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Statistical Inference for Independent Component Analysis
Abstract

The modelling of error terms in multivariate dynamic models by inde-
pendent component analysis (ICA) is required for reliable impulse response
analysis in macroeconomic applications. Since the introduction of ICA by
Comon (1994), a large number of semi-parametric estimation methods have
been proposed for ”orthogonalizing” the error terms. These methods can be
pseudo-maximum likelihood (PML) approaches, recursive PML, or moment
methods. However several of these approaches are not consistent, and the
other ones can be significantly subefficient. The aim of our paper is to de-
rive the asymptotic properties of the PML approaches, in particular to study
their consistency (or lack of consistency). Moreover we introduce covariance
estimators and explain how to improve their efficiency. Finally we discuss
the empirical likelihood approach.

Keywords : Independent Component Analysis, Pseudo-Maximum Like-
lihood, Method of Moments, Empirical Likelihood, Identification, Cayley
Transform.

1 Introduction

Let us consider n observed variables Y = (y1, . . . , yn)′, which are linear com-
binations of n independent unobserved sources ε = (ε1, . . . , εn)′ :

Y = Cε, (1.1)

where the components εi are zero-mean, and the matrix C is invertible.
C is called the ”mixing matrix” and C−1 the ”unmixing matrix”. The

problem of independent component analysis (ICA) 3 is to identify C and ε
from the knowledge of Y , or, in other words, to estimate consistently C and
the distribution of ε, from a large number of observations Y1, . . . , YT of vector
Y .

3In signal processing, the components of ε are called ”sources”, the components of Y are
called ”sensors” and the ICA problem ”blind separation of sources”. Other terminologies
are ”sources/mixtures”, ”signal/mixtures”, or ”multiple input/multiple output” (MIMO).
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If ε is Gaussian, the distribution of Y is Gaussian too with zero-mean and
a variance-covariance matrix CC ′. From the knowledge of the distribution of
Y , we can identify CC ′, but not matrix C itself. For instance, if C∗ = CQ,
where Q is an orthogonal matrix, we have C∗C∗

′
= CC ′. Thus there is a

problem of both local and global identification, since C is identified up to an
orthogonal matrix. However the lack of identification almost disappears, if
we assume that the components of ε are independent, not Gaussian. The the-
orem below has been derived in Eriksson, Koivunen (2004) [see also Comon
(1994), Th. 11].

Theorem [Eriksson, Koivunen (2004), Th 3] :

Let us consider the independent component model : Y = Cε. Under the
following conditions :

i) C is invertible.
ii) The components ε1, . . . , εn are independent, with at most one Gaussian

distribution,
then matrix C is identifiable up to the post multiplication by DP , where P
is a permutation matrix and D a diagonal matrix with non zero diagonal
elements.

In other words C is identifiable up to a permutation of indexes, and signed
scaling, εi,t → ±σiεi,t, σi > 0, i = 1, . . . , n, say.

Thus, for independent non-Gaussian sources, the only cause of local lack
of identification is through the positive scaling. The permutation and change
in signs of columns of C create a global lack of identification, but not a local
one.

The local identification problem i.e. the possibility of replacing C by
CD, where D is a diagonal matrix with strictly positive diagonal elements,
can be avoided by introducing identification restrictions. Several sets of
identification restrictions (SIR) have been considered in the literature, that
are,

SIR 1 : ci,i = 1, i = 1, . . . , n [see e.g. Jutten, Herault (1991), Comon,
Jutten, Herault (1991), eq. (3), Pham, Garat (1997), p1714, Ilmonen, Pain-
daveine (2015)].

SIR 2 : c′ici = 1, i = 1, . . . , n, where ci denotes the ith column of matrix
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C [see e.g. Comon (1994), Section 5.1, Pham, Garat (1997), p1714].

or similar sets of identification restrictions written on the diagonal elements
ci,i, or on the rows ci, i = 1, . . . , n, of the demixing matrix C−1 :

SIR* 1: ci,i = 1, i = 1, . . . , n,

SIR* 2 : cici
′

= 1, i = 1, . . . , n (implicitly used in the one-unit Fast ICA
algorithm, see Sections 3.1, 3.2)

Finally stronger conditions can be introduced as in the following set of
restrictions :

SIR 3 : C is an orthogonal matrix : C ′C = Id [see e.g. Hyvarinen (1997),
eq. 13, Vlassis (2001), eq.23, Hastie, Tibshirani (2002), eq.6].

If the error ε is standardized V (ε) = Id, these restrictions may imply
constraints on the distribution of vector Y , such as V (Yt) = Id for SIR
3. This restriction can be asymptotically satisfied if the data are jointly
prewhitened.

Note that the restrictions SIR1 and SIR*1 have a major drawback, since
they assume implicitly that all diagonal elements are different from zero.
Thus they exclude a priori some noncausal features between the variables and
can bias the impulse response analysis in a dynamic model with independent
shocks.

Whenever the independent component model is locally identified, we can
expect consistent semi-parametric estimation methods based on an i.i.d. sam-
ple Y1, . . . , YT . Two types of approaches have been initially proposed in the
literature, that are, essentially pseudo-maximum likelihood approaches and
moment methods . They differ by the form of the objective function, but also
by the set of identification restrictions (SIR 1-SIR3), which is used. These
estimation methods have been introduced mainly in the literature on sig-
nal processing and data analysis with a focus on the numerical convergence
and computational complexity of the algorithm used to get the estimate [see
e.g. Common (1994), Sections 4.2, 4.3., Hyvarinen (1997), Section 6, Hyvari-
nen (1999), Hyvarinen, Oja (2000), Section 6.1]. As noted in Ilmonen et al.
(2012), ”In the computer science communities ICA procedures are usually
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seen as algorithms rather than estimates with their statistical properties.”
The statistical properties of the estimators, such as their consistency, asymp-
totic normality, or asymptotic efficiency are rarely considered. This explains
why several standard methods for ICA proposed in the literature or in the
softwares are not statistically consistent, or, when they are statistically con-
sistent, are poorly efficient.

In the following sections, we carefully analyze the statistical properties of
these estimation approaches. We first consider in Section 2 the pseudo max-
imum likelihood (PML) approaches for estimating matrix C under SIR3.
Although they maximize a misspecified log-likelihood function, they pro-
vide consistent estimators. Then we derive the asymptotic distribution of
these PML estimators. In Section 3, we discuss the other standard PML
approaches proposed in the literature. We first show that the one-unit al-
gorithm using identification restrictions as SIR2, SIR*2 provides estimators,
which are not statistically consistent. For large dimension n the optimization
of the pseudo likelihood under SIR 3 can be numerically cumbersome. We
extend the analysis to recursive PML approaches under SIR3, which compute
in a recursive way the estimators of the columns of C.

The PML and recursive PML approaches under SIR3 provide consistent
estimators which are not necessarily very accurate. The consistency of PML
and recursive PML estimators under SIR3 is due to their interpretation as
specific covariance estimators. In Section 4 we develop the complete theory of
generalized covariance estimators and explain how to improve their efficiency.

The PML, recursive PML and Covariance estimators focus on the semi-
parametric estimation Ĉ of matrix C. Then these estimates can be used
to derive approximations of the sources as ε̂t = Ĉ ′Yt, and nonparametric
functional estimators of the distributions of the sources. Section 5 concludes.
The asymptotic results are derived in the Appendices.

2 Pseudo-Maximum Likelihood Approach (un-

der SIR3)

Let us discuss the consistency and the asymptotic properties of pseudo max-
imum likelihood estimators of matrix C. We first consider the working case
of observations such that :

4



Yt = C0εt, (2.1)

where E0(Yt) = 0, V0(Yt) = Id, E0(εt) = 0, V0(εt) = Id and the components
ε1,t, . . . , εn,t are assumed both cross-sectionally and serially independent, with
unknown true probability density functions (p.d.f.) fi,0(εi), i = 1, . . . , n. In
this special framework the C0 matrix is orthogonal C0C

′
0 = Id, which is the

set of identification restrictions SIR 3, and is identifiable up to a permutation
of index i and changes of sign of its columns, if at most one of the true p.d.f.
is Gaussian. 4

Then we explain how the results of the working case can be extended to
a model :

Yt = a(Xt, θ0) + Σ
1/2
0 C0εt, (2.2)

where E0(Yt|Xt) = a(Xt; θ0), V0(Yt|Xt) = Σ0, E0(εt) = 0, V0(εt) = Id.

2.1 Pseudo-Maximum Likelihood Estimator

Let us introduce a set of p.d.f. gi(εi), i = 1, . . . , n, and consider the pseudo
log-likelihood function :

log lT (C) =

T∑
t=1

n∑
i=1

log gi(c
′
iYt), (2.3)

where ci is the ith column of matrix C (or c′i is the ith row of C−1). The
log-likelihood function (2.3) is computed as if the errors ε′ts, were serially
independent, with an identical distribution, the p.d.f. of εi,t being εi,t ∼
gi(εi), noting that εt = C ′Yt and | detC| = 1, since C is orthogonal. Then
a pseudo maximum likelihood (PML) estimator of matrix C maximizes the
pseudo log-likelihood function taking into account the condition that C is
orthogonal. This optimization problem can be written as :

4When the sources are cross-sectionally independent, but serially correlated with dis-
tinct spectra, they can be identified by second-order methods, that is, from the knowl-
edge of autocovariances only. This possibility to identify by means of the dynamics of
the sources is not considered here. It is the basis of second-order estimation methods
as AMUSE [Tong et al. (1990)], or SOBI [Belouchrani et al. (1997)], Gaussian PML
written in the frequency domain [Pham, Garat (1997), Section 3], or based on canonical
correlations [Degerine, Mulki (2000)].
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ĈT = arg max
C

T∑
t=1

n∑
i=1

log gi(c
′
iYt), (2.4)

s.t. C ′C = Id.

The optimization problem can also be considered after the elimination
of the identification restrictions, that is, after parametrizing the orthogonal
matrix C. It is known that any orthogonal matrix with no eigenvalue equal
to −1 can be written as :

C(A) = (Id+ A)(Id− A)−1, (2.5)

where A is a skew symmetric (or antisymmetric) matrix, such that A′ = −A.
This is the Cayley’s representation of an orthogonal matrix. Moreover, this
orthogonal matrix is in a one-to-one relationship with A, since we get :

A = (C(A) + Id)−1(C(A)− Id). (2.6)

Thus, the PML estimator of matrix C can be alternatively derived as
ĈT = C(ÂT ), where :

ÂT = arg max
A

T∑
t=1

n∑
i=1

log gi[ci(A)′Yt], (2.7)

and the optimization is with respect to the parameters characterizing A, that
are the subdiagonal elements of A : ai,j, i > j.

