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Semi-Parametric Estimation of Noncausal Vector Autoregression
Abstract

This paper introduces consistent semi-parametric estimation methods for
mixed causal/noncausal multivariate non-Gaussian processes.

We show that in the VAR(1) model, the second-order identification is
feasible to some limited extent, contrary to the common belief that non-
Gaussian processes are not second-order identifiable. In general, in the mixed
VAR(1) it is possible to distinguish the mixed processes with different num-
bers of causal and noncausal components. For detecting the causal and
noncausal components, a semi-parametric exploratory analysis is proposed.
It includes a semi-parametric estimation method that does not require any
distributional assumptions on the errors. For direct estimation of the matrix
of autoregressive coefficients of a VAR(1), we use the generalized covari-
ance estimator. Although this estimator is not fully efficient, it provides the
estimates in one single optimization while the MLE requires a number of op-
timizations, which is equal to the number of all possible causal dimensions.
The methods are illustrated by a simulation study.

Keywords : Multivariate Noncausal Process, Identification, Semi-Parametric
Estimation, Speculative Bubble.



1 Introduction

The analysis of stationary linear time series with a two-sided moving average
representation involving independent and identically distributed (i.i.d.) er-
rors can be found in the early classical time series literature [see e.g. Hannan
(1973)]. A particular characteristic of non-Gaussian stationary linear time
series is that its two-sided moving average representation that includes the
present, past and future shocks can be distinguished from a one-sided mov-
ing average representation involving the current and lagged values only. In
Gaussian processes, those two representations cannot be distinguished and
the future shocks that determine the impulse response functions cannot be
identified. Nevertheless, the Gaussian processes have been given particular
attention in the time series literature, especially since the mid-seventies, in
the framework of the Box-Jenkins method of analysis. That methodology.
offers a straighforward approach to the identification and estimation of time
series from the moments of order up to two only, allowing to accommodate
the past dependence in Gaussian processes but leaving out of the scope the
noncausal and nonlinear effects. Accordingly, the class of VARMA (ARMA)
models that has remained the benchmark specification for linear processes
over the last 30 years, can capture only the causal effets of the past on
the present and disregards any noncausal effects of the future on the present
value. Even if the data are non-Gaussian, the noncausal effects are left out as
the Box-Jenkins method relies on the Gaussian pseudo-maximum likelihood
estimation and suffers from the aforementioned lack of identification. Conse-
quently, the causal and noncausal dynamics cannot be distinguished, leading
the researcher to the erroneous conclusion about the absence of noncausal
effects. Moreover, given that the Gaussian pseudo-maximum likelihood esti-
mators may be inconsistent when applied to non-Gaussian data, the inference
based on those estimators, including the impulse response analysis, may be
unreliable [see, Gourieroux, Monfort (2015)].

Recently, due to the wide-spread use of non-Gaussian processes in Eco-
nomics and Finance, the interest in noncausal effects in stationary linear
time series has grown considerably. Empirical evidence from applications
involving multivariate economic and financial time series with non-Gaussian
distributions suggests that estimation of causal VAR models by the Gaussian
maximum likelihood (ML) in line with the Box-Jenkins procedure, leads to
mispecifications. For example, an estimated autoregressive matrix of a non-
Gaussian VAR(1) may have eigenvalues of modulus significantly larger than



1 [see e.g. Lanne, Saikkonen (2013) for such estimations, and Gourieroux,
Jasiak (2014)b for the analysis of causal misspecification|. Another empiri-
cally established fact is the presence of nonlinearities in financial data. In the
time series literature, there exist theoretical results that point to the equiva-
lence of noncausal linear dynamics with causal nonlinear patterns [see Rosen-
blatt (2000)]. Accordingly, a linear noncausal model can represent a possibly
complex nonlinear dynamics observed from the calendar time perspectives.
In particular, Gourieroux, Zakoian (2014) have shown that a noncausal linear
autoregression can be used to model speculative bubbles in processes with
fat tails.

There are also valid economic arguments that suggest the presence of
noncausal components in the strong structural economic VARMA models.
For example, noncausal components can result from a leading effect of a
fiscal policy [Leeper, Walker, Yang (2013)], or from the rational expectations
introduced in multivariate dynamic models [see e.g. Gourieroux, Monfort
(2015a) for general discussions].

The estimation method that has been used in recent literature on mixed
causal /noncausal processes is the approximate maximum likelihood (ML),
which assumes a parametric specification of the error distribution . The ML
method is consistent, provided that the error distribution is properly speci-
fied, but generally inconsistent, otherwise. The objective of this paper is to
improve the methodology in this respect and to introduce semi-parametric
estimation methods for the mixed causal/noncausal dynamics. For exposi-
tory purpose, the paper is focused on the mixed VAR(1) model, which is the
benchmark model in the literature on multivariate linear processes.

We show that second-order identification, that is, the identification of
the process from moments up to order two, which include the auto- and
cross-covariances, is feasible to some limited extent in the VAR(1) model,
contrary to the wide-spread belief in the lack of second-order identification
of non-Gaussian linear processes. We claim that, in general, it is possible
to distinguish the mixed processes with different values of ny, ny, where n,
and ny denote the causal and the noncausal dimensions, respectively, and we
propose a semi-parametric exploratory analysis for detecting the causal and
noncausal dimensions of the VAR process.

3See Breidt et al. (1991), Rosenblatt (2000), Chapter 8, for the asymptotic properties
of the ML estimators in the univariate case, Davis, Song (2012), Lanne, Saikkonen (2013),
for the multivariate case.



For direct estimation of the autoregressive matrix of coefficients, we pro-
pose a generalized covariance estimator. Although this estimator is not fully
efficient, it provides the estimates in one single optimization while the ML
requires multiple optimizations. More precisely, when the distribution of the
errors is parametric, the lack of full efficiency of the generalized covariance
estimator is compensated by its numerical simplicity. The ML estimator
requires n + 1 optimizations, which is equal to the number of all possible
causal dimensions of the process, while the generalized covariance estimator
is obtained in a single optimization only.

The paper is organized as follows. In Section 2, we derive and discuss
the causal and noncausal components of a mixed VAR(1) process, along with
their second-order properties. Section 3 covers the second-order identifica-
tion of the mixed VAR(1) process. Section 4 introduces a semi-parametric
method of exploratory analysis for estimation of the causal and noncausal di-
mensions and of the associated causal and noncausal components of a mixed
causal /noncausal process. Section 5 develops the semi-parametric estimation
method from the covariance-based moment conditions. An application to a
set of simulated data is presented in Section 6 to show how to implement
the exploratory analysis and the covariance estimator in practice. Section 7
concludes. Proofs are gathered in Appendices.

