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Revisiting Identification in Structural VARMA Models
Abstract

The basic assumption of a structural VARMA model (SVARMA) is that
it is driven by a white noise whose components are uncorrelated (or inde-
pendent) and are interpreted as economic shocks, called ”structural” shocks.
These models have to face two kinds of identification problems. The first
identification problem is ”static” and is due to the fact that there is an in-
finite number of linear transformations of a given random vector making its
components uncorrelated. The second identification problem is ”dynamic”
and is a consequence of the fact that the SVARMA process may have a non
invertible AR and/or a MA matrix polynomial but, still, has the same second
order properties as a VARMA process in which both the AR and MA ma-
trix polynomials are invertible (the fundamental representation). Moreover
the standard Box-Jenkins approach automatically estimates the fundamen-
tal representation and, therefore, may lead to misspecified Impulse Response
Functions.

The aim of this paper is to explain that these difficulties are mainly due to
the Gaussian assumption underlying the BJ approach, and that both identi-
fication challenges are solved in a non Gaussian framework. We also develop
simple new parametric and semi-parametric estimation methods when there
is nonfundamentalness in either the moving-average, or the autoregressive
dynamics.

Keywords : Structural VAR, Fundamental Representation, Noncausal Pro-
cess, Shock, Impulse Response Function, Incomplete Maximum Likelihood,Pseudo-
Maximum Likelihood.
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1 Introduction

The basic assumption of a structural VARMA model (SVARMA) is that it is
driven by a white noise whose components are uncorrelated (or independent)
and are interpreted as economic shocks3, called ”structural” shocks. These
models have to face two kinds of identification problems.

First the components of the white noise appearing in the reduced form
VARMA are instantaneously correlated and the shock vector must be derived
from this white noise by a linear transformation eliminating these instanta-
neous correlations. The snag is that this can be done in an infinite number of
ways and there is a huge literature trying to solve this ”static” identification
problem by adding restrictions on the short run impact of a shock [see e.g.
Bernanke (1980), Sims (1986), Rubio-Ramirez, Waggoner, Zha (2010)], or on
the long run impact [see e.g. Blanchard, Quah (1989), Faust, Leeper (1997),
Erceg, Guerrieri, Gust (2005), Christiano, Eichenbaum, Vigfusson (2006)],
as well as on the sign of some impulse response functions [see e.g. Uhlig
(2005), Chari, Kehoe, McGrattan (2008), Mountford, Uhlig (2009)].

A second identification problem comes from the fact that the SVARMA
may feature a non-invertible autoregressive (AR) or, more often, a non-
invertible moving average (MA) matrix polynomial. This type of situation
may occur, for instance, when the SVARMA is deduced from business cycle
models [see e.g. Kydland, Prescott (1982), Francis, Ramey (2005), Gali,
Rabanal (2005)], or from log-linear approximations of Dynamic Stochas-
tic General Equilibrium (DSGE) models involving rational expectations [see
e.g. Hansen, Sargent (1991), Smet, Wouters (2003), Christiano, Eichenbaum,
Vigfussen (2007), Leeper, Walker, Yang (2013)]. Typically the matrix MA
polynomial is not invertible and the shock vector is not simply linearly linked
to the innovation of the process [see Lippi, Reichlin (1993) (1994)]. More-
over the SVARMA process has exactly the same second order properties as
another VARMA process which has an invertible MA part (the fundamental
representation) and, in the Gaussian case, both processes are observationally
equivalent. This creates an identification problem (a ”dynamic” identifica-
tion problem), which is exarcerbated by the fact that the standard Box-
Jenkins approach (i.e. the Gaussian Pseudo Maximum Likelihood method
based on a VAR approximation of the VARMA process obtained by inverting

3Our paper will not consider the debate about how structural are the parameters and
the shocks in SVARMA models [see e.g. Pesaran, Smith (2011) and the reference therein].
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the MA part) provides a consistent estimation of the fundamental represen-
tation and, therefore, may lead to misspecified Impulse Response Functions.

The aim of this paper is to explain that these difficulties are due to
the Gaussian assumption underlying the BJ approach, and that the identi-
fication issues are solved in a non Gaussian framework. We also introduce
simple estimation approaches when there is nonfundamentalness either in the
moving-average, or in the autoregressive dynamics.

In Section 2, we consider a vector autoregressive moving average process,
with roots of the autoregressive and/or moving average polynomials that are
not necessarily outside the unit circle. We focus on the two-sided moving av-
erage and autoregressive representations and on the fact that the economic
shocks are not necessarily interpretable in terms of causal innovations4. We
review the different types of nonfundamental representations in the moving
average dynamics given in the literature. We also explain that nonfundamen-
talness can arise in the autogressive dynamics, when rational expectations
are included in the model. In particular we show that there always exists an
infinite number of stationary solutions in a rational expectation model, if we
do not impose these solutions to have a finite variance. Next we discuss the
identification issue in the Gaussian case and explain why the standard BJ ap-
proach based on Gaussian pseudo-likelihood suffers from these identification
issues.

Section 3 is the core of the paper. We consider the case of non Gaus-
sian observable SVARMA processes, based on the recent literature on the
so-called noncausal processes [see e.g. Brockwell, Davis (1991), Rosenblatt
(2000) for an introduction]. We explain that all standard identification prob-
lems encountered in the SVARMA analysis disappear when the shocks are
not Gaussian. In Section 4 we suggest new estimation methods to improve
the standard SVAR methodology. We first consider a parametric SVARMA
with nonfundamental representation in the moving average dynamics only
and introduce new Incomplete Maximum Likelihood (IML) and Simulated
Pseudo Maximum Likelihood (SPML) approaches. Then we introduce a
semi-parametric approach based on instrumental variables to estimate a
SVARMA model with nonfundamental representation. Finally, we explain
how to simulate the path of a SVAR process with nonfundamental repre-
sentation, which is required to analyze the finite sample properties of the
parametric or semi-parametric estimators by bootstrap. Section 5 concludes.