2.2 The finite sample first-order conditions (FOC)

The FOC can be written either on the constrained optimization problem
(2.4), or on its parametrized version (2.7). We give in Appendix 1 the closed
form expressions of the derivatives of C(A) with respect to A, which can be
used to derive the FOC for the model written under the parametric form.
We focus below on the FOC for problem (2.4).

Let us distinguish the different restrictions on matrix C :

c′icj = 0, i < j and c′ici = 1, i = 1, . . . , n,
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and introduce the associated Lagrange multipliers denoted λi,j = λj,i, if i 6= j,
and λi,i/2, when both indices are equal.

Then the FOC are :
T∑
t=1

Yt
d log gi
dε

(ĉ′iYt)−
n∑
j=1

λ̂i,j ĉj = 0, i = 1, . . . , n,

ĉ′iĉj = 0, i < j, ĉ′iĉi = 1, i = 1, . . . , n.

(2.8)

We get n2+n(n−1)/2+n conditions for the n2+n(n−1)/2+n unknowns,
that are the ĉi,j, λ̂i,j, i < j, and λ̂i,i, i, j = 1, . . . , n.

Premultiplying the first subsystem of (2.8) by Ĉ ′ and taking into account
the constraints on the orthogonal matrix Ĉ, we see that the finite sample
FOC are equivalent to :

T∑
t=1

ĉ′jYt
d log gi
dε

(ĉ′iYt)− λ̂i,j = 0, i, j = 1, . . . , n,

ĉ′iĉj = 0, i < j, ĉ′iĉi = 1, i = 1, . . . , n.

Since λ̂i,j = λ̂j,i, it is possible to derive from this system the equations

giving Ĉ. They are :


T∑
t=1

ĉ′jYt
d log gi
dε

(ĉ′iYt)−
T∑
t=1

ĉ′iYt
d log gj
dε

(ĉ′jYt) = 0, i < j,

ĉ′iĉj = 0, i < j, ĉ′iĉi = 1, i = 1, . . . , n.

(2.9)

Thus the FOC of the constrained optimization problem (2.4) lead to a
subsystem giving the estimate of C.

2.3 Consistency

To derive conditions for the consistency of the PML estimators, we have to
consider the associated asymptotic optimization problem and the asymptotic
FOC. We have already made the following assumptions on the sources ε′ts :
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Assumption A.1 :
i) The shocks εt are i.i.d. with E0(εt) = 0, V0(εt) = Id.
ii) The components ε1,t, . . . , εn,t are mutually independent.

In addition we make the following assumption on the p.d.f. of the sources :

Assumption A.2 :
i) The functions log gi, i = 1, . . . , n, are twice continuously differentiable.

ii) supC:C′C=Id|
n∑
i=1

log gi(c
′
iy)| ≤ h(y), where E0[h(Y )] <∞.

From Assumption 1 and 2 ii), we know that the finite sample objective

function : QT (C) =
1

T

T∑
t=1

n∑
i=1

log gi(c
′
iYt) tends almost surely uniformly to

the asymptotic one Q∞(C) = E0[

n∑
i=1

log gi(c
′
iYt)].

Moreover the parameter set, that is, the set of orthogonal matrices is
compact. Then the uniform integrability in Assumption A.2 ii) implies the
uniform convergence of QT towards Q∞, and the convergence of the optimiz-
ers of QT to the set of optimiser of Q∞ [Jennrich (1969), Gourieroux, Monfort
(1995), vol 2, chapter 24]. Finally the later optimizers can be analyzed by
means of the asymptotic FOC. This approach is followed below.

The asymptotic optimization problem is :

max
C

L∞(C) = max
C

plimT→∞
1

T
log lT (C) ≡ max

C

n∑
i=1

E0[log gi(c
′
iYt)], (2.10)

s.t. c′icj = 0, i < j, c′ici = 1, i, j = 1, . . . , n with Lagrange multipliers
λi,j,0, λi,i,0/2. The asymptotic FOC are : E0[Yt

d log gi
dε

(c′iYt)]−
n∑
j=1

λi,jcj = 0, i = 1, . . . , n,

c′icj = 0, i < j, c′ici = 1, i, j = 1, . . . , n.
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By premultiplying the first rows by c′k, by using the conditions of orthog-
onal matrix and the equality λi,j = λj,i, we see that the asymptotic FOC are
equivalent to :


λi,j = E0[c

′
jYt

d log gi
dε

(c′iYt)] = E0[c
′
iYt
d log gj
dε

(c′jYt)] = λj,i, i 6= j,

λi,i = E0[c
′
iYt
d log gi
dε

(c′iYt)], i = 1, . . . , n.

(2.11)

We deduce the following property :

Proposition 1 : The values C0, λi,j,0 = 0, i < j, λi,i,0 = E0[εi,t
d log gi(εi,t)

dε
],

i = 1, . . . , n are solutions of the asymptotic FOC.

Proof : Indeed replacing the c′is by their true values, we get :

λi,j,0 = E0[εj,t
d log gi(εi,t)

dε
] = E0[εi,t

d log gj(εj,t)

dε
] = λj,i,0.

Then, by the independence of εi,t, εj,t for i 6= j, we get :

E0[εj,t
d log gi(εi,t)

dε
] = E0(εj,t)E0[

d log gi(εi,t)

dε
] = 0,

since εj,t is zero-mean. The conclusion follows.

QED

We deduce a necessary identification assumption for C0.

Assumption A.3 : Identification from the asymptotic FOC

The only solution of the system of equations :
E0[c

′
jYt

d log gi
dε

(c′iYt)] = E0[c
′
iYt
d log gj
dε

(c′jYt)], i 6= j,

C ′C = Id,

is C = C0.
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Assumption A.3 implies restrictions on the choice of the pseudo p.d.f. gi.

Proposition 2 : If there exist i, j, i 6= j, such that the pseudo-distributions
gi and gj are Gaussian N(0, 1), Assumption A.3 is not satisfied.

Proof : Indeed in this case :
d log gi
dε

(c′iYt) = −c′iYt and
d log gj
dε

(c′jYt) =

−c′jYt, and the associated (i.j) condition in Assumption A.3 becomes :

E0(c
′
jYtc

′
iYt) = E0(c

′
iYtc

′
jYt).

This condition is satisfied for any C, not for C0 only.

QED

Even if Assumption A.3 is satisfied, we are not sure that matrix C0 corre-
sponds to a maximum of the asymptotic optimization problem. To check this
property, we can consider a second-order expansion of L∞(C) in a neighbour-
hood of the true values. It is shown in Appendix A.2.1 that the asymptotic
objective function is locally concave under the following assumption :

Assumption A.4 : Local concavity

The asymptotic objective function is locally concave in a neighbourhood
of C0 if and only if,

E0

[
d2 log gi(εi,t)

dε2
+
d2 log gj(εj,t)

dε2
− εj,t

d log gj(εj,t)

dε
− εi,t

d log gi(εi,t)

dε

]
< 0, ∀i < j.

This condition is in particular satisfied under the following set of condi-
tions derived in Hyvarinen (1997), Th1 [see also Hyvarinen, Karhunen, Oja
(2001), Th. 8.1]. :

E0[
d2 log gi(εi,t)

dε2
− εi,t

d log gi(εi,t)

dε
] < 0, i = 1, . . . , n. (2.12)

However, this set of conditions is sufficient, but not necessary.
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Then, we have the following consistency result :

Proposition 3 : Under Assumptions A1-A4 the PML estimator of C
exists asymptotically and is a consistent estimator of C0.

This means that the misspecification of pseudo-distributions gi has no
effect on the consistency of these specific PML estimators. This is easily
understood when we consider the asymptotic FOC in (2.11). They simply
correspond to zero moment conditions written on :

c′jYt
d log gi
dε

(c′iYt)− c′iYt
d log gj
dε

(c′jYt), i < j.

Also note that the consistency result is still valid with a choice of gi not
being a p.d.f., but the interpretation as misspecified ML is more appealing.

2.4 Asymptotic Distribution of the PML Estimator

The asymptotic accuracy of the PML estimator depends on the choice of the
pseudo p.d.f. Its asymptotic distribution is derived in Appendix 4.

Proposition 4 : Under Assumptions A1-A4, the PML estimator of C0

is asymptotically normal, with speed of convergence 1/
√
T . Its asymptotic

variance-covariance matrix is given in Appendix 4.

For illustration, let us consider the bivariate case n = 2. The asymptotic
expansion of the FOC shows that :

√
T

(
ĉ1 − c1,0
ĉ2 − c2,0

)
=


γ1,2c

′
2,0 γ2,1c

′
1,0

c′10 c′20
c′10 0
0 c′20


−1 

Z
0
0
0

 ,
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where : γi,j = E0[
d2 log gi(εi,t)

dε2
]− E0[εj,t

d log gj(εj,t)

dε
],

Z ∼ N(0, w2),

w2 = E0{[
d log g1(ε1,t)

dε
]2}+ E0{[

d log g2(ε2,t)

dε
]2}

−2E0[ε1,t
d log g1(ε1,t)

dε
]E0[ε2,t

d log g2(ε2,t)

dε
].

The expression of the asymptotic variance can be simplified in the bivari-
ate case (see Appendix 5 1)). We get :

Vas[
√
T (vecĈ − vecC0)] =

w2

(γ1,2 + γ2,1)2

(
c2,0c

′
2,0 −c2,0c′1,0

−c1,0c′2,0 c1,0c
′
1,0

)
. (2.13)

These closed form expressions can facilitate the consistent estimation of
the asymptotic variance of Ĉ. Indeed, from the PML estimates Ĉ we deduce
the approximated errors ε̂t = Ĉ ′Yt. Therefore γi,j, w

2 are easily consistently
estimated by replacing the theoretical expectation by its sample counterpart
and the errors ε by their approximations ε̂. For instance, we can take :

γ̂i,j =
1

T

T∑
t=1

d2 log gi(ε̂i,t)

dε2
− 1

T

T∑
t=1

[ε̂j,t
d log gi(ε̂j,t)

dε
].

For n = 2, the elements of C generate a manifold of dimension 1 (see
Appendix 5). Thus the asymptotic variance-covariance matrix has rank 1.
It has been suggested in Pham, Garat (1997), Section 2.B., to also consider
the asymptotic distribution of transformations of Ĉ such as :5

∆̂ = Id− C−1Ĉ = Id− C ′Ĉ. (2.14)

We show in Appendix 5, ii) that :

5For expository purpose we have changed their definition of the so-called contamination
coefficients initially defined as :

∆̂ = Id− Ĉ−1C

12



Vas[
√
Tvec∆̂] =

ω2

(γ1,2 + γ2,1)2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 . (2.15)

Thus, after this transformation the asymptotic accuracy of ∆̂ no longer
depends on matrix C, but only on the distributional properties of the sources
and of the pseudo p.d.f.

