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Abstract

We derive oracle inequalities for the problems of isotonic and con-
vex regression using the combination of Q-aggregation procedure and
sparsity pattern aggregation. This improves upon the previous results
including the oracle inequalities for the constrained least squares es-
timator. One of the improvements is that our oracle inequalities are
sharp, i.e., with leading constant 1. It allows us to obtain bounds for
the minimax regret thus accounting for model misspecification, which
was not possible based on the previous results. Another improvement
is that we obtain oracle inequalities both with high probability and in
expectation.

1 Introduction
Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n, (1.1)

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a noise vector
with n-dimensional Gaussian distribution N (0, σ2In×n) where σ > 0. We
observe y = (Y1, ..., Yn)T and we want to estimate µ. We can interpret µi
as the values f(Xi) of an unknown regression function f : X → R at given
non-random points Xi ∈ X , i = 1, . . . , n, where X is an abstract set. Then,
the equivalent setting is that we observe y along with (X1, . . . , Xn) but the
values of Xi are of no interest and can be replaced by their indices if we
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measure the loss in a discrete norm. Namely, for any u ∈ Rn we consider
the scaled (or the empirical) norm ‖ · ‖ defined by

‖u‖2 = 1
n

n∑
i=1

u2
i . (1.2)

We will measure the error of an estimator µ̂ of µ by the distance ‖µ̂− µ‖.
Let S↑ be the set of all non-decreasing sequences:

S↑ := {u = (u1, ..., un) ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1}. (1.3)

For a subset S of S↑, and any µ ∈ Rn the quantity minu∈S ‖u− µ‖ is the
smallest approximation error achievable by a sequence in the set S. This
quantity defines a benchmark or oracle performance on S. The accuracy of
an estimator µ̂ with respect to the oracle for any µ, not necessarily µ ∈ S,
can be characterized by the excess loss ‖µ̂− µ‖ −minu∈S ‖u− µ‖. This is
a measure of performance of µ under model misspecification. One can also
consider the expected quantities R1(µ̂,µ) = Eµ‖µ̂−µ‖−minu∈S ‖u−µ‖ or
R2(µ̂,µ) = Eµ‖µ̂−µ‖2−minu∈S ‖u−µ‖2 known under the name of regret
measures. Here, Eµ denotes the expectation with respect to the distribution of
y satisfying (1.1). The minimax regret is defined as minµ̂ maxµ∈Rn Ri(µ̂,µ)
for i = 1, 2, where minµ̂ denotes the minimum over all estimators. We
can characterize the performance of an estimator µ̃ by the closeness of its
maximal regret maxµ∈Rn Ri(µ̃,µ) to the minimax regret. This approach to
measure the performance of estimators under model misspecification was
pioneered by Vapnik and Chervonenkis who called it the criterion of minimax
of the loss [19, Chapter 6]. In this paper, we follow this approach and
establish non-asymptotic bounds for the maximal regret for some classes S
of monotone and convex functions.

When the model is well-specified, i.e., the true function µ belongs to the
class S, the approximation error vanishes and instead of the minimax regret it
is natural to consider the minimax risk defined either as minµ̂ maxµ∈S Eµ‖µ̂−
µ‖ or as minµ̂ maxµ∈S Eµ‖µ̂−µ‖2 (the minimax squared risk). It is easy to
see that the minimax risk is not greater than the minimax regret. A classical
problem in nonparametric statistics is to study the behavior of minimax
risks for different classes S. In particular, there exist results concerning the
minimax risks for classes of monotone and convex functions in our setting.
We review some of them below. The behavior of the minimax regret is much
less studied. For a recent overview and some general results we refer to [12]
where it is shown that the rate of minimax regret can be different from that
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of the minimax risk. Note that [12] studies the prediction problem with i.i.d.
observations, which is a setting different from ours.

A well-studied estimator under the monotonicity and convexity assump-
tions is the least squares estimator

µ̂LS(S) ∈ argmin
u∈S

‖y− u‖2 . (1.4)

In [11] it was shown that µ̂LS(S) attains, up to logarithmic factors, the
rates n−2/3 and n−4/5 of the mean squared risk for classes S of monotone
and convex functions respectively and that these rates are optimal up to
logarithmic factors when the minimax squared risk is used as a criterion.

