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Abstract

We develop a new method for generating dynamics of conditional correlation matrices

between asset returns. These correlation matrices will be parameterized by a subset of their

partial correlations, whose structure will be described by an undirected graph called “vine”.

Since such partial correlation processes can be specified separately, our approach provides

very flexible and potentially parsimonious multivariate processes. We introduce the so-called

“vine-GARCH” class of processes and describe a quasi-maximum likelihood (QML) estimation

procedure. Compared to other usual techniques, particularly for the Dynamic Conditional

Correlation family, inference is simpler and can be led equation per equation. We compare

our models with some DCC-type specifications through some simulated experiments and we

evaluate their empirical performances by exploiting a database of daily stock returns.

Keywords: Dynamic Conditional Correlations, Multivariate GARCH, Partial Correlations,

Quasi Maximum Likelihood Estimator, Regular vine.
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1 Introduction

Correlations between assets are key inputs in finance. For instance, building portfolio strate-

gies most often requires the estimation of the correlations between asset returns, together with

their volatilities. Obviously, multiple univariate settings are strongly insufficient to capture

all dependencies among the levels, the volatilities and the correlations of asset returns in a

portfolio. Therefore, a multivariate setting is necessary for modeling the cross-sectional and

temporal dependencies between most asset returns. It allows for developing relevant man-

agement tools, especially when the interactions between financial markets become stronger.

This concerns areas such as asset pricing, portfolio allocation, hedging derivatives or risk

management measurement.

The usual modeling approach is to rely on the specification of the first two moments of

vectors of returns conditional on their past (and current market information possibly), i.e. to

specify their conditional mean and their conditional variance-covariance matrix. Once this is

done, some assumed vectors of innovations close the model specification. Indeed, a vector of

N asset returns is decomposed commonly as

rt = µt + εt,

where µt denotes the vector of expected returns conditional on all information at time t, and εt

has a (conditional) zero mean. While the financial literature about asset return predictability

tends to focus on the modeling of µt (see Campbell and Shiller 1989, Campbell and Viceira 2002

e.g.), the modeling of time-varying covariances or correlations concentrates on the conditional

variance Ht of εt, which is the “detrended” asset return.

If the temporal dependence of volatilities and/correlations is well-known among practi-

tioners and researchers, the methods differ when modeling it. The multivariate GARCH

(MGARCH) and the multivariate stochastic volatilities models are the two main approaches:

see the surveys of Bauwens et al. (2006) and Asai et al. (2006) respectively. Such approaches

allow for generating sequences of variance-covariance matrices, and then provide the correla-

tions of asset returns as a by-product. In financial econometrics, the most commonly used

specifications of Ht are provided surely by MGARCH models, because they aim at capturing

the dynamics of the conditional variances and covariances straight without additional sources

of randomness. However, the number of MGARCH parameters often increases dramatically

with the number of underlying assets. Therefore, some simplified MGARCH models have

searched for parsimony to allow for simple estimation and interpretation, but at the price of

an over-simplification sometimes. Besides, MGARCH models have to take into account the

positive definiteness of the model variance-covariance matrices, a technical constraint that

may induce complexities.

Inside the MGARCH family, let is cite the Baba-Engle-Kraft-Kroner (1995, denoted by
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BEKK) model, which specifies the dynamics of the underlying variance-covariance matrices

directly as a deterministic quadratic function of past returns. The number of parameters

in this class of MGARCH is significant, O(N2) to be specific. Hence Engle et al. (1990)

proposed a new parameterization of Ht, called Factor-GARCH model, following the intuition

that comovements of the asset returns are driven by a small number of common underlying

variables. As a by-product, conditional correlations may be obtained in any MGARCH models,

but their expressions are not intuitive or easily explicable. Indeed, they are complex nonlinear

functions of observations and coefficients.

Actually, other specifications may be considered when focusing on conditional correlations.

Intuitively, univariate GARCH dynamics may be chosen to get conditional variance processes.

Then, based on these dynamics, a correlation process (Rt) could be built. This was the way

proposed by Engle (2002) with the Dynamic Conditional Correlation (DCC). He extended the

Constant Conditional Correlation (CCC) of Bollersev (1990) by questioning the assumption

that conditional correlations are constant. But to cope with the positive definiteness of Rt, for

all t, DCC-type models have to rely on a normalization of the matrices they generate. This

has been a source of difficulties and criticism (see Caporin and McAleer 2013), in particular

to obtain a sound theory for inference. Note that this theoretical gap has been filled recently

by Fermanian and Malongo (2013), who have exhibited some conditions for stationarity or

ergodicity of DCC models. Moreover, although these families may allow for generating high-

dimensional correlation matrices, estimation and forecasting are clearly challenging in their

full form, for the same reason as MGARCH. Consequently, several attempts have tried to

reduce strongly the number of parameters, notably the scalar DCC processes of Engle and

Sheppard (2001), the Flexible DCC model of Billio and Caporin (2006), among others. But

the ability of the latter models to capture complex and rich dynamics of heterogeneous series

is limited, particularly for diversified portfolios.

Potentially, MGARCH models in general and DCC-type models in particular should be

able to disentangle the volatility-correlation puzzle and to answer the following questions: does

the volatility of an asset return lead the volatility of another one? Is the volatility of an asset

transmitted to another asset through its conditional variance or its conditional covariance

and/or correlation? Do correlations tend to get stronger during crisis? How do they impact

portfolio strategies? Etc. Several papers try to answer such questions: among a lot of papers,

see Bauwens and Otranto (2013) or Fermanian and Malongo (2014) recently. Nonetheless, the

discussions around correlations often remain fragile and partly “black-box”, because neither

MGARCH or DCC-type models work with correlations directly by as a subproduct. Indeed,

the former ones set covariances when the latter ones depend on a normalization stage.

In this paper, we propose to circumvent the problem with another approach using partial

correlations. This approach tends to be both parsimonious and flexible, and will specify

some correlation and partial correlation dynamics directly. Any N × N correlation matrix
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may be described by N(N − 1)/2 partial correlations. Lewandowski, Kurowicka and Joe

(2009) explained how to deduce a correlation matrix from a partial correlation matrix (or the

opposite), through an iterative algorithm. With such techniques, once the indices of a family of

partial correlations is chosen conveniently, a “true” correlation matrix is generated whatever

the values of these partial correlations. This property will be crucial here: by producing

univariate dynamics of partial correlations independently, we obtain sequences of correlation

matrices without the need for any normalization stage, contrary to DCC-type models.

An important practical question will be to choose the indices of the relevant partial corre-

lations. Kurowicka and Cooke (2006) showed that the partial correlations of a random vector

can be viewed as the output of vine trees. These objects are sets of connected undirected

trees. They have been discovered recently due to their ability of building high-dimensional

distributions thanks to a set of bivariate copulas (one copula per node of the graph) and

conditional marginal cdfs’. See Aas et al. (2006) for an introduction. Here, we develop a

class of MGARCH models based on regular vines, the so-called “vine-GARCH” models. The

latter models are flexible enough by allowing independent specifications/estimation of partial

correlation processes. It is also parsimonious as one can set constraints at any level of the

vine tree without altering other correlations.

The rest of this paper is organized as follows: Section 2 develops some basic defini-

tions/properties of trees, vines, partial correlations and the way they will be relevant for

constructing nonnegative definite matrices. The vine-GARCH and its competing models are

presented in Section 3. In Section 4, we detail the statistical inference of our new models by

a QML procedure. Section 5 contains an empirical study with simulated data and a database

of stock returns, and then we conclude the study.

The next section emphasizes how to specify a relevant set of partial correlations by con-

sidering a graphical approach based on vines.

2 Vines and partial correlations

First, we introduce some definitions from graph theory that will be used later in this paper.

2.1 Preliminary definitions

Graph theory was developed for resolving games. For instance, the Hamilton game consists of

a map where you have points, representing a city, joined by edges, representing a path. The

traveler should pass through all the cities but only once. Following the definitions of Napoles-

Morales (2009, 2010), this game can be viewed as an undirected graph, denoted by G = (N,E),

consisting in a non empty set N of nodes and a possibly empty set E of edges. Each element

of E is an unordered pair (α1, α2), where α1 and α2 6= α1 belong to N . If the pair (α1, α2)
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is ordered, the graph G is a directed graph, and, for (α1, α2), this means there is a relation

α1 → α2. Then, α1 is called a parent node and α2 is a child node. If N = {1, 2, · · · , n}, we

speak of a labeled graph.

Definition. The cardinality of N is called the order of the graph. If the pair (α1, α2) belongs

to E then the two nodes α1 and α2 are adjacent and each one is incident with the pair (α1, α2).

The degree of a node is the number of edges incident with it.

Definition. A path of length n from α to β is a sequence α = α0, · · · , αn = β of distinct

nodes such that (αi−1, αi) ∈ E for i = 1, · · · , n. A cycle is a path such that α = β. If every

pair (αi−1, αi) in a cycle of a directed graph is ordered as in E then it is a directed cycle.

Otherwise, it is an undirected cycle.

A tree is a particular case of a graph: it is an undirected and acyclic graph. It does not impose

any path (i.e. undirected) between the nodes nor cycle (starting from point a and coming

back). The formal definition follows:

Definition. T = (N,E) is a tree with nodes N and edges E if E is a subset of unordered

pairs of N with no cycle and there is a path between each pair of nodes. That is, there does

not exist a sequence a1, · · · , ak for k > 2 of elements of N such that

(a1, a2) ∈ E, · · · , (ak−1, ak) ∈ E, (ak, a1) ∈ E.

And for any a, b ∈ N , there exists a sequence c2, · · · , ck−1 of elements of N such that

(a, c2) ∈ E, (c2, c3) ∈ E, · · · , (ck−1, b) ∈ E.

T is called a connected tree if there is a path between all nodes of T .

Second, we use the latter concepts to detail vines, some particular graphical structures

that are key in this paper.

2.2 Vines

Vines are undirected graphs that allow nice specifications of multivariate joint distributions.

To be specific, a vine on n variables is a nested set of connected trees T1, · · · , Tn−1 where the

edges of tree Tj are the nodes of tree Tj+1, j = 1, . . . , n − 2. A regular vine (R-vine) on n

variables is a vine in which two edges in tree Tj are joined by an edge in tree Tj+1 only if

these edges share a common node, for any j = 1, . . . , n− 2.

Definition. V (n) is a labeled regular vine on n elements if:

1. V (n) = (T1, T2, · · · , Tn−1).
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2. T1 is a connected tree with nodes N1 = 1, 2, · · · , n and edges E1. For i = 2, · · · , n − 1,

Ti is a connected tree with nodes Ni = Ei−1, and the cardinality of Ni is n− i+ 1.

3. If a and b are nodes of Ti connected by an edge in Ti, where a = {a1, a2} and b = {b1, b2},
then exactly one of the ai equals one of the bi. This is the proximity condition.

We will consider only regular vines in this paper, and the properties we state hereafter are

true for such vines, implicitly. A regular vine is called a canonical vine (C-vine) if each tree

Ti has a unique node of degree n − i, i.e. a node with maximum degree. A regular vine is

called a D-vine if all nodes in T1 have degree not higher than 2. There are n(n− 1)/2 edges

in a regular vine on n variables. An edge in tree Tj is an unordered pair of nodes of Tj , or

equivalently, an unordered pair of edges of Tj−1.

In the case of vines, it makes sense to specify the links between the nodes of different Tj .

Definition. If node e is an element of node f , e is an m-child of f and we denote e ∈ f . If

e is reachable from f via the membership relation e ∈ e1 ∈ e2 ∈ · · · ∈ f , e is an m-descendent

of f .

A regular vine is a way of identifying a set of conditional bivariate constraints. The

conditional bivariate constraints associated with each edge are determined as follows: the

variables reachable from a given edge via the membership relation are called the constraint

set of that edge. When two edges are joined by an edge of the next tree, the intersection of

the respective constraint sets are the conditioning variables, and the symmetric differences of

the constraint sets are the conditioned variables. With the notations of point 3 of the previous

definition, at tree Ti, say a1 = b1, and a1 is a common element of a and b. This means that,

at tree Ti+1, a1 enters the conditioning set of (a2, b2) (see next definition). Thus we define the

conditioning and conditioned sets formally as follows:

Definition. For e ∈ Ei, i ≤ n− 1, the constraint set associated with e is the complete union

of the elements in {1, . . . , n} that are reachable from e by the membership relation. It is

denoted by U?e .

Definition. For i = 1, · · · , n− 1, if e ∈ Ei, it connects two elements j and k in Ni and it can

be written e = {j, k}. The conditioning set associated with e is

Le := U?j ∩ U?k ,

and the conditioned set associated with e is a pair

{Ce,j , Ce,k} :=
{
U?j \ Le, U?k \ Le

}
.

Obviously, since the edges of a given tree Tj are the nodes of Tj+1, the same concepts of

constraint/conditioning/conditioned sets apply to the nodes in a vine. It can be proved that,
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in a regular vine, two different edges have different constraint sets. Moreover, if e ∈ Ei, then

#U?e = i + 1, #Le = i − 1 and there are necessarily two elements in its conditioned set: see

Bedford and Cooke (2002).

In a regular vine, the edges of Tm+1 (equivalently the nodes of Tm+2) will be denoted by

e = (aj , ak|b1, . . . , bm), where aj , ak and the bl, l = 1, . . . ,m are different elements in {1, . . . , n}.
This notation means that the conditioning set of e is Le = {b1, . . . , bm}, and the conditioned

set of e is {aj , ak}. Note that the conditioning sets are the same for all the nodes of a tree in

a C-Vine. Moreover, the conditioning sets of the nodes in a D-vine are all different.

To give an example, consider 5 variables (X1, · · · , X5). We consider here a C-Vine, which is

built as follows:

• 1 is the root of the tree T1, i.e. its edges are (1, 2), (1, 3), (1, 4) and (1, 5). With our

previous notations, we have L1 = L2 = L3 = L4 = L5 = ∅. Moreover, {1} constitutes

the conditioning sets of E1 (or N2, equivalently).

• In the tree T2, we choose (arbitrarily) 2 as the common element of all the edges, that

become (2, 3|1), (2, 4|1) and (2, 5|1). By the proximity condition, 1 and 2 enter the

conditioning sets at tree T3.

• The same logic holds for element 3 in the tree T3. Its nodes are the edges of T2 and its

edges are (3, 4|1, 2) and (3, 5|1, 2).

• Finally, there remain two nodes for T4. Its single edge is (4, 5|1, 2, 3).

The latter C-vine can be visualized on Figure 1 in the Appendix. For the sake of illustra-

tion, an example of a five order D-vine (resp. R-vine) is shown on Figure 2 (resp. Figure 3)

too.

Let us finish this rather theoretical subsection with some useful results about R-vines.

Lemma 2.1. (Bedford, Cooke (2002))

Let a regular vine on n variables. Then,

1. the total number of edges is n(n− 1)/2,

2. each conditioned set is a doubleton, each pair of variables occurs exactly once as a con-

ditioned set,

3. if two edges have the same conditioning set, then they are the same edge.