Finally note that the multiplicative factor function ω2/(γ1,2 +γ2,1)
2 differ

from the multiplicative factors derived in Hyvarinen (1997), eq. 15, or in
Pham, Garat (1997), where the restrictions on C required for identification
do not seem to have been fully taken into account.

The asymptotic accuracy of the PML estimator depends on the choice
of the pseudo p.d.f.. Since the ML estimator is asymptotically efficient, we
immediately deduce the following Corollary :

Corollary 1 : The asymptotic accuracy of the PML estimator is maximal
if gi = fi,0, i.e. if the pseudo p.d.f. is equal to the true p.d.f..

The corollary above raises three comments :

i) The practice of selecting a pseudo p.d.f. as far as possible to a Gaussian
distribution, for instance by optimizing a measure of distance to Gaussianity
such as the negentropy or an approximation of the negentropy by third and
fourth-order cumulants [see e.g. Hyvarinen, Karhunen, Oja (2001), p111,
222-223] is suboptimal, 6 especially, when the true distribution is close to
Gaussian.

ii) The asymptotic efficiency for the estimation of parameter C could be
reached in two steps by an adaptive estimation approach. In a first step ,
C is estimated by a non efficient PML approach. The corresponding esti-
mate is used to compute the residuals as : ε̂t = Ĉ ′Yt, t = 1, . . . , T . Next the
approximated sources ε̂i,t, t = 1, . . . , T can be used to estimate nonparamet-
rically the densities fi,0, i = 1, . . . , n. In a second step the PML approach

6See Kaiser (1958) for an early version of such an idea, or the choice gi(y) = sech2(y)/2,
whose associated score function is 2tanh(y) introduced in the informax algorithm [Bell,
Sejnowski (1995)].
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is reapplied with gi = f̂i, i = 1, . . . , n, where f̂i is the consistent functional
estimator of fi,0.

iii) The approximated errors can also be used to approximate the finite
sample distributional properties of Ĉ by bootstrap.

2.5 Extensions

The results of the Sections above can be used to derive consistent semi-
parametric estimators in models of the type :

Yt = a(Xt; θ) + Σ1/2Cεt. (2.16)

where : E(Yt|Xt) = a(Xt; θ), V (Yt|Xt) = Σ, C is an orthogonal matrix, and
(εt) satisfies Assumption A1.

The parameters θ,Σ can be estimated by nonlinear least squares : θ̂T is
the solution of :

θ̂T = arg min
θ

T∑
t=1

||Yt − a(Xt; θ)||2.

Then a consistent estimator of Σ is :

Σ̂T =
1

T
[Yt − a(Xt; θ̂T )][Yt − a(Xt; θ̂T )]′.

These first-step estimators are used to compute standardized OLS resid-
uals :

ût = Σ̂
−1/2
T [Yt − a(Xt; θ̂T )].

The orthogonal matrix C is finally estimated by applying a PML approach
on the series of residuals ût.

This consistent estimation approach can be applied to either static or
dynamic models. In particular it can be used to identify independent shocks
in a structural vector autoregressive (SVAR) model [see e.g. Chen, Choi,
Escanciano (2012), Moneta et al. (2013). Gourieroux, Monfort (2014)]. In
this case the model of interest is :
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Yt = ΦYt−1 + Σ1/2Cεt.

3 Links with the PML literature on ICA

In Section 2, we have derived the asymptotic properties of a PML approach,
namely its consistency and its asymptotic normality using the constraints of
orthogonal matrix C to solve the identification issue.

There exist other PML estimation methods proposed in the literature on
ICA and blind separation of sources. They differ by the identification restric-
tions which are used,by the possible introduction of auxiliary parameters in
the pseudo-log likelihood, by the global or recursive nature of the optimiza-
tion problem, and by the possible prewhitening of the observed data. Since
this literature mainly deals with signal processing and data analysis, there is
a focus on the numerical convergence and computational complexity of the
algorithm used to optimize the pseudo log-likelihood function. A few papers
derive the asymptotic distribution of PML or recursive PML estimators [see
e.g. Pham, Garat (1997), Hyvarinen (1997), Ilmonen et al. (2012)], but give
no proof of the statistical consistency of the PML estimators. This explains
why among the PML methods proposed in the literature and in the softwares
several are not statistically consistent. This might also explain practical sug-
gestions such as ”In real world problems, it is useful to apply several ICA
algorithms, because they may reveal different IC’s from the data” [Hyvari-
nen, Karhunen, Oja (2001), p286]. The aim of this section is to review other
PML approaches, to discuss their consistency (or their lack of consistency),
and to derive their asymptotic distributional properties.

3.1 Identification by row specific constraints

Let us consider the ICA model :

Yt = C0εt, (3.1)

with the standard assumptions : C0 is invertible, the variables ε1,t, . . . , εn,t are
independent, zero mean, and the εi,t, t = 1, . . . , T have a same distribution
fi,0(εi). But we do not impose V (εi,t) = 1. Whereas in Section 2, we have
solved the identification issue by assuming an orthogonal matrix C, that is
by imposing specific and cross restrictions on the columns ci, i = 1, . . . , n, of
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C, namely c′ici = 1 and c′icj = 0, the identification issue might also be solved
by imposing restrictions only on the rows of C−1, i.e. the SIR2* restrictions
:

cici
′

= 1.

.
The PML optimization problem becomes :

B̂T = arg max
B

T∑
t=1

n∑
i=1

log gi(b
′
iYt), (3.2)

s.t. b′ibi = 1, i = 1, . . . , n,

whereB denotes the generic matrix parameter, whose rows are b′i, i = 1, . . . , n.

This problem is numerically very simple, since it is equivalent to n opti-
mization problems, which can be solved independently :

b̂i,T = arg max
bi

T∑
t=1

log gi(b
′
iYt) (3.3)

s.t. b′ibi = 1.

Such optimization problems are called ”one unit algorithms” in the ICA
literature [see e.g. Hyvarinen, Oja (2000), Hyvarinen, Karhunen, Oja (2001),
Section 8.3].

Proposition 5 : The one unit algorithms provide statistically consistent
estimators neither of C−10 , nor of C0.

Proof : When the true matrix C0 is not necessarily orthogonal, the
expected interpretation of the pseudo-parameter B0 = limT→∞ B̂T is to be
equal to C−10 . Thus we focus below on this expected interpretation.

i) Let us consider the asymptotic first-order conditions corresponding to
the optimization problem (3.2). They are :

E0

[
Yt
d log gi
dε

(b′iYt)

]
− λi,ibi = 0, i = 1, . . . , n,

b′ibi = 1, i = 1, . . . , n
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We can eliminate the Lagrange multipliers and deduce the equations sat-
isfied by the pseudo-true values only :

E0[Yt
d log gi
dε

(b′iYt)]− E0[b
′
iYt
d log gi
dε

(b′iYt)]bi = 0, i = 1, . . . , n. (3.4)

Let us now check if the solutions in bi of this system can be the transposed
of the rows ci0, i = 1, . . . , n of matrix C−10 . System (3.4) becomes :

E0[C0εt
d log gi
dε

(ci0Yt)]− E0[c
i
0Yt

d log gi
dε

(ci
′

0Yt)]c
i′

0 = 0, i = 1, . . . , n

⇔ E0[C0εt
d log gi(εi,t)

dε
]− E0[εi,t

d log gi(εi,t)

dε
]ci

′

0 = 0, i = 1, . . . , n

⇔ E0[εi,t
d log gi(εi,t

dε
)](ci,0 − ci

′

0 ) = 0, i = 1, . . . , n,

by using the independence between the components of error εt and the fact
that these components are zero-mean. We deduce that a necessary condition
for this one unit algorithm to provide a consistent estimator of C−10 is :

ci,0 = ci
′

0 , i = 1, . . . , n,

that is the orthogonality of the true matrix C0.

ii) Let us now assume that the true matrix C0 is orthogonal. We know
from the discussion above that the asymptotic FOC are satisfied by bi = ci,0.
However, it is also seen that this PML estimator is not statistically consistent
in general. Indeed let us choose, as it is standard in the literature, the same
pseudo p.d.f. for all indexes i. Then the different optimization problems
indexed by i have the same solution, that is b̂i,T = b̂T , independent on i. If
they are consistent, their limits are the same c0, say, and the pseudo-true
value of matrix B is (c0, c0, . . . , c0), which is a noninvertible matrix, that
cannot be equal to C−10 .7

7In this respect the derivation of the asymptotic distribution of possibly inconsistent
one-unit PML estimates have to be considered with care [see e.g. Hyvarinen (1997), Th.
2].
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QED

Of course different independent components can be estimated if we change
the pseudo pdf in several optimizations of the objective function and run the
algorithm using different starting points. Such an approach is rather ad-hoc
and does not ensure to find the total number of linearly independent compo-
nents, contrary to multi-unit methods such as the PML approach developed
in Section 2.

3.2 One unit algorithm with row specific constraints
and introduction of auxiliary parameters

For the same reason, there is a lack of consistency for more sophisticated
one-unit PML approaches 8. Let us consider the most favorable case of an
orthogonal C0 matrix. We denote by σ2

i,0 the variance of εi,t and by D0 the
diagonal matrix whose diagonal terms are the σ2

i,0. The variance-covariance
matrix of Yt is C0D0C

′
0, which is not constrained. It has been suggested to

consider jointly the estimation of matrix C0 with row specific restrictions
on C−1, or equivalently with column restrictions on C, and of the variances
σ2
i,0, i = 1, . . . , n. The PML estimator is defined on C−1 = C ′ by :

(ĈT , vec(σ̂
2
T )) = arg max

C,vec(σ2)

T∑
t=1

n∑
i=1

[log gi(
c′iYt
σi

)− 1

2
log σ2

i ], (3.5)

s.t. c′ici = 1, i = 1, . . . , n,

which is equivalent to n optimizations of smaller dimension considered inde-
pendently :

(ĉi,T , σ̂
2
i,T ) = arg max

ci,σ2
i

T∑
t=1

[log gi(
c′iYt
σi

)− 1

2
log σ2

i ], (3.6)

s.t. c′ici = 1.

8or of more sophisticated versions of such one-unit PML approaches such as the defla-
tionary or the symmetric orthogonalization approaches [see e.g. Hyvarinen, Oja (2000),
Hyvarinen, Karhunen, Oja (2001), Sections 8.4.2, 8.4.3]. Indeed these algorithmic methods
do not ensure to find all independent components.