4See Appendix 1 for precise definitions of the different notions of innovations.
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Some complements are gathered in appendices.

2 Dynamic Linear Model and Nonfundamen-

talness

2.1 The dynamic model

Despite the standard Vector Autoregressive (VAR) terminology, the linear
dynamic models deduced from structural models have in general both au-
toregressive and moving average dynamics. The VARMA model is the fol-
lowing :

Φ(L)Yt = Θ(L)εt, (2.1)

where Yt is the n-dimensional vector of observations at date t, εt is the m-
dimensional vector of shocks,

Φ(L) = Id− Φ1L− . . .− ΦpL
p,Θ(L) = Id−Θ1L− . . .−ΘqL

q, (2.2)

and the matrix autoregressive and moving average lag-polynomials are of
degree p and q, respectively. The underlying structural model can include
state variables, which are not necessarily observable. This explains why the
number of shocks m, corresponding to the number of state variables can be
larger than the number of observed variables Y , even if models considered in
practice5 are often such that n = m.

Let us now introduce the following assumptions on model (2.1) :

a.1 : Assumption on dimensions n = m.

Two other assumptions are also made :

a.2 : Assumption on shocks

i) The shocks εt are independently and identically distributed. They have
some moments : ∃s > 0, E(‖εt‖s) <∞.

5See e.g. Hansen, Sargent (1991), p83, Lippi, Reichlin (1994), Giannone, Reichlin
(2006), p457, Fernandez-Villaverde et al. (2007) Section C, for this assumption.
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ii) They can be written as εt = Cηt ⇔ ηt = C−1εt, where the components
of ηt are mutually independent. The components of ηt are the structural
shocks.

Assumption a.2 i) on the shocks is standard in the literature. For instance
for s = 2, the existence of second-order moments underlies the Box-Jenkins
methodology. We extend the set of possible shocks to allow for shocks with
infinite variance, or even no mean, in line with the financial literature. This
will also allow for considering stationary solutions of rational expectation
models containing explosive speculative bubbles (see Section 2.2). Assump-
tion a.2 ii) is needed for allowing separate shocks on the system when defining
the impulse response functions.

a.3 : Assumption of left coprimeness on the lag-polynomials

If Φ(L) and Θ(L) have a left common factor C(L), say, such that : Φ(L) =
C(L)Φ̃(L),Θ(L) = C(L)Θ̃(L), then detC(L) is independent of L.

This condition ensures that the VARMA representation is minimal in the
sense that all possible simplifications have been already done [see Hannan,
Deistler (1988) Chap 2 for more details] This condition will greatly simplify
the discussion in the next sections. It is often forgotten in structural settings
and it might be necessary to test for the minimality of the representation.
This is clearly out of the scope of this paper.6

a.4 : Assumption on the observable process
The process (Yt) is strongly stationary.

The existence of a stationary solution to system (2.1)-(2.2) is ensured
under the next assumption.

a.5 : Assumption on the dynamics
All the roots of det Φ(L) have a modulus different from 1.

Under Assumptions a.1 - a.5, linear dynamic system (2.1)-(2.2) has a
unique strictly stationary solution, such that E‖Yt‖s) < ∞ [see e.g. the

6See however Deistler, Schrader (1979) for a study of identifiability without coprime-
ness, and Gourieroux, Monfort, Renault (1989) for the test of coprimeness, i.e. common
roots, for one-dimensional ARMA processes.
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discussion in Gourieroux, Zakoian (2014) a,b].
When all the roots of det Φ(z) lie outside the unit circle, it is easy to

derive the inverse of the polynomial operator Φ(L) as a convergent one-sided
series in the lag operator L :

Φ(L)Yt = Θ(L)εt

⇐⇒ Yt = Φ(L)−1Θ(L)εt ≡
∞∑
j=0

AjL
jεt =

∞∑
j=0

Ajεt−j. (2.3)

Similarly when all the roots of det Θ(z) lie outside the unit circle, Yt has
a one-sided autoregressive representation :

Θ−1(L)Φ(L)Yt ≡
∞∑
j=0

BjL
jYt = εt.

From the macroeconomic literature we know that SVARMA models do
not always have roots of the autoregressive or moving average located outside
the unit circle (see Section 2.2). In that case, it is still possible to invert
the autoregressive polynomial operator to get a two-sided moving average
representation as the stationary solution :

Yt =
+∞∑
j=−∞

Ajεt−j. (2.4)

Similarly if det Θ(z) has no roots on the unit circle we get a two-sided
autoregressive representation :

∞∑
j=−∞

BjYt−j = εt.

Example : The approximation of a DSGE model is often presented in a state
space form including the dynamics of both the observable and state variables.
For instance a typical specification is [see e.g. Fernandez-Villaverde et al.
(2007)] : 

Xt = AXt−1 +Bεt,

Yt = CXt−1 +Dεt,
(2.5)
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where Xt, Yt denote the values of the state and observable variables, respec-
tively, and D is assumed invertible. It is easy to derive a VARMA represen-
tation of Yt from (2.5). We have :(

Id−
(
A 0
C 0

)
L

)(
Xt

Yt

)
=

(
B
D

)
εt,

or equivalently :

detψ(L)

(
Xt

Yt

)
= ψ∗(L)

(
B
D

)
εt,

where ψ∗(L) is the adjoint matrix of ψ(L) = Id−
(
A 0
C 0

)
L. From which

we deduce :

detψ(L)Yt = (ψ∗21(L)B + ψ∗22(L)D) εt.