Lemma 2.2. (Kurowicka, Cooke (2006))

For any node N in a regular vine, if the variable i is a member of the conditioned set of

N , then i is a member of the conditioned set of exactly one of the m-children of N , and the

conditioning set of an m-child of N is a subset of the conditioning set of N .
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Lemma 2.3. (Napoles-Morales (2010))

If the first tree of a vine on n nodes has one node with maximal degree, then the number of

labeled regular vines possible with this tree equals the number of labeled regular vines on n− 1

nodes.

Note this is the case for C-vines.

Lemma 2.4. (Napoles-Morales (2010))

If the first tree of a vine on n nodes has (n− 2) nodes with degree 2, then the number of regular

vines possible with this tree equals 1.

Note this is the case for D-vines.

Lemma 2.5. (Napoles-Morales (2010))

The number of C-vines on n nodes equals the number of D-vines on n nodes and is n!/2.

Proof. For C-vines, observe that there are n possible labeled trees on n nodes for which a

single node has maximal degree. Once the first tree has been fixed any of the (n − 1) edges

may be chosen so as to construct any of the (n− 1) possible labeled trees on (n− 1) nodes for

which a single node has maximal degree. Any of these would preserve regularity. The same

argument holds for all other trees on the vine until two edges need to be connected as nodes in

Tn−1. Hence there are n (n− 1) (n− 2) (n− 3) · · · 3 = n!/2 C-vines on n nodes. For D-vines

observe that from lemma 2.4, T1 ∈ V completely determines the vine. And since there are

n!/2 ways of choosing it, the result follows.

Lemma 2.6. (Napoles-Morales (2010))

The total number of regular vine is C2
n × (n− 2)!× 2C

2
n for n nodes.

Now, let us show how we can link such vines with some subsets of the partial correlations

that are associated to a random vector.

2.3 Partial correlations

LetXi be a n-dimensional random variable, n ≥ 2, with zero mean. Let b1,n|2,··· ,n−1, · · · , bn−1,n|1,··· ,n−2
be the solutions of the minimization program

arg min
b1,...,bn−1∈R

E
[
(Xn − b1X1 − b2X2 − · · · − bn−1Xn−1)

2
]
.

Definition. The partial correlation between Xn and Xn−1 given X1, . . . , Xn−2 is

ρn,n−1|1,··· ,n−2 = sgn
(
bn,n−1|1,··· ,n−2

) (
bn,n−1|1,··· ,n−2bn−1,n|1,··· ,n−2

)1/2
.

By changing the indices, we define similarly the partial correlation between Xi and Xj knowing

Xk, k ∈ {1, . . . , n}/{i, j}, or even knowing any subset of variables Xk where k belongs to

L ⊂ {1, . . . , n}. In the latter case, the corresponding partial correlation is denoted by ρi,j|L.
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More intuitively, a partial correlation can be defined as partial regression coefficients. For

instance, ρn,n−1|1,...,n−2 corresponds to the correlation between the orthogonal projections of

Xn and Xn−1 on the orthogonal of the space spanned by (X1, · · · , Xn−2). Equivalently, the

partial correlation can be defined as

ρn,n−1|1,··· ,n−2 = −
Kn,n−1√

Kn,nKn−1,n−1
,

where Ki,j denotes the (i, j) cofactor of the correlation matrix of (X1, . . . , Xn).

More generally, ρi,j|L corresponds to the correlation between the orthogonal projections of

Xi and Xj on < Xk, k ∈ L >⊥, the orthogonal of the subspace generated by {Xk, k ∈ L}.
When L is empty, we recover usual correlations, i.e. ρi,j|∅ = ρ (Xi, Xj) := ρi,j , the usual

correlation between Xi and Xj

Note that, if the random vector (X1, · · · , Xn) is normal and is specified by its full-rank

variance covariance matrix, then its partial correlations correspond to some conditional cor-

relations.

Interestingly, partial correlations can be computed from (usual) correlations with a recur-

sive formula. let X1, · · · , Xn be random variables, (i, j, k) be a set of distinct indices, and

L be a set of indices (possibly empty) that is disjoint from (i, j, k). Following Lewandowski,

Kurowicka and Joe (2009), the partial correlation of Xi and Xj given {Xk; k ∈ L} satisfies

ρi,j|k,L =
ρi,j|L − ρi,k|Lρj,k|L√(
1− ρ2i,k|L

)(
1− ρ2j,k|L

)· (1)

Assume we know the usual correlations ρi,j , for any couple (i, j), i 6= j. Any partial correlation

can be calculated by invoking (1) several times with increasing subsets L. Actually, the

opposite is true if we start from a convenient subset of partial correlations, as we explain now.

The edges of a regular vine may be associated with the partial correlations of a n-

dimensional random vector in the following way: for i = 1, · · · , n−1, consider any e ∈ Ei, the

set of edges at tree Ti. Let {j, k} be the two conditioned variables of e, and Le its conditioning

set. We associate the partial correlation ρj,k|Le
to this node. Kurowicka and Cooke (2006) call

this structure a partial correlation vine, that is simply a R-vine for which any node is associ-

ated to a number in ]− 1, 1[. Actually, all correlation vines are generated by setting a R-vine

on n variables, and by assigning a partial correlation, say ρ.,.|e with any e ∈
n−1
∪
i=1

Ei, arbitrarily

taken in ]−1, 1[. In particular, partial correlation vines allow for a nice parametrization of

spherical distributions.

9



Theorem 2.7. (Bedford, Cooke (2002))

For any regular vine on n elements, there is a one-to-one mapping between the set of n × n
positive definite correlation matrices and the set of partial correlation specifications of the vine.

And the formulas (1) above allow the building of a true n×n correlation matrix based on

any set of n(n−1)/2 partial correlations that are deduced from a regular vine (see Kurowicka

and Cooke, 2003).

To illustrate the latter property, let us detail the type of calculations we have to lead

to get usual correlations from a subset of partial correlations. Assume we know the partial

correlations that correspond to any node of the previous C-vine. In other words, we know

ρ12, ρ1,3, ρ1,4, ρ1,5, ρ2,3|1, ρ2,4|1, ρ2,5|1, ρ3,4|12, ρ3,5|1,2 and ρ4,5|1,2,3. We can deduce from these

quantities all the usual correlations by applying equation (1) several times. For instance, we

would like to compute the usual correlation between 4 and 5. The idea is to start from the

node in the vine where {4, 5} is the conditioned set. This occurs only once, due to Lemma 2.1.

We observe that the node (4, 5|1, 2, 3) appears in T4, and we “go down” the vine:

ρ4,5|1,2,3 =
ρ4,5|1,2 − ρ4,3|1,2ρ5,3|1,2√(
1− ρ24,3|1,2

)(
1− ρ25,3|1,2

)·
The index 3 was taken out because the conditioning set at tree T3 is (1, 2). Then, we have

ρ4,5|1,2 = ρ4,5|1,2,3

√(
1− ρ24,3|1,2

)(
1− ρ25,3|1,2

)
+ ρ4,3|1,2ρ5,3|1,2

This quantity can be calculated because ρ4,3|1,2 and ρ5,3|1,2 are given in tree T3. But ρ4,5|1,2

must also satisfy:

ρ4,5|1,2 =
ρ4,5|1 − ρ4,2|1ρ5,2|1√(
1− ρ24,2|1

)(
1− ρ25,2|1

)·
Again we can take 2 out by calculating

ρ4,5|1 = ρ4,5|1,2

√(
1− ρ24,2|1

)(
1− ρ25,2|1

)
+ ρ4,2|1ρ5,2|1,

and we invoke finally

ρ4,5|1 =
ρ4,5 − ρ4,1ρ5,1√(

1− ρ24,1
)(

1− ρ25,1
).

By calling the previous relations, we get the usual correlation between 4 and 5.

ρ4,5 = ρ4,5|1

√(
1− ρ24,1

)(
1− ρ25,1

)
+ ρ4,1ρ5,1
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In the case of a R-vine, such recursive computations yield an algorithm to deduce the usual

correlation matrix from the set of the partial correlations associated to a partial correlation

vine.

Definition. Let a vine V (n) = (T1, T2, . . . , Tn−1). The set of (usual and) partial correlations

associated to this vine is denoted by C̃V (n) := (C(T1), C(T2), · · · , C(Tn−1)).

Since C̃V (n) enables to compute all the set of usual correlations R := {ρi,j ; i, j = 1, · · · , n; i <

j}, we denote by R
(
C̃V (n)

)
the values the correlations that are deduced from C̃V (n).

We now turn to the significant results that ensure the positive definiteness of the correlation

matrices when using vine representations. By recalling Equation (1), the following result

makes sure that any correlation computed from arbitrary partial correlations (belonging to

]− 1, 1[, obviously) is still an element in ]− 1, 1[.

Lemma 2.8. (Kurowicka, Cooke (2006))

If z, x, y ∈ ]−1, 1[, then also w ∈ ]−1, 1[ with

w = z
√

(1− x2) (1− y2) + xy.

The next result ensures the positive definiteness of the matrices [ρi,j ] when deduced from

any set of partial correlations. This is a key result allowing the easy generation of sequences

of correlation matrices. It will constitute an attractive feature of the vine-GARCH models we

will introduce in Section 4.

Theorem 2.9. (Kurowicka, Cooke (2006))

Let Dn > 0 be the determinant of the n-dimensional correlation matrix Σn := [ρi,j ]i,j=1,...,n.

For any set of partial correlations generated by a regular vine,

Dn =

n−1∏
i=1

∏
e∈Ei

(
1− ρ2j,k|Le

)
, (2)

where (j, k) and Le are respectively the conditioned set and the conditioning set of an edge e.

Corollary 2.10. Whatever the values of set of partial correlations generated by a regular vine

on {1, . . . , n}, the associated matrix [ρi,j ] is nonnegative definite.

Proof. By Theorem 2, Dn is nonnegative whatever the values of the partial correlations in

Pn := {ρj,k|Le
}, that induce the correlations ρi,j , i, j = 1, . . . , n. But the same result applies

for every matrix Σk, k = 1, . . . , n−1 too. Indeed, given Pn, we are able to calculate all the ρi,j ,

i, j = 1, . . . , n (that belong to [−1, 1] by Lemma 2.8), and then any set of partial correlations

associated to any new vine on {1, . . . , k}, k < n by invoking (1). And Theorem 2 can be

applied to Σk. But a symmetrical matrix for which all the main block diagonal submatrices

have nonnegative determinants is nonnegative.
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In other words, whatever the values of the partial correlations C̃V (n) = (C(T1), . . . , C(Tn−1))

associated to a regular vine V (n), we get a true correlation matrix with the coefficients

R(C(T1), . . . , C(Tn−1)).

The next subsection is related to the robustness of correlation calculations when some levels

of partial correlations are set to zero inside a vine. It can be skipped at the first reading.

2.4 Truncation of vines

For the sake of parsimony, it will be interesting to cancel (or to leave constant, at least) all

the partial correlations associated to a vine, after some level p. When zero partial correlations

are assumed after the latter level, we would like to know whether the corresponding (usual)

correlations depend on the trees Tp, Tp+1, · · · , Tn−1 that could be built above.

Definition. We say that a vine is p-VF (VF for vine-Free) if:

R (C(T1), C(T2), · · · , C(Tn−1)) = R
(
C(T1), C(T2), · · · , C(Tp−1), C(T ′p), · · · , C(T ′n−1)

)
for any alternative vine V ′(n) := (T1, T2, · · · , Tp−1, T ′p, · · · , T ′n−1), and when the partial corre-

lations associated to the edges of T ′k, k ≥ p, are zero.

In the definition above, if the set of alternative vines we consider is restricted to C-vines (resp.

D-vines), we say that the initial vine is p-VF for C-vines (resp. D-vines). If a vine is p-VF,

once the partial correlations are zero above the level p, the correlations are independent on

the way this vine has been built from this level.

Property 2.11. A C-vine on n elements is p-VF for C-vines, for any p ≥ 1.

Proof. Let us consider an arbitrary C-vine for which the associated partial correlations are

zero from step p on. At tree T1, there is one element, say a1 that is common to all the

correlations/edges:

(a1, a2), (a1, a3), · · · , (a1, an) ∈ E1,

that are the nodes of T2. Let us denote by Lj the conditioning set that is common to all the

edges in tree Tj , j = 1, . . . , n − 1. Obviously, L1 = ∅. In T2, we build edges by connecting

(a1, a2) with all the other nodes. Then the edges of this tree are (a2, a3|a1), . . . , (a2, an|a1).
In tree T3, the conditioning set (of the edges) is L3 = (a1, a2). We choose a3 as the common

element of all the conditioned subsets, i.e. the edges of T3 are (a3, ai|a1, a2), where i 6∈ {1, 2, 3}.
And we go on. The edges of Tk are (al, ak|Lk), al 6∈ {a1, . . . , ak} and Lk = (Lk−1, ak−1). Note

that L1 = ∅.

Now the partial correlations associated to the first p− 1 trees of all these C-vines will be

assumed fixed and known. For such a C-vine, we assume the elements of C(Tp), . . . , C(Tn−1)
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are zero. Let us evaluate the correlation ρi,j for an arbitrarily chosen C-vine in this family.

From Proposition 2.1, (i, j) is the conditioned set of a unique edge ei,j := (i, j|Lk), that belongs

to the tree Tk in this C-vine, for some k = 1, . . . , n− 1.

Case 1: k < p.

In this case, due to the C-vine assumption, i or j, say j, is the “common element” in tree

Tk. In other words, j = ak. The nodes i and j in T1 may be connected to (i, j|Lk) by a

path that belongs to the first part (T1, . . . , Tk) of the C-vine. By applying several times (1),

we can calculate ρi,j by involving only the partial correlations associated to the edges of

(T1, . . . , Tk) ⊂ (T1, . . . , Tp), that are fixed. To be specific, we apply the relation

ρi,j|Ll
=

ρi,j|Ll−1
− ρi,al−1|Ll−1

ρj,al−1|Ll−1√(
1− ρ2i,al−1|Ll−1

)(
1− ρ2j,al−1|Ll−1

), (3)

for l = k, k − 1, . . . , 1. It can be checked easily that ρi,j is a function of ρi,a1 , ρj,a1 , ρi,a2|a1 ,

ρj,a2|a1 ,..., ρi,ak−1|Lk−1
, ρj,ak−1|Lk−1

and ρai,aj |Lk
, that are all known.

Case 2: k ≥ p.
We can start with the same logic as above. We apply (3) from Lk and backwards, choosing

the common element that is related to the current tree (the denoted al−1 in (3)). We observe

that

ρi,j|Lk
= ρi,j|Lk−1

= . . . = ρi,j|Lp
= 0.

The first (a priori) non zero partial correlation of this type is

ρi,j|Lp−1
= ρi,ap−1|Lp−1

ρj,ap−1|Lp−1
.

But this relation is independent of the starting position of the node ei,j in the C-vine structure

we have considered. Then, we are reduced the problem to the calculation of ρi,j knowing

ρi,j|Lp−1
. This can be solved exactly as in Case 1 above.

Property 2.12. A D-vine on n elements is p-VF for D-vines, and for any p ≥ 1.

