
λ∈RM ,|λ|2≤√

ρ

|(Pn − P )fλφM+1| ≤ 2c3

√

ρ

M
.

Finally, choose r, ρ such that 2c3

√

ρ/M < c4

√

r/M and ρ > c5/
√
n for some absolute

constant c5 > 0, then with probability greater than 1 − 12 exp(−C2M),

inf
λ,|λ|2≤√

ρ
PnLλ ≥ − sup

λ,|λ|2≤√
ρ

|(Pn − P )Lλ| ≥ −2c3

√

ρ

M
> −c4

√

r

M
≥ inf

λ,|λ|2≤√
r
PnLλ.

Thus with high probability, infλ,|λ|2≤√
ρ PnLλ > infλ,|λ|1≤1 PnLλ. The inequality is strict

so the empirical risk minimizer has a risk greater than ρ. As ρ satisfies ρ > C3/
√
n, the

proof is complete.

5.5.3. Exponential Weights

If Y1,...,Ym are i.i.d. with P (Y1 = ±1) = 1/2, then for all u ∈ [0,
√
m/4],

1

15
exp(−4u2) ≤ P

(

Y1 + ...+ Ym ≥ u
√
m
)

≤ exp(−u2/2). (5.10)

A proof of the lower bound can be found in [19, 7.3.2] and a standard Chernoff bound
provides the upper bound. The following proof uses arguments similar to [2].

Proof of Proposition 2.2. By homogeneity, it is enough to prove the case L = 1. Let
ǫ1, ǫ2, ǫ3 be 3 functions from Proposition 5.4. Let f = 1[0,1] be the unknown density and
let

f1 = f + ǫ1, f2 = f + (1 +
1√
n

)ǫ2, f3 = f2 +
α√
n
ǫ3,

π1 = 1/(8
√
n), π2 = 1/(8

√
n), π3 = 1 − 1/(4

√
n),

where 0 ≤ α ≤ n1/4 will be specified later. The best function in the dictionary is f1:
‖f1 − f‖2 = minj=1,...,M ‖fj − f‖2.

Let E be the event {Rn(f2) + 2/
√
n ≤ Rn(f1)}. By simple algebra,

E =
{

1 + 4
√
n− 2

√
nPn(ǫ2) ≤ 2n(Pn(ǫ2 − ǫ1)

}

⊇
{

7
√
n ≤ 2n(Pn(ǫ2 − ǫ1)

}

,

where for the inclusion we used 1 ≤ √
n and |Pn(ǫ2)| ≤ 1. The 2n random variables

(ǫj(Xi))j=1,2; i=1,...,n are i.i.d. Rademacher random variables, so applying the lower bound
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of (??) with m = 2n and u = 7
√

2/4 yields P (E) ≥ C2 > 0 for some absolute constant
C2. Now set α2 = 8 log(2n/C2), and choose N0 such that for all n ≥ N0, 8 log(2n/C2) > 0
and α2 ≤ √

n.
Let F := {Rn(f3) ≤ Rn(f1)} and define

G = {2(α/
√
n)Pn(ǫ3) ≤ α2/n− 2/

√
n}.

Since Rn(f3) = Rn(f2) + α2/n − 2(α/
√
n)Pn(ǫ3), we have E ∩ Gc ⊆ F . As α2 ≤ √

n
holds, we have α2 − 2

√
n ≤ −α2 and

G ⊆ {(2(α/
√
n)Pn(ǫ3) ≤ −α2/n} = {−nPn(ǫ3) ≥ √

nα/2}.

The random variable −nPn(ǫj) is the sum of n independent Rademacher random vari-
ables. Applying the upper bound of (??) to u = α/2, we have P (G) ≤ exp(−α2/8) =
C2/(2n) since α = 8 log(2n/C2). Now as F c ⊂ Ec ∪G,

P (Ec ∪ F c) ≤ P (Ec ∪G) ≤ (1 − C2) +
C2

2n
≤ 1 − C2/2 < 1.