One class of monotone functions we will be interested in here is defined as

S↑(V ) = {µ ∈ S↑ : V (µ) ≤ V }

where V (µ) = µn − µ1 for any µ = (µ1, . . . , µn) ∈ S↑, and V > 0 is a given
constant. In [10, 20] it was shown that for any µ ∈ S↑ we have

Eµ ‖µ̂− µ‖2 ≤ cmax

(σ2V (µ)
n

)2/3

,
σ2 log n

n

 (1.5)

for µ̂ = µ̂LS(S↑) and some absolute constant c > 0. This immediately
implies an upper bound on the minimax risk on S↑(V ). A recent paper [3]
establishes the oracle inequality

Eµ
∥∥∥µ̂LS(S↑)− µ

∥∥∥2
≤ 6 min

u∈S↑

(
‖µ− u‖2 + σ2k(u)

n
log en

k(u)

)
(1.6)

valid for all µ ∈ S↑. Here, k(u) ≥ 1 for u = (u1, . . . , un) ∈ S↑ is the integer
such that k(u)− 1 is the number of inequalities ui ≤ ui+1 that are strict for
i = 1, . . . , n − 1 (number of jumps of u). Inequality (1.6) implies (up to a
logarithmic factor) a bound as in (1.5) and also gives some more insight into
the problem. For example, (1.6) shows that the fast rate logn

n is achieved if
µ has only one jump or a fixed, independent of n, number of jumps. This is
not granted by (1.5).

Along with the least squares estimator, one may consider estimation of
monotone functions via penalized least squares with total variation penalty.
The corresponding estimator µ̂TV is defined as

µ̂TV ∈ argmin
u∈Rn

(
1
2 ‖u− y‖2 + λ

n−1∑
i=1
|ui+1 − ui|

)
, (1.7)
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where λ > 0 is a tuning parameter. Statistical properties of this estimator
were first studied in [9] where it was shown that ‖µ̂TV −µ‖ attains the optimal
rate n−1/3 in probability on the class of functions of bounded variation (and
thus on S↑(V )). Recently, the performance of µ̂TV was analyzed in [6] by
considering µ̂TV as a special instance of the Lasso estimator. If µ↑ is the
projection of µ onto S↑, δ ∈ (0, 1) is a constant, and the tuning parameter λ
is given by

λ = σ

√
log(n/δ)
k∗n

where k∗ =
(
V (µ↑)2n log(n/δ)

σ2

)1/3

, (1.8)

the estimator µ̂TV satisfies with probability greater than 1− 2δ the following
oracle inequality [6, Proposition 6]:

∥∥∥µ̂TV − µ∥∥∥2
≤

∥∥∥µ↑ − µ∥∥∥2
+ 6

(
σ2V (µ↑)

√
log(n/δ)

n

)2/3

(1.9)

+2σ2(1 + 2 log(1/δ))
n

for all µ ∈ Rn. It follows from (1.9) that if the tuning parameter is chosen
correctly, the estimator µ̂TV achieves, up to a logarithmic factor, the minimax
rate n−2/3 in probability on the class S↑(V ). Also, (1.9) implies a bound for
the excess losses ‖µ̂TV − µ‖i −minu∈S↑(V ) ‖u− µ‖i, i = 1, 2, corresponding
to the class S↑(V ). However, (1.9) does not allow us to evaluate the expected
regrets Ri(µ̂TV ,µ) since µ̂TV depends on δ. It is also shown in [6, Proposition
4] that if λ = 2σ

√
(2/n) log(n/δ), the estimator µ̂TV satisfies

∥∥∥µ̂TV − µ∥∥∥2
≤ min
u∈Rn

(
‖u− µ‖2 + 4σ2k(u) log(n/δ)

n
rn(u)

)
(1.10)

with probability greater than 1−2δ, where k(u)−1 for u ∈ Rn is the number
of jumps of u, i.e., the cardinality of the set {i ∈ {1, ..., n− 1} : ui 6= ui+1},
rn(u) = 3 + 256(log(n) + (n/∆(u))) and ∆(u) is the minimum distance
between two jumps in the sequence u:

∆(u) = min {d ≥ 1 : ∃k ∈ {1, ..., n} with uk+1 6= uk and uk+d+1 6= uk+d} .