We get a VARMA representation of the process of observable values. In
such a state space representation, we might have ex-ante roots of detψ(z)
inside the unit circle, i.e. ”ill located”. However some difficulties can also
arise if these roots are all well-located. Indeed, passing from the VAR state
space form for (Xt, Yt) to the VARMA specification for Yt alone, we might
exhibit ill-located roots in the MA component whereas all roots of the AR
component are well-located 7 (see the discussion in Section 2.2).

Let us study the consequences of ill-located roots of det Θ(z). For expos-
itory purpose, we consider a one-dimensional ARMA (1,1) process :

(1− ϕL)yt = (1− θL)εt, (2.6)

where |ϕ| < 1 and |θ| > 1. Thus the root of det Θ(z) is inside the unit circle.
To get the (infinite) pure autoregressive representation of process yt, we have
to invert (1− θL). We get :

(1− ϕL)yt = (1− 1

θ
L−1)(−θLεt)

⇔ (1− 1

θ
L−1)−1(1− ϕL)yt = −θLεt. (2.7)

7Note however that this VARMA representation is not necessarily minimal, i.e. satis-
fying the left coprimeness assumption.
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This formula reveals that :

i) the process has a two-sided autoregressive representation;

ii) the error appropriate for a mathematical analysis of the dynamics is
rather the time shifted process ε̃t = −θLεt = −θεt−1 [see e.g. Lanne,
Saikkonen (2013), Gourieroux, Jasiak (2014)], than εt itself. Equation
(2.6) becomes :

yt − ϕyt−1 = −1

θ
ε̃t+1 + ε̃t, with a future value of process ε̃ on the right

hand side.

iii) The error term εt is not the ”causal innovation” of process yt (see ap-
pendix 1), i.e.

εt 6= yt − E[yt|yt−1, yt−2, . . .], if this conditional expectation exists.

To summarize, under assumption a.3, the error term in the VARMA rep-
resentation is equal to the causal innovation of the process if the roots of
det Φ(z) and det Θ(z) are all outside the unit circle. Under this condition,
we say that process Yt has a fundamental VARMA representation [see e.g.
Hansen, Sargent (1980), p18, (1991), p79, and Lippi, Reichlin (1994) for the
introduction of this terminology in the macroeconometric literature].8 Oth-
erwise, εt is not equal to the causal innovation and future values are involved
in either the pure moving average, or the pure autoregressive representation
of the process. It is a nonfundamental VARMA representation. As noted
in Lanne, Saikkonen (2011) ”nonfundamental solutions have typically been
represented by noninvertible moving average models. However, noncausal
autoregressive and noninvertible moving average models closely approximate
each other”.9 Thus the nonfundamentalness has to be considered in a more
symmetric way in both the AR and MA polynomials defining the dynamics.

The macroeconometric specific terminology fundamental vs nonfunda-
mental representation must be related to other standard time series termi-
nologies. In time series a (linear) process is causal (resp. invertible), if it

8The term ”fundamental” is likely due to Kolmogorov and appears in Rozanov (1960),
p367, (1967), p56, to define the ”fundamental process”, that is the second-order white
noise process involved in the Wold decomposition of a weak stationary process. At any
date t, the information contained in the current and past values of the fundamental process
coincides with the information contained in the current and past values of the observations.

9Indeed, when |θ| > 1, the truncated version of [1 − 1/θL−1]−1 is 1 + 1/θL−1 + . . . +
(1/θ)pL−p with also all roots in L inside the unit circle, with the same modulus 1/|θ|.
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admits a one-sided moving average representation (resp. a one-sided autore-
gressive representation). For a VARMA model with n = m, satisfying the left
coprimeness assumption, the process is causal (resp. invertible) if det Φ(z)
(resp. det Θ(z)) has all its roots outside the unit circle. Thus the VARMA
representation is fundamental if it is both causal and invertible. 10

2.2 Nonfundamentalness

There exist different sources of nonfundamentalness in SVAR models [see the
discussion in Alessi, Barigozzi, Capasso (2011)].

i) Some are due to the dynamics of exogenous variables in the system. A
well-known example appears in the comment of the Blanchard, Quah model
[Blanchard, Quah (1989)] by Lippi, Reichlin (1993). The productivity, xt,
can be written as :

xt = ut + θut−1,

where ut denotes the shock on productivity. It may be realistic to assume
that the impact of the shock is not instantaneous and is maximal with a lag,
i.e. that θ > 1. This is the learning-by-doing hypothesis.

ii) As mentioned in Section 2.1., nonfundamentalness can also arise from a
lack of observability. Fernandez-Villaverde et al. (2007) give the example of a
state space representation of the surplus in a permanent income consumption
model [see Lof (2013), Section 3, for another example]. The state space model
is of the following type :

xt = axt−1 + (1− 1/R)wt, 0 < a < 1,

yt = −xt−1 + 1/Rwt,

where xt (resp. yt) denotes the consumption (resp. the surplus), R > 1 a
constant gross interest rate on financial assets, and wt+1 is an i.i.d. labor
income process. From the first equation, we deduce :

10The terminology fundamental can be misleading, in particular since fundamental shock
and structural shock are considered as equivalent notions (see e.g. the description of the
scientific works of Nobel prizes Sargent and Sims in Economic Sciences Prize Committee
(2011), or Evans, Marshall (2005)). Moreover a fundamental shock is also defined as the
non bubble component of a structural shock, i.e. the component with a permanent effect
on the economy in Velinov, Chen (2013).
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xt =
(1− 1/R)

1− aL
wt,

and by substituting in the second equation, we get the dynamics of yt :

yt = [1/R− L(1− 1/R)

1− aL
]wt =

1/R + L(
1− a
R
− 1)

1− aL
wt.