The probability of the event E ∩ F is greater than C0 := C2/2. On this event, Rn(f2) ≤
Rn(f1) and Rn(f3) ≤ Rn(f1) thus

θ̂EW,β
1 =

π1 exp(−Rn(f1)/β)

π1 exp(−Rn(f1)/β) + π2 exp(−Rn(f2)/β) + π3 exp(−Rn(f3)/β)
,

≤ π1 exp(−Rn(f1)/β)

(π1 + π2 + π3) exp(−Rn(f1)/β)
= π1 =

1

8
√
n
.

Let θ1 = θ̂EW,β
1 for simplicity. As (ǫ1, ǫ2, ǫ3) is an orthonormal system,

∥

∥fθ̂EW,β − f
∥

∥

2 − ‖f1 − f‖2 ≥ ‖θ1f1 + (1 − θ1)f2 − f‖2 − ‖f1 − f‖2
,

= (1 − θ1)2 ‖f2 − f‖2 − (1 − θ2
1) ‖f1 − f‖2

,

≥ 2(1 − θ1)2/
√
n+ [(1 − θ1)2 − (1 − θ2

1)],

≥ 1/(2
√
n) − 2θ1,

≥ 1/(2
√
n) − 2/(8

√
n) ≥ 1/(4

√
n).

The proof of Proposition 2.3 is based on estimates from [13] and highlights the simi-
larities between regression with random design and density estimation with the L2 risk.

Proof of Proposition 2.3. By homogeneity, it is enough to prove the case L = 1. The
strategy is to construct an example for density estimation such that the calculations from
[13, Proof of Theorem A] can be leveraged. Let fY be the probability density

fY (x) =

{

1/4 + 1/(2
√
n) if x ∈ [−2, 0),

1/4 − 1/(2
√
n) if x ∈ (0, 2],
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and 0 elsewhere. Let {f1 = 1
2 1[−2,0)], f2 = 1

2 1[0,2)} be the dictionary. Let

L2(y) := ‖f2‖2 − 2f2(y) + 2f1(y) − ‖f1‖2 , ∀y ∈ R,

and observe that L2(Y ) = −X where X = 1[0,2)(Y ) − 1[−2,0)(Y ) so that X satisfies

X =

{

1 with probability 1/2 − 1/
√
n,

−1 with probability 1/2 + 1/
√
n.

By definition of L2,

PL2 = EL2(Y ) = ‖f2 − fY ‖2 − ‖f1 − fY ‖2 .

As PL2 = E[−X ] = 2/
√
n > 0, f1 is the best function in the dictionary and PL2 is the

excess risk of f2. Finally, let

α =
‖f1 − f2‖2

PL2
=

√
n

2
.

For any θ ∈ [0, 1], let fθ = θf1 + (1 − θ)f2. An explicit calculation of the excess risk of
fθ yields

‖fθ − fY ‖2 − ‖f1 − fY ‖2
= θ2 ‖f1‖2

+ (1 − θ)2 ‖f2‖2 − 2E[fθ(Y )] + 2E[f1(Y )] − ‖f1‖2
,

= −θ(1 − θ) ‖f1 − f2‖2
+ (1 − θ)E[−X ],

= (1 − θ − θ(1 − θ)α)PL2.

Given n independent observations Y1, ..., Yn with common density f , defineXi = 1[0,2)(Yi)−
1[−2,0)(Yi) as above. The exponential weights estimator with temperature β can be writ-
ten as

f̂EW
β = θ̂1f1 + (1 − θ̂1)f2, θ̂1 :=

1

1 + exp(−(n/β) 1
n

∑n
i=1[−Xi])

,

and its excess risk is
∥

∥

∥f̂EW
β − fY

∥

∥

∥

2

− ‖f1 − fY ‖2
= (1 − θ̂1 − θ̂1(1 − θ̂1)α)PL2.

The constants α and PL2, the law of X1, ..., Xn, θ̂1 are the same as in [13, Proof
of Theorem A], thus the lower bounds in expectation and probability of the quantity

(1 − θ̂1 − θ̂1(1 − θ̂1)α) in Lecué and Mendelson [13] also hold here and yield the lower
bound of Proposition 2.3.
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