18



It is checked in Appendix A.3.1, that the asymptotic FOC are satisfied
by values ci,0, σ

2∗
i,0, where ci,0 is the true value of the ith column of C and σ2∗

i,0

differs from the true value σ2
i,0. Thus, from the FOC, we might expect ĉi,T to

be consistent of ci,0. However, this approach is not consistent in general for
the same reason as in the second part of the proof of Proposition 5. Thus we
have the following result :

Proposition 6 : The one-unit algorithm with auxiliary volatility param-
eter does not provide a statistically consistent estimator of C0, even if C0 is
an orthogonal matrix.

3.3 Jacobian adjusted PML with row specific constraints
and auxiliary parameters

The pseudo-likelihood used in optimization (3.3) is mispecified since the
pseudo p.d.f. does not correspond to the true p.d.f., but also since we have
not taken into account the Jacobian effect. The Jacobian adjusted PML is
the solution of :

(B̂T , vecσ̂
2
T ) = arg max

C,vec(σ2)

T∑
t=1

n∑
i=1

[
log gi(

b′iYt)

σi
)− 1

2
log σ2

i + log | detB|
]
,

s.t.b′ibi = 1, i = 1, . . . , n, (3.7)

where ei denotes the ith column of the identity matrix.

This form of objective function has been considered in Pham, Garat
(1997), Section 2.A, but without taking into account explicitly the constraints
b′ibi = 1, . . . , n in the FOC.9 Moreover, contrary to the title of their Section
2 : ”The ML approach for white sources”, they do not really study the
properties of the associated PML estimator, but modify the FOC to get co-
variance restrictions [see their equation (2.1), and our next Section 4 for the
analysis of Covariance estimators]. As in subsections 3.1-3.2, the estimator
B̂T solution of the optimization problem (3.7) is not a consistent estimator
of C−10 (see appendix A.3.2), except if C0 is orthogonal.

9even if these restrictions are mentioned p1713 : ĈT is defined ”up to a scaling factor
for each of its column”.
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3.4 Recursive PML approach (under SIR 3)

We have seen in Sections 3.1-3.3 that the one unit identification restrictions
SIR2 or SIR2* are not sufficient to get the consistency of the PML estimator
of C0 (or C−10 ), even if the pseudo-likelihood is Jacobian adjusted. Let us
now come back to the set of identification restrictions SIR3.

i) The recursive scheme

The identification constraints of orthogonality of C can also be introduced
in a recursive optimization scheme. Let us consider the same assumptions
as in Section 2. In particular C0 is orthogonal. We can apply a recursive
PML approach, called deflation based Fast ICA in the literature [see e.g.
Ollila (2010), Reyhani et al. (2012), Ilmonen et al. (2012), Miettinen et al.
(2014)]. The recursive PML estimator is derived by a succession of simplified
optimization problems.

More precisely at step i, the recursive PML estimators ĉ1, . . . , ĉi−1 have
already been derived and the recursive PML estimator ĉi of ci is defined as
the solution of :

ĉi = arg max
ci

T∑
t=1

log gi(c
′
iYt) (3.8)

s.t. : c′ici = 1, c′iĉj = 0, j = 1, . . . , i− 1,

for i = 2, . . . , n. For i = 1, the only constraint is c′1ci = 1.

ii) The Gaussian case

This recursive PML approach has been initially proposed by analogy with
principal component analysis (PCA) [see e.g. Lawley, Maxwell (1971), An-
derson (1984) for PCA]. PCA is based on a PML approach with Gaussian
pseudo-distributions. Taking the standard Gaussian densities for all the den-
sities gi in formula (2.3), the optimization problem of Section 2 becomes :

maxC −
T∑
t=1

n∑
i=1

(c′iYt)
2

s.t. C ′C = Id.
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The objective function can also be written as :

−
T∑
t=1

n∑
i=1

c′iYtY
′
t ci = −

n∑
i=1

[c′i

T∑
t=1

YtY
′
t ci]

= −Tr[C ′
T∑
t=1

YtY
′
tC]

= −Tr[
T∑
t=1

YtY
′
tCC

′](by commuting within the Trace operator)

= −Tr(
T∑
t=1

YtY
′
t ) (since CC ′ = Id).

Thus the objective function takes the same value for all orthogonal ma-
trices C. This is the well-known identification problem of matrix C in the
Gaussian framework (see the introduction). Then the recursive Gaussian
PML is used in PCA to find an easily interpretable matrix C. Indeed the
solution of the recursive PML approach is the sequence of unit norm eigen-

vectors of

T∑
t=1

YtY
′
t associated with the eigenvalues ranked in decreasing order

(assuming that there is no multiple eigenvalue).

iii) Recursive vs global optimization PML estimators

It can be seen that when the pseudo p.d.f.’s are not Gaussian, the PML
estimator of Section 2 and the recursive PML estimator are not necessarily
equal in finite sample. For instance let us consider n = 2 and parametrize
matrix C as10 :

C =

 cos θ − sin θ

sin θ cos θ

.

The PML estimator of θ is the solution of maxθ

T∑
t=1

{log g1(y1,t cos θ +

10This parametrization is valid for a matrix C such that detC = 1.
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y2,t sin θ)+log g2(−y1,t sin θ+y2,t cos θ)}, whereas the recursive PML estimator

of θ is the solution maxθ

T∑
t=1

[log g1(y1,t cos θ+y2,t sin θ)]. It is easily seen that

the solutions of these optimization problems differ in finite sample (even up
to a change of sign on the columns of C). They also have different asymptotic
properties. Indeed the conditions of local concavity differ (see assumption
Ã4 below). They are respectively :

E0[
d2 log g1(ε1)

dε2
+
d2 log g2(ε2)

dε2
− ε1

d log g1(ε1)

dε
− ε2

d log g2(ε2)

dε
] < 0,

and E0[
d2 log g1(ε1)

dε2
− ε1

d log g1(ε1
dε

)] < 0.

The previous identification assumptions A3-A4 are replaced by (see Ap-
pendices A.3.3 and A.2.2 for the justification) :

Assumption Ã3 : For any i = 1, . . . , n− 1, the system :

E0{
d log gi
dε

(c′iYt)[

n∑
j=i

cj,0εj,t − c′iYtci − Σj<iεj,tcj,0]} = 0,

c′ici = 1, c′icj,0 = 0, j < i, i, j = 1, . . . , n,

has the (essentially) unique solution ci,0

Assumption Ã4 : local concavity.
The asymptotic objective function is locally concave in a neighbourhood

of C0, if and only if,

E0[
d2 log gi(εi,t)

dε2
− εi,t

d log gi(εi,t)

dε
] < 0, i = 1, . . . , n− 1.

iv) Behaviour of the recursive PML estimator

We prove in Appendix.3.3 that the asymptotic FOC are satisfied by the
true values. We deduce the following result :

Proposition 7 : Let us assume that the true matrix C0 is orthogonal.
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i) The PML and recursive PML estimators of C0 under SIR3 generally
differ in finite sample.

ii) Under Assumptions Ã3 − Ã4 the recursive PML estimator of C0 is
consistent

Additional asymptotic distributional properties of recursive PML estima-
tors have been derived in Ilmonen et al. (2012), Theorem 2.2. and Miettinen
et al (2014). In particular it has been realized that Assumption Ã3 is of-

ten not satisfied when the same nonlinearities
d log gi
dε

, independent of i, are

introduced in the different steps [see Miettinen et al. (2014), p2].
The finite sample FOC satisfied by the recursive PML estimator are de-

rived in Appendix A-4.2.

4 Generalized Covariance-Estimators

Historically, methods of moments based on cumulants have been the first
estimation approaches for ICA proposed in the literature [see e.g. Wiggins
(1978), Giannakis et al. (1989), Jutten, Herault (1991), Comon, (1994)].

The use of third and fourth order cumulants explain the lack of robustness
of these approaches, whereas the choice of a number of moment restrictions
equal to the number of parameters to be estimated explains their lack of
efficiency. In this section we develop the Generalized Covariance estimators
(GCov) and we show how they can be used in more robust and efficient
ways. These Generalized Covariance estimators are serious competitors to
PML and recursive PML estimators.

Moreover, it is easily checked that GCov consistent estimators can be
derived when there are strictly more sources than sensors 11, whereas the
PML and recursive PML approaches require the same number of sources and
sensors.

4.1 The covariance conditions

The main theorem for the ”essential” identification of matrix C, given in the
introduction, is also valid under the weaker assumption that the components

11See e.g. Eriksson, Koivunen (2004), Th 5, ii) for conditions on the distribution of the
sources to ensure the identification of the independent components
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ε1,t, . . . , εn,t are pairwise independent [see Comon (1994), Th 11, i)]. This
assumption can be equivalently written as a set of covariance restrictions :12

Cov0[a(c′iYt), b(c
′
jYt)] = 0, (4.1)

for any i 6= j, and any (square integrable) functions a, b. These restrictions
differ from the standard moment conditions appearing in the generalized
method of moments introduced in Hansen (1982), Hansen, Singleton (1982).

Indeed :

Cov0[a(c′iYt), b(c
′
jYt)] = E0[a(c′tYt)b(c

′
jYt)]− E0[a(c′iYt)]E0[b(c

′
jYt)],

involves both a moment and a product of moments. This product can be
neglected for special choices of function a. For instance, if a = Id, a subset
of covariance restrictions is :

E0[c
′
iYt b(c

′
jYt)] = 0, ∀i 6= j, ∀b. (4.2)

Such restrictions are for instance considered in Pham, Garat (1997), eq.
(2.1) in a just identified case.

We will see below how to use covariance restrictions in a way similar
to moment restrictions. Let us note that we need a number of restrictions
at least equal to the number of parameters. When we develop the method
for an orthogonal matrix C, the number of independent parameters is equal
to the number of independent parameters of the skew symmetric matrix of
the Cayley’s representation, that is n(n − 1)/2 (see Section 2.1). The order
condition is described in the table below :

Table 1 : Order restriction
12It is known that the pairwise independence of the sources does not imply their mutual

independence when n ≥ 3. Thus it is also possible to introduce independence restrictions
which involve more than two sources. Estimation methods based on cross fourth-order
cumulants of the sources have been introduced in the literature, such as the Joint Approx-
imate Diagonalization of Eigenmatrices (JADE) or the Fourth-Order Blind Identification
(FOBI) approaches [see e.g. Cardoso Souloumiac (1993), Comon, Mourrain (1996), Hy-
varinen, Karhunen, Oja (2001), Chapter 11, and Bonhomme, Robin (2009) for a descrip-
tion of the algorithms, for the asymptotic properties of JADE and quasi JADE estimators].
We do not consider this possibility in our analysis and focus on the efficient use of pairwise
independence restrictions.
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dimension
n 2 3 4 5 6
number of
parameters 1 3 6 10 15
n(n− 1)/2

However, more restrictions have to be taken into account in an optimal
way, if we want to improve the efficiency of the estimator.