Thus the root of the moving-average lag-polynomial is equal to [R− (1−
a)]−1, and smaller than one when a is sufficiently close to one. 11

iii) Other sources of nonfundamentalness are the rational expectations
introduced in such models. The simple example of Hansen, Sargent (1991)
shows that rational expectation can create nonfundamental moving average
dynamics. If the economic variable yt, is defined as :

yt = Et(
∞∑
h=0

βhwt+h), with wt = ut − θut−1, 0 < β < 1, |θ| < 1.

and if the information set available at date t is It = (ut, ut−1, . . .), we get :

yt = (1− βθ)ut − θut−1.

The root of the moving average polynomial is (1− βθ)/θ. This root can
be larger or smaller than 1, depending on the values of β and θ.

iv) Nonfundamentalness may also occur when the economic agent and
econometrician information sets are not aligned. The literature on informa-
tion flows applied, for instance, to fiscal foresight or productivity belongs to
this category [see e.g. Feve, Matheron, Sahuc (2009), Feve, Jihoud (2010),
Forni, Gambetti (2010), Leeper, Walker, Yang (2013)]. A stylized model is
[see Feve, Matheron, Sahuc (2009)] :

yt = aEtyt+1 + xt,

xt = εt−q,

11This reasoning does not hold for a = 1, which was precisely the case considered
in Fernandez-Villaverde et al. (2007), where xt and yt are nonstationary co-integrated
processes. Indeed their equation (5) assumes the stationarity of the y process and is not
compatible with the assumption of cointegrated model.
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where εt is a white noise.
If |a| < 1 the forward solution is easily seen to be :

yt =

q∑
i=0

aq−iεt−i. (2.8)

The roots of Θ(L) = aq
q∑
i=0

a−iLi = aq
1− (a−1L)q+1

1− a−1L
are a exp(2ikπ/(q+

1)), k = 1, . . . , q, whose modulus is |a| < 1. Therefore Θ(L) is noninvertible
and the MA is nonfundamental.

v) When the variable of interest can be interpreted as a prediction er-
ror, nonfundamental representation may also appear [see Hansen, Hodrick
(1980)]. For instance if yt is the price of an asset at t, Et−2yt can be inter-
preted as the futures price at t− 2 (if the agents are risk-neutral) and, also,
the forward price (if, moreover, the interest rates are exogenous). The spread
between the spot price and the futures price is st = yt − Et−2yt and if yt is,
for instance, an invertible MA(2) process yt = εt + θ1εt−1 + θ2εt−2 = Θ(L)εt
we get st = εt + θ1εt−1 = Θ1(L)εt which is not necessarily invertible. For
example if Θ(L) = (1− θL)2 with |θ| < 1, we have Θ1(L) = 1− 2θL, which

is not invertible as soon as |θ| > 1

2
.

vi) The presence of rational expectations can also imply ill-located roots
in the autoregressive dynamics. Let us consider again the univariate linear
expectation model for prices à la Taylor (1977), Diba, Grossmann (1988) :

yt = aEt(yt+1) + zt, a > 0, (2.9)

where zt is an exogenous variable.
Since the equilibrium equation is obtained by matching the demand and

supply, the information set as well as the endogenous and exogenous variables
yt, zt depend on the structural shocks to the demand and supply. Therefore
there are two underlying shocks εt and wt, say. Let us assume that these
shocks are independent and square integrable. For expository purpose we
assume that zt = εt is a strong white noise. It is well known that the set of
square integrable stationary equilibrium prices depends on coefficient a [see
e.g. Blanchard (1978), Gourieroux, Laffont, Monfort (1982)]. If a < 1, there
is a unique solution y0

t = εt. If a > 1, there is an infinite number of solutions
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obtained by considering the convex combinations of the forward solution y0
t

and of the perfect foresight or backward solution :

y1
t = ay1

t+1 + εt ⇐⇒ y1
t =

L

L− a
εt.

In fact this dynamic rational expectation model has many more
stationary solutions, if we do not restrict the equilibrium price
to be square integrable. In order to reveal other solutions, let us first
recall the properties of the noncausal stable AR(1) process [see Gourieroux,
Zakoian (2014), a].

A noncausal stable AR(1) process is a strongly stationary process satis-
fying the noncausal autoregression :

y∗t = ρy∗t+1 + ε∗t , |ρ| < 1, (2.10)

where the ε∗t are i.i.d. variables with a stable distribution with stability
index s, 0 < s < 1. This process is also a Markov process in calendar time
and admits a nonlinear autoregressive representation [see e.g. Rosenblatt
(2000)] :

y∗t = g(y∗t−1, ηt; s, ρ), (2.11)

where ηt is a strong Gaussian white noise.