The expressions on the right hand sides of (1.6) and (1.10) are small
if the unknown sequence µ is well approximated by a piecewise constant
sequence with not too many pieces. In this regard, the two bounds have some
similarity to sparsity oracle inequalities in high-dimensional linear regression,
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cf. [14, 15, 18]. This similarity can be easily explained as follows. Write (1.1)
in the equivalent form

y = Xβ∗ + ξ,

with the matrix X = (Xij)i=1,...,n, j=1,...,n where Xij = 1 if j ≤ i and Xij = 0
otherwise, and β∗ = (β∗1 , . . . , β∗n) where β∗1 = µ1 and β∗i = µi − µi−1 for
i = 2, . . . , n. With this notation, k(µ) ∈ {|β∗|0, 1 + |β∗|0}, where |β∗|0
denotes the number of non-zero components of β∗. The value k(µ) is small
when β∗ is sparse. Thus, the problem of estimation of piecewise constant
sequence µ with small number of pieces can be considered as the problem
of prediction in sparse linear regression with a specific design matrix X.
Similarly, we may write u = Xβ, for β with components β1 = u1 and
βi = ui − ui−1 for i = 2, . . . , n. These remarks suggest that we can apply
the theory of sparsity oracle inequalities, in particular, sparsity pattern
aggregation (cf. [14, 15, 18]) in the context of monotone estimation described
above. Similar observation is valid for estimation under convexity constraints
(see Section 3 below). In the present paper, we develop this argument using
as a building block the Q-aggregation procedures [13, 4, 5, 1]. In particular,
we construct an estimator µ̂ such that

Eµ ‖µ̂− µ‖2 ≤ min
u∈S↑

(
‖µ− u‖2 + cσ2k(u)

n
log en

k(u)

)
, ∀ µ ∈ Rn, (1.11)

for some absolute constant c > 0. Note that (1.11) is a sharp oracle inequality
(i.e., an inequality with leading constant 1). It improves upon the oracle
inequality (1.6) for the least squares estimator where the leading constant
is 6 and the bound is valid only for µ ∈ S↑. The advantage of having leading
constant 1 and arbitrary µ in (1.11) is that it allows us to derive bounds on
the excess risk and on the minimax regret, which was not possible based on
the previous results. We also obtain sharp oracle inequalities in probability
for the same estimator. In addition, we show that it satisfies stronger sharp
inequalities with the minimum minu∈S↑ on the right hand side of (1.11)
replaced by minu∈Rn . Finally, we derive similar results for the problem of
estimation under the convexity constraints improving an oracle inequality
obtained in [7].
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2 Sparsity pattern aggregation for piecewise con-
stant sequences

For any non-empty set J ⊆ {1, ..., n− 1}, let |J | denote the cardinality of J
and define

πJ := exp(−|J |)
H
(n−1
|J |
) , H :=

n−1∑
i=0

exp(−i). (2.1)

Let PJ ∈ Rn×n be the projector on the linear subspace VJ of Rn defined by

VJ :=
{
u ∈ Rn : ∀i ∈ {1, ..., n− 1} \ J, ui+1 = ui

}
. (2.2)

In words, VJ is the space of all piecewise constant sequences that have jumps
only at points in J . Given a vector y of observations and θ = (θJ )J⊆{1,...,n−1}
where each θJ ∈ R, let

µθ =
∑

J⊆{1,...,n−1}
θJPJy. (2.3)

Finally, let
µ̂Q = µθ̂ (2.4)

where θ̂ is the solution of the optimization problem

min
θ∈Λ

‖µθ − y‖2 +
∑

J⊆{1,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2 ‖µθ − PJy‖2 + 34σ2

n
log 1

πJ

)

where

Λ =

θ : θJ ≥ 0 for all J ⊆ {1, ..., n− 1}, and
∑

J⊆{1,...,n−1}
θJ = 1

 .
This optimization problem is a quadratic program with a simplex constraint.
It performs aggregation of the linear estimators (PJy)J⊆{1,...,n−1} using the
Q-aggregation procedure [4, 5, 1] with the prior weights (2.1). The estimator
µ̂Q satisfies the following sharp oracle inequalities.