We denote below :

Cov0[ϕ(Yt, α), ψ(Yt, α)],

the vector with components :

Cov0[ϕk(Yt, α), ψk(Yt, α)], k = 1, . . . , K,K ≥ n(n− 1)/2,

where ϕk(Yt, α) = ak[c
′
ik

(α)Yt], ψk(Yt, α) = bk[c
′
jk

(α)Yt], and α is the vector
stacking the lower triangular elements of the skew symmetric matrix of the
Cayley’s representation of matrix C.

4.2 The generalized covariance (GCov) estimator

The definition of the GCov estimator mimicks the definition of a GMM es-
timator [Hansen (1982), Hansen, Singleton (1982)]. The GCov estimator is
defined as follows from a first step consistent estimator α̃T . The covariance
restriction is first approximated by its sample counterpart expanded around
the consistent estimator. We get :

√
TĈov[ϕ(Y, α̃T ), ψ(Y, α̃T )]

' (
∂

∂α′
Ĉov[ϕ(Yt, α), ψ(Yt, α)])α=α̃T

√
T (α̃T − α0) + uT , (4.3)

where uT =
√
TĈov[ϕ(Yt, α0), ψ(Y, α0)], E(uT ) = 0, V (uT ) = Vas[

√
TĈov(ϕ(Yt, α0), ψ(Yt, α0))] ≡

Σ0, say.

System (4.3) is asymptotically a linear model with respect to α0, which
can be estimated by Feasible Generalized Least Squares (Feasible GLS). The
GCov estimator is defined as :
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α̂T = α̃T − {
∂

∂α
Ĉov

′
[ϕ(Y, α̃T ), ψ(Y, α̂T )]Σ̂−1

∂

∂α′
Ĉov[ϕ(Y, α̂T ), ψ(Y, α̃T )]}−1

∂

∂α
Ĉov

′
[ϕ(Y, α̃T ), ψ(Y, α̃T )]Σ̂−1Ĉov[ϕ(Y, α̃T ), ψ(Y, α̃T )], (4.4)

where Σ̂ is a consistent estimator of Σ0.
Proposition 8 : The GCov estimator is consistent, asymptotically normal
with :

Covas[
√
T (α̂T − α0)]

= { ∂
∂α

Cov′0[ϕ(Yt, α0), ψ(Yt, α0)]Σ
−1
0

∂

∂α′
Cov0[ϕ(Yt, α0), ψ(Yt, α0)]}−1.

The proof of these asymptotic properties and of the optimality of this
estimator are similar to the ones for GMM [see e.g. Gourieroux, Monfort
(1995), Sections 9.5.2, 9.5.3, and Property 9.11]. The matrices involved in
the expression of α̂T , or of its asymptotic distribution, can be explicited as
follows :

First we have :

∂

∂α′
Cov0[ϕk(Yt, α0), ψk(Yt, α0)]

= Cov0[
∂

∂α′
ϕk(Yt, α0), ψk(Yt, α0)] + Cov0[

∂ψk
∂α′

(Yt, α0), ϕk(Yt, α0)]

=
∂cik
∂α′

(α0)Cov0[Y
′
t

dak(εik,t)

dε
, bk(εjk,t)]

+
∂cjk
∂α′

(α0)Cov0[Y
′
t

dbk(εjk,t)

dε
, ak(εik,t)]

=
∂cik(α0)

∂α′
c′jk(α0)Cov0[εjk,t

dak(εik,t)

dε
, bk(εjk,t)]

+
∂cjk(α0)

∂α′
c′ikCov0(εik,t

dbk(εjk,t)

dε
, ak(εik,t)], (4.5)

by applying the independence assumption.
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Second, the elements of matrix Σ0 can be explicited (see Appendix 6).
We get :

σk,l = Covas{
√
TĈov[ϕk(Y, α0), ψk(Y, α0)],

√
TĈov[ϕl(Y, α0), ψl(Y, α0)]}

= Cov0{[ϕk(Yt, α0)− E0ϕk(Yt, α0)][ψk(Yt, α0)− E0ψk(Yt, α0)],

[ϕl(Yt, α0)− E0ϕl(Yt, α0)][ψl(Yt, α0)− E0ψl(Yt, α0)]}. (4.6)

They are consistently estimated by replacing the theoretical covariances
by their sample counterparts, the parameters by their estimates and the
errors by the associated residuals.

Remark : Another type of covariance (or correlation) based estimator
has been proposed in Bach, Jordan (2002). Loosely speaking, they propose
to estimate α by minimizing

ρ∗(α) = max
k=1,...,K

| ˆcorr(ϕk(Y, α), ψk(Y, α)|,

by analogy with the standard canonical correlation analysis. They do not
provide the asymptotic distributional properties of this estimator, but it is
known that it is less efficient asymptotically than the generalized covariance
estimator introduced above.

5 Concluding Remarks

There is a huge literature proposing semi-parametric estimation methods for
the mixing matrix in models with independent component analysis. These
methods are essentially pseudo maximum likelihood approaches, or methods
based on covariance restrictions. However the standard literature focuses on
the numerical properties of these methods such as their numerical conver-
gence, but generally neglects their statistical properties : statistical conver-
gence and asymptotic distribution. The aim of our paper was to consider
these statistical properties. In particular

i) We show that the one unit PML approaches, often used in practice,
are not statistically consistent.

ii) We derive the necessary and sufficient identification conditions for
multi-unit PML and recursive PML approaches, whereas only sufficient con-
ditions have been derived in the literature.
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iii) We show that the multi-unit PML approaches under the constraint
of orthogonal mixing matrix are consistent and we provide the asymptotic
distribution of the multi-unit PML estimator.

iv) We explain how to improve the efficiency of covariance based estima-
tors and analyze the properties of the generalized covariance estimators.

v) We discuss the links between the empirical likelihood estimators and
the covariance estimators (in Appendix 7).

The PML and covariance based approaches are largely used in practice
even if they do not allow to reach the (semi-) parametric efficiency bound.
Semi-parametric efficient methods have been introduced in the more theo-
retical literature (see the review in Appendix 8).

All these methods are more difficult to implement than the PML and
covariance based approaches. There is clearly a trade-off between statistical
efficiency and numerical simplicity [see the comparison of performances in
Figure 1 of Chen, Bickel (2005)]. They can be less robust, requiring for
instance mutually independent errors, whereas the generalized covariance
estimators are consistent under pairwise independence only.

Moreover, they are often difficult to extend to a dynamic framework,
especially to the consistent estimation of the moving average parameters
Cj, j = −∞, . . . ,+∞, from observations of a stationary process satisfying :

Yt =

∞∑
j=−∞

Cjεt−j

[see e.g. Gourieroux, Monfort (2014), Gourieroux, Jasiak (2015), for the
estimation of such parameters by covariance estimators].
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Appendix 1

Expansion of the Cayley’s Representation

of an Orthogonal Matrix

Let us perform the second-order expansion of C(A) = (Id+A)(Id−A)−1

with respect to A. Let us denote A = A0 + ∆A, where ∆A is a small
skew-symmetric matrix. We have :

C(A)

= (Id+ A0 + ∆A)(Id− A0 −∆A)−1

= (Id+ A0 + ∆A){[Id−∆A(Id− A0)
−1](Id− A0)}−1

= (Id+ A0 + ∆A)(Id− A0)
−1[Id−∆A(Id− A0)

−1]−1

= [C(A0) + ∆A(Id− A0)
−1][Id+ ∆A(Id− A0)

−1 + ∆A(Id− A0)
−1∆A(Id− A0)

−1] + o||∆A||2

= C(A0) + {∆A(Id− A0)
−1 + C(A0)∆A(Id− A0)

−1}

+ ∆A(Id− A0)
−1∆A(Id− A0)

−1 + C(A0)∆A(Id− A0)
−1∆A(Id− A0)

−1 + o||∆A||2

= C(A0) + [Id+ C(A0)]∆A(Id− A0)
−1

+ [Id+ C(A0)]∆A(Id− A0)
−1∆A(Id− A0)

−1 + o(||∆A||)2.

Since :

Id+ C(Ao)

= Id+ (Id+ A0)(Id− A0)
−1

= (Id− A0 + Id+ A0)(Id− A0)
−1

= 2(Id− A0)
−1,

we get also :
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C(A) = C(A0) + 2(Id− A0)
−1∆A(Id− A0)

−1

+2(Id− A0)
−1∆A(Id− A0)

−1∆A(Id− A0)
−1 + o(||∆A||)2.

We deduce the expansion of the transpose C ′(A) by using the equalities :
∆A′ = −∆A,A′0 = −A0 :

C ′(A) = C ′(A0)− 2(Id+ A0)
−1∆A(Id+ A0)

−1

−2(Id+ A0)
−1∆A(Id+ A0)

−1∆A(Id+ A0)
−1 + o(||∆A||)2,

with C ′(A) = (Id+ A)−1(Id− A).

We also deduce :

C ′(A0)Yt = C ′(A0)C(A0)εt

= εt − 2(Id+ A0)
−1∆A(Id+ A0)

−1C(A0)εt

− 2(Id+ A0)
−1∆A(Id+ A0)

−1∆A(Id+ A0)
−1C(A0)εt + o(||∆A||)2

= εt − 2(Id+ A0)
−1∆A(Id− A0)

−1εt

− 2(Id+ A0)
−1∆A(Id+ A0)

−1∆A(Id− A0)
−1εt + o(||∆A||)2.
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Appendix 2

Local Concavity of the Pseudo Log-Likelihood Function

A.2.1 PML estimator (with SIR3)

i) Let us first explicit the second-order expansion of the asymptotic ob-
jective function without taking into account the constraints of orthogonal C
matrix. We introduce the notation ci = ci,0 + δi, where δi is small. We get :

L∞(δ) = E0[

n∑
i=1

log gi(c
′
iYt)]

' E0{
n∑
i=1

[log gi(c
′
i,0Yt) +

d log gi
dε

(c′i,0Yt)δ
′
iYt +

1

2

d2 log gi
dε2

(c′i,0Yt)(δ
′
iYt)

2}.