Proof. The D-Vine structure implies that (C(T2), · · · , C(Tn−1)) =
(
C(T ′2), · · · , C(T ′n−1)

)
. In-

deed, the first tree T1 determines the rest of the D-Vine structure.

Actually, once the first tree of a vine is the one of a D-vine, then the structure is uniquely

stated and it remains no degree of liberty.

We have stated above the p-VF property, for any p ≥ 1, and staying inside the families

of C-or D-vines. Does this property hold for the general case, i.e. for regular vines ? We

conjecture that any regular vine is pth-VF, for every p ≥ 1. And we prove the latter result is

true in two particular cases.
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Let regular vines with n elements. Suppose C̃V (n) := (C(T1), C(T2), . . . , C(Tn−1)) where

(C(T1), C(T2), · · · , C(Tp−1)) follows C-Vine rules until tree Tp, and then (C(Tp+1), · · · , C(Tn−1))

is built as a regular vine. This is called the CR-vine family of order p.

Theorem 2.13. The CR-vines of order p are p-VF.

Proof. The proof is very similar to the one of Property 2.11. But contrary to the standard

C-vine case, the conditioning subsets may be different for different edges in any tree Tl, l ≥ p.

Let us calculate ρi,j . In a R-vine that is C-vine until Tp, there exists an edge e =

(i, j|Lk(i, j)) where the conditioned subset is {i, j}. Note that the conditioning set of e de-

pends on (i, j). If k < p, the same arguments of Property 2.11 apply. Otherwise, we can

invoke the relation

ρi,j|Lk(i,j) =
ρi,j|Lk−1(i,j) − ρi,ek|Lk−1(i,j)ρj,ek|Lk−1(i,j)√(

1− ρ2i,ek|Lk−1(i,j)

)(
1− ρ2j,ek|Lk−1(i,j)

), (4)

for some conditioning set Lk−1(i, j) in Tk−1, and where the node ek has been chosen s.t.

(i, ek|Lk−1(i, j)) is an edge of Tk−1. This is always possible due to the proximity condition.

But, by assumption, ρi,ek|Lk−1(i,j) = 0. Then, ρi,j|Lk−1(i,j) = 0, and we go on until we reach

the tree Tp. In the latter case, we have

ρi,j|Lp−1(i,j) = ρi,ap−1|Lp−1(i,j).ρj,ap−1|Lp−1(i,j),

that is known because the latter r.h.s. may be read in the first C-vine layer. Note that

Lp−1(i, j) = Lp−1 is the (unique) conditioning set of Tp−1. Moreover, note that Lp(r, s) =

(ap−1, Lp−1) for any conditioned set (r, s) in Tp. Once ρi,j|Lp−1
is known, we get ρi,j applying

the formula of Cooke, Joe et Kurowicka backwards as usual, i.e. extracting the successive

common elements ap−1, ap−2, . . . , a1. So the result.

3 A reminder about MGARCH and DCC-type mod-

els

3.1 Basics

The most usual approach for modeling multivariate dynamics of asset returns is given by the

family of multivariate GARCH (MGARCH), as introduced by Bollerslev and al. (1988). By

focusing on second-order conditional moments of random vectors, they extended the multivari-

ate ARCH model of Engle (1982). They have been applied extensively in finance, particularly

14



in the framework of the Capital Asset Pricing Model and mean-variance portfolio optimiza-

tion. A natural question was to design such models that would be sufficiently flexible for high

dimension settings while being parsimonious. When dealing with correlation dynamics, sev-

eral proposals emerged, notably the Dynamic Conditional Correlation model of Engle (2002)

and its variations. For the moment, we introduce this usual framework and some notations

that will be useful hereafter.

To set the ideas, let us consider a N -dimensional vectorial stochastic process (rt)t=1,··· ,T .

We denote by θ the vector of the model parameters and decompose the stochastic process

(rt)t=1,··· ,T as the sum of conditional expected returns and a residual:

rt = µt (θ) + εt, (5)

εt = H
1/2
t (θ) ηt. (6)

Here, µt (θ) = E [rt|Ft−1] := Et−1 [rt], where Ft denotes the market information until (and

including) time t. We suppose Ht (θ) = V ar (rt|Ft−1) := V art−1 (rt) = V art−1 (εt) is a N ×N
positive definite matrix. The series (ηt)t≥0 is supposed to be a strong white noise, i.e. an

independent and identically distributed sequence of random variables s.t. E [ηt] = 0 and

V ar (ηt) = IN . The model will be semi-parametric. Its specification is complete when the law

of ηt is defined and the functional form of both µt (θ) and Ht (θ) are specified. In this paper,

we focus on the latter point. For convenience, we will denote µt (θ) = µt and Ht (θ) = Ht.

To remove the first moment, we suppose simply that the conditional expected returns are

modeled as AR(1), i.e. there exist Φ0 a N × 1 matrix and Φ1 a N × N diagonal matrix s.t.

µt (θ) = Φ0 + Φ1rt−1. Since we are interested in εt in this paper, we estimate µt by OLS and

subtract it from rt. Now, these estimated residuals will be considered as our observations.

This is common practice in the MGARCH literature.

The matrixHt represents the unobserved time-dependent dynamics of the variance-covariance

matrix of the return process. A brute-force inference of the whole dynamics seems unfeasi-

ble when working in high-dimension. To avoid this problem, researchers prefer to split the

problem into two simpler ones. They first specify N conditional volatility dynamics, often

of the GARCH-type. Second, they specify the correlation dynamics between the individual

conveniently normalized returns. We will follow this common practice.

3.2 The usual treatment of conditional correlations

Conditional variances will be denoted by hii,t and the conditional correlations by ρij,t, for

i, j = 1, · · · , N , i < j. The conditional covariance between the assets i and j at time t is then

hij,t = ρij,th
1/2
ii,t h

1/2
jj,t. In matrix notation, we write

Ht = D
1/2
t RtD

1/2
t ,
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where Dt = diag (h11,t, · · · , hNN,t) is the diagonal matrix of the conditional variances, and

Rt = (ρij,t) , 1 ≤ i ≤ j ≤ N is the matrix of the conditional correlations of rt. By construction,

Rt is the conditional covariance matrix of the vector of the standardized and demeaned returns

εt = (ε1,t, · · · , εN,t) with εi,t = (ri,t − µi,t) /
√
hii,t, also called “degarched” returns. The

specification of Ht is divided into two independent parts: the conditional variance process on

one side, and the conditional correlation process on the other side. Each of them depends on

a set of parameters

θ = (θvol, θcor)
′ ∈ Θ,

where θvol is the set of parameters determining the univariate volatility processes and θcor

determines the correlation process. Θ is a compact set and the true parameter value θ0 ∈ Θ.

Typically, most authors assume that the univariate conditional variance processes are functions

determined by their lag processes and the i-th element of εt only:

hii,t = hi (θvol,i; εi,t−1)

= ςi + κiε
2
i,t−1 + τihii,t−1. (7)

Under the latter assumption, The process (hii,t) follows a GARCH(1,1) where θvol,i = (ςi, κi, τi)
′ ∈

R3
+ for all i = 1, . . . , N . Thus, 3N parameters need to be evaluated to describe all the in-

dividual volatility processes. To insure stationarity, the κ and τ coefficients have to satisfy

the constraint κi + τi < 1. We do not suppose the existence of spill-over effects between

different assets, that is the presence of terms such as hjj,t−1 or εj,t−1 inside the (hii,t) dy-

namics. This usual assumption simplifies significantly the estimation of θvol by allowing an

equation-by-equation inference procedure.

Several specifications exist for the (Rt) process. They have to challenge the positive defi-

niteness of the correlation matrix and should not depend on too many parameters. Bollerslev

(1990) devised the Constant Conditional Correlation model. But numerous empirical results

tend to reject the constant correlation hypothesis. During financial crisis, it has been observed

a strengthening of such correlations, in particular. Therefore, there was a need of more flexi-

ble models to tackle this issue. In particular, the Time-Varying Correlation of Tse and Tsui

(2002) or the Dynamic Conditional Correlation (DCC) of Engle and Sheppard (2001) were

the first answers. In this study, we consider the DCC family model as our benchmark.

3.3 DCC-GARCH models

The DCC model specifies dynamics of the variance covariance matrix of the de-garched returns

εt directly. In its full form, called “Full DCC”, the model belongs to the MARCH family of
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Ding and Engle (2002) and is specified as follows:

Ht = D
1/2
t RtD

1/2
t ,

Qt =
(
ιι′ −A−B

)
� S +A� εt−1ε′t−1 +B �Qt−1,

Rt = Q
?−1/2
t QtQ

?−1/2
t ,

where Qt = [qij,t] and Q?t = diag (q11,t, q22,t, · · · , qNN,t). S, A and B are N × N symmetric

matrices of unknown parameters. � denotes the usual Hadamard product of two identically

sized matrices, which is computed simply by element-by-element multiplication. Following

Ding and Engle (2002), if (ιι′ −A−B) � S, A and B are positive semi-definite, then the

matrix Qt is positive semi-definite. If one of the matrices is positive definite, then Qt is posi-

tive definite. S is positive definite matrix too. It is often approximated by the unconditional

variance-covariance matrix of εt. This simplifies the estimation problem because this avoids

an optimization on A, B and S simultaneously. This procedure is called correlation target-

ing or correlation tracking. However, the significant downside of the Full DCC model is its

intractability: even after the targeting, the (Qt) process encompasses N(N − 1) coefficients.

In most empirical studies, the scalar DCC-GARCH is considered instead, where A and B are

replaced by non negative scalars α and β, α+ β < 1.

Between the Full DCC and the scalar DCC (2 coefficients, after correlation targeting),

it remains some place for intermediate solutions. For instance, Billio and Caporin (2006)

considered another parametrization, the Quadratic Flexible DCC (QFDCC), which reduces

the size of the problem while remaining flexible. In the general form of a QFDCC model, the

correlation driving process (Qt) is defined as follows:

Ht = D
1/2
t RtD

1/2
t ,

Qt = C ′SC +A′εt−1ε
′
t−1A+B′Qt−1B,

Rt = Q
?−1/2
t QtQ

?−1/2
t ,

where S, A, B and C are symmetric matrices. This model allows for interdependence across

groups of assets, which is particularly adapted to cases where a portfolio is composed of

different asset classes, or with assets coming from different industries/geographical areas. The

QFDCC model provides positive definite correlation matrices if the eigenvalues of A+B are

less than one in modulus. This model is parsimonious when the matrices A, B and C are

diagonal: this yields to a model with 3N unknown parameters, after correlation targeting. In

our study, only the diagonal QFDCC model will be considered.

In the literature, the DCC-GARCH models with variance targeting are implemented gen-

erally by considering the matrix S as the unconditional covariance matrix of the standardized

residuals. However, in the case of a scalar DCC, Aielli (2013) has shown that this way of
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working produces biased estimates in general. The only case where the equality S = E [εtεt]

holds is the one of constant correlations, i.e. α = β = 0. Indeed, taken the expectation

operator of the Qt process in the scalar DCC case, we get

E [Qt] = (1− α− β)S + αE
[
εtε
′
t

]
+ βE [Qt] .

And S = E [εtε
′
t] if and only if E [εtε

′
t] = E [Qt]. But the following relationship holds:

E
[
εtε
′
t

]
= E

[
Et−1

[
εtε
′
t

]]
= E [Rt] = E

[
Q
?−1/2
t QtQ

?−1/2
t

]
.

Except in the constant correlation case, Qt 6= Q
?1/2
t QtQ

?1/2
t . That is why Aielli reformulates

the scalar DCC model as a corrected DCC (cDCC) as follows:

Ht = D
1/2
t RtD

1/2
t ,

Qt = (1− α− β)S + α
{
Q
?1/2
t−1 εt−1ε

′
t−1Q

?1/2
t−1

}
+ βQt−1,

Rt = Q
?−1/2
t QtQ

?−1/2
t .

In cDCC models, S is the variance-covariance matrix of Q
?1/2
t εt and a (modified) correlation

targeting procedure can be led. The cDCC/DCC-GARCH models are well-suited for relatively

homogeneous portfolios, for example asset classes from the same geographical area. Actually,

the scalar DCC and cDCC specifications provide empirically very close results. Therefore, in

our empirical study, we will consider the scalar DCC together with the diagonal QFDCC.

Denoting by Sn++ the set of symmetric and positive definite matrices, the vector of param-

eters for the correlation dynamics in the scalar DCC/cDCC and diagonal QFDCC models are

respectively

θcor,dcc = (S, α, β)′ ∈ Sn++ × R2
+, and

θcor,qfdcc = (S, c11, · · · , cNN , a11, · · · , aNN , b11, · · · , bNN )′ ∈ Sn++ × R3N
+ .

4 New dynamics for correlations: Vine-GARCH mod-

els

4.1 Our specification

In a DCC-type model, one has to rely on intricate normalizations to build sequences of εt

correlation matrices. This makes the interpretation of the (Rt) dynamics not intuitive, because

it is deduced from another underlying process (Qt). Another drawback of the DCC is the lack

of parsimony. In its full form, O(N2) parameters enter in θcor, the vector of the parameters
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of the correlation process. Hence the Full DCC is intractable since the number of parameters

grows rapidly, and creates the same problems as general BEKK models. Most of the time,

the DCC is used in its scalar form, but this modeling often fails in capturing fine-tuned and

heterogeneous correlation dynamics.

Now, we develop a method which ensures both parsimony and positive definiteness without

relying on any normalization. Basically, the idea relies on the modeling of a set of partial

correlations, enabling to parameterize any correlation matrix. We use a given regular vine to

specify these partial correlations and the one-to-one mapping between these N(N−1)/2 partial

correlations and the N(N − 1)/2 “usual” correlations. The former are stacked in a vector Pct

and the latter are the coefficients of Rt. We order partial correlations lexicographically, from

the shortest to the longest sets of indices. Then, we propose the following correlation dynamics:

Ht = D
1/2
t RtD

1/2
t ,

Ψ (Pct) = Ω + ΞΨ (Pct−1) + Λζt−1,

Rt = vechof
(
Fvine

(
Ψ−1(Pct)

))
,

where

• vechof(·) denotes the operator “devectorization”, that transforms a vector into a sym-

metric matrix. It is the opposite of the usual operator vech(·).

• In full generality, Ξ and Λ are N(N − 1)/2×N(N − 1)/2 squared matrices of unknown

parameters, and Ω is an N(N − 1)/2 unknown vector. Set the vector of parameters

θcor = (Ω,Ξ,Λ).

• The vector Pct is the “partial correlation vector” deduced from a given R-vine structure.

• The vector ζt consists of a relevant function of the “innovations”, to update our partial

correlations at time t.

• We apply an analytic transformation Ψ to Pct. For the sake of simplicity, Ψ will be

known, even if the methodology can be adapted easily to a parametric function Ψθ. To

fix the ideas, the multivariate Ψ function will be defined as follows:

Ψ : ]−1, 1[N(N−1)/2 −→ RN(N−1)/2,

Ψ (Pct) =
(
ψ (ρ1,2,t) , · · · , ψ

(
ρN,N−1|LN−1,N ,t

))′
,

ψ (x) = tan (πx/2) .