Theorem 2.1. Let µ ∈ Rn, n ≥ 2, and assume that the noise vector ξ has
distribution N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that
for all δ ∈ (0, 1/3), the estimator µ̂Q satisfies with probability at least 1− 3δ,

∥∥∥µ̂Q − µ∥∥∥2
≤ min
u∈Rn

(
‖µ− u‖2 + cσ2k(u))

n
log en

k(u)

)
+ cσ2 log(1/δ)

n
, (2.5)
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and
Eµ
∥∥∥µ̂Q − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2k(u)

n
log en

k(u)

)
. (2.6)

Proof. Let J ⊆ {1, ..., n − 1}. Denote by d = |J | + 1 the dimension of the
subspace VJ . Then, the projection estimator PJy satisfies with probability
at least 1− δ (see, for example, [8]):

‖PJy− µ‖2 ≤ ‖PJµ− µ‖2 + d+ 2
√
d log(1/δ) + 2 log(1/δ)

n

≤ min
u∈VJ

‖u− µ‖2 + 2(|J |+ 1) + 3 log(1/δ)
n

. (2.7)

The sharp oracle inequality from [1, Theorem 3.1] yields that with probability
at least 1− 2δ for all J ⊆ {1, ..., n− 1} we have∥∥∥µ̂Q − µ∥∥∥2

≤ ‖PJy− µ‖2 + 68σ2 log 1
πJ

+ 34σ2 log(1/δ). (2.8)

Combining (2.7) and (2.8) with the union bound and the inequality (cf.
[15, (5.4)]) log(1/πJ) ≤ 2(|J |+ 1) log(en/(|J |+ 1)) + 1/2, we find that with
probability at least 1− 3δ,

∥∥∥µ̂Q − µ∥∥∥2
≤ min

J⊆{1,...,n−1}
min
u∈VJ

(
‖µ− u‖2 + cσ2(|J |+ 1)

n
log

(
en

|J |+ 1

))
+ cσ2 log(1/δ)

where c > 0 is an absolute constant. Since |J |+ 1 = k(u) for all u ∈ VJ and
minJ⊆{1,...,n−1}minu∈VJ

= minu∈Rn , the bound (2.5) follows. Finally, (2.6)
is obtained from (2.5) by integration.

We now discuss some corollaries of Theorem 2.1. First, it follows that
(1.11) is satisfied for µ̂ = µ̂Q, so the remarks after (1.11) apply. Next, in
view of (2.6), for the class of monotone sequences with at most k jumps
S↑k = {u ∈ S↑ : k(u) ≤ k} we have the following bounds for the maximal
expected regrets

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖ − min

u∈S↑
k

‖u− µ‖
)
≤ c

√
σ2k

n
log

(
en

k

)
, (2.9)

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖2 − min

u∈S↑
k

‖u− µ‖2
)
≤ cσ2k

n
log

(
en

k

)
, (2.10)
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where c > 0 is an absolute constant. The same bounds hold for the minimax
risks over S↑k since the minimax risk is smaller than the minimax regret.
Proposition 2.1 below shows that the bounds (2.9) and (2.10) are optimal
up to logarithmic factors.

Finally, consider the consequences of Theorem 2.1 for the class S↑(V ).
To this end, define the integer k∗ such that

k∗ = min

m ∈ N : m ≥
(

V (µ)2n

σ2 log(en)

)1/3


if the set
{
m ∈ N : m ≥

(
V (µ)2n
σ2 log(en)

)1/3}
is non-empty, and k∗ = 1 otherwise.

We will need the following lemma.

Lemma 2.1. Let µ ∈ S↑ and let 1 ≤ k ≤ n be an integer. Then there exists
a sequence ū ∈ S↑k such that

‖ū− µ‖ ≤ V (µ)
2k . (2.11)

Next, there exists a sequence ū ∈ S↑k∗ such that

‖ū− µ‖2 ≤ 1
4 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (2.12)

In addition,

σ2k∗

n
log en

k∗
≤ 2 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (2.13)

Proof. To construct the sequence ū, consider the k intervals

Ij =
[
µ1 + j − 1

k
V (µ), µ1 + j

k
V (µ)

)
, j = 1, ..., k − 1, (2.14)

and Ik = [µ1 + k−1
k V (µ), µn]. For all j = 1, ..., k, let

Jj = {i = 1, ..., n : µi ∈ Ij}. (2.15)