Since Yt =

n∑
j=1

cj,0εj,t, we deduce :

L∞(δ) ' E0[

n∑
i=1

log gi(εi,t)] +

n∑
i=1

n∑
j=1

E0

[
d log gi(εi,t)

dε
εj,t

]
δ′icj,0

+
1

2

n∑
i=1

n∑
j=1

n∑
k=1

{E0[
d2 log gi(εi,t)

dε2
εj,tεk,t]δ

′
icj,0δ

′
ick,0

= E0[

n∑
i=1

log gi(εi,t)] +

n∑
i=1

E0[
d log gi(εi,t)

dε
εi,t]δ

′
ici,0

+
1

2

n∑
i=1

n∑
j=1

E0[
d2 log gi(εi,t)

dε2
ε2j,t](δ

′
icj,0)

2,

by using the independence property.
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Since :

E0[
d2 log gi(εi,t)

dε2
ε2j,t]

= E0[
d2 log gi(εi,t)

dε2
]E0(ε

2
j,t)

= E0[
d2 log gi(εi,t)

dε2
], if i 6= j,

we get :

L∞(δ) ' E0[

n∑
i=1

log gi(εi,t)] +

n∑
i=1

E0[
d log gi(εi,t)

dε
εi,t]δ

′
ici,0

+
1

2

n∑
i=1

E0[
d2 log gi(εi,t)

dε2
ε2it](δ

′
ici,0)

2

+
1

2

n∑
i=1

E0[
d2 log gi(εi,t)

dε2
][δ′iδi − (δ′ici,0)

2],

with

n∑
j=1

(δ′icj,0)
2 =

n∑
j=1

(δ′icj,0c
′
j,0δi) = δ′iC0C

′
0δi = δ′iδi.

This expansion of the objective function involves the n2 infinitesimal coor-
dinates ∆i,j ≡ −c′i,0δj, i, j = 1, . . . , n, which are submitted to the n(n+ 1)/2,
restrictions of orthogonal C matrix.

ii) Let us now expand the restrictions of orthogonal matrix C .

They are equivalent to :

c′i,0δj + c′j,0δi + δ′iδj = 0, i ≤ j.

These equations show that c′i,0δi = −1

2
δ′iδi and c′i,0δj + c′j,0δi = −δ′iδj are

of second-order. Let us now eliminate the negligible terms in the expansion
of L∞(δ). We get :

37



L∞(δ) ' E0[

n∑
i=1

log gi(εi,t)]−
1

2

n∑
i=1

E0[
d log gi(εi,t)

dε
εi,t]δ

′
iδi

+
1

2

n∑
i=1

E0[
d2 log gi(εi,t)

dε2
ε2i,t](δ

′
ici,0)

2

+
1

2

n∑
i=1

E0[
d2 log gi(εi,t)

dε2
][δ′iδi − (δ′ici,0)

2]

' E0[

n∑
i=1

log gi(εi,t)] +
1

2

n∑
i=1

∑
j 6=i

{E0[
d2 log gi(εi,t)

dε2
− d log gi(εi,t)

dε
εi,t](δ

′
icj,0)

2

' E0[

n∑
i=1

log gi(εi,t)]

+
1

2

n∑
i=1

∑
j>i

E0[
d2 log gi(εi,t)

dε2
+
d2 log gj(εj,t)

dε2
− d log gi(εi,t)

dε
εi,t −

d log gj(εj,t
dε

εj,t](δ
′
icj,0)

2.

since δ′icj,0 ' −δ′jci,0
This expansion involves the n(n− 1)/2 functionally independent compo-

nents of ∆ at order 1. Then the condition for local concavity follows.

A. 2.2 Recursive PML estimator (under SIR3)

Let us now consider the conditions for the recursive PML estimator. At
iteration i, the expansion of the asymptotic objective function becomes :

L∞(δi) ' E0 log gi(εi,t) + E0

(
d log gi(εi,t)

dε
εi,t

)
δ′ici,0

+
1

2

n∑
j=1

E0

[
d2 log gi(εi,t)

dε2
ε2j,t

]
(δ′icj,0)

2,

whereas the restrictions for orthogonal matrix C are equivalent to :
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δ′icj,0 = 0, ∀j < i, 2δ′ici,0 + δ′iδi = 0.

Since δ′ici,0 = −(1/2)δ′iδi is of order 2, the expansion of the objective
function becomes :

L∞(δi) ' E0 log gi(εi,t) +
1

2
{E0[

d2 log gi(εi,t)

dε2
]− E0[

d log gi(εi,t)

dε
εi,t]}δ′iδi.

Thus the condition for local concavity is :

E0[
d2 log gi(εi,t)

dε2
]− E0[

d log gi(εi,t)

dε
εi,t] < 0,

and has to be written for i = 1, . . . , n− 1.
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Appendix 3

Consistency of the PML with Auxiliary Parameters and
Recursive PML Estimator.

A.3.1 PML with auxiliary parameters

The asymptotic FOC for optimization problem (3.5) are :
E0[

∂ log gi
dε

(
c′iYt
σi

)
Yt
σi

]− λi,ici = 0,

E0[
∂ log gi
∂ε

(
c′iYt
σi

)
c′iYt
σ2
i

+
1

σi
] = 0.

They are equivalent to :

E0[
d log gi
dε

(
c′iYt
σi

)
c′j,0Yt

σi
]− λi,ic′j,0ci = 0, ∀j 6= i,

E0[
d log gi
dε

(
c′iYt
σi

)
c′i,0Yt

σi
]− λi,ic′i,0ci = 0,

E0[
d log gi
dε

(
c′iYt
σi

)
c′iYt
σ2
i

+
1

σi
] = 0.

The first subsystem is satisfied for ci = ci,0 and any value of σi. Then the
third subsystem is used to find the appropriate value of σi, which is generally
different from σi,0, whereas the second equation fixes the asymptotic value of
the Lagrange multiplier.

A.3.2 Jacobian adjusted PML with auxiliary parameters

The constrained optimization problem is :
maxB

T∑
t=1

[

n∑
i=1

{log gi(
b′iYt
σi

) + log detB − 1

2
log σ2

i ],

s.t.: b′ibi = 1, i = 1, . . . , n,

40



where B =

 b′1
...
b′n

.

The associate asymptotic criterion is :

n∑
i=1

{E0[log gi(
b′iYt
σi

) + log detB − 1

2
log σ2

i ],

and the asymptotic FOC for bi are :

E0[Yt
d logi
dε

(
b′iYt
σi

)]− λi,ibi + bi = 0, i = 1, . . . , n,

where the derivative of log detB with respect to B is (B−1)′, bi denotes the
ith column of B−1, and λi,i/2 the Lagrange multiplier corresponding to the
restrictions b′ibi = 1.

Let us now check if C−10 is solution of these asymptotic FOC. These FOC
become :

n∑
j=1

c0,jE0[εj,t
d log gi(εi,t/σi)

dε
]− λi,ici0 + c0,i = 0

or c0,i{E0[εi,t
d log gi(εi,t/σi)

dε
] + 1]− λi,ici0 = 0.

Then, we have to distinguish two cases :

i) If the matrix C0 is not orthogonal, these FOC are not satisfied.

ii) If the matrix C0 is orthogonal, we have ci0 = c0,i. The constraints of
the optimization problem are satisfied and the FOC above provides the value
of the (asymptotic) Lagrange multiplier for a given value of σi :

λi,i = E0[εi,t
d log gi(εi,t/σi)

dε
] + 1.

The value of σi is deduced from the asymptotic FOC for σi :

E0[−
εi,t
σ2
i

d log gi(εi,t/σi)

dε
]− 1

σi
= 0.
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A.3.3 Asymptotic FOC for the recursive PML estimator

Let us denote by λi,i/2, λi,j, j < i, the Lagrange multipliers associated
with restrictions c′ici = 1, c′icj,0 = 0, j < i. The derivative of the asymptotic
Lagrangian associated with the optimization problem (3.8) provides the sys-
tem :

E0[Yt
d log gi
dε

(c′iYt)]− λi,ici − Σj<iλi,jcj,0 = 0,

with c′ici = 1, c′icj,0 = 0, j < i.

By multiplying the first equation by c′i, and by c′j,0, j = 1, . . . , i − 1, and
using the orthogonality conditions, including c′j,0ck,0 = 0, k 6= j ≤ i − 1
c′j,0cj,0 = 1, j = 1, . . . , i− 1, we get :

λi,i = E0[c
′
iYt
d log gi
dε

(c′iYt)], λi,j = E0[c
′
j,0Yt

d log gi
dε

(c′iYt)] = E0[εj,t
d log gi
dε

(c′iYt)].

Thus the system becomes :

E0{
d log gi
dε

(c′iYt)[

n∑
j=i

cj,0εj,t − c′iYtci − Σj<iεj,tcj,0]} = 0,

c′ici = 1, c′icj,0 = 0, j < i.

We see that the true ci,0 is solution of this system. Indeed for ci = ci,0
the first subsystem becomes :

E0{
d log gi(εi,t)

dε
[

n∑
j=i

cj,0εj,t − εi,tci,0]}

= E0{
d log gi(εi,t)

dε
[ci,0εi,t − ci,0εi,t]} = 0.

We deduce from the computation above the identification assumption Ã3.
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Appendix 4

Asymptotic Distributions of the PML and Recursive PML
Estimators

A.4.1 PLM estimator

Let us consider the finite sample FOC (2.9) :


T∑
t=1

ĉ′jYt
d log gi
dε

(ĉ′iYt)−
T∑
t=1

ĉ′iYt
d log gj
dε

(ĉ′jYt) = 0, i < j,

ĉ′iĉj = 0, i < j, ĉ′iĉi = 1, i = 1, . . . , n.

(a.1)

Let us denote δi = ĉi− ci,0 the difference between the PML estimator and
the true value. A first-order expansion of the equations in (a.1) gives :



T∑
t=1

(c′j,0 + δ′j)Yt
d log gi
dε

(c′i,0Yt) +

T∑
t=1

c′j,0Yt
d2 log gi
dε2

(c′i,0Yt)δ
′
iYt

−
T∑
t=1

(c′i,0 + δ′i)Yt
d log gj
dε

(c′j,0Yt)−
T∑
t=1

c′i,0Yt
d2 log gj
dε2

(c′j,0Yt)δ
′
jYt ' 0, i < j,

c′i,0δj + c′j,0δi ' 0, i < j, c′i,0δi ' 0, i = 1, . . . , n.