The function Ψ twists the univariate dynamics to manage the constraints that partial

correlations stay between (−1) and 1. Alternatively, Ψ could be chosen among the

sigmöıd functions for instance, for which ψ (x) = (exp (αx)− 1) / (exp (αx) + 1), α ∈ R.
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• The function Fvine corresponds to the one-to-one mapping from the vector of partial cor-

relations Pct to correlations (in Rt) by using the algorithm of Lewandowski, Kurowicka

and Joe (2009). It is defined as

Fvine : ]−1, 1[N(N−1)/2 −→ ]−1, 1[N(N−1)/2 ,

Fvine
(
ρ1,2,t, · · · , ρN−1,N |L,t

)
= (ρ1,2,t, · · · , ρN−1,N,t)′ .

Such mapping can be coded easily in the case of C-vines and D-vines. In the general case of

R-vines, it is more complex but remains feasible. Note that the function Fvine and its inverse

are available in the R-package “Vine-copula”, under the name “RVineCor2pcor”.

To be more specific about ζt, for any L ⊂ {1, . . . , N} and k /∈ L, define υk|L,t by

υk|L,t =
εk,t − E [εk,t|εL,t]√

hk|L,t
,

where εL,t = (εi,t)i∈L, and E [εk,t|εL,t] corresponds to the orthogonal projection of the variable

εk,t on the space spanned by the vector εL,t. The variance of the “residual” εk,t−E [εk,t|εL,t] is

denoted by hk|L,t. The variables υk|L,t are not really observable, but the next subsection spec-

ifies how we can evaluate E [εk,t|εL,t], hk|L,t, and we will be able to get υ̂k|L,t, an approximated

value of υk|L,t. Then, the N(N − 1)/2-sized vector of “innovations” ζt stacks the variables

υ̂i|L,tυ̂j|L,t, when (i, j|L) is an edge of the underlying vine. The order of these edges in ζt will

be the same as for Pct.

In this paper, to simplify, we will restrict ourselves to a simpler vine-GARCH structure,

where there will be no cross-effects between all the individual partial correlation processes.

The N − 1 first elements of Pct corresponds to usual correlations, i.e. ρij|∅,t = ρij,t. Each of

them is described by the process

ψ (ρij,t) = ωij + ξijψ (ρij,t−1) + λij υ̂i,t−1υ̂j,t−1,

with υ̂k,t =
εk,t√
ĥk,t

are estimated “degarched” residuals. From the N -th on, the elements of

Pct are true partial correlations for which L 6= ∅. Their dynamics are given by

ψ
(
ρij|L,t

)
= ωij|L + ξij|Lψ

(
ρij|L,t−1

)
+ λij|Lυ̂i|L,t−1υ̂j|L,t−1.

Our global process depends on the following set of parameters:

θcor =
(
ω12, · · · , ωN−1,N |LN−1

, ξ12, · · · , ξN−1,N |LN−1,N
, λ12, · · · , λN−1,N |LN−1,N

)′
∈ RN(N−1)/2 × ]0, 1[N(N−1)/2 × RN(N−1)/2.
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Actually, the structure of the underlying R-vine may be seen as an additional parameter,

whose choice is discussed in Subsection 4.3 independently of θcor. To avoid some explosive

behaviors, we impose ξ12, · · · , ξN−1,N |LN−1,N
∈ ]0, 1[N(N−1)/2. Indeed, iterating n times the

updating relation of ψ
(
ρij|L,t

)
, we get

ψ
(
ρij|L,t

)
= ωij|L + ξij|Lψ

(
ρij|L,t−1

)
+ λij|Lυ̂i|L,t−1υ̂j|L,t−1

= ωij|L

n−1∑
k=0

ξkij|L + ξnij|Lψ
(
ρij|L,t−n

)
+ λij|L

n−1∑
k=0

ξkij|Lυ̂i|L,t−k−1υ̂j|L,t−k−1.

Since n may be arbitrarily large, a necessary condition for convergence is clearly ξij|L < 1.

In full generality, this simplified version of the vine-GARCH model still encompasses

3N(N − 1)/2 parameters. However, this approach can become more parsimonious easily

and would provide a nice alternative to full DCC-GARCH models. Indeed, when the pth-VF

property applies 1, one can set constraints to any level of the tree (say p), and choose zero

partial correlations at and after the p-th tree in the underlying vine. We guess this should not

modify too strongly the (true) correlation dynamics, at least when p is not too small. This is

due to the fact that partial correlations with non-empty conditioning subsets are correlations

between residuals. In practice it is likely that these residuals behave more and more as white

noise when the number of conditioning variables increases. Indeed, when the cardinality of

the conditioning subsets L goes up, we are building (standardized) residuals υk|L,t on larger

and larger subspaces.

For instance, for a C-vine, the first conditioning subset will be the asset that is the most

correlated with most others (the S&P500, for instance), i.e. the main factor Xa1,t of the

model. After controlling for the main factor, partial correlations of the type ρi,j|a1 focus

on the dependence between projections of random vectors on the orthogonal space of Xa1 .

Knowing Xa1 , the second main factor is Xa2 , and we expect that the partial correlations

ρi,j|a1,a2 will be smaller than the ones ρi′,j′|a1 , i.e. partial correlations associated to the edges

of the preceding tree. This is not a mathematical result, but empirical intuition that has to be

validated. Indeed, in a lot of situations in practice, some variables appear as natural factors

(“drivers”) for the others. In an equity portfolio, one of the main stock indices may play this

role. In the fixed income universe, some interest rates (or tenor of the IR curve) are more

important than others for dealers because they correspond to the maturity of existing futures.

Etc.

In every case, by canceling partial correlations after the step p in a vine, we get a particular

model with less parameters than in the full vine-GARCH specification. If the vine is p-VF,

whatever the chosen structure of the vine is after level p, the reconstruction formulas (1)

provide the same correlation matrices Rt. This is a nice theoretical property. A slightly

1and it is the case if we restrict ourselves to C-vines or D-vines (see Subsection 2.4)
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different simplification of our vine-GARCH models would be to assume constant (non zero)

partial correlations after some level (say p) in the vine. But in this case, we cannot insure a

similar p-VF property.

4.2 Determination of ζt

At time t, the vector ζt is a key information as it drives the shocks on the correlation processes.

Here, we propose two ways of evaluating υ̂k|L,t, the key components to calculate ζt.

The first method is based on the linear regression of εt on εL,t:

εk,t = αk|L + β′k|LεL,t + ξL,t, E[ξL,t|εL,t] = 0,

where αk|L is a scalar and βk|L is a #L-dimensional vector. Then, we approximate εt−E[εt|εL,t]
by εt − α̂k|L − β̂′k|LεL,t. Moreover, an empirical “rolling-window” estimator of hk|L,t can be

defined by

ĥk|L,t :=
1

T

T∑
i=1

(
εk,t−i −

(
α̂k|L + β̂′k|LεL,t−i

))2
,

for some windows size T . This approach may be termed “non parametric” in the sense that

it does not rely on any hypothesis about the conditional distribution of εt. Then, this first

method provides

υ̂k|L,t :=
εk,t − α̂k|L − β̂′k|LεL,t√

ĥk|L,t

·

The second method is based on the theoretical distribution of the residuals εt|Ft−1, that

is unknown at this stage. In our case, we have assumed this distribution is Gaussian. Recall

that, if a vector (X,Y )′ is Gaussian, then

X|Y ∼ N
(
EX|Y ,ΣX|Y

)
, where

EX|Y = E [X] + cov (X,Y )V ar (Y )−1 (Y − E [Y ]) ,

ΣX|Y = V ar (X)− cov (X,Y )V ar (Y )−1 cov (X,Y )′ .

Through these formulas and under our model assumptions, we can calculate

υk|L,t =
εk,t − E [εk,t|εL,t]√

hk|L,t
·

Indeed, as (εk,t, εL,t)
′ is supposed to be Gaussian and centered, we obtain

E [εk,t|εL,t] = covt−1 (εk,t, εL,t)V art−1 (εL,t)
−1 εL,t, and
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hk|L,t = V art−1 (εk,t − E [εk,t|εL,t])

= V art−1 (εk,t)− covt−1 (εk,t, εL,t)V art−1 (εL,t)
−1 covt−1 (εL,t, εk,t) .

To give an example, suppose L = (j) and εL,t = εj,t. Then, we have

E [εk,t|εj,t] = ρkj,thkk,tεj,t/hjj,t, and

V art−1 (εk,t − E [εk,t|εL,t]) = h2kk,t − ρkj,thkk,thjj,t(h2jj,t)−1ρkj,thkk,thjj,t
= h2kk,t

(
1− ρ2kj,t

)
.

Then,

υ̂k|L,t =
εk,t − ρkj,tĥkk,tεj,t/ĥjj,t

ĥkk,t
√

1− ρ2kj,t
,

where ĥkk,t is given by the k-th univariate GARCH process.

In this paper, the second method of calculation will be used to get (ζt).

4.3 Vine selection

The methodology above can be applied to any R-vine on N elements. Nonetheless, selecting

a convenient R-vine may be useful to describe the dependence among the variables in a

parsimonious and meaningful way. In particular, this would allow for the truncation of a

given R-vine (as explained in Subsection 2.4), once some important factors have been found

in the first trees.

To do so with a C-vine, we can follow the sequential method developed by Dissmann et

al. (2012). This method consists in starting from the first tree, computing the Kendall’s tau

of all its edges, and selecting the variable which provides the highest degree of dependence

with the other ones. Conditionally on this variable and in the second tree, we compute a

Kendall’s tau per edge, but conditional on the variable chosen on the first tree. We apply the

same selection criteria to choose the right variable and proceed on the next tree, until the last

tree. The Kendall’s tau is used as a dependence measure because it is free of any marginal

distribution and because it can be easily calculated, but other choices exist. All the details

concerning these steps together with the empirical Kendall’s tau computation are reported in

Appendix B.

The latter selection procedure is “bottom-up”. Alternatives exist in the general case of

R-vines, in particular the “top-down” procedure of Kurowicka (2011).
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5 Statistical inference: Quasi Maximum Likelihood

estimation

We now turn to the statistical estimation of our previous vine-GARCH model. To do so,

some estimators are obtained by maximizing a likelihood function that does not correspond

to the true Data Generating Process necessarily. When such a procedure is applied to the

estimation of the parameters of the second order moments, relying on Gourieroux, Monfort

and Trognon (1984) and Bollersev and Wooldridge (1994) for instance, this so-called Quasi-

Maximum Likelihood Estimator (QMLE) is consistent and asymptotically normal, under ap-

propriate assumptions. Our specification in (5) corresponds to a Gaussian QMLE and we

apply a two-step estimation method, that is usual in this stream of the literature. In other

words, we shall assume that (ηt) is a Gaussian white noise for inference purpose only, but the

“true” underlying distribution of ηt may be different 2.

5.1 The QML estimator

We suppose that εt|Ft−1 follows a multivariate normal distribution. Its density is given by

f (εt|Ft−1,θ) =
1

(2π)N/2 |Ht|1/2
exp

{
−

1

2
ε′tH

−1
t εt

}

= exp

{
−
N

2
log (2π)−

1

2
log (|Ht|)−

1

2
ε′tH

−1
t εt

}
.

This likelihood f is quadratic in εt and clearly belongs to the quadratic exponential family

(see Gouriéroux et al. 1984). Using the joint independence of the ηt and developing Ht as

D
1/2
t RtD

1/2
t , the likelihood function becomes

LT (θ; ε) =
T∏
t=1

exp

{
−
N

2
log (2π)−

1

2
log (|Ht|)−

1

2
ε′tH

−1
t εt

}

=
T∏
t=1

exp

{
−

1

2

(
N log (2π) + log

(
|D1/2

t RtD
1/2
t |
)

+ ε′tD
−1/2
t R−1t D

−1/2
t

)}

=
T∏
t=1

exp

{
−

1

2

(
N log (2π) + log (|Dt|) + log (|Rt|) + u′tR

−1
t ut

)}

=
T∏
t=1

exp

{
−

1

2

(
N log (2π) + log (|Dt|) + ε′tD

−1
t εt − u′tut + log (|Rt|) + u′tR

−1
t ut

)}
,

2Note that it can be estimated empirically a posteriori from a sample of residuals Rt(θ̂)
−1/2εt
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where D
1/2
t = diag

(√
h11,t, · · · ,

√
hNN,t

)
, and ut =

(
ε1,t/

√
h11,t, · · · , εN,t/

√
hNN,t

)′
is the

vector of GARCH standardized residuals. Thus, the log-likelihood function can be expressed

as

` (θ; ε) = log

(
T∏
t=1
f (εt|Ft−1,θ)

)
=

T∑
t=1

[
−
N

2
log (2π)−

1

2
∆ (εt; θvol)−

1

2
Υ (εt; θvol, θcor) +

1

2
u′tut

]
,

(8)

with

∆ (εt; θvol) = log (|Dt|) + ε′tD
−1
t εt, and

Υ (εt; θvol, θcor) = log (|Rt|) + u′tR
−1
t ut.

∆(.) and Υ(.) are quadratic functions of εt. Only θvol enters in ∆(.) whereas both θvol and θcor

enter in Υ(.). Hence ∆(.) is the volatility part and conditional on θvol, Υ(.) is the correlation

part. This is a classic framework of a two-step Quasi Maximum Likelihood in the sense that

the problem can be split into two steps. In our simplified case, the volatility part of the log-

likelihood function corresponds to the sum of log-likelihood functions of N univariate variance

models that can be estimated independently:

QL1T (θvol; ε) = −
1

2

N∑
i=1

T∑
t=1

[
log (hiit) +

ε2i,t
hiit

]
.

Given θvol, and under appropriate regularity conditions of Υ(.), a consistent, but inefficient,

estimator of θcor can be obtained by maximizing:

QL2T (θcor; θvol, ε) = −
1

2

T∑
t=1

[
log (|Rt|) + u′tR

−1
t ut

]
, (9)

with ut = D
−1/2
t εt. Since maximizing ` is equivalent to maximizing the sum of QL1T (θvol; ε)

and QL2T (θcor; θvol, ε), the two-step approach for maximizing (8) can be led consequently.

The first step consists in finding

θ̂vol = arg max
θvol

QL1T (θvol; ε) . (10)

Conditioning on θ̂vol, the only portion of the ` that will influence the parameter selection is

log (|Rt|)+u′tR
−1
t ut. So we exclude constant terms and the second step of the QML estimation,

conditional on θ̂vol, consists in optimizing

θ̂cor = arg max
θcor

QL2T

(
θcor; θ̂vol, ε

)
. (11)
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Note that the parameter θ̂cor determines the volatility processes (hii,t) and then the (now

estimated) residuals ut.