2 The mixed Vector Autoregressive Process
of order 1

Let us consider a mixed VAR(1) process, that is a n-dimensional strictly
stationary process (Y;) satisfying the recursive system :

Y;g = (I)Y;g_1 + &y, (21)

where (g;) is a sequence of i.i.d. n-dimensional random vectors (i.e. a strong
white noise), and ® a (n,n) matrix. We assume that :

Assumption A.1 : g; is square integrable with zero mean E(g;) = 0,
and variance-covariance matrix V(g;) = X.

Assumption A.2 : The eigenvalues of matrix ® are of modulus different
from 1.



Below, it is shown that Assumption A.2 ensures the existence and unique-
ness of a stationary solution to recursive equation (2.1). Moreover this solu-
tion admits a two-sided moving average representation.

As g; is not assumed to be independent of the lagged values of the process
Y; 1,Y; o,..., system (2.1) is not necessarily ”causal”.

2.1 Causal and noncausal components of Y

To prove the existence of a stationary solution of (2.1) and derive the two-
sided moving average representation of process Y, we first find its repre-
sentation in terms of the causal and noncausal components. We follow the
approach introduced in Davis, Song (2012) and Gourieroux, Jasiak (2014)a.

Proposition 1 : Let us denote n; (resp. my = n — ny) the number of
eigenvalues of ® with modulus strictly smaller than 1 (resp. strictly larger
than 1). There exist an invertible (n,n) matrix A, and two square matrices
J; with dimension (nq,n;), Jo with dimension (ns, ny) with all eigenvalues of
Jy (resp. Jy) with their modulus strictly smaller than 1 (resp. larger than 1)
such that :

* *
i = A+ AYy, (2.2)
x * * * * *
Y, = LYy, 4, Yo, =LYy, +e5y,
* 1 * 2
e, = Ae,ey, = Aley,

where A, A, (resp A', A?) are the blocks in the decomposition of matrix A
as :

1
A = (A, Ay) [resp. in the decomposition of A™" as A™! = < ﬁ2 >]

Proof : It is always possible to decompose matrix ¢ as :

B J 0 _1
oea(%0)a
by considering its real Jordan canonical form and gathering in J; (resp. Jo)
all the subblocks associated with the eigenvalues with modulus smaller than
1 (resp. larger than 1) [see Gourieroux, Jasiak (2014)a]. Let us premultiply
both sides of equation (2.1) by matrix A~' and denote :



Y= ( ?j > =AY, e = ( ;t ) = A ', We get :
2,t 2
J

or equivalently :

Y =

gt
that are the recursive equations (2.3).

Moreover, equation Y; = AY/, is equivalent to :
Yy =AY, + AYy,
that is the decomposition in equation (2.2). This proves Proposition 1.
QED

Let us examine the recursive equations (2.3). Since all eigenvalues of .J;
are of modulus strictly less than 1, the recursive equation :

® * *
Yl,t = J1Y1,t—1 + e

is causal and, by recursive backward substitutions, we derive the causal one-
sided moving average representation of Y, as :
)

1t—ZJ151t h= [d_JIL)_lgyf,ta (2.5)
where :
(Id— L)y =) JrL" (2.6)
h=0

and L denotes the lag operator.

The second recursive equation : Yy, = JY5, | + &3, requires a different
treatment, as the eigenvalues of .J; are of modulus strictly larger than 1. This
recursive equation can be rewritten as :

YZ’it = J271Y2ft+1 - Jflgg,t+1: (2.7)

6



or by recursive substitution:

ZJ2 ey pon = (Id — JoL) e}, (2.8)

where :

(Id — J,L) ZJ2 hph, (2.9)

By comparing formulas (2.6) and (2.9), we see that the expression of the
inverse of (Id—.J;L) depends on the modulus of the eigenvalues being greater,
or smaller than 1.

This leads us to the following Corollaries :

Corollary 1 : There exists a two-sided moving average solution of (2.1),
that is,

Y, = [Al(ld — JlL)ilAl + AQ(Id — JQL)ilAQ]é‘t

o o
= (A JPILMA = A I LT A
h=0 h=1
Corollary 2 : i) (Y%,) and (Y3,) are purely causal and noncausal processes,
respectively. They can be interpreted as the causal and noncausal compo-
nents of process (Y;); ii) These components are deterministic functions of (Y)
since : Y}, = A7Y;, j =1,2.

Corollary 3 : We can always write:
(Id— ®L)™" = Z4(L)Z2(L7),
t

where the roots of det =;(z) = 0 and de
than 1.
Proof: We have

(Id—®L)" = (A}, A) { ([d_oJlL)1 (Icl—(e)sz)‘1 ] ( ﬁ; )

Z5(2) = 0 are of modulus greater

= (AL dy) ( (Id_ole)1 10d> < Iod (Id—?IZL)—I ) ( ﬁ;

)



Therefore, (Id—®L) ' = Z,(L)Zy(L 1), where 2, (L) = A

o 1d 0 .
and 5(L7) = ( 0 (Id— JoL)"! )A .

(Id— J,L)™' 0
0 Id

QED

Note that the possibility to decompose (Id — ®L)~! into the causal and

noncausal lag operator is equivalent to the decomposition of (Id — ®L) pro-
posed in Lanne, Saikkonen (2013) in the special case of a VAR(1) process.

2.2 The autocovariance function

Let us denote by I'(h) = Cov(Y;,Y; 1) the matrix autocovariance of YV at
[7(h) T7,(h)
order h, by I'*(h) = L1 12
PO = ) T,
ance of Y* with its appropriate block decomposition. The expressions of
autocovariances I'*(h) are derived in Appendix 1. We have the following
Proposition :

= Couv(Y}",Y,",,) the autocovari-

Proposition 2 :

D(h) = AL ()AL + AT 5 (h) Ay + Ao () Ay + Aol5 5 (h) A,

where :

T, (h) = JMT5.(0), for h >0, =3, (0)(J)M, for h <0,

’

D5o(h) = T3,(0)(J2) M, for h >0, = J5"T3,(0), for h <0,

Tia(h) = —[Z0o(J) ™"+ IEf(Jy) ™" 4+ JPT18] ()7, for b >0,
= 0, for h <0,
[51(h) = [[1(R)], where 7, = Cov(e,, €3,).

3 Identification

There are two different identification problems encountered in the mixed
VAR(1) process.