Due to the fat tails of ε∗t , the process y∗t admits neither first, nor second-
order unconditional finite moments, nor first and second-order moments con-
ditional to the future. Nevertheless, it is shown in Gourieroux, Zakoian
(2014)a that this process has a first-order conditional moment given the past
and that this conditional expectation is given by :

E(y∗t+1|y∗t ) = |ρ|(s−1)y∗t , (2.12)

where the autoregressive coefficient |ρ|(s−1) is larger than 1.

Let us now consider again rational expectation model (2.9), assume that
the additional shock wt is standard Gaussian and consider the noncausal
stable AR(1) process defined by :
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y∗t (s, ρ) = g[y∗t−1(s, ρ), wt; s, ρ] (2.13)

⇔ y∗t (s, ρ) = ρy∗t+1(s, ρ) + ε∗t (s, ρ). (2.14)

We see that the process :

yt(s, ρ) = y∗t (s, ρ) + εt, (2.15)

is a solution to dynamic rational expectation model (2.9), whenever

|ρ| = a1/(1−s), (2.16)

since

Et(yt+1) = Ety
∗
t+1

= |ρ|s−1y∗t =
1

a
y∗t

and y∗t = aEtyt+1.

This implies that, even in the case a < 1, the RE model (2.9) has an
infinite number of stationary solutions. Indeed, the stability index s can
be chosen arbitrarily and by taking linear combinations, we find that any
process of the type :

yt = Σsλ(s)y∗t [s, a
1/(1−s)] + εt,

is a stationary solution 12, since Etyt+1 =
1

a
Σsλ(s)y∗t [s, a

1|(1−s)].

Equation (2.15) implies :

yt(s, ρ) =
ε∗t (s, ρ)

1− ρL−1
+ εt

⇔ (L− ρ)yt(s, ρ) = Lε∗t (s, ρ) + (L− ρ)εt. (2.17)

12It is usual to select the forward solution as if it were the unique solution of the rational
expectation model in the case a < 1. This practice neglects all stationary solutions with
speculative bubbles [see e.g. Pesaran, Smith (2011), p7, Leeper et al. (2013), eq. (4) and
eq. (17) for recent examples of this practice].
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and the ARMA representation of (yt, zt) with zt = εt, that is the system :
(L− ρ)yt(s, ρ)− (L− ρ) zt = Lε∗t (s, ρ),

zt = εt,

is such that one root of the autoregressive polynomial is inside the unit circle.
Such solutions are interesting since y∗t (s, ρ) is a stationary speculative bubble
component [see Gourieroux, Zakoian (2014) a].

Finally the standard Box-Jenkins approach applied to the bivariate se-
ries [yt(s, ρ), zt] is unable to find the underlying shocks ε∗t (s, ρ). First the
BJ method assumes the square integrability of yt(s, ρ) whereas this process
has no mean. Second the BJ approach is a linear approach, which cannot
accomodate the nonlinear innovation wt in (2.13). However, as seen in Sec-
tion 3, if both process yt and zt are observable, it is possible to identify the
errors (εt, ε

∗
t (s, ρ)) of the nonfundamental VARMA representation of yt, and

by using the link between the causal and noncausal representations of yt to
recover the economic shocks (εt, wt). Thus, contrary to a common belief [see
e.g. Lanne, Saikkonen (2011), p1], ”the presence of noncausality ”(does not)”
necessarily indicate that the agents are able to forecast a part of the future
values of the economic variable in question by information unknown to the
econometrician”. Indeed we have to focus on economic shocks (εt, wt), and
the shocks [ε∗t (s, ρ), εt], are just convenient for estimation purpose. In partic-
ular the impulse response functions 13 have to be derived by applying shocks
to (εt, wt), and not to nonfundamental forecast errors [ε∗t (s, ρ), εt]. The mul-
tipliers are not derived from the nonfundamental VARMA representation,
but from the associated nonlinear causal autoregressive representation [see
Koop, Pesaran, Potter (1996), Gourieroux, Jasiak (2005), for the definition
of impulse response functions in a general framework].

2.3 The limits of the Gaussian approach

The Box-Jenkins methodology is based on the assumption of Gaussian errors.
Let us first discuss the identification issue for a Gaussian VAR, say, with
n = m. The results are similar for a Gaussian VARMA. The observable
process satisfies the autogressive dynamics :

13The impulse response analysis describes how structural shocks propagate through the
macroeconomy.
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Φ(L)Yt = Cηt, ηt ∼ IIN(0, Id), (2.18)

where Φ(L) = Id − Φ1L . . . − ΦpL
p. The joint distribution of the process

depends on parameters C,Φ1, . . . ,Φp through the first and second-order mo-
ments of the process, or equivalently through the matrix spectral density :

f(w) =
1

2π
Φ(exp iw)CC ′Φ(exp(−iw))′. (2.19)

Several pairs Φ(L), C yield the same spectral density, and, therefore, ob-
servationally equivalent Gaussian processes, leading to two different identifi-
cation issues :

i) CC ′ can be identified, but not C itself.

ii) The different polynomials in Φ(L) are deduced from the fundamental
solution (i.e. such that the roots of det Φ(z) are outside the unit circle) by
an appropriate use of Blaschke matrices [see e.g., Hansen, Sargent (1981),
Lippi, Reichlin (1994)].

Box-Jenkins approach consists in estimating parameters Ω = CC ′,Φ1, . . . ,Φp

by maximizing the Gaussian log-likelihood (if ηt is Gaussian), or the pseudo
log-likelihood (if ηt is non-Gaussian) :

(Φ̂, Ω̂) = arg max
Φ,Ω

T∑
t=1

{−n
2

log 2π − 1

2
log det Ω− [Φ(L)Yt]

′Ω−1[Φ(L)Yt)]

2
}.