For any i ∈ {1, ..., n} there exists a unique j ∈ {1, ..., k} such that i ∈
Ij . Let ūi = µ1 + j−1/2

k V (µ) for all i ∈ Ij . Then the sequence ū =
(ū1, . . . , ūn) is non-decreasing, it has at most k pieces, i.e., k(ū) ≤ k, and
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|ūi − µi| ≤ V (µ)
2k for i = 1, ..., n. Thus (2.11) follows. Next, note that if

k∗ = 1, then V (µ)2 ≤ σ2 log(en)/n. If k∗ > 1, then by definition of k∗,
V (µ)2/(k∗)2 ≤ (σ2V (µ) log(en)/n)2/3. Thus, (2.12) follows. The bound
(2.13) is straightforward by studying the cases k∗ = 1 and k∗ > 1 separately.

We can now derive the following corollary of Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1, there exists an
absolute constant c > 0 such that, for any µ ∈ S↑,

Eµ‖µ̂Q − µ‖2 ≤ c max

(σ2V (µ) log n
n

)2/3

,
σ2 log n

n

 . (2.16)

In addition, for any V > 0 and any µ ∈ Rn the expected regret of µ̂Q satisfies

Eµ‖µ̂Q − µ‖ − min
u∈S↑(V )

‖u− µ‖ ≤ c max

(σ2V log n
n

)1/3

, σ

√
log n
n


(2.17)

where c > 0 is an absolute constant.

Proof. Inequality (2.16) is straightforward in view of (2.6), (2.12), and (2.13).
To prove (2.17), fix any µ ∈ Rn and consider

µ∗ ∈ argmin
µ′∈S↑(V )

‖µ′ − µ‖.

From (2.6) and the fact that the function x 7→ x log
(
en
x

)
is increasing for

1 ≤ x ≤ n we get

Eµ‖µ̂Q − µ‖ ≤ min
u∈S↑

k∗

‖u− µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)
≤ min
u∈S↑

k∗

‖u− µ∗‖+ ‖µ∗ − µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)

≤ ‖µ∗ − µ‖+ c′′ max

(σ2V log n
n

)1/3

, σ

√
log n
n


for an absolute constant c′′ > 0 where the last inequality follows from (2.12)
and (2.13).
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The estimator µ̂Q shown in Theorem 2.1 satisfies the sharp oracle in-
equalities both in expectation and with high probability. Previous results
for the least squares estimator [3] were only obtained in expectation and
the results on the `1-penalized estimator (1.7) are only obtained with high
probability.

Finally, the following result shows that the upper bounds (2.9) and (2.10)
are optimal up to logarithmic factors.

Proposition 2.1. Let n ≥ 2, V > 0 and σ > 0. There exist absolute
constants c, c′ > 0 such that for any positive integer k ≤ n satisfying
k3 ≤ 16nV 2/σ2 we have

inf
µ̂

sup
µ∈S↑

k
∩S↑(V )

Pµ

(
‖µ̂− µ‖2 ≥ cσ2k

n

)
> c′, (2.18)

where Pµ denotes the distribution of y satisfying (1.1) and inf µ̂ is the infimum
over all estimators.

For k = 1, ..., n, take any V > 0 large enough to satisfy k3 ≤ 16nV 2/σ2.
Then, Proposition 2.1 and Markov’s inequality yield the following lower
bounds on the minimax risks over the class S↑k :

inf
µ̂

sup
µ∈S↑

k

Eµ‖µ̂− µ‖ ≥ c

√
c′σ2k

n
, inf

µ̂
sup
µ∈S↑

k

Eµ ‖µ̂− µ‖2 ≥
cc′σ2k

n
. (2.19)

As the minimax risk is smaller than the minimax regret, (2.19) also provides
lower bounds for the corresponding minimax regrets over S↑k . Combining
this with (2.9) and (2.10) we find that the estimator µ̂Q achieves up to
logarithmic factors the optimal rate with respect to the minimax regret.

Next, Proposition 2.1 implies the following lower bound on the minimax
deviation risk on S↑(V ).

Corollary 2.2. Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants
c, c′ > 0 such that

inf
µ̂

sup
µ∈S↑(V )

Pµ

‖µ̂− µ‖2 ≥ cmax


(
σ2V

n

)2/3

,
σ2

n


 > c′. (2.20)

To prove this corollary it is enough to note that if 16nV 2/σ2 ≥ 1, by
choosing k in Proposition 2.1 as the integer part of (16nV 2/σ2)1/3, we obtain
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the lower bound corresponding to
(
σ2V
n

)2/3
under the maximum in (2.20).