First, the decomposition in formula (2.2) : Y; = A4,Y;, + ApYy, involves
both causal and noncausal ”factors”. As it is common in factor models, the
factors are defined up to invertible linear transformations and permutations.
This is a static identification problem.

Second, it can be difficult to distinguish the causal and noncausal com-
ponents of the process, especially if the analysis is based on the first and
second-order moments of the observable process only. This is the dynamic
identification problem. The two identification issues are discussed below.

3.1 Standardization of the factors

Ji 0
0 J
well as the associated decomposition of Y into V; = A, Y}, + ApY7,.

The decomposition of matrix ¢ into ® = A A~ is not unique as

Indeed, let us consider a block diagonal invertible matrix ( %1 C(Q) > ,
2

where @); is a square (nj,n;) matrix j = 1,2. We can write :

SRR DICIICRAE
0 Q, 0 Q' 0 J 0 Q 0 Q3

0 i
= A - ) A
(5 5,)

where A; = A4;Q;, J; = Q7' J;Q;, AT = Q7' AT j =1,2.
Hence, we also have:

V=AY, + AY5, = Alﬁ’t + Azg’t’

where : Y, = A7Y, = QJ-_IYj’,‘t,j =1,2.

The causal and noncausal ”factors” are defined up to an invertible trans-
form. However, the causal and noncausal vector spaces generated by these
components, or equivalently the projectors on these spaces, are of more rele-

vance than the components themselves. In the literature on mixed processes

0 Jo
the Jordan form of matrix ® [i.e. the complex Jordan form in Davis, Song

the decomposition has been (partly) normalized by selecting for ( Ji 0 )

)



(2012), the real Jordan form in Gourieroux, Jasiak (2014)al. It seems more
appropriate for our purpose to introduce the standardization by means of
matrix A~ (see Section 4.1).

Let us consider Q; = [A7(A7)]/2. We get : AJ(AT) = Q7' AI(AT)Q;" =
Id. This implies the following standardization :

Proposition 3 : We can standardize matrix A~! so that :
AN(AY =1d,j=1,2, (3.1)

that is, the rows of A7 form a system of orthonormal vectors.

Other standardizations are possible by changing the metric. For instance,
we may standardize matrix A~! as follows :

AT(0)(AY) =1d,j = 1,2, (3.2)

to account for the variance of the observed process.

3.2 The difficulty in identifying the causal dimension

It is known in the literature [see e.g. Chan, Ho, Tong (2006)] that the moving
average coefficients of a two-sided moving average process are identifiable (up
to the effect of V'(g;) = X), if the error distribution has no Gaussian features
4. Conversely, if the ¢}s are Gaussian, the dynamics of a two-sided moving
average process cannot be distinguished from the dynamics of a pure causal
one-sided moving average. This makes us believe that we will likely encounter
a dynamic identification problem if the statistical inference relies on only the
first and second-order moments of the observable process.

Surprisingly, it is not necessarily the case. Indeed the identification issue

+oo
is usually considered in an unconstrained framework, where Y; = E Bje,j =

j=—o0

(0] o0
E Bje;,_j + E B_je4y;. This corresponds to a decomposition into a causal
=0 j=1

(0.0 o0
component Y ; = E Bje,_; and a noncausal component Y5, = E B_je44,

4More precisely, at most one component of the noise can be Gaussian.
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both of dimension n. The decomposition derived in Proposition 1 shows that
assumption (2.1) of mixed VAR(1) process imposes additional restrictions on
the dimensions of the causal and noncausal spaces, n; and ns, which sum up
to n, and on the patterns of the moving average coefficients (see Corollary 1).
Those restrictions may facilitate the identification of the causal dimension.”

Let us discuss this point for a bidimensional process n = 2.
i) First, if (Y;) is a pure causal VAR(1) process, we get :

T'(h) = ®"T(0), if h > 0,=T(0)(®")", if b < 0. (3.3)
Similarly, if (Y;) is a pure noncausal VAR(1) process, we get :

I'(h) =T(0)(®") " if h > 0,= &= "1(0), if h < 0. (3.4)

By comparing the series of autocovariances, we easily derive the following
result :

Proposition 4 : At second-order any purely causal VAR(1) process with au-
toregressive matrix ® admits also a purely noncausal VAR(1) representation
with matrix ® = T'(0)~(®')~'T(0).

Thus it is not possible to distinguish a pure causal representation from a
pure noncausal representation from the knowledge of autocovariances only.
Note that Proposition 4 is valid for any value of n, not for n = 2 only.

ii) Let us now consider a mixed causal /noncausal process with n; = ny =
1. The autocovariances of the causal and noncausal components are (see
Appendix 1 for the cross autocovariances) :

5This possibility is the analogue of a similar result in independent component analysis.
The sources can be identified at second-order, if they are serially correlated with distinct
spectra (while being cross-sectionally uncorrelated). This identification result is the basis
of second-order estimation methods of the sources, such as AMUSE [Tong et al. (1990)],
or SOBI [Belouchrani et al. (1997)].

11



o o _
yia(hy = oM s, (h) = 22 g, (3.5)

1—J? CJi-1
Vi) = —R2 (gh Ry ifR >0, =0, ifh<0.  (3.6)
’ 1—J1J2

This leads us to the following Proposition (see Appendix 2) :

Proposition 5 : The mixed causal/noncausal process admits a pure causal
representation at second-order if and only if v{,(0) = 0 < o7, = 0.

Let us discuss Proposition 5. If o}, = 0, the "causal” and "noncausal”
components are independent. Then, we can transform each of them into one
another by replacing an eigenvalue of ® by its reciprocal. In this case the
process admits four representations, which cannot be distinguished, that are
one purely causal with the eigenvalues of ® equal to J; and 1/.Js; one purely
noncausal with eigenvalues 1/.J;, J5; two mixed causal/noncausal with the
pair of eigenvalues being either (J;, Jy), or (1/.J1,1/.J3). When o7, # 0, the
mixed process cannot be written as either a pure causal, or a pure noncausal
process.

3.3 Identification of the causal dimension

Let us first show that it is not possible to disentangle a model whose causal
and noncausal dimensions are (ny, no = n — ny) from a model whose di-
mensions are (ny = n — ny, ny), given the knowledge of the autocovariance
functions I'(h), h varying, only.