Let us focus on the first subsystem. This subsystem is equivalent to :

T∑
t=1

[εj,t
d log gi(εi,t)

dε
− εi,t

d log gj(εj,t)

dε
]

+

T∑
t=1

{[εj,t
d2 log gi(εi,t)

dε2
− d log gj(εj,t)

dε
]ε′t}C ′0δi

−
T∑
t=1

{[εi,t
d2 log gj(εj,t)

dε2
− d log gi(εi,t)

dε
]ε′t}C ′0δj = 0, i < j.
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Let us now introduce the effect of the number of observations. We get :

1√
T

T∑
t=1

[εj,t
d log gi(εi,t)

dε
− εi,t

d log gj(εj,t)

dε
]

+ E0{[εj,t
d2 log gi(εi,t)

dε2
− d log gj(εj,t

dε
)]ε′t}C ′0

√
Tδi

− E0{εi,t
d2 log gj(εj,t)

dε2
− d log gi(εi,t)

dε
]ε′t}C ′0

√
Tδj = op(1).

We have :

i)
1√
T

T∑
t=1

[εj,t
d log gi(εi,t)

dε
− εi,t

d log gj(εj,t)

dε
]→
d
Zi,j, i < j,

where the random vector obtained by stacking the Zi,j is Gaussian with zero-
mean and Cov(Zi,j, Zk,l) = Ω(i,j),(k,l), where

Ω(i,j),(k,l) = 0, if i < j, k < l,

Ω(i,j),(i,l) = E0[
d log gj(εj,t)

dε
]E0[

d log gl(εl,t)

dε
], if j 6= l,

Ω(i,j),(k,j) = E0[
d log gi(εi,t)

dε
]E0(

d log gk(εk,t)

dε
), if i 6= k,

Ω(i,j),(i,j) = E0([
d log gi(εi,t)

dε
]2) + E0([

d log gj
dε

(εj,t)]
2),

− 2E0[εi,t
d log gi(εi,t)

dε
]E0[εj,t

d log gj(εj,t)

dε
],

Ω(i,j),(k,i) = −E0[
d log gj(εj,t)

dε
]E0[

d log gk(εk,t)

dε
] (with necessarily k < j),

Ω(i,j),(j,l) = −E0[
d log gi(εi,t)

dε
]E0[

d log gl(εl,t)

dε
] (with necessarily i < l).
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ii) Let us now denote :

a′i,j = E0{−[εj,t
d2 log gi(εi,t)

dε2
− d log gj(εj,t)

dε
]ε′t}C ′0

= {E0[−
d2 log gi(εi,t)

dε2
] + E0[εj,t

d log gj(εj,t)

dε
]}c′j,0.

Then, ∀i < j,

a′i,j
√
Tδi − a′j,i

√
Tδj →

d
Zi,j.

Let us introduce the notations :

δ = (δ′1, . . . , δ
′
n)′, δ is a n2 dimensional vector,

Z = (Z1,2, . . . , Z1,n, Z2,3, . . . , Z2,n, . . . , Zn−1,n),

where Z is a n(n− 1)/2 dimensional vector

A1 =



a′1,2 −a′2,1 0 . . . . . . 0 0

a′1,3 0 −a′3,1

a′1,n . . . . . . . . . . . . . . . an,1

0 a′2,3 −a′3,2 . . . 0 0

0 a′2,4 0 −a′4,2 . . . 0 0

. . . . . . . . . . . . . . .

0 a′2,n 0 . . . . . . 0 a′n,2

. . . . . . . . . . . . . . .

0 0 0 . . . . . . a′n−1,n a′n,n−1



,

where A1 is [n(n− 1)/2, n2] matrix,
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A2 =



c′2,0 c′1,0 0 . . . . . . 0 0

c′3,0 0 c′1,0 . . . . . . 0 0

. . . . . . . . . . . . . . .

c′n,0 . . . . . . . . . . . . 0 c′1,0

0 c′3,0 c′2,0 . . . . . . 0 0

0 c′4,0 0 c′2,0 . . . 0 0

. . . . . . . . . . . . . . .

0 c′n,0 0 . . . . . . . . . 0 c′2,0

. . . . . . . . . . . . . . .

0 0 0 0 c′n,0 c′n−1,0



,

where A2 is a [
n(n− 1)

2
, n2] matrix,

A3 =



c′1,0 0 . . . . . . 0

0 c′2,0 . . . 0

. . . . . . . . . . . . . . .

0 . . . . . . . . . c′n,0


,

where A3 is a (n, n2) matrix.
Then we have :

A
√
Tδ →

d

(
Z
0

)

where A =

 A1

A2

A3

 is a (n2, n2) matrix, or equivalently :
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√
Tδ →

d
A−1

(
Z
0

)
Noting that Ω = V (Z) is obtained from the terms Ω(i,j),(k,l) given above,

we get the asymptotic distribution of
√
Tδ :

√
Tδ ≈ N [0, A−1

(
Ω 0
0 0

)
A

′−1]

which is a Gaussian distribution on a vector subspace of dimension n(n−1)/2.

As noted in Pham, Garat (1997), Section 2.B, the first-order expansion
of the finite sample FOC depends on δi = ĉi− ci,0 by means of the quantities
c′j,0δi = c′j,0(ĉi−ci0,), which are simply the opposite of the elements in the first-

order expansion of the contamination coefficients ∆̂ = Id−C−10 Ĉ = Id−C ′0Ĉ.

Since Ĉ = C0 + (δ1, . . . , δn), we have :

∆̂i,j = −c′i,0δj.

We have the following results :

i) The asymptotic distribution of ∆̂ is degenerate, since

√
T (∆̂i,j + ∆̂j,i) = op(1), i < j,

√
T (∆̂i,i) = op(1), i = 1, . . . , n,

due to the expansion of the conditions for the orthogonal matrix Ĉ.

ii) Thus the asymptotic distribution of ∆̂ is known whenever we know
the asymptotic distribution of its strictly lower triangular part, that is, of
the ∆̂i,j, i < j.

iii) The joint distribution of the ∆̂i,j, i < j, is easily deduced by using the
definition of ai,j and the convergence :

a′i,j
√
Tδi − a′j,i

√
Tδj →

d
Zi,j.

We get :
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√
TE0[

d2 log gi(εi,t)

dε2
+
d2 log gj(εj,t)

dε2
−εj,t

d log gj(εj,t)

dε
−εi,t

d log gi(εi,t)

dε
]∆̂i,j →

d
Zi,j.

The factor multiplying ∆̂i,j is nonzero, because of the local concavity

condition, and the asymptotic distribution of the ∆̂i,j, i < j, is derived.

As in Pham, Garat (1997), the asymptotic distribution of the ∆̂i,j no
longer depends on matrix C, but just on the distributional properties of the
sources and on the choice of the pseudo p.d.f.

Our results have taken explicitly into account the constraints of orthog-
onal matrix C in the first-order conditions. In this respect our expansions
differ from the expansions in Pham, Garat (1997) or Wei (2014) as well as
the associated asymptotic distribution of the estimators.

A.4.2. Recursive PML Estimator

The FOC of the finite sample optimization problem (3.8) are :
T∑
t=1

Yt
d log gi
dε

(ĉ′iYt)−
i∑

j=1

λ̂i,j ĉj = 0, i = 1, . . . , n,

ĉ′iĉj = 0, j < i, ĉ′iĉi = 1, i = 1, . . . , n,

where λ̂i,j, j < i (resp. λ̂i,i) is the estimated Lagrange multiplier associated
with the restriction c′iĉj = 0, j < i (resp. c′ici = 1).

Note that at the nth iteration ĉn is (essentially) characterized by the
orthogonality restrictions.

As for deriving system (2.9) of FOC for the PML estimator, we can
premultiply the first subsystem by Ĉ ′. We get :

T∑
t=1

ĉ′jYt
d log gi
dε

(ĉ′iYt)− λ̂i,j = 0, j ≤ i.

Then we can substitute this expression of the Lagrange multiplier in the
system to get :
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T∑
t=1

[Yt
d log gi
dε

(ĉ′iYt)−
i∑

j=1

(ĉ′jYt
d log gi
dε

(ĉ′iYt)ĉj)] = 0, i = 1, . . . , n,

⇐⇒
T∑
t=1

{d log gi
dε

(ĉiYt)[Yt −
i∑

j=1

ĉ′jYtĉj]} = 0, i = 1, . . . , n.

This system is easily solved recursively.
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Appendix 5

Asymptotic Variance of the PML Estimator for n = 2.

A.5.1. Derivation of the asymptotic variance

When n = 2, the orthogonal matrix C (with detC = 1) can be parametrized
as :

C(θ) =

(
cosθ −sinθ
sinθ cosθ

)
and the pseudo log-likelihood function written

as :

LT (θ) =

T∑
t=1

{log g1[c
′
1(θ)yt] + log g2[c

′
2(θ)yt]} ≡

T∑
t=1

log f(yt; θ).

The PML estimator of parameter θ is asymptotically normal with vari-
ance.

Vas[
√
T (θ̂T − θ0)] = J−2I,

where J = E0

[
−∂2 log f(Yt; θ0)

∂θ2

]
, I = E0

([
∂ log f(Yt; θ0)

∂θ

]2)
.

We have :

∂ log f(yt; θ)

∂θ
=

2∑
i=1

{
d log gi
dε

[c′i(θ)yt]
dc′i(θ)

dθ
yt

}
,

∂2 log f(yt; θ)

∂θ2
=

2∑
i=1

{
d log gi
dε

[c′i(θ)yt]
d2c′i(θ)

dθ2
yt

+
d2 log gi
dε2

[c′i(θ)yt]

[
dc′i(θ)

dθ
yt

]2}
.

It is easily checked that :

dC ′(θ)

dθ
C(θ) =

(
0 1
−1 0

)
,
d2C ′(θ)

dθ2
C(θ) = −Id.
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We deduce that :

∂ log f(yt; θ0)

∂θ
=

d log g1(ε1,t)

dε
ε2,t −

d log g2(ε2,t)

dε
ε1,t,

∂2 log f(yt; θ0)

∂θ2
= −d log g1(ε1,t)

dε
ε1,t −

d log g2(ε2,t)

dε
ε2,t

+
d2 log g1(ε1,t)

dε2
ε22,t +

d2 log g2(ε2,t)

dε2
ε21,t.

Thus :

I = E0

[(
d log g1(ε1,t)

dε

)2
]

+ E0

[(
d log g2(ε2,t)

dε

)2
]

−2E0

[
ε1,t

d log g1(ε1,t)

dε

]
E0

[
ε2,t

d log g2(ε2,t)

dε

]
,

J = E0

[
ε1,t

d log g1(ε1,t)

dε

]
+ E0

[
ε2,t

d log g2(ε2,t)

dε

]

−E0

[
d2 log g1(ε1,t)

dε2

]
− E0

[
d2 log g2(ε2,t)

dε2

]
.

The asymptotic distribution of Ĉ = C(θ̂) is deduced by the δ-method,
noting that :

dC(θ)

dθ
=

(
−sinθ −cosθ
cosθ −sinθ

)
= [c2(θ),−c1(θ)].