Following Theorem 1 of Engle and Sheppard (2001), under appropriate conditions, es-

pecially the existence of stationary and ergodic solutions, the two-step QML estimator is

consistent. In particular, θ̂cor
P−→ θ0,cor. As for the asymptotic behavior, we rely on Bollersev

and Wooldridge (1994) and Engle and Sheppard’s results (2001). According to Theorem 2 of

Engle and Sheppard, the two-step QML estimator follows asymptotically a normal distribution

with Bollersev-Wooldridge type variance covariance matrix:

√
T

((
θ̂vol, θ̂cor

)′
− (θ0,vol, θ0,cor)

′
)

d−→ N
(
0, A−10 B0A

−1′
0

)
, (12)

with:

A0 =
1

2

[
∂2θvolθvol∆ (εt; θvol) 0

∂2θvolθcorΥ (εt; θvol, θcor) ∂2θcorθcorΥ (εt; θvol, θcor)

]
:=

[
A11 0

A12 A22

]
,

and

B0 =
1

4T
V ar

[
T∑
t=1

{
∂θ′vol∆ (εt; θvol) , ∂θ′corΥ (εt; θvol, θcor)

}]
:=

[
B11 B12

B12 B22

]
.

5.2 Estimation strategy

Let us specify the practical way of optimizing the previous QML criteria.

First, we build an estimator of θvol = (ς1, κ1, τ1, · · · , ςN , κN , τN ) as in (10), according to the

QML method. Since we do as if the law of εt knowing Ft−1 is Gaussian, for every i = 1, . . . , N ,

the first order orthogonality conditions are given by

T∑
t=1

(
1

hii,t
−

ε2i,t

h2ii,t

)
∂θvol

(
ςi + κiε

2
i,t−1 + τihii,t−1

)
= 0.

Under appropriate constraints, the resolution of the latter system of equations provides an

estimate of θvol. As usual for GARCH(1,1) models, we impose the positivity of the parameters

and a sufficient condition to get stationarity solutions is κi + τi ≤ 1 for all i. A numerical

procedure is required for solving this system. To do so, we use the Newton-Raphson method.

Finally, the variance of those estimators is estimated by taking the empirical counterpart of

the Fisher matrix, corrected according to Bollersev and Wooldridge. All the details related to

those technics are given in Section A in the appendix.

Second, conditional on the first step estimation, we focus on the optimization (11). We

26



build an estimator of θcor according to the QML method. Due to the nullity of the score in

expectation, E[∂θcorΥ (εt; θvol, θcor)] = 0. Therefore, the empirical counterpart of this equation

defines the estimator θcor as the root of

T∑
t=1

∂θcorΥ
(
εt; θ̂vol, θcor

)
= 0.

The underlying processes (Rt) induces tricky computations of scores and Hessians, for both

DCC and vine Garch dynamics. In this paper, we consider two strategies depending on the

dimensionality of the problem. The details are given in the appendix, Subsection A.2.

5.2.1 Sequential Quadratic Programming

The estimation strategy depends on the complexity of each parametrization. In this study,

DCC specifications are not highly parameterized: the scalar DCC (resp. diagonal QFDCC)

requires the estimation of 3 (resp. 3N) parameters, after correlation targeting. Consequently,

the Sequential Quadratic Programming method is implemented for these DCC dynamics since

it is well-suited for constrained optimization with a “reasonable” number of parameters.

As the general DCC model, the vine GARCH specification may suffer from the curse of

dimensionality. However, it is possible to weaken this problem strongly by using some nice

theoretical properties of C-vines. Actually, a vine GARCH model based on an underlying

C-Vine may be estimated by solving N × (N − 1)/2 bivariate optimization programs, instead

of through a single “brute-force” optimization stage. This is due to the fact that, in a C-

vine, each partial correlation on tree Ti can be updated easily knowing the partial correlations

on tree Ti−1. This simple property allows for proceeding sequentially. In other words, we

estimate successively N×(N−1)/2 bivariate dynamic models that are related to the dynamics

of (εi,t, εj,t) when the couples (i, j) describe the conditioned subsets of all the nodes in the

underlying C-vine, starting from the bottom tree.

To be more explicit, assuming that 1 is the root in the first tree, consider the N − 1 first

partial correlation dynamics given by

ψ (ρi1,t) = ωi1 + ξi1ψ (ρi1,t−1) + λi1υ̂i,t−1υ̂1,t−1, j = 2, . . . , N, (13)

where υ̂k,t =
εk,t√
ĥk,t

are “degarched” residuals. The latter quantities depend on the estimated

volatility processes and the observations. Consequently, we can estimate the parameters of

any equation (13) independently by maximizing the next N − 1 objective functions over there
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corresponding correlation spaces:

QL212T

(
θcor,12; θ̂vol, ε

)
= −

1

2

T∑
t=1

[
log
(
|R(12),t|

)
+ u′(12),t

(
R(12),t

)−1
u(12),t

]
,

QL213T

(
θcor,13; θ̂vol, ε

)
= −

1

2

T∑
t=1

[
log
(
|R(13),t|

)
+ u′(13),t

(
R(13),t

)−1
u(12),t

]
,

· · ·

QL21NT

(
θcor,1N ; θ̂vol, ε

)
= −

1

2

T∑
t=1

[
log
(
|R(1N),t|

)
+ u′(1N),t

(
R

(1N)
t

)−1
u(1N),t

]
.

Here, for all j = 2, · · · , N , u(1j),t = [v̂1,t, v̂j,t]
′; R(1j),t are the 2 × 2 correlation matrices and

θcor,1j = (ω1j , ξ1j , λij) are the parameters that are associated to the bivariate process (ε1,t, εj,t).

Now suppose 2 is the root of the next tree T2, when conditioning by 1. There are N − 2

dynamic partial correlations in T2. Their processes are described as follows:

∀j = 3, · · · , N, ψ
(
ρ2j|1,t

)
= ω2j|1 + ξ2j|1ψ

(
ρ2j|1,t−1

)
+ λ2j|1υ̂2|1,t−1υ̂j|1,t−1.

For inference purpose, we assumed εt|Ft−1 ∼ N (0, Ht). Consequently, we use the second

method described in 4.2 to compute υ̂2|1,t−1 and υ̂j|1,t−1. Under the Gaussian assumption,

partial correlations and conditional correlations are similar. Therefore, for any j = 3, . . . , N ,

the joint distribution of (u2,t, uj,t) conditional on u1,t is normal, with covariance/correlation

ρ2j|1,t. The latter quantity is an explicit function of the correlations ρ12,t and ρ1j,t that

have been estimated at the previous step on T1. Hence, we can also estimate the previous

partial correlations dynamics by maximizing N − 2 objective functions independently over

each correlation parameter space of tree T2, conditional on the estimated correlations on T1:

QL2
23|1
T

(
θcor,23|1; θ̂vol, ε, ρ̂12, ρ̂13

)
= −

1

2

T∑
t=1

[
log
(
|R(23),t|

)
+ u′(23),t

(
R(23),t

)−1
u(23),t

]
,

QL2
24|1
T

(
θcor,24|1; θ̂vol, ε, ρ̂12, ρ̂14

)
= −

1

2

T∑
t=1

[
log
(
|R(24),t|

)
+ u′(24),t

(
R(24),t

)−1
u(23),t

]
,

· · ·

QL2
2N |1
T

(
θcor,2N |1; θ̂vol, ε, ρ̂12, ρ̂1N

)
= −

1

2

T∑
t=1

[
log
(
|R(2N),t|

)
+ u′(2N),t

(
R(2N),t

)−1
u(2N),t

]
.

Here, for every j = 2, · · · , N , R(2j),t is the 2×2 correlation matrix with extra-diagonal elements

ρ2j,t. The latter coefficient is computed from the estimated dynamic partial correlations ρ̂2j|1,t

and correlations ρ̂1j|1,t. Obviously, u(j,k),t = [v̂j,t, v̂k,t]
′.

We apply the same reasoning for the next trees in the C-vine. There are N − 3 objective

functions to be maximized on tree T3, N − 4 on tree T4, etc, until tree TN−1 where only one

objective function needs to be maximized. The iterative algorithm is based on the idea of a
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multi-step estimation procedure relying on the vine structure. The estimation of the partial

correlation process of a tree Ti only depends on a subset of partial correlations associated to the

nodes of Ti−1, invoking the recursive formula (1). Thus, denoting θcor,ij|L =
(
ωij|L, ξij|L, λij|L

)
a subvector of θcor, our iterative algorithm can be summarized as follows, assuming 1 as the

root in T1, 2 the root on tree T2, and the like until tree TN−1 and denoting the conditioning

set of Ti as Li = {1, · · · , i− 1}, i = 2, . . . , N − 1:

θ̂cor,ij|Li
= arg max

θcor,ij|Li

QL2
ij|Li

T

(
θcor,ij|Li

; θ̂vol, ε, ρ̂i−1,i|Li−1
, ρ̂i−1,j|Li−1

, ρ̂ij|Li

)
,

for every i and j in {1, . . . , N}, i < j.

We denote this strategy C-Vine iterative process, which is particularly effective when N

becomes large (say from 8 assets). At each node on a specific level, only 3 parameters need

to be estimated. Consequently, we also use the Sequential Quadratic Programming method

when estimating the C-Vine iterative process.

5.2.2 Simulated Annealing

A drawback of the latter C-Vine iterative process is the diffusion of estimation errors from

one partial correlation level to the next one. It is still possible to estimate the vine-GARCH

at once for reasonable portfolio sizes (N ≤ 8) to avoid this iterative method. But since Fvine

induces a high level of nonlinearity, the calculation of the Hessian may be painful. Applying

numerical derivatives, we can use some algorithms that require only first derivatives such as

the Bernd-Hall-Hall-Hausmann algorithm. But their performances may decrease dramatically

when ` is highly nonlinear. Besides, if ` admits several local maxima, the Newton-Raphson

or the Bernd-Hall-Hall-Hausmann methods depend strongly on the initial parameter values

before running the iterations. Therefore, the nonlinearity and the instability of the likelihood

function in the vine-GARCH case require another approach to maximize (11). Here, we use

a stochastic algorithm, the simulated annealing. It enables to simulate the objective function

from some given values of θcor. The main idea is that a change of scale, called temperature,

enables faster moves on the surface of QL2T to be maximized. By rescaling partially, this

method prevents from falling in local maxima. See details in Subsection A.2.2 in the appendix.

Note that the simulated annealing algorithm can also be used when estimating model

through the previous C-Vine iterative methodology. However in this case, the Sequential

Quadratic Programming is a lot quicker, which is the reason we used this method in the

simulation study.
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6 Empirical applications

6.1 Simulation study

We consider as a data generating process (DGP) a multivariate series (εt) of size N = 6 that

is simulated from a centered normal law. Its conditional variance-covariance matrices are

deduced from an MGARCH form Ht = D
1/2
t RtD

1/2
t . To generate N univariate variance pro-

cesses along (7), we choose the 3N parameters as random such that ς ∼ U (0.00001, 0.00009),

κ ∼ U (0.01, 0.15) and τ ∼ U (0.95, 0.85), under the stationarity constraint κ + τ < 1. As

for the correlation dynamics, we first choose randomly N(N − 1)/2 deterministic processes

among the cosinus, sinus, modulo and constant functions, and then generate the patterns
a1 + a2 cos(2πt/α),

b1 + b2 sin(2πt/β),

c1 + c2 mod(t/µ),

d1 + d2const,

for every t = 1, . . . , T , where a1, a2, b1, b2, c1, c2, d1, d2 are chosen randomly following indepen-

dent U (−0.4, 0.4) and α, β, µ are randomly (equally) selected among {200, 500, 1000, 1500, 2000}.
Then, for each t, we build a lower triangular matrix Kt with ones on the main diagonal, which

is the Cholesky decomposition of the symmetric and positive definite matrix Ct = KtK
′
t.

Finally, we generate Rt = C
?−1/2
t CtC

?−1/2
t , as for the normalization step of a DCC. Those

processes allow for rapid, gradual changes or constant correlation patterns, and they do not

depend on a specific statistical model. Initializing each of the GARCH processes and given ε1,

we simulate the successive values of a MGARCH process with conditional variance-covariance

matrices (Ht), Ht = D
1/2
t RtD

1/2
t . We do this iterative procedure for T = 10000 and we con-

sider 300 different correlation matrix patterns. Once a series is simulated, we estimate the

model under different model assumptions: a C-Vine-GARCH, a diagonal QFDCC and a scalar

DCC models. As a benchmark, we also compute a rolling-window correlation matrix with a

rolling-window of size 200 observations. The estimated parameters allow the calculation of suc-

cessive correlation matrices, which are here R̂vinet (C-vine-GARCH), R̂qfdcct (QFDCC model),

R̂dcct (DCC model), and R̂rwt (rolling-window) correlations. For the vine-Garch, we consider

a constrained case too, where the partial correlations of the last two trees are constrained

to their unconditional partial correlations values, as estimated over the whole sample 3. We

denote by R̂vine?t the correlation matrices obtained with the constrained version of the C-vine.

Both vine specifications are estimated by the C-Vine iterative process. The first level of the

C-vine has been chosen following the procedure 4.3.

We are interested in comparing the true correlation process and the estimated correlation

3Alternatively, we could set zero partial correlations for these two last trees of the C-vine. The results would be
comparable.
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processes through the aforementioned models. To do so, we specify a matrix distance, namely

the Frobenius norm, defined as

||A−B||F =
√
trace

(
(A−B)′ (A−B)

)
.

We can compute the previous norm for each t and for A = Rt and

B ∈ {R̂dcct , R̂qfdcct , R̂rwt , R̂vinet , R̂vine?t }.

We take the average of those quantities over T = 10000 periods of time. Since we repeat this

experiment 300 times, this provides an average gap for all those simulations. Table 1 reports

these results.

Table 1: Simulation study: average distance between true and estimated correlation matrices

B = R̂dcc
t B = R̂qfdcc

t B = R̂rw
t B = R̂vine

t B = R̂vine?
t

||Rt −B||F 0.4995 0.4791 0.5275 0.3906 0.4137

The C-Vine model clearly outperforms the other specifications. The DCC displays a signif-

icant gap, which highlights that it is too restrictive to capture complex dynamics with only

two parameters. As for the rolling-window correlation, the result emphasizes this empiri-

cal measure should be taken with great care. The rolling nature of the samples makes the

rolling-window correlation very low to react to a rapid correlation fluctuations. The diagonal

QFDCC displays better performances compared with the scalar DCC, but it is still signifi-

cantly outperformed by the C-Vine model. Finally, the constrained vine-Garch still challenges

the DCC-type dynamics. Therefore this justifies the use of constrained C-Vine dynamics, al-

lowing for parsimony.

6.2 Application to real portfolios

In this section, we estimate by Quasi-Maximum Likelihood the DCC-GARCH and vine-

GARCH models for two portfolios composed of daily series of log-returns related to the twenty-

three country indices that compose the Morgan Stanley Capital International (MSCI) Devel-

oped Markets. For the first portfolio, denoted portfolio I, we consider Germany, Italy, France,

the Netherlands and the United Kingdom. Portfolio II is more diversified geographically be-

cause it is composed of Germany, the United-States, Greece, Italy, Japan and Australia. For

both portfolios, the samples start in January 1999 and end in August 2014, which amounts

to 3669 observations. Table 2 gathers some descriptive statistics about the studied sample.

Means, standard deviations, minima and maxima are in percentage terms. Greece and Italy

are the only countries that have non positive mean. Importantly, these time series are skewed
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and have a significant excess kurtosis, emphasizing non-normality, which is confirmed by the

Jarque-Berra tests that reject the normality hypothesis.