On the other hand, if 16nV 2/σ2 < 1 the term σ2

n is dominant, so that we
need to have the lower bound of the order σ2

n , which is trivial (it follows from
a reduction to the bound for the class composed of two constant functions).

It follows from (2.20) and (2.16) that the estimator µ̂Q achieves, up to
logarithmic factors, the optimal rate with respect to the minimax risk on
the class S↑(V ). Using (2.17) and the fact that the minimax risk is smaller
than the minimax regret, we conclude that it is also the optimal rate up to
logarithmic factors for the minimax regret.

Proof of Proposition 2.1. We assume for simplicity that n is a multiple of
k. The general case s treated analogously. For any ω,ω′ ∈ {0, 1}k, let
dH(ω,ω′) = |{i = 1, ..., k : ωi 6= ω′i}| be the Hamming distance between ω
and ω′. By the Varshamov-Gilbert bound [17, Lemma 2.9], there exists a
set Ω ⊂ {0, 1}k such that

0 = (0, ..., 0) ∈ Ω, log(|Ω| − 1) ≥ k/8, and dH(ω,ω′) > k/8 (2.21)

for any two distinct ω,ω′ ∈ Ω. For each ω ∈ Ω, define a vector uω ∈ Rn
with components

uωi = b(i− 1)k/nc V
2k + γωb(i−1)k/nc+1, i = 1, ..., n,

where γ = (1/8)
√
σ2k/n, and bxc denotes the maximal integer smaller than

x. For any ω ∈ Ω, uω is a piecewise constant sequence with k(uω) ≤ k,
uω is a non-decreasing sequence because γ ≤ V/(2k), and by construction
V (uω) ≤ V . Thus, uω ∈ S↑k ∩ S↑(V ) for all ω ∈ Ω. Moreover, for any
ω,ω′ ∈ Ω,

‖uω − uω′‖2 = γ2

k
dH(ω,ω′) ≥ γ2

8 = σ2k

512n. (2.22)

Set for brevity Pω = Puω . The Kullback-Leibler divergence K(Pω, Pω′)
between Pω and Pω′ is equal to n

2σ2 ‖uω − uω
′‖2 for all ω,ω′ ∈ Ω. Thus,

K(Pω, P0) = γ2ndH(0,ω)
2kσ2 ≤ k

128 ≤
log(|Ω| − 1)

16 . (2.23)

Applying [17, Theorem 2.7] with α = 1/16 completes the proof.
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3 Estimation of convex sequences by aggregation
Assume that n ≥ 3 and define the set of convex sequences SC as follows:

SC = {u = (u1, . . . , un) ∈ Rn : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n− 1}. (3.1)

For any u ∈ Rn, we introduce the integer q(u) ≥ 1 such that q(u) − 1 is
the cardinality of the set {i = 1, ..., n − 1 : 2ui 6= ui+1 + ui−1}. If u ∈ SC,
q(u)− 1 is the number of inequalities 2ui ≤ ui+1 + ui−1 that are strict for
i = 2, ..., n − 1. The value q(u) is small if u is a piecewise linear sequence
with a small number of pieces.

The performance of the least squares estimator over convex sequences
µ̂LS(SC) has been recently studied in [7]. If the unknown vector µ belongs
to the set SC, [7] shows that the estimator µ̂LS(SC) satisfies the risk bound

Eµ
∥∥∥µ̂LS(SC)− µ

∥∥∥2
≤ c log(en)5/4

(
σ2√R(µ)

n

)4/5

,

where R(µ) = max(1,min{‖τ − µ‖2 , τ is affine}) and c > 0 is an absolute
constant. It is also proved in [7] that the least squares estimator µ̂LS(SC)
satisfies the oracle inequality

Eµ
∥∥∥µ̂LS(SC)− µ

∥∥∥2
≤ c log(en)5/4 min

u∈SC

(
‖u− µ‖2 + σ2q(u)5/4

n

)
(3.2)

where c > 0 is an absolute constant. The right hand side of (3.2) is small
if the unknown vector µ can be well approximated by a piecewise linear
sequence in SC with not too many pieces.