Proposition 6: At second-order a mixed model with characteristics [(ny, A1, .J7),
(ng, Ag, Jo)] cannot be distinguished from a model with characteristics [(ng, Az, J; 1),
(nh Ala Jfl)]'

Proof : Let us consider the two-sided moving average representation of (Y;)
given in Corollary 1. We get, :

}/;5 = {Al(Id — JlL)ilAl + AQ([d — JQL)71A2}€t
— Ay(Id— J,L)7'e}, + Ay(Id — L)™'},

12



This representation can be equivalently written as :

Y, = —Ai(Id— J7 LY I LT e — A(Td — Jy ' LYY TS L ey,

Let us now define the process £* in reverse time as :

ét = 6tt‘
We get :

YV, = Ay(Id— J7'L) Y LE — Ay(Id — Jy ' L)t Lay,

= A(Id—J L)™', + Ay(Id — Jy ' L)7es,

where 7, = —Jj’léj,t,l,j = 1,2. This is another mixed causal/noncausal
representation of process (Y;) in which the causal component corresponds to
(ng, A, J;'') and the noncausal component to (nq, Ay, J; ).

QED

Thus, we can replace the eigenvalues by their reciprocals, as long as it is done
simultaneously for all causal (resp. noncausal) components.
Proposition 7 extends Proposition 4 to the mixed causal /noncausal processes.

Proposition 7 : The product of causal and noncausal dimensions n;(n—mn)
is generically identifiable at second-order, that is, except on a set of ¥ of
measure zero.

Proof : From Proposition 2, it follows that the dimension of the vector space
generated by matrices T'(h), h < 0, is generically equal to n? + (n — ny)? =
n? — 2ny(n — ny). This quantity is identifiable as well as ny(n — ny). This

proves the result.
QED

We conclude that, for a mixed VAR(1) process, the second-order iden-
tification is feasible to some limited extent. Indeed, for such a process of
dimension n, we are able to identify at second-order the couples of represen-
tations corresponding to causal/noncausal dimensions : {(n,0), (0,n)}, {(n—
1,1),(1,n—1)},..., and the associated causal /noncausal directions and dy-
namics. The next section describes how this result is used in the semi-
parametric exploratory analysis of mixed causal/noncausal processes.

13



4 Semi-Parametric Exploratory Analysis

Despite the lack of identification at second-order, a semi-parametric ex-
ploratory analysis is available and based on the structure of autocovariances
of a mixed VAR(1) process, discussed in Section 3. More precisely, for a
mixed process with causal characteristics (ni, A') and noncausal character-
istics (ng, A?), we know that (see Proposition 2) :

FT,Z(h) = COU(Yl)tt?YQtt—h)
= Cov(A'Y,, A%Y, 1)
= A'T(n)(A%)
= 0 ,forh <0. (4.1)

The above covariance conditions are used in the exploratory analysis that
consists of the following steps:

step 1 estimate A', A? for a given set (n;,ny = n — n;) [see Gourieroux,
Monfort (2014), Section 4, for the definition and properties of Covariance
estimators].

step 2 identify the product nq(n — nq);

step 3 identify n; itself;

step 4 analyze the dynamics of the causal and noncausal components.

4.1 Search for the causal and noncausal directions

Let us consider a mixed process with 1 > ny > n — 1. Below, we discuss the
identification of the causal and noncausal directions from covariance restric-
tions (4.1).

Let us fix the causal /noncausal dimensions as ny,ny = n — n;. Then the
causal /noncausal directions can be estimated as the solutions of the following
constrained minimization:

(A!, A?) = arg min Z||A1 h)(A2)])?, (4.2)

Al A2
s.t. A'T(0)(AY) = Idm,Azr(O)(AZ) = Idy ),

where ||C]|?> = Tr(CC"),T'(h) is the empirical counterpart of I'(h), H, H > 0,
a sufficiently large lag, and the standardization has been written on matrix

14



A~ directly (see Section 3.1). The value of the objective function at the
optimum is denoted by L(ni,n — ny).

The constrained minimization (4.2) is similar to the canonical correlation
analysis. We are looking for the linear transformations A!, A%, which are
the least correlated at any nonpositive lag ¢. Therefore, one can replace the
global optimization of objective function (4.2) by a recursive optimization
[see e.g. Ilmonen et al. (2012) for such recursive optimization in independent
component analysis, and Appendix 3].

The optimization of objective function (4.2) involves n? arguments, that
ni(ny + 1) N (n—ny)(n—ny +1)

are the elements of matrix A~!, subject to

constraints; thus the number of functionally independent arguments is equal
to :

ni(ni—1) (n—mny)(n—ny —1)
2 2

In standard economic applications the dimension n is rather small, and the

global optimization of objective function (4.2) is easily performed (see also

the first-order conditions in Section 4.2). We provide in Table 1 below the

number of independent arguments.

2n1(n —ny) + (4.3)

Table 1 : Number of independent arguments

Causal dimension n;
Sizen | n; =1 ng =2
2 2 /
3 5 /
4 9 10
5) 14 16

There are no numerical outcomes for n; = 0, which is a degenerate case.
For n; > n/2 the outcomes are symmetric.

6The objective function in (4.2) has an analogue in Second-Order Blind Identifica-

tion (SOBI) of jointly uncorrelated, but serially correlated sources [see Belouchrani et al.
h

(1997)]. The criterion is of the type Z |AT(h)A']|?, s.t. AD(0)A' = Id.
h=1

15



For each lag h, we get ny(n — ni) quadratic functions of A', A% to be
minimized by means of the norm || ||?, and in the global optimization
(H 4 1)ni(n — ny) such quadratic elements. Thus there is a minimum value
of H to select for given size n and causal dimension n; in order to have a
unique minimizer of objective function (4.2). The order condition, that is
the minimum H, is given in Table 2.

Table 2 : Order Condition, i.e. Minimum Value of H

Causal dimension n;

Sizen | ny =1 | ny =2 | uniform in n,
) 1 7 1
3 2 / 2
4 2 2 2
5 3 2 3

In model (2.1) and under Assumptions A1-A2, the sample autocovari-
ances f‘(h),h = 0,...,—H converge a.s. to their theoretical counterpart
I'(h), when the number of observations 7" tends to infinity. Thus the solu-
tions A', A% that minimize the objective function (4.2) will converge a.s. to
the solutions of the associated asymptotic problem where the empirical f(h)
are replaced by their theoretical counterparts I'(h). If ny is equal to the true
causal dimension n;, we know that, generically, the asymptotic objective
function is minimized for the true causal and noncausal directions. Thus
A7 is a consistent estimator of Al j = 1,2. If ny is equal to n — ny, the
minimum of the asymptotic objective function is also equal to zero. If n; is
different from n,, and n — n; o, the minimum of the asymptotic objective
function is generically strictly positive.