Table 2: Descriptive Statistics of the MSCI Log Returns.

Assets Mean Std. Dev. Min Max Skewness Kurtosis JB stat.

Australia 0.039 1.61 -15.97 16.30 -0.674 14.79 2314***

France 0.014 1.69 -11.57 14.10 0.022 9.10 5690***

Germany 0.014 1.75 -10.77 14.23 -0.031 7.93 3723***

Greece -0.037 2.37 -34.06 31.62 -0.128 25.90 80167***

Italy -0.005 1.73 -11.11 15.70 0.012 10.09 7685***

Japan 0.008 1.48 -9.51 10.44 -0.248 6.55 1964***

Netherlands 0.011 1.61 -11.51 14.33 -0.057 9.66 6777***

United-Kingdom 0.014 1.46 -10.43 13.91 -0.039 12.59 1406***

United-States 0.012 1.32 -9.51 10.34 -0.230 10.15 7857***

Significance level: * for 0.05, ** for 0.01, *** for 0.001

Let us notice that we have demeant the time series by estimating Et [rt] = µt (θ) by OLS. Then

we estimate multivariate conditional variance processes on εt = rt − µt. The GARCH(1,1)

specification was chosen a priori for modeling the marginal dynamics without a strict selection

process. Indeed, this is by far the reference model used in the literature. The estimation results

are reported in Table 3.

Table 3: GARCH(1,1) Models estimated by QML for 11 stock indices. The Bollersev-Wooldridge
standard deviations are in parentheses.

Asset ς κ τ

Australia 0.657e-005 (0.114e-005) 0.124 (0.014) 0.846 (0.011)

France 0.388e-005 (0.076e-005) 0.111 (0.009) 0.876 (0.008)

Germany 0.368e-005 (0.080e-005) 0.100 (0.011) 0.889 (0.010)

Greece 0.191e-005 (0.147e-005) 0.090 (0.010) 0.917 (0.015)

Italy 0.235e-005 (0.052e-005) 0.113 (0.010) 0.883 (0.008)

Japan 0.997e-005 (0.157e-005) 0.103 (0.012) 0.849 (0.013)

Netherlands 0.363e-005 (0.069e-005) 0.110 (0.010) 0.876 (0.009)

United-Kingdom 0.338e-005 (0.067e-005) 0.115 (0.011) 0.868 (0.009)

United-States 0.223e-005 (0.056e-005) 0.102 (0.010) 0.884 (0.008)

We now turn to the second step QML-estimation of the conditional correlation dynamics,

knowing the GARCH(1,1) estimates, for portfolios I and II. We index each country with a
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number, which corresponds to the variable selected as the root on each tree according to the

Kendall’s tau selection procedure (see Subsection 4.3). Portfolio I is composed of European

stocks. Therefore, it can be considered as relatively homogenous, including the main countries

of the Eurozone. The selecting procedure forms the following order: Germany (1), United-

Kingdom (2), Italy (3), France (4) and Netherlands (5). In this case, Germany (1) is the root

of the first C-Vine tree. That means we consider the partial correlation of two countries given

Germany on Tree 2. Then, on Tree 3, the conditioning subset is Germany (1) and United-

Kingdom (2). Finally, Italy is added in the conditioning set on the next tree. As for portfolio

II, which can be considered as a heterogenous portfolio, its composition is given as follows:

Germany (1), Greece (2), United-States (3), Italy (4), Japan (5) and Australia (6).

For the C-Vine-GARCH model, we consider two cases. The first is the usual unconstrained

C-Vine tree. The second one is a constrained version of the previous one, where the partial

correlations of the two last trees are fixed. Therefore, in portfolio I, ρ45|123, ρ35|12 and ρ34|12

are set to their unconditional values that have been estimated over the whole sample. Thus

the size of the parameter space is reduced by 9 parameters for both portfolios. For both

portfolios, the models are estimated by simulated annealing. Table 4 reports the estimation

results of the vine-GARCH model for the unconstrained case. The results for the constrained

case are very close to those of the unconstrained case and are reported in Section 10 in the

appendix, Tables 12 and 13. Table 6 (resp. Table 5) reports the estimation results of the

scalar DCC (resp. diagonal QFDCC).

Table 4: C-Vine-GARCH Model estimated by QML for portfolio I: Germany (1), United-Kingdom
(2), Italy (3), France (4), Netherlands (5). The Bollersev-Wooldridge standard deviations are in
parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)

ω12 -0.0629 (0.0288) ξ12 0.9749 (0.0064) λ12 0.1977 (0.0515)

ω13 -0.0772 (0.0355) ξ13 0.9748 (0.0053) λ13 0.2230 (0.0472)

ω14 -0.1388 (0.1928) ξ14 0.9878 (0.0109) λ14 0.2594 (0.2994)

ω15 -0.0893 (0.0672) ξ15 0.9850 (0.0031) λ15 0.1976 (0.0973)

ω23|1 0.0191 (0.0071) ξ23|1 0.9521 (0.0145) λ23|1 0.0097 (0.0100)

ω24|1 0.0733 (0.0369) ξ24|1 0.8839 (0.0540) λ24|1 0.0311 (0.0161)

ω25|1 0.0332 (0.0117) ξ25|1 0.9375 (0.0162) λ25|1 0.0216 (0.0116)

ω34|12 0.0181 (0.0068) ξ34|12 0.9894 (0.0048) λ34|12 -0.0117 (0.0034)

ω35|12 0.0289 (0.0064) ξ35|12 0.9619 (0.0090) λ35|12 -0.0136 (0.0077)

ω45|123 0.0618 (0.0246) ξ45|123 0.9174 (0.0370) λ45|123 -0.0056 (0.0128)
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Table 5: Diagonal QFDCC Model estimated by QML for portfolio I. The Bollersev-Wooldridge
standard deviations are in parentheses.

C2 Estimate (Std Err) A2 Estimate (Std Err) B2 Estimate (Std Err)

c211 0.0068 (0.0255) a211 0.0174 (0.0645) b211 0.9786 (0.0130)

c222 0.0111 (0.0584) a222 0.0217 (0.1080) b222 0.9773 (0.0273)

c233 0.0087 (0.0380) a233 0.0195 (0.2307) b233 0.9795 (0.0285)

c244 0.0082 (0.0147) a244 0.0202 (0.0356) b244 0.9788 (0.0084)

c255 0.0025 (0.0021) a255 0.0063 (0.0525) b255 0.9797 (0.0136)

Table 6: scalar DCC-GARCH Models estimated by QML for portfolio I. The Bollersev-Wooldridge
standard deviations are in parentheses.

Model α β

DCC 0.0284 (0.0032) 0.9674 (0.0041)

The same model is implemented for portfolio II, which is heterogenous in terms of geographical

areas. Table 7 (resp. Table 9, Table 8) reports the estimation results of the C-Vine-GARCH

(resp. scalar DCC, diagonal QFDCC) for portfolio II.
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Table 7: Vine-GARCH Model estimated by QML for portfolio II: Germany (1), Greece (2), United-
States (3), Italy (4), Japan (5), Australia (6). The Bollersev-Wooldridge standard deviations are
in parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)

ω12 0.0009 (0.0363) ξ12 0.9764 (0.0980) λ12 0.0473 (0.1015)

ω13 0.0034 (0.0044) ξ13 0.9787 (0.0044) λ13 0.0421 (0.0080)

ω14 -0.0637 (0.0258) ξ14 0.9795 (0.0043) λ14 0.1884 (0.0414)

ω15 0.0059 (0.0041) ξ15 0.9714 (0.0127) λ15 0.0175 (0.0066)

ω16 0.0045 (0.0036) ξ16 0.9772 (0.0047) λ16 0.0360 (0.0059)

ω23|1 -0.0064 (0.0225) ξ23|1 0.9388 (0.2172) λ23|1 0.0016 (0.0271)

ω24|1 0.0304 (0.1100) ξ24|1 0.8828 (0.4267) λ24|1 0.0092 (0.0350)

ω25|1 0.0080 (0.0074) ξ25|1 0.9601 (0.0211) λ25|1 0.0034 (0.0191)

ω26|1 0.0265 (0.0924) ξ26|1 0.9101 (0.2596) λ26|1 0.0121 (0.0497)

ω34|12 0.0015 (0.0035) ξ34|12 0.9551 (0.1663) λ34|12 0.0115 (0.0110)

ω35|12 -0.0001 (0.0003) ξ35|12 0.9942 (0.0055) λ35|12 0.0051 (0.0031)

ω36|12 -0.0008 (0.0016) ξ36|12 0.9805 (0.0356) λ36|12 0.0094 (0.0101)

ω45|123 0.0033 (0.0096) ξ45|123 0.7327 (0.2485) λ45|123 0.0128 (0.0217)

ω46|123 0.0035 (0.0031) ξ46|123 0.9512 (0.0191) λ46|123 0.0130 (0.0117)

ω56|1234 0.0134 (0.0067) ξ56|1234 0.9660 (0.0062) λ56|1234 0.0334 (0.0124)

Table 8: Diagonal QFDCC Model estimated by QML for portfolio II. The Bollersev-Wooldridge
standard deviations are in parentheses.

C2 Estimate (Std Err) A2 Estimate (Std Err) B2 Estimate (Std Err)

c211 0.0065 (0.0029) a211 0.0139 (0.0061) b211 0.9851 (0.0025)

c222 0.0012 (0.0016) a222 0.0021 (0.0026) b222 0.9931 (0.0026)

c233 0.0020 (0.0036) a233 0.0029 (0.0054) b233 0.9876 (0.0029)

c244 0.0064 (0.0050) a244 0.0134 (0.0103) b244 0.9856 (0.0028)

c255 0.0021 (0.0091) a255 0.0021 (0.0097) b255 0.9925 (0.0041)

c266 0.0067 (0.0172) a266 0.0086 (0.0231) b266 0.9904 (0.0030)

Table 9: scalar DCC/cDCC-GARCH Models estimated by QML for portfolio II. The Bollersev-
Wooldridge standard deviations are in parentheses.

Model α β

DCC 0.0097 (0.0018) 0.9879 (0.0025)

35



For the sake of illustration, some series of correlations are reported in Section D in the ap-

pendix. Concerning C-vine GARCH models, the higher the level of the tree is, the smaller are

the partial correlations coefficients ω and λ, for portfolio I. We may infer that once we control

for the information given by Germany (1) (the core of the Eurozone) and United-Kingdom

(2), estimating the dynamics of partial correlations on trees T3 and T4 is not necessary. This

looks like evaluating white noise. This confirms the modeling of constrained vines, a case for

which estimation results are close to the unconstrained case. On the contrary, this effect does

not appear with the heterogenous portfolio II. Controlling for Germany, Greece and the US

in portfolio II is not enough to deduce the whole information about the correlation dynamics

between Japan and Australia, due to significant remaining idiosyncratic risks.

As for the DCC specification, the stationarity conditions are satisfied as α̂ + β̂ < 1. All

the estimated parameters are statistically significant at 1% level. The stationarity conditions

also holds for the diagonal QFDCC by simply checking a2ii + b2ii < 1 for all i = 1, . . . , n. For

both portfolios I and II, some parameters in C are not statistically significant. The estimated

coefficients of A highlight how different both portfolios are. For portfolio I, the A coefficients

are relatively close. But for portfolio II, they tend to be different, which justify the use of a

diagonal QFDCC.

6.3 Specification testing

Once the model is estimated, we are able to forecast the variance-covariance matrix Ht, at

least one-period ahead. There exist several methods to evaluate the absolute and/or relative

efficiency of these predictions. See Patton and Sheppard (2007) for a survey. In this study,

we focus on direct out-of-sample evaluation methods, which allow for pairwise comparisons.

They test whether some or all the previous models provide different forecasts in terms of

portfolio volatility behavior. Following the methodology of Engle and Colacito (2006) and

Clements and al. (2009), we develop a mean-variance portfolio approach to test the variance

covariance forecasts. The idea is the following: if a conditional variance covariance process is

misspecified, then the minimum variance portfolio should emphasize the shortcoming. Then,

we consider an investor who allocates at each time t his portfolio to the N assets according

to a minimum-variance strategy. At each date t, he/she solvesmin
wt

w′tHtwt,

s.t. ι′wt = 1,
(14)

where wt the N×1 vector of portfolio weights chosen at time t−1, ι is a N×1 vector of 1 and

Ht is the estimated conditional variance covariance matrix of the asset returns at time t, as

deduced from some model dynamics that have been estimated on the sub-sample January 1999

- October 2011. Once the latter dynamic process is estimated, the predictions are plugged
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into the program (14), for the sample November 2011 - August 2013. The solution of (14) is

given by the global minimum variance portfolio:

wt =
H−1t ι

ι′H−1t ι
·

Engle and Colacito (2006) show that the realized portfolio volatility is the smallest one if

the model covariance matrix is correctly specified. If one allocates his/her wealth using two

different dynamic models i and j, whose predicted variance covariance matrices are (H i
t) and

(Hj
t ), the strategy providing the smallest portfolio variance will be considered as the best

one. To do so, we consider a sequence of minimum variance portfolio weights (wi,t) and (wj,t)

depending on the model. Then, we consider a distance based on the difference of the squared

returns of the two portfolios:

uij,t =
{
w′i,tεt

}2 − {w′j,tεt}2 . (15)

The portfolio variances are the same if the predicted variance covariance matrices are the

same. Thus we test the null hypothesis

H0 : E [uij,t] = 0

To do so, we use the test of Diebold and Mariano (1995), which consists of a least square

regression using Heteroskedasticity Autoregressive Consistent standard errors:

uij,t = α+ εu,t, E[εu,t] = 0,

H0 : α = 0.

If the mean of uij,t is positive (resp. negative), then the forecasts given by the covariance

matrices of model j (resp. i) are better forecasts. We run the test for portfolios I and II for

the scalar DCC, QFDCC, constrained C-Vine-GARCH (C-Vine-c) and unconstrained C-Vine-

GARCH (C-Vine) models. The results are reported in tables 10 and 11. Those tables provide

the out-of-sample t-statistics of the Dielbold-Mariano test that checks the equality of a pair

of series of covariance matrices using the loss function uij,t defined by (15) over the period

November 2011 - August 2013. This loss function is constructed as the difference of squared

realized returns of alternative Multivariate GARCH models indicated in row i and column

j. When the null hypothesis of equal predictive accuracy is rejected, a positive number is

evidence in favor of the model in the column.
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Table 10: Diebold Mariano Test of Multivariate GARCH models for portfolio I

DCC QFDCC C-Vine C-Vine-c

DCC 0.7217 0.0949 0.5864

QFDCC -0.7217 -0.3157 0.2232

C-Vine -0.0949 0.3157 2.2699**

C-Vine-c -0.5864 -0.2232 -2.2699**

Rejection of the nul hypothesis at: 10% for*, 5% for **, 1% for ***

Table 11: Diebold Mariano Test of Multivariate GARCH models for portfolio II

DCC QFDCC C-Vine C-Vine-c

DCC -1.6014* 2.365e-4 -0.6087

QFDCC 1.6014* 1.6920* 0.9124

C-Vine -2.365e-4 -1.6920* -1.9671**

C-Vine-c 0.6087 0.9124 1.9671**

Rejection of the null hypothesis at: 10% for*, 5% for **, 1% for ***

We first note that in the homogenous case, the DCC specifications do not provide better

variance-covariance forecasts. Interestingly, the constrained case of the C-vine provides better

prediction accuracy than the unconstrained case. For the heterogenous portfolio, we obtain

the reverse. The C-vine specification outperforms the constrained case in terms of prediction

accuracy: the two last levels of the tree should be estimated as once the dynamics are controlled

by Germany, Greece and the US, there is still a significant idiosyncratic risk, which is not

captured. Both versions of the C-vine are not outperformed by the scalar DCC, and the

C-vine provides better variance-covariance forecasts than the QFDCC. The QFDCC is also

slightly outperformed by the scalar DCC specification for the heterogenous portfolio, what

is rather surprising. But all these results are not sufficiently clear-cut to draw any strong

conclusion concerning a potential hierarchy between all these models. Other experiments

should be surely necessary.
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7 Conclusion

This paper has proposed to rely on vines to generate multivariate GARCH-type models. The

main feature of our methodology is the specification/estimation of partial correlation processes

“independently”, and their use to generate sequences of positive definite correlation matrices.