(2.20)
In other words Φ̂ is obtained from the O.L.S. estimators equation by

equation, and Ω̂ is the empirical variance-covariance matrix of the residuals.

These (pseudo) maximum likelihood estimators converge when T tends to
infinity, and the estimated autoregressive polynomial Φ̂(L) converges to the
fundamental solution 14 associated with Φ(L) (i.e. by inverting in an appro-
priate way the ill-located roots through Blaschke matrices and orthonormal
transformations 15). Therefore, it is not consistent whenever the true VAR

14This result is well-known, if the errors have finite variance. It is also valid for errors
with fat tails [see Davis, Resnick (1986)].

15A Blaschke matrix is a square matrix of the lag operator B(L) such that [B(L)]−1 =
B∗(L−1) where B∗(.) is obtained from B(.) by transposing and taking conjugate coeffi-
cients.
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defined in (2.18) features nonfundamentalness.
To adjust for this lack of consistency, it is proposed in the literature to

deduce all the remaining solutions by applying the Blaschke matrices 16 [see
Lippi, Reichlin (1991)].

3 The identification issues in the non Gaus-

sian SVARMA

Let us consider the VARMA model,

Φ(L)Yt = Θ(L)Cηt, (3.1)

where : Φ(L) = Id−Φ1L− . . .−ΦpL
p,Θ(L) = Id−Θ1L− . . .−ΘqL

q, (3.2)

and the components η1t, . . . , ηn,t of the error term are independent (and also
serially independent by Assumption a.2).

This additional cross-sectional independence assumption is needed for im-
pulse response analysis. Let us for instance assume that η1t has an economic
interpretation, such as a technological shock. To ensure that a change in η1t

captures only the effect of this shock, it is necessary to eliminate any link
between η1t and the other components, i.e. to assume their independence.

In this respect we follow the structural VARMA literature by assuming
that all structural shocks are serially and mutually orthogonal. But we em-
phasize that the appropriate notion of ”orthogonality” is independence. In-
deed the absence of correlation usually considered in the SVARMA literature
is not sufficient for deriving the impulse response function and its confidence
intervals. It is also insufficient for comparing the impulse response functions
deduced from a nonlinear DSGE and from its SVARMA approximation, or for
applying Bayesian techniques à la Sims-Litterman. Distributional assump-
tions are required. 17 We point out below that both identification challenges

16See Leeper et al. (2013), p1123-1124 for a practical example of the use of Blaschke
matrices.

17For all these problems, the shocks are usually implicitly assumed Gaussian, but the
Gaussian hypothesis is never tested in practice. This assumption is even explicit in some
papers [see e.g. Forni et alii (2013)].
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are solved when the errors are independent, with at most one Gaussian error.
We discuss first the static case, then the dynamic case.

3.1 How to orthogonalize the shocks

Let us first consider a static framework. When the noise is Gaussian
ηt ∼ N(0, Id), we cannot identify C and ηt given the knowledge of Cηt.
Indeed we have :

Cηt = C∗η∗t ,with η∗t ∼ N(0, Id),

as soon as :

C∗ = CQ and η∗t = Q′ηt,

where Q is an orthogonal matrix : QQ′ = Id.
Thus, in a Gaussian framework, there are several ways of selecting the

η′s and thus of ”orthogonalizing” the shocks. These different possibilities
underlie the recursive identification scheme proposed by Sims (1980), (1989).
18 Additional structural short run restrictions [see e.g. Bernanke (1980), Sims
(1986), Rubio-Ramirez, Waggoner, Zha (2010)], and long run restrictions
19 are sometimes introduced in the applied literature to reduce the set of
possibilities [see e.g. Blanchard, Quah (1989), Faust, Leeper (1997), Erceg,
Guerrieri, Gust (2005), Christiano, Eichenbaum, Vigfusson (2007)], as well as
sign restrictions [Uhlig (2005), Chari, Kehoe, McGrattan (2008), Mountford,
Uhlig (2009)].20

On the contrary, there is no identification problem in a non Gaussian
framework as shown in the following Proposition [see Comon (1994), Theo-
rem 11 for square integrable variable, Eriksson, Koivunen (2004), Theorem
3 ii) and the references therein, for variables with fat tails] :

Proposition 1 : Let us consider two vectors ηt, η
∗
t of the same size n, with in-

dependent components, with continuous distributions and satisfying a linear

18See also Klein (2000).
19Typically permanent shocks to output are associated with technology shocks.
20An alternative consists in leaving the linear dynamic framework by considering Markov

Switching SVAR [see Lanne et al. (2010), Lutkepohl (2013), Herwatz, Lutkepohl (2014),
Velinov, Chen (2013)]. This extended framework allows to test the identification restric-
tions. In this note we will stay in a pure SVARMA framework.
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relationship : η∗t = Mηt, where M is invertible. Then, these components are
such that η∗i,t = σiηπ(i),t, i = 1, . . . , n, where π is a permutation of {1, . . . , n},
whenever at most one component is Gaussian.

The proof is a direct consequence of the Darmois, Skitovich characteriza-
tion of the multivariate normal distribution [see Darmois (1953), Skitovich
(1953), Ghurye, Olkin (1961), Theorem p 533, Kagan, Linnik, Rao (1973),
Th 10.3.1]. This identification result underlies independent component anal-
ysis (ICA), which is the analogue of the principal component analysis (PCA)
when components are required to be independent rather than being sim-
ply uncorrelated [see e.g. Hyvarinen, Karhunen, Oja (2001)]. In practice
consistent estimators of matrix C are obtained by considering cross-moment
conditions, or tail properties.