4.2 First-order conditions

Let us now derive the first-order conditions (FOC) to the constrained mini-
mization of objective function (4.2). Below, it is shown how to eliminate the
estimated Lagrange multipliers from the FOC in order to obtain a system
defining A', A% only. The row vectors of matrix A' (resp. A2) are denoted
by a},i=1,...,ny (resp. az,k=1,...,n9) .

The objective function to be minimized is :

16



min Z Z Z (4.4)

R g,
st.af [(0)a} = 1,Vi,a!T(0)a} =0,Vi < j, (4.5)
a?T(0)a? = 1,Yk,a?T(0)a? = 0,Vk < I. (4.6)

Let us introduce the Lagrange multipliers : X;;/2, \; j, @ < J, t /2, pwg, k <
[, associated with the orthonormality restrictions. The FOC for the opti-
mization of the Lagrangian are :

gfl =0 & I8 (a) T(h)a2)T(h)ai — XiiT(0)a} — T 5ih;T(0) 0,Vi,

oL A1 T A2\ T 1Al ~ - ~9 ~ ~9

6? =0& EhEi(ai F(h)ak)l‘(h) a; — /Lk7kr(0)ak - Zl:l>kpk7ll‘(0)a, =0,Vk.
k

The Lagrange multipliers can be eliminated from the FOC by premultiplying
the FOC by aj,j < i, and by 47,1 < k, respectively. We get the following set
of FOC for the estimates of A', A2, only :

( 1~

SnSil(@ T(h)ap) (@) T(h)ag)] = 0,Y) <,

o (4.7)

\

4.3 Identification of the causal and noncausal dimen-
sions

In practice, the nonlinear dynamics are expected to be of a rather small
dimension, i.e. the noncausal dimension is expected to be small. That di-
mension can be found as follows:

Step 1 : Analysis of the pure causal process
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Regress Y; on Y, 1, in the framework of the Seemingly Unrelated Regres-
sion (SUR), estimate ® by the OLS and compute the associated residuals
=Y, — dY,_.. Next, plot a nonlinear multivariate ACF of these residuals,
and check if these ACF are not significant. If they are not significant, the
process is purely causal. Otherwise, go to step 2.

Step 2 : Analysis of the mixed process with dimension (n — 1, 1)

Apply the estimation method of A', A% introduced in Section 4.1. Next,
compute the estimated causal and noncausal components : Y7, = AlY, Y5, =

A%Y;. Regress fﬂ*t on }A/l*’tfl to find .J; and the associated residuals €7, [resp.

}Afit on f/;:tﬂ to find —J;!]. Estimate matrix ® as ® = A ( ‘Q }] > A1
2

and derive the mixed residuals ¢ = Y; — @Yt_l. Plot the nonlinear ACF of
(é4). If the nonlinear ACF are not significant, the process is mixed (n—1,1).
Otherwise, go to the next step for a mixed process (n — 2,2), and so on.

The exploratory analysis is mainly based on second-order methods, ex-
cept for the analysis of nonlinear autocorrelograms, which requires nonlinear
methods and relies on the serial independence of the error terms.

We have mentioned in the introduction the importance of noncausal com-
ponents for modeling the speculative bubbles, in processes with fat-tailed
errors €3,. The presence of fat tails is not compatible with the existence
of second-order moments of the error term. Nevertheless, the procedure
described above relies on the sample autocovariances I'(h) and not on the
theoretical T'(h) themselves. It is known that I'(k) can preserve the consis-
tency and asymptotic distributional properties, even in the presence of fat
tail errors, such as errors with stable distributions [see e.g. Davis, Resnick
(1986)]. Therefore, one can expect that the method proposed above will
provide consistent estimators of A', A%, provided that the standardization
A’'T(0)A7 = Id is used in order to control the possibly different speeds of
convergence of the elements of I.

4.4 Increasing the lag(s)

We have shown above that it is possible to estimate matrix ® in model (2.1)
as:
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b= AJ AV + AydyA?. (4.8)

However, matrix ® as well as model (2.1) have no economic interpretation
contrary to decomposition (2.2) into causal and noncausal components. That
decomposition can be used to extend the approach described above to pro-
cesses of higher autoregressive orders, or to the moving average processes.
More precisely, the approach described in Section 4.1 can also be used to
identify the causal and noncausal directions in models of the type :

Y = AV, + A3, (19)
where A = (A;, Ay) is invertible,

O (L)YT, = €1,

C1yyx X 4.10
P, (L I)YQ,t = €2441; ( )

where €} is a strong white noise and ®;, Py polynomials such that the roots
of det ®,(z) = 0,7 = 1,2, are of modulus strictly larger than 1.

5 Nonlinear Covariance Estimators

This section introduces a direct consistent estimation of the matrix of autore-
gressive coefficients in the VAR model based on sample nonlinear autocovari-
ances. Given the estimate ® of @, the real Jordan canonical form involving
fl, jl, J, can also be found as well as the causal and noncausal components
of the process.

The advantage of this approach is that is allows us to assess the accuracy
of the estimator, unlike the exploratory analysis described in Section 4, where
the outcomes are determined by visual inspection of the nonlinear ACF.

5.1 Estimation of ¢

By considering the restrictions Cov(A'Y;, A?Y;_) = 0 for h < 0, based on
second-order moments only, we are unable to disentangle the mixed models
(ni,n —ny) and (n — ny,ny). However, as long as the error terms &, are
serially independent, there exist other covariance based conditions that can
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be used. More precisely let us consider scalar functions of n; and n — ny
arguments denoted by ¢y, ¢, respectively. We have :

Covler(AYY;), e2(A%Y; )] = 0, for any ¢y, ¢y, and h < 0. (4.11)

From a theoretical point of view, this extended set of covariance restric-
tions can be used not only to identify the causal and noncausal dimensions,
but also to improve the accuracy of the estimators of A', A? due to appropri-
ately selected weights [see the generalized covariance estimators in Gourier-
oux, Monfort (2014)].

The practical choice of transformations ¢y, cs is not clear. One can choose
quadratic ¢; and linear ¢, to capture the absence of leverage effect at lag
h, h < 0, or quadratic ¢; and quadratic ¢y to capture the absence of volatility
persistence at lag h, h < 0, or even cubic , quartic, or higher order ¢; and
co as proposed for instance to estimate ”autoregressive” schemes for mixed
unidimensional processes in Gassiat (1990), and Rosenblatt (2000), Section
8.7.

Recall that in the minimization of objective function (4.2), all covariances
are given equal weights as they are intuitively of the same order of magnitude.
That is no longer the case if the third or fourth order (cross) moments are
included.