The Canonical vine is particularly well-suited to model a hierarchy between asset returns,

a bit as for factor models. Our approach does not rely on any normalization stage and we

model directly correlation processes. Besides, the vine-GARCH approach allows for building

parsimonious models, by setting constraints on the partial correlation dynamics, typically

from some stage in the vine on. All these elements foster flexibility and enable to generate

high-dimensional matrices.

The performances of the vine-GARCH and DCC estimators have been compared by means

of applications to simulated and real data. The simulation study confirmed that a more

flexible specification (the C-Vine-GARCH) provides a better accuracy. The constrained case

is particularly adapted to homogenous portfolios and challenges the unconstrained case. The

performances calculated from real data support the use of vine dynamics.

Therefore, a new framework has been opened in the field of MGARCH models. A challenging

task for future research will be to provide the theoretical properties of this new family of esti-

mators: stationarity, ergodicity, existence of moments, consistency and asymptotic normality.

Due to the highly nonlinear feature of vine-GARCH models (through the Fvine function),

this task is certainly very difficult. Beside theoretical open questions, more empirical work

is probably necessary to evaluate all the advantages of such approaches w.r.t. more classical

ones, as the standard DCC family.
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Figure 1: Example of a C-vine on five variables.
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Figure 2: Example of a D-vine on five variables.

44



 

Figure 3: Example of a R-vine on five variables.
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A Appendix: the detailed estimation formulae

In this appendix, we provide some details about the quasi-maximum estimation method. In

particular, we suppose the distribution of the residuals is Gaussian and we make assumptions

about the first and second order conditional moments. We split the likelihood function into

two parts and apply a two step estimation procedure. To do so, the log likelihood function

can be written as the sum of a volatility part and a correlation part

` (θ; ε) = −1

2

T∑
t=1

[
N log (2π) + ∆ (εt; θvol) + Υ (εt; θvol, θcor) + u′tut

]
,

with

∆ (εt; θvol) = log (|Dt|) + ε′tD
−1
t εt, and

Υ (εt; θvol, θcor) = log (|Rt|) + u′tR
−1
t ut.

A.1 First step estimation

Applying the quasi-maximum likelihood method, we get a non-linear system of equations

defining the estimator of the volatility-related parameters, denoted by θvol. The volatility

part of the log likelihood function is given by

QL1T (θvol) = −
1

2

T∑
t=1

N∑
i=1

[
log (hii,t) +

ε2i,t
hii,t

]
.

QL1T corresponds to the sum of N univariate volatility processes. Thus we consider the

method for one volatility process, say QL1i,T (θi,vol) with the parameter estimator θi,vol cor-

responding to the parameters of the volatility process of rit − µit. We model the conditional

volatility process as a GARCH(1,1) process, such that

∀i = 1, · · · , N, hii,t = ςi + κiε
2
i,t−1 + τihii,t−1,

QL1i,T (θi,vol) = −
1

2

T∑
t=1

[
log (hiit) +

ε2i,t
hii,t

]
:= −

1

2

T∑
t=1

li,t (θi,vol) .

For convenience, we omit the i index of the parameter vector. The first order conditions for

maximizing the log likelihood with respect to θi,vol = (ς, κ, τ) yield to the following orthogo-

nality conditions:

∂θi,volQL1i,T (θi,vol) = −
1

2

T∑
t=1

[(
1

hii,t
−

ε2i,t

h2ii,t

)
∂θi,volhii,t

]
= 0, (16)
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with ∂θi,volhii,t =
(

1, ε2i,t−1, hii,t−1

)
′+ τ∂θi,volhii,t−1. The system can be described as



∂ςQL1i,T (θi,vol) = −
1

2

T∑
t=1

[(
1

hii,t
−

ε2i,t

h2ii,t

)
(1 + τ∂ςhii,t−1)

]
= 0,

∂κQL1i,T (θi,vol) = −
1

2

T∑
t=1

[(
1

hii,t
−

ε2i,t

h2ii,t

)(
ε2i,t−1 + τ∂κhii,t−1

)]
= 0,

∂τQL1i,T (θi,vol) = −
1

2

T∑
t=1

[(
1

hii,t
−

ε2i,t

h2ii,t

)
(hii,t−1 + τ∂τhii,t−1)

]
= 0.

We rely on the Newton-Raphson method for solving this system. To do so, we apply a

second order Taylor expansion of QL1i,T (θi,vol) around θ
(0)
i,vol ∈ Θ as

QL1i,T (θi,vol) ' QL1i,T

(
θ
(0)
i,vol

)
+ ∂θi,volQL1i,T

(
θ
(0)
i,vol

)
(θi,vol − θ

(0)
i,vol)+

1

2
(θi,vol − θ

(0)
i,vol)

′∂2θi,volθi,volQL1i,T

(
θ
(0)
i,vol

)
(θi,vol − θ

(0)
i,vol).

We minimize the quadratic function QL1i,T (θi,vol), which gives a vector θ
(1)
i,vol solution of the

linear system

∂2θi,volθi,volQL1i,T

(
θ
(0)
i,vol

)
θ
(1)
i,vol = ∂2θi,volθi,volQL1i,T

(
θ
(0)
i,vol

)
θ
(0)
i,vol − ∂θi,volQL1i,T

(
θ
(0)
i,vol

)
.

This is an iterative procedure. At iteration n, we build QL1i,T

(
θ
(n)
i,vol

)
as

∂2θi,volθi,volQL1i,T

(
θ
(n)
i,vol

)(
θ
(n+1)
i,vol − θ

(n)
i,vol

)
= −∂θi,volQL1i,T

(
θ
(n)
i,vol

)
. (17)

Hence the Newton-Raphson procedure requires the computation of the Hessian ∂2θi,volθi,volQL1i,T (θi,vol),

which is given by:

H =

∂
2
ςς ∂2ςκ ∂2ςτ
∂2κς ∂2κκ ∂2κτ
∂2τς ∂2τκ ∂2ττ

QL1i,T (θi,vol)

= −
1

2

T∑
t=1

[(
1

hii,t
−

ε2i,t

h2ii,t

)
∂2θi,volθ′i,vol

hii,t +

(
2ε2i,t

h3ii,t
−

1

h2ii,t

)
∂θi,volhii,t∂θ′i,volhii,t

]
.

Following Fiorentini and al. (1996), the Hessian is replaced by the empirical counterpart of

the Fisher information matrix I(θi,vol) = −E
[
∂2θi,volθ′i,vol

li,t (θi,vol)
]
. This expression can be
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simplified using conditional expectation:

−E[∂2θi,volθ′i,vol
li,t (θi,vol) |Ft−1]

=
1

2
E

[
1

hii,t

(
1−

ε2i,t
hii,t

)
∂2θi,volθ′i,vol

hii,t +
1

h2ii,t

(
2ε2i,t
hii,t
− 1

)
∂θi,vol

hii,t∂θ′i,vol
hii,t|Ft−1

]

=
1

2

1

h2ii,t
∂θi,vol

hii,t∂θ′i,vol
hii,t.

We used E

[
ε2i,t
hii,t
|Ft−1

]
= 1 and hii,t ∈ Ft−1. Consequently, the Hessian is approximated by

Î(θi,vol) := −
1

2

T∑
t=1

1

h2ii,t
Xt−1,iX

′
t−1,i,

with Xt,i =

 1

ε2i,t
hii,t

+ τ∂θi,volhii,t−1. The iterative numerical procedure is consequently given

asς
(n+1)

κ(n+1)

τ (n+1)

 =

ς
(n)

κ(n)

τ (n)

+

[
T∑
t=1

1

h2ii,t,(n)
Xt−1,i,(n)X

′
t−1,i,(n)

]−1 T∑
t=1

1

hii,t,(n)
Xt−1,i,(n)

(
ε2i,t

hii,t,(n)
− 1

)
,

(18)

with Xt,i,(n) =

 1

ε2i,t
hii,t,(n)

+τ∂θi,volhii,t−1,(n). We initialize the latter algorithm by setting first

ĥii,0 =
1

T − 1

T∑
t=1
ε2i,t, the empirical counterpart of the sample variance. Hence ∂θi,vol ĥii,0 = 0. As

for the starting points of the sequence (θi,vol,(n))n, we set ς(0) = 0, κ(0) = 0.09 and τ (0) = 0.9.

The convergence criteria is such that ‖τ (n+1) − τ (n)‖ ≤ 10−8.

Finally, we estimate the variances of the estimators θi,vol = (ς, κ, τ) in a robust way using

the formula of Bollersev and Wooldridge (1992) as follows:
V̂ς̂ = V̂ςς

V̂κ̂ = V̂κκ

V̂τ̂ = V̂ττ

with

V̂ςς V̂ςκ V̂ςτ

V̂κς V̂κκ V̂κτ

V̂τς V̂τκ V̂ττ

 = A−1T

(
θ̂vol

)
BT

(
θ̂vol

)
A−1T

(
θ̂vol

)
,
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with

AT

(
θ̂i,vol

)
=

1

2T

T∑
t=1

∂θi,volhii,t−1∂θ′i,volhii,t−1
1

h2ii,t
,

BT

(
θ̂i,vol

)
=

1

T

T∑
t=1

(
ε2i,t

2h2ii,t
−

1

2hii,t

)2

∂θi,volhii,t−1∂θ′i,volhii,t−1.

A.2 Second step estimation

Through the quasi-maximum likelihood method, a non-linear system of equations defines the

an estimate of the parameter θcor, knowing θvol. Indeed, the correlation part of the log

likelihood function is given by

QL2T

(
θcor; θ̂vol, ε

)
= −

1

2

T∑
t=1

[
log (|Rt|) + u′tR

−1
t ut

]
.

Due to the nullity of the score in expectation, we deduce the following orthogonality conditions:

E [∂θcorΥ (εt; θvol, θcor)] = 0.

Taking the empirical counterpart of the previous quantity, we get

T∑
t=1

∂θcor
[
log (|Rt|) + û′tR

−1
t ût

]
= 0,

where the individual volatility processes and the residuals ût have been obtained through

the observations and the assumed parameter θ̂cor. The analytic calculation of a score is

tricky in the DCC-GARCH case, and unfeasible in the vine-GARCH case, which is highly

non-linear. In the scalar DCC-GARCH specifications and the C-Vine iterative process, some

algorithms using numerical scores and approximated Hessians can be used easily since we do

not optimize criteria with numerous arguments. As for vine-GARCH models, when estimating

without the iterative procedure and for reasonable portfolio sizes, we use a method that does

not require any computation of a Gradient or Hessian: simulated annealing, as detailed in

Subsection A.2.2.

A.2.1 The DCC-GARCH dynamics / The C-Vine iterative process

Similarly to the resolution of the first step, the previous system could be solved by the Newton-

Raphson method using numerical derivatives. We apply the Sequential Quadratic Program-

ming (SQP), which is widely examined by Nocedal and Wright (2006). We follow them and

give in this section the main steps of the SQP approach. This method is used for DCC spec-

ifications and the C-Vine iterative process, a situation where we have to optimize in the a
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subspace of R3 in practice. The SQP is a robust method in the case of constrained nonlinear

problems. It is an iterative procedure, which considers a nonlinear problem as a quadratic pro-

gramming subproblem, for a given value θn at iteration n and constructs a new iterate θn+1.

In this setting, the sequence (θn)n converges to a local minimum of the nonlinear problem as

n → ∞. The method is given here for the second step likelihood of the DCC specifications

and one sub-likelihood in the C-Vine iterative process.

Our constrained nonlinear optimization problem is arg min
θcor

Q̃L2T (θcor) ,

subject to φ(θcor) ≤ 0,
(19)

where φ(·) is differentiable and Q̃L2T := −QL2T . Suppose the dimension of the parameter

space for the correlation part is k. We associate a Lagrangian function to the nonlinear

problem as {
L : Rk × Rm+ → R,
L(θcor, λ) = Q̃L2T (θcor) + λφ(θcor),

(20)

where λ is the Lagrangian multiplier. The first order conditions of (20) at a local minimum

correspond to the Karush-Kuhn-Tucker conditions. We assume that the second order sufficient

optimality conditions given by Nocedal and Wright (2006) are satisfied. We consider quadratic

programming subproblems, which should reflect the local properties of (19) with respect to

the iterate θncor. To do so, we use a local quadratic approximation of the objective function

and a local affine approximation of the constraint function:

Q̃L2T (θcor) ≈ Q̃L2T (θncor) + ∂θcorQ̃L2T (θncor)
′ (θcor − θncor)

+
1

2
(θcor − θncor)′∂2θ2corQ̃L2T (θncor) (θcor − θncor),

φ(θcor) ≈ φ(θncor) + ∂θcorφ(θncor)(θcor − θncor).

We set m(θcor) = (θcor − θncor). The previous approximations lead to the subproblem arg min
θcor

∂θcorQ̃L2T (θncor)
′m(θcor) +

1

2
m(θcor)

′∂2θ2cor
Q̃L2T (θncor)m(θcor),

subject to φ(θncor) + ∂θcorφ(θncor)
′m(θcor) ≤ 0.

(21)

The numerical resolution of the latter system is led thanks to the Newton-Raphson method,

which is given here with inequality constraints. To do so, we denote by λn+1 the Lagrange

multiplier for (21). We assume strict complementarity, a case where the multipliers are strictly

positive at the optimum θ?cor. The idea of the method is the following one: if θncor and λn are

sufficiently close to θ?cor and λ?, then a solution of a quadratic problem with equality constraints

also satisfies the sufficient conditions of a quadratic problem with inequality constraints. In
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the latter case, the Karush-Kuhn-Tucker conditions are given by{
∂θcorQ̃L2T (θncor) + ∂2θ2cor

Q̃L2T (θncor)m(θcor) + λn+1∂θcorφ(θncor) = 0,

φ(θncor) + ∂θcorφ(θncor)
′m(θcor) = 0.