The leading factor log(en)5/4 in (3.2) is growing with n. We will show
that sparsity pattern aggregation achieves a substantially better performance.
We obtain a sharp oracle inequality improving upon (3.2) not only in the
fact that the leading constant is 1 but also in the rate of the remainder term;
we will see that the term σ2q(u)5/4

n is suboptimal.
For any set J ⊆ {2, ..., n− 1}, define

νJ := exp(−|J |)
HC

(n−2
|J |
) , HC :=

n−2∑
i=0

exp(−i). (3.3)

Let QJ ∈ Rn×n be the projector on the linear subspace WJ of Rn given by

WJ :=
{
u ∈ Rn : ∀i ∈ {2, ..., n− 1} \ J, 2ui = ui+1 + ui−1

}
.
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Given a vector y of observations and θ = (θJ)J⊆{2,...,n−1} where each θJ
belongs to R, let

µθ =
∑

J⊆{2,...,n−1}
θJQJy.

Finally, let
µ̂Q−conv = µθ̂

where θ̂ is the solution of the optimization problem

min
θ∈Λ′

‖µθ − y‖2 +
∑

J⊂{2,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2 ‖µθ −QJy‖2 + 34σ2

n
log 1

νJ

)

where

Λ′ =

θ : θJ ≥ 0 for all J ⊆ {2, ..., n− 1}, and
∑

J⊆{2,...,n−1}
θJ = 1

 .
The structure of this minimization problem is the same as of its analog
introduced in Section 2. This is a quadratic program that aggregates the
linear estimators (QJy)J⊆{2,...,n−1} using theQ-aggregation procedure [4, 5, 1]
with the prior weights (3.3).

Theorem 3.1. Let µ ∈ Rn, n ≥ 3, and assume that the noise vector ξ has
distribution N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that
for all δ ∈ (0, 1/3), the estimator µ̂Q−conv satisfies with probability at least
1− 3δ,

∥∥∥µ̂Q−conv − µ∥∥∥2
≤ min
u∈Rn

(
‖µ− u‖2 + cσ2q(u)

n
log en

q(u)

)
+ cσ2 log(1/δ)

n
,

(3.4)
and we have

Eµ
∥∥∥µ̂Q−conv − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2q(u)

n
log en

q(u)

)
. (3.5)

The proof of this theorem is the same as that of Theorem 2.1 with the
only difference that J is now a subset of {2, ..., n − 1} rather than that
of {1, ..., n − 1}, and we replace the notation PJ and VJ by QJ and WJ

respectively.
The leading constant of the oracle inequality (3.5) is 1, and the remainder

term grows linearly with q(u), up to logarithmic factors. These are two
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improvements upon (3.2), where the leading term has a factor (log n)5/4 and
the remainder term is proportional to q(u)5/4.

In view of (3.5), for the class of piecewise linear convex sequences with
at most q linear pieces, SC

q = {u ∈ SC : q(u) ≤ q} we have the following
bounds for the maximal expected regrets

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖ − min

u∈SC
q

‖u− µ‖
)
≤ c

√
σ2q

n
log

(
en

q

)
, (3.6)

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖2 − min

u∈SC
q

‖u− µ‖2
)
≤ cσ2q

n
log

(
en

q

)
, (3.7)

where c > 0 is an absolute constant. The same bounds hold for the minimax
risks over SC

q since the minimax risk is smaller than the minimax regret.
The following proposition shows that the rates of convergence in (3.6)

and (3.7) are optimal up to logarithmic factors. We omit the discussion since
it is similar to that after Proposition 2.1.

Proposition 3.1. Let n ≥ 3. There exist absolute constants c, c′ > 0 such
that, for any positive integer q ≤ n,

inf
µ̂

sup
µ∈SC

q

Pµ

(
‖µ̂− µ‖2 ≥ cσ2q

n

)
> c′, (3.8)

where the infimum is taken over all estimators.

Proof. Assume that q ≥ 2 since for q = 1 the result is trivial. We also assume
for simplicity that n is a multiple of q. Let m = n/q and γ = (1/8)

√
σ2q/n.