From a theoretical point of view, there exist optimal weights for various
covariances, along the lines of the generalized method of moments. However,
from a practical point of view, unequal optimal weights can be numerically
cumbersome to implement, due to a rather large dimension of the weight-
ing matrix [see,e.g. Gourieroux, Monfort (2015b) for the optimal weights in
an i.i.d. framework). There exist a simple way to circumvent that prob-
lem, by replacing autocovariances by autocorrelations. More precisely, let
us introduce a set of functions a, k = 1,..., K, and the autocorrelations
Pik(h, @) = Corr[a;j(Y, — ®Y; 1), ap(Yi_p — PY,_p_1)]. A generalized covari-
ance estimator is a weighted covariance estimator, defined as the minimizer
of the following objective function:

O =33 1> #uh o)) (412)

where H is the highest selected lag and the theoretical autocorrelations are
replaced by their sample counterparts.
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This estimator and its accuracy depend on the choice of functions a, k =
1, ..., K and the maximum lag H.

5.1.1 Estimation of the Error Distribution

After identifying the causal and noncausal dimensions, the true error terms
£¢, or their transformed versions e, are consistently estimated by the as-
sociated residuals €, €, respectively. Next, these residuals can be used to
estimate the unknown joint density f*, say, of the ¢}, for instance by ker-
nel smoothing. These functional estimators of the densities can be used for
two different purposes. First, f can be used to simulate trajectories of the
mixed process and to compute by bootstrap the accuracy of the generalized
covariance estimator (see, Section 6). Second, it is possible to reestimate the
mixed causal/noncausal model by maximum likelihood after substituting this
kernel estimator f* to the true f* [see e.g. Gassiat (1993) for the asymptotic
properties of such an approach].

6 Illustration

As an illustration, we consider below the application of the exploratory anal-
ysis and the generalized covariance estimator, introduced in Sections 4 and
5, respectively, to a set of simulated data.

6.1 The simulated data

Let us consider a bivariate process n = 2 of causal and noncausal dimensions
equal to 1: n; = n —ny = 1. The following parameter values are fixed:

Jy=0.7,Jy =2,
(1 -1 (11
(o )=o)

The errors €; = (€14, €2,)" are such that €4, €5, are drawn independently in
the same t-student distribution with the degree of freedom v = 4, zero mean
and variance equal to v/(v — 2).

The autoregressive matrix is equal to:

(0 4 (07 —-13
o=a(g 5 ) =00 20 )
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We draw T" = 1000 values of the errors ¢/,t = 1,...,7, and compute the
simulated transformed errors ¢;* = A~'¢¢, the values of the causal component
Yii = LY+ ekt =1, T, with initial value Y75 = 0, the values of
the noncausal component: Y57 = 1/JY5, — 1/Jse5%,,,t = 1,...,T, with
terminal value Y7, , = 0. Next, we compute the values of the series Y, =
AY¥,t =1,...,T. They are related to the observed process as follows: Y}, =
Yo, Yo, = Y, + Y5, < Y, =Y, Yy, =Yy, — Y, Hence, the first
component of Y; is purely causal and its second component is a mixture of a
causal and a noncausal process.

Figure 1 shows the path of the two components of the observed process Y*
and Figure 2 shows its autocorrelation function.

[Figure 1: Simulated Y}]

The first observed component has mean -0.147 and variance 8.296 and the
second component has mean 0.028 and variance 0.633. Their contemporane-
ous correlation is -0.221.

[Figure 2: Autocorrelation Function of Y]

The simulated data display multiple peaks in the trajectory due to the fat
tails of the errors. Indeed, for the selected value of parameter v = 4, the
kurtosis of the errors does not exist. The marginal and cross autocorrelations
are significant up to lag 10 with exponential decay rates determined by the
values of J; = 0.7 and 1/.J, = 0.5.

Let us now consider the auto- and cross-correlations of the causal and non-
causal components of Y,*.

[Figure 3: Autocorrelation Function of Y;*]

The cross-correlations are almost all not significant in the South-West panel
of Figure 3. This illustrates the condition: I'] ,(h) = 0, for A < 0, derived in
Proposition 2, and used in the exploratory analysis below.

6.2 The exploratory analysis

The first objective of the exploratory analysis is to determine the causal /noncausal
dimensions of the observed process. Hence, we consider the various possible
combinations that are:

(n1,n —ny) = (2,0) for a pure causal process,

(n1,n —ny) = (0,2) for a pure noncausal process,
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(n1,n —ny) = (1,1) for a mixed causal/noncausal process.
In the two pure cases, parameter matrix ¢ can be directly estimated from
a Seemingly Unrelated Regression (SUR) model of Y; with appropriately
chosen lags or leads of Y; as the right hand side variables. The mixed case is
analyzed according to the method introduced in Section 4.1.

Pure causal model

In the pure causal model, matrix ® is estimated by the Ordinary Least
Squares (OLS) from the Seemingly Unrelated Regression of Y; on Y; ;. We
883; _01427;2 ) with eigenvalues \; = 0.67
and Ay = 0.52. As expected, the eigenvalues are close to J; = 0.7 and
1/Jy = 0.5. The explosive root is captured by the estimate of its stationary
counterpart.

It is clear that the pure causal model is misspecified as the second row
of matrix @ is very different from the second row of the true matrix ¢. In
practice, the true matrix ® is unknown and such a misspecification will be
detected from the analysis of the causal residuals.

Figure 4 below displays the ACF of the SUR-based causal residuals: €, =
Y, — Y.

get the estimated matrix $ = (

[Figure 4: Autocorrelation Function of Causal Residuals |

The correlations are not significant, which implies that the causal residuals
can be considered as weak white noises. The misspecification cannot be de-
tected from the second-order properties of the residuals. Let us now consider
the acf computed from the squared causal residuals.

[Figure 5: Autocorrelation Function of Squared Causal Residuals ]

We observe nonsignificant autocorrelations in the South-East panel. This
implies that causal errors ¢; are not serially independent. Thus, the pure
causal dynamics is rejected.