(22)

We define mλ = λn+1 − λn. Then (22) can be stated as{
−∂θcorL(θncor, λ

n) = ∂2θ2cor
Q̃L2T (θncor)m(θcor) +mλ∂θcorφ(θncor),

−φ(θncor) = ∂θcorφ(θncor)
′m(θcor).

(23)

We minimize the Lagrangian function L. Hence the Karush-Kuhn-Tucker conditions are given

by Π(θcor, λ) = (∂θcorL(θcor, λ), φ(θcor))
′ = 0. To find the root of the latter equations, the

Newton-Raphson method requires the Jacobian

Jθcor,λ =

(
∂2θcorL(θcor, λ) ∂θcorφ(θcor)

∂θcorφ(θcor)
′ 0

)
.

Hence the numerical resolution is given as(
∂2θcorL(θcor, λ) ∂θcorφ(θcor)

∂θcorφ(θcor)
′ 0

)(
θn+1
cor − θncor
λn+1 − λn

)
= −

(
∂θcorL(θcor, λ)

φ(θcor)

)
. (24)

We assume that the Hessian of L is nonsingular and the Hessian of Q̃L2T is positive definite.

Since ∂2θcorQ̃L2T (θncor) = ∂2θcorL(θcor, λ), and using λn+1 = λn+mλ, we get ∂θcorφ(θncor)
′λn+1 =

∂θcorφ(θncor)
′(λn +mλ). The solutions can be rewritten as θn+1

cor = θncor −
(
∂2θcorQ̃L2T (θncor)

)−1
∂θcorL(θncor, λ

n+1),

λn+1 = λn +
(
∂θcorφ(θncor)

′∂2θcorQ̃L2T (θncor)∂θcorφ(θncor)
)−1 (

φ(θncor)− ∂θcorφ(θncor)
′∂2θcorQ̃L2T (θncor)∂θcorφ(θncor)

)
.

(25)

For computing the Hessian, we apply a Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,

where the update at each iteration is given by:

∂2θcorQ̃L2T (θn+1
cor ) = ∂2θcorQ̃L2T (θncor)+

xx′

x′m(θn+1
cor )
−
∂2θ2cor

Q̃L2T (θncor)m(θn+1
cor )m(θn+1

cor )′∂2θcorQ̃L2T (θncor)

m(θn+1
cor )′∂2θcorQ̃L2T (θncor)m(θn+1

cor )
,

where x = ∂θcorL(θn+1
cor , λ

n+1)− ∂θcorL(θncor, λ
n+1). This updating procedure corresponds to a

Quasi-Newton method. All the derivatives are computed thanks to finite differences.

The starting value θ0cor of the correlation parameters are randomly drawn in a feasible set

such that the inequality constraints are fulfilled. We choose ∂2θcorQ̃L2T (θ0cor) as the identity

matrix and, applying the first order condition to (19), the starting value for the lagrangian is

λ0 = −
(
∂θcorφ(θ0cor)

′∂θcorφ(θ0cor)
)−1

∂θcorφ(θ0cor)
′∂θcorQ̃L2T (θ0cor).

51



As for the inequality constraints contained in φ(θ), we set the same bound constraints given

by Engle and Sheppard (2001) for the DCC and Billio and Caporin (2006) for the diagonal

QFDCC. For DCC type specifications, these constraints should ensure stationary and definite

positive correlation matrix processes. When estimating the C-vine iterative process, we set

(ω, λ) ∈] − 0.999, 0.999[2 and ξ ∈]0, 0.999[, which ensure non explosive partial correlation

processes.

A.2.2 The vine-GARCH dynamics

Due to the high non-linearity of the vine-GARCH dynamics when estimated in one shot,

we propose to apply a stochastic algorithm, the simulated annealing (SA), to maximize

QL2T

(
θcor; θ̂vol, ε

)
= −

1

2

T∑
t=1

Υ
(
εt; θ̂vol, θcor

)
. To do so, we follow the method developed by

Kirkpatrick and al. (1983), which is described by Robert and Casella (1998). This method

consists of simulating the objective function from given values θcor. The key quantity is the

Boltzman-Gibbs transform of QL2T

(
θcor; θ̂vol, ε

)
. It is

Hn (θcor) ∝ exp
{
QL2T

(
θcor; θ̂vol, ε

)
/Tn

}
, (26)

where (Tn) is a positive decreasing sequence of so-called “temperatures”. As Tn → 0, according

to Theorem 5.2.7 in Robert and Casella (1998), the values that are simulated from (26)

concentrate in a neighborhood closer and closer to a local maximum of QL2T . But the SA is

able to escape from local minima by applying a Metropolis simulation. Following Metropolis

and al. (1953), we start from an initial point θ0cor, and, for every n = 0, 1, . . ., we simulate a

random variable from a symmetric uniform distribution [−1, 1] /100. We denote its value by

χn. Then the new value θn+1
cor is given by

θn+1
cor = θncor + χn with probability

p := exp
{(
QL2T

(
θncor + χ; θ̂vol, ε

)
−QL2T

(
θncor; θ̂vol, ε

))
/Tn

}
∧ 1,

θn+1
cor = θncor with probability 1− p.

Therefore, if the move from χn increasesQL2T , i.e. QL2T

(
θncor; θ̂vol, ε

)
≤ QL2T

(
θncor + χn; θ̂vol, ε

)
,

then the new value is accepted. If QL2T

(
θncor; θ̂vol, ε

)
≥ QL2T

(
θncor + χn; θ̂vol, ε

)
, the move

can be kept with the acceptance probability p. Otherwise, a new random variable is simulated

and then the acceptance test is run. This property enables the SA to escape from a local max-

imum with a probability which depends on the choice of the temperature Tn. The sequence

(θncor) is an inhomogeneous Markov chain, because the probability depends on n. By theorem

5.2.4 of Robert and Casella (1998), there is still convergence of the chain. We normalize χn

by 100 to explore a surface which is not too large, around the initial value of θcor. Hence we
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allow for moves through θncor + χn, which are not too wide. As for the choice of the sequence

Tn, we use a geometric rate, Tn = κnT0 with κ = 0.8 and T0 = 5.

A.2.3 Asymptotic variance covariance

We estimate the variances of the estimators V(θcor) in a robust way using the formula of

Engle and Sheppard (2001). Due to the two step estimation procedure, this involves a trickier

form than A−1T

(
θ̂i,vol

)
BT

(
θ̂i,vol

)
A−1T

(
θ̂i,vol

)
, the asymptotic variance-covariance matrix of

the univariate GARCH(1,1) processes. Recalling the asymptotic variance-covariance form of

(12), the inverse of A0 is(
A11 0

A12 A22

)−1
=

(
A−111 0

A−122 A12A
−1
11 A−122

)
.

This yields the variance covariance of θcor:

V̂ (θcor) = −A−122 A12A
−1
11 B11 +A−122 B12

(
−A−122 A12A

−1
11

)
−A−122 A12A

−1
11 B12A

−1
22 +A−122 B22A

−1
22 .

(27)

The latter quantities can be estimated as follows:

A11 #
1

T

T∑
t=1

∂2θvolθvol∆
(
εt; θ̂vol

)
,

A12 #
1

T

T∑
t=1

∂2θvolθcorΥ
(
εt; θ̂vol, θ̂cor

)
,

A22 #
1

T

T∑
t=1

∂2θcorθcorΥ
(
εt; θ̂vol, θ̂cor

)
,

B11 #
1

T

T∑
t=1

∂θvol∆
(
εt; θ̂vol

)′
∂θvol∆

(
εt; θ̂vol

)
,

B12 #
1

T

T∑
t=1

∂θvol∆
(
εt; θ̂vol

)′
∂θcorΥ

(
εt; θ̂vol, θ̂cor

)
,

B22 #
1

T

T∑
t=1

∂θcorΥ
(
εt; θ̂vol, θ̂cor

)′
∂θcorΥ

(
εt; θ̂vol, θ̂cor

)
.

B Vine selection

In this section, we provide the sequential method to select an underlying C-vine. We rely

on a sequential method that is a particular case of the general algorithm of Dissmann and

al (2012). Note that the latter paper proposed a general algorithm to select the best R-vine
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of a random vector. Here, the criteria will depend on the order of magnitude of empirical

Kendall’s tau and conditional Kendall’s tau.

1. For tree T1 and N1 = {1, · · · , N}, maximize the dependence criterion

p1 ← arg max
i

∑
j 6=i
|τ̂ij |,

where τ̂ij is the empirical Kendall’s tau between assets i and j. Then, p1 denotes the

index of the variable which maximizes this criterion. The latter variable will be the root

to build the edges on tree T1, which are the nodes on tree T2.

2. For j = 2, · · · , N − 2, Lj−1 = {p1, . . . , pj−1} and we maximize the dependence criterion:

pj ← arg max
k

∑
k,l 6∈Lj−1,k 6=l

|τ̂kl|Lj−1
|,

where τ̂kl|Lj−1
is the conditional Kendall’s tau between k and l, knowing Lj−1 (see below).

Then, we set Lj = Lj−1 ∪ {pj}.

At every stage, this sequential approach provides the variable which should enter into the

conditioning set for the next tree.

In the program above, the empirical conditional and unconditional Kendall’s tau have to

be computed. As usual, the unconditional Kendall’s tau is

τ̂ij =
4

T (T − 1)

T∑
t=1

T∑
t′=1

I{εi,t < εi,t′ , εj,t < εj,t′} − 1.

For the next trees, our approach requires the computation of conditional Kendall’s tau. To

do so, we use a nonparametric statistics proposed by Veraverbeke et al. (2011). Given a set

of indices L ⊂ {1, . . . , N}, the conditional Kendall’s tau of εi and εj given x = (xk, k ∈ L) is

τ̂ij|L(x) =
4

1−
T∑
t=1
w2
T,t(x,h)

T∑
t=1

T∑
t′=1

wT,t(x,h)wT,t′(x, hT )I{εi,t < εi,t′ , εj,t < εj,t′} − 1,

where wT,t(x, hT ) denotes the Nadaraya-Watson weights given by

wT,t(x,h) =
Kh (~εt − x)

T∑
t′=1

Kh (~εt′ − x)

, t = 1, · · · , T,
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with ~εt = (εk,t, k ∈ L) and Kh is a #L-variate kernel

Kh (~εt − x) =
∏
k∈L

1

hk
φ

(
εk,t − xk
hk

)
,

with φ the density of a standardized Gaussian r.v. The vectorial bandwidth h ∈ RN+ is chosen

with the usual rule-of-thumb hk = σ̂k/T
1/5, where σ̂k is the sample standard error of (εk,t)t,

k ∈ L. This conditional Kendall’s tau is a function of x. Therefore, we have to average over

all possible values of the conditioning vector, to measure the degree of dependence of i and j

knowing L. Here, this means we define τ̂kl|Lj−1
above as

τ̂kl|Lj−1
:=

1

M

M∑
m=1

τ̂kl|Lj−1
(xm),

where xm is randomly chosen in {(εk,m, k ∈ Lj−1) , m = 1, · · · , T} and the number of draws

is M = 500.

C Appendix: estimation results of the constrained

C-Vine dynamics for portfolio I and II

Table 12: C-Vine-GARCH Model estimated by QML for portfolio I: Germany (1), United-Kingdom
(2), Italy (3), France (4), Netherlands (5). The Bollersev-Wooldridge standard deviations are in
parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)

ω12 -0.0453 (0.0182) ξ12 0.9802 (0.0062) λ12 0.1451 (0.0369)

ω13 -0.0053 (0.0078) ξ13 0.9753 (0.0056) λ13 0.0791 (0.0176)

ω14 -0.0319 (0.0166) ξ14 0.9862 (0.0081) λ14 0.0949 (0.0372)

ω15 0077 (0.0047) ξ15 0.9715 (0.0143) λ15 0.0128 (0.0056)

ω23|1 0.0035 (0.0022) ξ23|1 0.9792 (0.0055) λ23|1 0.0086 (0.0105)

ω24|1 0.0154 (0.0087) ξ24|1 0.8399 (0.0844) λ24|1 0.0063 (0.0313)

ω25|1 0.0072 (0.0036) ξ25|1 0.9617 (0.0148) λ25|1 0.0090 (0.0114)

ω34|12 0.0066 ξ34|12 - λ34|12 -

ω35|12 0.0583 ξ35|12 - λ35|12 -

ω45|123 0.1166 ξ45|123 - λ45|123 -
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Table 13: Vine-GARCH Model estimated by QML for portfolio II: MSCI World (1), CAC 40 (2),
German Bonds (3), Nikkei (4), S&P 500 (5), UBS-Gold (6). The Bollersev-Wooldridge standard
deviations are in parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)

ω12 0.0017 (0.0432) ξ12 0.9738 (0.1016) λ12 0.0513 (0.0974)

ω13 0.0017 (0.0040) ξ13 0.9813 (0.0043) λ13 0.0398 (0.0081)

ω14 -0.0610 (0.0254) ξ14 0.9796 (0.0044) λ14 0.1841 (0.0409)

ω15 0.0082 (0.0047) ξ15 0.9679 (0.0124) λ15 0.0159 (0.0065)

ω16 0.0055 (0.0046) ξ16 0.9743 (0.0059) λ16 0.0399 (0.0065)

ω23|1 -0.0081 (0.0268) ξ23|1 0.9203 (0.2694) λ23|1 0.0008 (0.0349)

ω24|1 0.0324 (0.0992) ξ24|1 0.8722 (0.3983) λ24|1 0.0094 (0.0400)

ω25|1 0.0091 (0.0098) ξ25|1 0.9555 (0.0303) λ25|1 0.0050 (0.0160)

ω26|1 0.0089 (0.0318) ξ26|1 0.9675 (0.0832) λ26|1 0.0089 (0.0303)

ω34|12 0.0013 (0.0036) ξ34|12 0.9585 (0.1716) λ34|12 0.0109 (0.0095)

ω35|12 -0.0001 (0.0009) ξ35|12 0.9936 (0.0156) λ35|12 0.0060 (0.0090)

ω36|12 -0.0004 (00030) ξ36|12 0.9907 (0.0911) λ36|12 0.0057 (0.0279)

ω45|123 0.0311 ξ45|123 - λ45|123 -

ω46|123 0.2424 ξ46|123 - λ46|123 -

ω56|1234 0.7142 ξ56|1234 - λ56|1234 -
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D Appendix: Conditional correlation trajectories

D.1 Portfolio I

00 01 02 03 04 05 06 07 08 09 10 11 12 13

0.4

0.5

0.6

0.7

0.8

0.9

1
Germany and Italy

 

 

Rolling−Window

DCC

diagonal QFDCC

C−Vine

00 01 02 03 04 05 06 07 08 09 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1
Italy and France

 

 

Rolling−Window

DCC

diagonal QFDCC

C−Vine

57



00 01 02 03 04 05 06 07 08 09 10 11 12 13
0

0.2

0.4

0.6

0.8

1
United−Kingdom and France

 

 

Rolling−Window
DCC
diagonal QFDCC
C−Vine

00 01 02 03 04 05 06 07 08 09 10 11 12 13
0

0.2

0.4

0.6

0.8

1
France and Netherlands

 

 

Rolling−Window
DCC
diagonal QFDCC
C−Vine

58



D.2 Portfolio II
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