Set β0 = 0, α0 = 0 and define, for all integers j ≥ 1,

βj = βj−1 + γ +mαj−1, αj = 2γ + αj−1. (3.9)

By the Varshamov-Gilbert bound [17, Lemma 2.9] there exists Ω ⊂ {0, 1}q
such that (2.21) is satisfied, with k replaced by q. For each ω ∈ Ω, define a
vector uω ∈ Rn with components

uωjm+i = ωj+1γ + αj(i− 1) + βj , j = 0, ..., q − 1, i = 1, ...,m.

The sequence uω is piecewise linear. It is linear with slope αj on the set
{jm + 1, ..., (j + 1)m} for any j = 0, ..., q − 1. Thus, q(uω) = q. Next, we
prove that uω ∈ SC for all ω ∈ Ω. It is enough to check the convexity
condition at the endpoints of the linear pieces:

2uωjm ≤ uωjm−1 + uωjm+1, 2uωjm+1 ≤ uωjm + uωjm+2, (3.10)
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for all j = 1, ..., q − 1. Using (3.9) we get that, for all j = 1, ..., q − 1,

uωjm+1 − uωjm = ωj+1γ + βj − (ωjγ + αj−1(m− 1) + βj−1),
= (ωj+1 − ωj + 1)γ + αj−1,

= (ωj+1 − ωj − 1)γ + αj .

Hence, αj−1 ≤ uωjm+1 − uωjm ≤ αj . Since also αj−1 = uωjm − uωjm−1 and
αj = uωjm+2 − uωjm+1, it follows that the two inequalities (3.10) hold, for all
j = 1, ..., q − 1. Thus, uω ∈ SC. In summary, we have proved that uω ∈ SC

q

for all ω ∈ Ω.
Now, from the Varshamov-Gilbert bound, cf. (2.21), for ω,ω′ ∈ Ω we

have
‖uω − uω′‖2 = γ2

q
dH(ω,ω′) ≥ γ2

8 = σ2q

512n, (3.11)

where dH(·, ·) is the Hamming distance. Finally, similarly to (2.23), the
Kullback-Leibler divergence between Pω and P0 satisfiesK(Pω, P0) ≤ log(|Ω|−1)

16 .
Applying [17, Theorem 2.7] with α = 1/16 completes the proof.

4 Concluding remarks and discussion
In this short note, we have shown that the estimators µ̂Q and µ̂Q−conv based
on sparsity pattern aggregation (in its Q-aggregation version) achieve oracle
inequalities that improve on some previous results for isotonic and convex
regression.

One of the improvements is that oracle inequalities (2.6) and (3.5) are
sharp, i.e., with leading constant 1 and they are valid for all µ ∈ Rn. It
allows us to obtain bounds for the minimax regret under arbitrary model
misspecification, which was not possible based on the previous results. We
show that these bounds are rate optimal up to logarithmic factors. The
question on whether the least squares estimators under monotonicity and
convexity constraints can achieve sharp oracle inequalities with correct rates
remains open.

Another improvement is that we obtain oracle inequalities both with high
probability and in expectation, which was not the case in the previous work.

An advantage of the least squares estimator is that it requires no tuning
parameters. In particular, the knowledge of σ2 is not needed to construct
the estimators µ̂LS(S↑) and µ̂LS(SC). This is in contrast to the `1 penalized
estimator (1.7) and the estimators µ̂Q and µ̂Q−conv; their construction
requires the knowledge of σ2. For the `1 penalized estimator (1.7), the issue
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may be addressed by using a scale-free version of the Lasso [2, 16]. For
the Q-aggregation estimators µ̂Q and µ̂Q−conv, we can treat the issue of
unknown σ as in [1]. Namely, it is shown in [1] that the oracle inequalities
for Q-aggregation procedures are essentially preserved after plugging in an
estimator σ̂2 of σ2 that satisfies |σ̂2/σ2 − 1| ≤ 1/8 with high probability,
which is even weaker than consistency.

Finally, note that instead of Q-aggregation we could have used sparsity
pattern aggregation by the Exponential Screening procedure of [14]. This
would lead to sharp oracle inequalities in expectation of the form (2.6) and
(3.5) but not to inequalities with high probability such as (2.5) and (3.4). This
is the reason why we have opted for Q-aggregation rather than for Exponential
Screening in this paper. On the other hand, Exponential Screening estimators
are computationally more attractive than Q-aggregation since they can be
successfully approximated by MCMC algorithms (see [14, 15] for details).
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