Pure noncausal process

A similar approach is used for the pure noncausal process. More precisely,
the initial model Y; = ®Y;_; + ¢, is transformed into its forward-looking rep-
resentation Y; = ® 1Y, ; — ® e, . Therefore, matrix ® ! can be estimated
by the OLS in the SUR regression of Y; on Y.
0.823  0.392 > "

. . . . jal —-1 _
The estimated autoregressive coefficient is & = ( 0117 0.368

23



1.054 —1.122
0.336  2.356
of & are A1 = 1.492 and \y = 1.917 and are close to 1/.J; = 1.428 and
Jo = 2.0. The autocorrelation functions of the noncausal residuals and their
squares are provided in Figures 6 and 7.

inverse provides the estimate of ®: d = ( > . The eigenvalues

[Figure 6: Autocorrelation Function of Noncausal Residuals ]
[Figure 7: Autocorrelation Function of Squared Noncausal Residuals |

The noncausal residuals satisfy the weak white noise condition. However,
the pure noncausal specification is rejected due to significant squared auto-
correlations of the squared residuals in the top panels.

Mixed process
In the mixed case, we estimate the rows A', A? of matrix A~!, by mini-
mizing the objective function (4.2). This constrained minimization involves

the autocovariances up to lag H = 4 and yields the estimated matrix Al =
( 0.356  0.293

—0.008 1.250
know that A, A% are defined up to some invertible transform (as well as the
associated causal and noncausal components) (see the discussion in Section
3.1). Therefore in our framework, we verify if the first rows of A~' and A~!
(resp. the second rows) are close to being proportional. The cosine between
the row vectors are:

cos; = 0.995, coss = 0.999, showing a quasi-proportionality.

Given these estimates, we can compute the fitted components:
fﬁft = A'Y,, 172*,5 = A%V, by Corollary 2. Figure 8 displays the scatterplots
of (Y3, Y7),j=1,2.

J,t

>. Let us now compare the matrices A~! and A~!. We

[Figure 8: Scatterplots of Fitted and True Components]

The true and fitted components satisfy a quasi-linear relationship, which is
compatible with the definition of these components up to a multiplicative
scalar. The R? of the associated regressions are R? = (0.997 and R% = 0.999,
respectively. Let us now consider the auto- and cross-correlations of Y;*.

[Figure 9: Autocorrelation Function of Y;*]

As expected, the autocorrelations of }Aft* in the South-West panel are almost
nonsignificant.
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The regression coefficient obtained by regressing 171*,5 on Yfftq [resp. Y;t
on }A/Q’ftﬂ] provide the estimated values .J; = 0.725 and 1/.J, = 0.472. Given

these and the previously estimated matrix A~! the estimated ® matrix is
& — ( 0.732  —1.141 >
—0.008 2.111
Next, we compute the mixed causal-noncausal residuals as:
& =Y, — oY,
and display the ACF of the mixed residuals and of the squared mixed resid-
uals in Figures 10 and 11.

[Figure 10: Autocorrelation Function of Mixed Residuals]
[Figure 11: Autocorrelation Function of the Squared Mixed Residuals]

All autocorrelations are nonsignificant and the mixed causal /noncausal model
is not rejected.

The exploratory analysis outlined above is an important preliminary step
prior to applying more sophisticated estimation methods. It provides values
of Jy, Jo, A, ®, which can be used to initiate the algorithms for computing
more efficient semi-parametric estimators, such as the covariance estimator
discussed in the next section.

6.3 Covariance estimators

Let us now illustrate the use of the generalized covariance (GC) estimators
obtained by maximizing selected linear and nonlinear autocorrelations. The
residuals are denoted by ¢,(®) =Y, — ®Y;_, as they depend on the unknown
matrix parameter ®. The following set of four functions of the errors is
considered: a;(€) = €1, a2(€) = €2, az(€) = €2, a4(€) = €2. From the observed
process, we compute the following series:

(e14(®), €24(®), €1 (), €3,(P)) = (Z1.4(D), Z2,4(®), Z34(®), Z44(®)), t =1,..., T.

Let p; x(h, ®) denote the sample autocorrelation between Z;,(®) and Zj ;_,(®P),
j,h =1,...,4. These include the standard serial correlation, the correlation of
the squares, correlations between the residual series and the squared residual
series.

The GC estimate is obtained from the following minimization based on the
associated portmanteau statistic up to lag H = 10.
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d = Argming Z SN pin(h, @) (4.13)

The estimated autoregressive matrix is

& — 0.7246 —1.4525
~\ —0.0302 1.9939

with eigenvalues \; = 0.690, A\, = 2.027 close to the true values J; = 0.7 and
J, = 2.0.The standard errors of ® are obtained by bootstrap and are equal
to 0.023, 0.308, for the elements of the first row, and to 0.009, 0.120 for the
elements of the second row.

After estimating ®, we compute the GC residuals € =Y, — Y, , in order
to approximate the density of ¢,. We plot in Figures 12 and 13 the smoothed
empirical densities of €;, and €;; and compare them to the true t-Student
density of the errors.

[Figure 12: Empirical Density of GC Residuals and True Errors (causal
component )]

[Figure 13: Empirical Density of GC Residuals and True Errors (non-
causal component)]

The standard kernel-based density estimators, produced by S+ by using
a default bandwidth overlap, indicates that the empirical densities of the GC
errors and of the true errors are very close. Indeed, the extreme values of the
GC errors are very close to the extremes of the true errors, as the maxima
are 7.555 and 7.579, respectively and the minima are -11.183 and -11.277,
respectively. The means of the GC and true errors are -0.006 and -0.013 and
their standard arrors are 1.437 and 1.430, respectively, and are very close
too.

Both residual series are serially uncorrelated. Their contemporaneous
correlation is statistically significant and equal to -0.095, as compared to the
standard asymptotic normality-based critical value of 0.0632.

7 Concluding remarks

This paper examined the problem of second-order identification in mixed
causal/noncausal linear processes and revealed that in the mixed VAR(1)
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process the second-order identification is available to some limited extent.
That is sufficient to ensure the feasibility of semi-parametric estimation based
on the autocovariance function. We propose a semi-parametric method of ex-
ploratory analysis that allows to detect the causal and noncausal dimensions
of a multivariate VAR(1) process. For direct estimation of a VAR model
with causal and noncausal components, a generalized covariance estimator
is also introduced. It provides the estimation of 14, Ay, Ay, Jq, Jo in a single
optimization. When the distribution of the errors is parametric, the lack of
full efficiency of the generalized covariance estimator is compensated by its
numerical simplicity. The ML estimator requires n + 1 optimizations, which
is equal to the number of all possible causal dimensions of the process, while
the generalized covariance estimator takes one single optimization only.
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Appendix 1

Proof of Proposition 2.

We derive the expression I'j ,(h) for h > 0.

We have :

[a(h) = Cou(Yy,, Yy, 1)
* * h—1 _* —h _x —1 %
—Cov(el s+ el + o+ e e+ o+ Ty e )

= —[Z0a() "+ B0 T TS () (a.1)
by using the serial independence of £ and Y7, = Cov(e};, €3,), Vt.