An important consequence of Proposition 1 is the following : Let us con-
sider the error terms εt = Cηt in the VARMA model (3.1), with independent
components for the ηt, at most one Gaussian component and a lower trian-
gular matrix T (not diagonal). Then the components of Tηt cannot be mu-
tually independent except in a very special case. Indeed the random vectors
η∗t = Tηt and ηt satisfy a one-to-one linear relationship η∗t = TCηt. Thus by
Proposition 1, we deduce that : TC = ∧P , where ∧ is a diagonal matrix and
P a permutation matrix. Thus matrix C must be the product of a triangular
matrix by a permutation matrix, which is a very specific situation. This
implies that, in a non-Gaussian framework, the recursive scheme
proposed by Sims can be used to find uncorrelated components,
but not, in general, independent components.

3.2 Identification of the relevant nonfundamental rep-
resentation

We have seen in Section 3.1 above that, in a non-Gaussian framework, there
is no real identification problem for the ”static” part of the SVARMA model.
What can be said about the identification of its dynamic part? The question
concerns the uniqueness of the two-sided moving average representation :

Yt =
+∞∑
j=−∞

Ajηt−j, with
+∞∑
j=.∞

||Aj|| <∞, (3.3)
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where the components of ηt are mutually independent. The following result
(Chan, Ho, Tong (2006), Theorem 1) extends the Darmois, Skitovich result
to Gaussian processes 21 and is valid under the assumption of nondegenerate
transfer function :

Assumption a.6 : The determinant of the transfer function

Ã(w) =
+∞∑
j=−∞

A(j) exp(−ijw) is not zero almost everywhere on the inter-

val (−π, π).

This assumption is introduced to avoid linear dependence between the
columns of matrix polynomial A(L). If, for instance yt = A(L)η1t+A2(L)η2t,
say, with A2(L) = λA1(L), we can write yt = A1(L)(η1t + λη2t), and replace
the bidimensional noise (η1t, η2t) by the one dimensional noise η1t + λη2t.

Proposition 2 : Under Assumption a.6 of nongedenerate transfer function,
let us consider two moving average representations of a non Gaussian process
(Yt) :

Yt =
+∞∑
j=−∞

Ajηt−j =
+∞∑
j=−∞

A∗jη
∗
t−j, ∀t.

Then

η∗i,t−m(i) = σiηπ(i),t, Aπ(i),j−m(i) = A∗i,jσi,

where ηi,t is the ith-component of ηt and Ai,j the ith-column of Aj,
for some scalars σi, integers m(i) and permutation π of the set {1, 2, . . . ,m},
if one of the two following conditions is satisfied :
Condition C1 : the components of ηt are identically distributed.
Condition C2 : each component of ηt has a nonzero rth cumulant, with r ≥ 3,
and a finite moment of order s where s is an even integer greater than22 r.

Thus, the two-sided moving average representation is unique up to a
permutation, a change of scale and a time shift, possibly depending on the
component.

21See Findley (1986), Cheng (1992) for the one-dimensional case n = m = 1.
22Note that condition C2 implies that all the components of ηt are not Gaussian.
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To understand how Proposition 2 solves the identification issue, let us
consider a bivariate MA(1) model :

y1t = η1t − θ1,1η1,t−1 − θ1,2η2,t−1,

y2t = η2t − θ2,1η1,t−1 − θ2,2η2,t−1.

where η1,t, η2,t, t varying, are identically distributed and non-Gaussian. Then
the other moving average representations with i.i.d. components of the error
terms are either of the type :

y1t = η1,t−m(1) − θ1,1η1,t−1−m(1) − θ1,2η2,t−1−m(2),

y2t = η2,t−m(2) − θ2,1η1,t−1−m(1) − θ2,2η2,t−1−m(2),

or of the type :
y1t = η2,t−m(2) − θ1,1η2,t−1−m(2) − θ1,2η1,t−1−m(1),

y2t = η1,t−m(1) − θ2,1η2,t−1−m(2) − θ1,2η2,t−1−m(2).

Thus they differ only by a redenomination of the errors.
A similar identification result has been recently derived when the compo-

nents of ηt have fat tails [see Gourieroux, Zakoian (2014)b], and is applicable
for rational expectation models with non square integrable solutions [see Sec-
tion 2.3 iii)].23

Proposition 2 has far reaching consequences. In particular if a non-
Gaussian stationary process has a VARMA representation with
serially independent errors, this representation is unique and all the
second order equivalent representations have serially uncorrelated,
but not independent, errors.

Proposition 2 also implies that there exist better estimation methods
than the Gaussian pseudo maximum likelihood used in the BJ methodology

23Note that the identification result in Chen, Choi, Escanciano (2012), Theorem 1, is
much less powerful. This result provides conditions to check if the fundamental representa-
tion is the right one, but cannot be used to find the correct nonfundamental representation,
otherwise.
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(see Section 4). These alternative methods will provide consistent estima-
tors of the true two-sided moving average polynomial A(L) [or equivalently
the true nonfundamental Φ(L),Θ(L) in the VARMA representation]. They
also provide consistent nonparametric estimators of the distribution of the
components of the error term.