We get :

Vas[
√
T (vecĈ − vecC0)]

= I/J2 vec

(
dC(θ0)

dθ

)
vec

(
dC(θ0)

dθ

)′
.

= I/J2

 c2(θ0)c
′
2(θ0) −c2(θ0)c′1(θ0)

−c1(θ0)c′2(θ0) c1(θ0)c
′
1(θ0)

 .
51



Let us finally discuss the expressions of I and J, when gi = fi,0 is the true
distribution. We can construct different parametric models from distribution
f0, that are :

a model with drift parameter f0(ε−m);

a model with scale parameter cf0(cε).

From the model with drift parameter, we deduce :

Em

[(
∂ log f0(ε−m)

∂m

)2
]

= E

[
−∂

2 log f0(ε−m)

∂m2

]
,

which for m = 0 implies.

E0

[
d log f0(ε)

dε

]2
= E0

[
−d2 log f0(ε)

dε2

]
.

From the model with scale parameter, we deduce a zero-mean score :

Ec

[
1

c
+ ε

d log f0(cε)

dε

]
= 0,

which implies for c = 1 :

E0

[
ε
d log f0(ε)

dε

]
= −1.

Thus, if gi = fi,0, i = 1, 2, we get as expected the same value for I and J :

I = J =

2∑
i=1

E0

[
−d

2 log fi,0(εi,t)

dε2
− 1

]
.

A.5.2. Asymptotic variance of the contamination coefficients.

Let us denote c1, c2 the rows of matrix C−1. We have :

cjcj = 1, j = 1, 2, cjci = 0, if i 6= j.

With these notations, we get :
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C−1Ĉ =

(
c1

c2

)
(ĉ1, ĉ2) =

(
c1ĉ1 c1ĉ2
c2ĉ1 c2ĉ2

)
,

and vec(C−1ĉ) = (c1ĉ1, c
2ĉ1, c

1ĉ2, c
2ĉ2)

′.
The elements of the asymptotic variance vec∆̂ are equal to the elements

of the asymptotic variance of vec(C−1ĉ). They are easily computed. For
instance we have :

Vas[
√
T (c1ĉ1 − 1)]

=
ω2

(γ1,2 + γ2,1)2
c1c2c

′
2(c

1)′ = 0,

Vas[
√
Tc2ĉ1] =

ω2

(γ1,2 + γ2,1)2
c2c2c

′
2 =

ω2

(γ1,2 + γ2,1)2

,

and so on.
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Appendix 6

Expansion of the Empirical Covariance

Let us consider i.i.d. observations (Xt, Yt), t = 1, . . . , T . Their empirical
covariance can be expanded for large T as :

√
T [Ĉov(X, Y )− Cov(X, Y )]

=
√
T{ 1

T

T∑
t=1

[XtYt − E(XY )]− 1

T

T∑
t=1

Xt
1

T

T∑
t=1

Yt + EXEY }

'
√
T{ 1

T

T∑
t=1

[XtYt − E(XY )]− 1

T

T∑
t=1

(Xt − EX)EY − 1

T

T∑
t=1

(Yt − EY )EX}+ oP (1)

=
1√
T

T∑
t=1

[(Xt − EX)(Yt − EY )− Cov(X, Y )] + oP (1).

This expansion can be used to compute the asymptotic variance of an em-
pirical covariance as well as the asymptotic covariance between two empirical
covariances. For instance we have :

Vas[
√
T [Ĉov(X, Y )− Cov(X, Y )]] = V [(X − EX)(Y − EY )],

Covas{
√
T [Ĉov(X, Y )− Cov(X, Y )|,

√
T [Ĉov(Z,U)− Cov(Z,U)]}

= Cov[(X − EY )(Y − EY ), (Z − EZ)(U − EU)].
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Appendix 7

Empirical Likelihood Approach

The empirical likelihood approach has been suggested to reach the semi-
parametric efficiency bound in IC models [Bach, Jordan (2002), p7]. This
appraoch is based on the minimization of a Kullback-Leibler Information
Criterion (KLIC).

It is known that the KLIC is a contrast between probability distributions,
that it is not symmetric, and that one of its definitions is more appropriate for
the optimization. More precisely it has been shown in Kitamura et al. (2004)
that, when the parameter of interest is defined by moment restrictions, the
empirical likelihood estimator coincides with an efficient GMM estimator.
Let us check if this property is still valid for an IC model (with covariance
restrictions). For expository purpose we consider the bidimensional case.

Let us denote by h0(yt) the true joint density function of Yt = (Y1,t, Y2,t)
′

and by h(yt;α, g1, g2) = g1[c
′
1(α)yt]g2[c

′
2(α)yt], the restricted density corre-

sponding to the semi-parametric IC model. The latter now depends on pa-
rameter α characterizing matrix C, but also on functional parameters g1, g2
corresponding to the densities of the sources. The asymptotic optimization
of the KLIC is :

min
θ,g1,g2

∫ ∫
h(y;α, g1, g2) log

h0(y)

h(y;α, g1, g2)
dy, (a.1)

s.t.

∫
g1(ε1)dε1 = 1,

∫
ε1g1(ε1)dε1 = 0,

∫
ε21g1(ε1)dε1 = 1,

∫
g2(ε2)dε2 = 1,

∫
ε2g2(ε2)dε2 = 0,

∫
ε22g2(ε2)dε2 = 1,

where the constraints13 correspond to the assumptions Eεt = 0, V εt = Id.
In finite sample the optimization problem is of the same type with the

finite sample objective function :

13Note that the constraint
∫ ∫

ε1ε2g1(ε1)g2(ε2)dε1dε2 = 0 is automatically satisfied.
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∫ ∫
h(y;α, g1, g2) log

ĥT (y)

h(y; θ, g1, g2)
dy, (a.2)

where ĥT is for instance a kernel estimator of the joint density of (Y1,t, Y2,t).
Let us now examine the FOC, with a focus on the FOC corresponding to

functions g1, g2. Indeed, by analogy with Kitamura et al. (2004), we have to
check if it is possible to solve explicitly these FOC with respect to g1, g2, and
then to derive the concentrated KLIC, function of α only. By a change of
variable, the objective function in the optimization problem is equivalently
written as :∫ ∫

g1(ε1)g2(ε2) log

[
ĥT (c1(α)ε1 + c2(α)ε2)

g1(ε1)g2(ε2)

]
dε1dε2.

Let us denote by λi,j, i = 1, 2, j = 0, 1, 2, the Lagrange multipliers associ-
ated with the constraints in (a.1) and optimize the Lagrangian with respect
to the pseudo p.d.f. g1. The FOC of the variational problem for g1 are :

∫
g2(ε2)[log

ĥT (c1(θ)ε1 + c2(θ)ε2)

g1(ε1)g2(ε2)
− 1]dε2 − λ1,0 − λ1,1ε1 − λ1,2ε21 = 0, ∀ε1.

These FOC become :

− log g1(ε1) +

∫
g2(ε2) log

ĥT (c1(α)ε1 + c2(α)ε2)

g2(ε2)
dε2 − (λ1,0 + 1) − λ1,1ε1 −

λ1,2ε
2
1 = 0, ∀ε1,

and similar conditions for the optimization w.r.t. g2 :

− log g2(ε2) +

∫
g1(ε1) log

ĥT (c1(α)ε1 + c2(α)ε2)

g1(ε1)
dε1 − (λ2,0 + 1) − λ2,1ε2 −

λ2,2ε
2
2 = 0, ∀ε2.

In the standard case of moment restrictions [Kitamura et al. (2004)],
the FOC do not contain the integral terms. They can be solved up to the
multipliers, and then the multipliers deduced from the constraints in (a.1).
In the case of an IC model, these equations can be solved numerically, but
do not provide a closed form expression for the solution in g1 and g2.
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Appendix 8

A Review of Semi-Parametrically Efficient Methods

The semi-paremetrically efficient methods try to estimate jointly the mix-
ing matrix and the distribution of the errors. For instance such an approach
is followed in Samarov, Tsybakov (2004), who base the estimation on the
restricted p.d.f. of the observable and derive estimator of the mixing matrix

by considering the spectral decomposition of the matrix E0[
df(Y )

dy

df(Y )

dy′
]

approximated by kernel, where f(y) is the p.d.f. of Y . More generally a
joint spectral decomposition can be performed on two other scatter matri-
ces, such as the scatter matrices constructed from the second and fourth-
order moments as in the fourth-order blind identification (FOBI) method
[see e.g. Cardoso (1989), Oja et al. (2006), Bonhomme, Robin (2009), Il-
monen (2015)]. Alternatively Chen, Bickel (2005) consider the restricted
characteristic function of the errors and minimize a distance between the con-
strained and unconstrained characteristic functions. Statistical properties of
these estimation methods are derived such as the convergence in Samarov,
Tsybakov (2004), the convergence and the asymptotic distribution in Chen,
Bickel (2005) or Ilmonen (2015). These approaches do not reach the semi-
parametric efficiency bound.

Recent papers have introduced more complex procedures to compute the
semi-parametric efficiency bound and try to reach this bound. For instance
Ilmonen, Paindavene (2015) consider the special case of an IC model, where
the errors have symmetric distributions with common median zero and derive
the associated semi-parametric efficiency bound. By using the fact that the
maximal invariant of this model is the vector of marginal signed ranks of the
residuals, they construct an efficient estimator by inverting the test statistics
of the null hypotheses 14 H0 : (C = C0), with given densities. They
show that these estimators are consistent even with misspecified densities
(the analogue of the consistency result for PML estimator), but they do not
achieve the efficiency under this misspecification .

Chen, Bickel (2006) propose to estimate the mixing matrix by solving the
condition of zero efficient score, after substitution of an estimated score to

14However their asymptotic distribution has not yet been derived.
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the true one. This approach requires a first step consistent, but not neces-
sarily efficient estimator, to approximate the score. This first step estimator
can be a PML estimator, or a generalized covariance estimator. Alternative
approaches approximate directly the likelihood function by assuming the den-
sities of the sources in large parametric families, such as mixtures of Gaussian
distributions [Vlassis (2001), Eloyan, Ghosh (2011)], or exponentially spline
tilted Gaussian densities [Hastie, Tibshirani (2002)]. In such methods the
estimation of the efficient score is updated at each step of the optimization
algorithm, either an EM algorithm, or a Newton-Raphson algorithm. Other
approaches are likely efficient, such as the two step approach described in
the second remark after Corollary 1, or the empirical likelihood approach
(see Appendix 7). However their asymptotic distributions have not yet been
derived.
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