In particular, if n = 2,n, = ny = 1, then Ji, J and ¥, are scalars and
we get :

via(h) = =Ll gy i
—01 Iy M+ (Jiho) + .+ (S o)
[1— (J1.J2)"]

ok —h
N 01’2J2 1— J1J2
O.*
ﬁhu{z — (JyM)], ifh > 0. (a.2)
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Appendix 2

Condition for distinguishing a mixed process from a pure process,
n=2

As the identification of process (Y;) and of a one-to-one linear transfor-
mation of (Y;) are equivalent, we assume that the mixed causal/noncausal
process is (V") itself, with the autocovariances given in (3.5)-(3.6).

By Proposition 4, we consider a pure causal process, without loss of gen-
erality. Let us denote such a process as : Y; = ®Y;_; +¢&;, where the modulus
of the eigenvalues of ® are strictly smaller than 1, and analyze the conditions
ensuring that the associated autocovariances I'(h) coincide with the autoco-
variances given in (3.5)-(3.6). Let us assume for expository purpose that
Ji # 1/Js. Then matrix ® is diagonalizable with eigenvalues J; and 1/.J,
and we can write :

I =1 Jl 0
v (4 )

C21 C22
of ®'. For h <0, we have from (3.3):

C11 C19 . . . .
where C' = ( is the matrix, whose columns provide eigenvectors

I(h) = T(0)(@)" = T(0)C"" ( Jéh me ) c.

Let us now consider the implications of the conditions 77 ,(h) = 0, if
h < 0. We get :

(1,0)T(h) ( ! ) —0,Vh, h <0,

|h|
o (1,00(0)C-! ( J(l) Jolh ) c ( ! ) —0,vh < 0.
2

th‘ 0 Ci12
& (dy1,dya) L e ) 0,Vh <0.
2
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(Where (d117 d12) = (1,0)F(0)C_1)
= dHClQJI‘h' + dmCQQJ;‘h' = O,Vh < 0.
& either ¢ = 0 and dix = 0,0r co =0 and dy; = 0,

(since the vectors (di1,di2)" and (ci9, co2)" are non zero vectors and the

sequences J{h‘ and J, " are linearly independent).

a) Let us consider the case ¢;3 = 0. Then ¢y can be standardized to 1.

We have :

C:<m[ﬁ,04:i< L 0>,
cop 1 C11 —C21 C11

oroe = Lewoaeon (2,
and dys = 712(0).

Thus the condition di2 = 0 is equivalent to the condition 7;5(0) = 0.

b) Similarly, if ¢o2 = 0, we can fix ¢;5 = 1. We have :

C:<q11»04:_i< 0 4)7
1 0 C21 —C21 C11

@@MMﬂz—iwmwmmn(o ‘1)

Ca1 —C21 C11

712(0). The condition di; = 0 is equivalent to the condition
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Appendix 3

Numerical Considerations

A.3.1 Recursive optimisation

The global constrained optimisation (4.2) can be replaced by recursive
optimizations, with a tradeoff between the number of optimisations and the
dimensions of the optimizers [see Hyvarinen et al. (2001), Gourieroux, Mon-
fort (2015) for the recursive analogue in independent component analysis].
For instance for n; = ny = 2, consistent estimators of the causal and non-
causal directions can be derived in two optimizations, first with respect to
the first rows of A' and A2, then with respect to their second rows as follows :

First optimization :
—H

~1 A2\ __ : 11 2'\2
(a1, a;) = argmin > _(aiT(h)a)?,

“0M =g

s.t. ail(0)(al) = 1,a°T(0)(a?) =1,

where ai and a? have dimensions (1, n).

Second optimization :

The next optimization is performed to find the second rows of A!, A?,
denoted by al, a3, once the first-rows have been derived. The estimators
are :

—H dl R &2 !
(a5, a3) = argmin > |[( 1 )T(h) (5 ) II%
a},a2 o Qo as

s.t. as[(0)(ah) = 1,830 (0)(a2) = 1,

ab0(0)(al) = 0,a30(0)(a3)" = 0.
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Appendix 4

Identification of a mixed process for n = 2

Let us consider the mixed process (Y;*) with ny = ny = 1 and the auto-
covariances given in (3.5)-(3.6).
i) We know from Proposition 6 that this process has the same second-order
properties as another mixed process, where the first component is noncausal
associated with the inverse J; !, and the second one is causal associated with
Jt.
ii) Let us now consider another mixed representation of process (Y;*) with
the matrix A~! defining the new causal and noncausal components.
The autocovariance of the new causal component is given by:

) = (@) (s )

N 112 011 |h| 122 O ||
allg!? " )
F————o (J; " — .
1= Ji ], 12 (1 5 )

This autocovariance has the exponential form (3.5) only if it is proportional

to either J’l‘h| or J;'h‘ . Without loss of generality, we can consider the case
when it is proportional to J{h‘ (by applying part i) above).
We have:
* 11
12| 12 922 a
<~ a " |a —
J2—1 1-—JJs

When a'? = 0, we get the initial causal component (Y7,) (defined up to a
multiplicative scalar). Otherwise, we can assume a'?> = 1 and obtain:

Fia(h) =y )"

* —
o1 = 0.

*
~11 _ 022 1 - J1J2
72 *
!]2 - ]_ 012
*
whenever o7, # 0.

By symmetry, we can consider the autocovariance of the new second compo-
nent, that is,

; (a.1)
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~ 21 22 a?!
faall) = (@ a®)10) s )
It is proportional to J;, " if and only if, either a®* = 0, or ' = 1 and
~22 _ O'ikl 1— J1J2

Finally, the cross-covariance between the new components is

(a.2)

a

na) = a1 (s ).

This cross-covariance has to be zero for h < 0. This condition is equivalent
to:

Y,2(h) =0
“11-21 011 || | ~12~22 039 —|h|
< a a J '+ a et —==—=—J.
11—t Jz—17?
~12~21
a—a |h| —1h|
F————o (J = ] =0, Vh <0
1 _ J1J2 12( 1 2 ) ) =
~11 07 ol
a 171}12 + 1731212 =0,
= (a.3)
~22 03 oy _
2+, =0

We note that the conditions (a.3) are not compatible with the conditions
(a.1)-(a.2). To summarize, if o}, # 0, the only identification problem for the
mixed process is the change of eigenvalues into their inverses discussed in
part i).
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Figure 10: Autocorrelation Function of Mixed Residuals
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