When the distribution of the error term is parametrically specified, max-
imum likelihood approaches 24 and appropriate Bayesian approaches can be
used, even with ill-located roots [see e.g. Andrews, Breidt, Davis (2006),
Lanne, Saikkonen (2013), Davis, Song (2012), Gourieroux, Jasiak (2014) for
ML, Lanne, Luoma, Luoto (2012) for Bayesian approach] [and Appendix 2
for the main steps of the ML and Bayesian procedures]. However, these
approaches require to compute the likelihood functions in each regime of
ill-located roots.25

4 No need of Blaschke matrices for statistical

inference

We have noted in Section 3 and Appendix 2 the difficulty in implementing
maximum likelihood or Bayesian approaches, for possible nonfundamental
SVARMA models. Indeed the (approximated) log-likelihood has different
expressions according to the location of the roots of the autoregressive or
moving average polynomials (see also the discussion in Appendix 3 i)).

In this section we introduce new parametric and semi-parametric con-
sistent estimation methods which circumvent the use of Blaschke matrices.
We try to get simple estimation methods by avoiding nonlinear optimiza-
tions with respect to a large number of parameters. This explains why we

24Called approximate maximum likelihood (AML) in the literature on noncausal time
series.

25The need for distinguishing the different regimes is not specific to linear dynamic
models, but also arises in nonlinear autoregressive models, say, whenever the process of
interest is assumed strictly stationary. As an illustration let us consider a one dimensional
autoregressive model : yt = a(yt−1, εt), say, where a is invertible with respect to yt−1. So
we can also write yt−1 = b(yt, εt), with b = a−1. By recursive substitution we can write
yt function of εt, εt−1, εt, yt−k−1, or yt function of εt+1, . . . , εt+h, yt+h. By considering a
large value of h, only one of the two nonlinear moving-average representations of yt will
exist. Thus the backward or forward expressions of the stationary solution (Yt) depends
on the stability properties of function a and b = a−1.
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focus on multistep approaches and use when possible instrumental variable
approaches. The cost of simplicity is a reasonable loss of efficiency.

We first consider the parametric framework of a SVARMA model with
nonfundamentalness in the moving average dynamics only and introduce a
two-step Incomplete Maximum Likelihood (IML) approach. Then we explain
how to estimate semi-parametrically a SVAR nonfundamental representation
by an appropriate instrumental variable (IV) approach. Since in macroeco-
nomic applications the number of observations is not very large, it is prefer-
able to measure the accuracy of the estimators by bootstrap, not by using
the theoretical formulas of asymptotic variance-covariance matrices derived
from the econometric literature. For this purpose we explain how to simulate
the path of a mixed causal/noncausal autoregressive process.

4.1 How to simplify parametric inference for nonfun-
damentalness in the moving average dynamics.

The likelihood function of a SVARMA with possible ill-located roots has a
complicated expression with several regimes of roots to be taken into account
via Blaschke transformations (see Appendix 2). In fact parametric estimation
can be greatly simplified if nonfundamentalness concerns the moving-average
dynamics only, as it is often the case in structural macromodels. To introduce
the estimation approach, we first discuss the case of a one-dimensional MA(1)
process before considering the general framework of a VARMA process.

4.1.1 The one-dimensional MA(1) process

Let us consider a one-dimensional MA(1) process :

yt = εt − θεt−1, (4.1)

where the ε′ts are independent.
Suppose that we observe y1, . . . , yT . If the common distribution of the

ε′ts is N(0, σ2), the model is not identifiable. Indeed the distribution of
(y1, . . . , yT ) is multivariate normal, with zero mean and a variance-covariance
matrix defined by V (yt) = σ2(1+θ2), cov(yt, yt−1) = −σ2θ, and cov(yt, yt−h) =

0,∀h ≥ 2. Obviously the two sets of parameters (θ, σ2) and (
1

θ
, σ2θ2) give the

same distribution.
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If εt is not Gaussian, Proposition 2 shows that the model is identifiable26.
Let us denote by g(ε; γ) the common p.d.f. of the ε′ts, where γ is an unknown
parameter.

i) When |θ[< 1, we can invert equation (4.1) in the standard way in order
to get εt as a function of current and lagged values of process Y as :

εt =
∞∑
h=0

θhyt−h. (4.2)

Then the log-likelihood function is approximated by :

La1(θ, γ) =
T∑
t=1

log g(
t−1∑
h=0

θhyt−h; γ), (4.3)

where the infinite sums are truncated to be compatible with the observed
y1, . . . , yT .

ii) When |θ| > 1, equation (4.1) can still be inverted, but in reversed
time. We get :

yt = εt − θεt−1

⇔ −yt+1

θ
= εt −

1

θ
εt+1

⇔ εt = −
∞∑
h=0

1

θh+1
yt+h+1.

(4.4)

The log-likelihood function is approximated by :

La2(θ, γ) =
T∑
t=1

log

{
1

|θ|
g(−

T−t−1∑
h=0

1

θh+1
yt+h+1; γ)

}
, (4.5)

where the sums are now truncated to account for the most recent observation
and factor 1/|θ| comes from the Jacobian formula.

iii) Simple formulas do not exist when |θ| = 1.

Then the practice of ARMA modelling consists in assuming invertibility,
i.e. |θ| 6= 1, and in considering the approximated log-likelihood function :

26See Appendix 3 for a more detailed discussion of non-identifiability of a MA(1) process
and the links with reversibility.
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La(θ, γ) = La1(θ, γ)1l|θ|<1 + La2(θ, γ)1l|θ|>1. (4.6)

The optimization is performed in two steps :
First step : we optimize separately the log-likelihood on each regime to

get :

(θ̂1, γ̂1) = arg maxθ,γ,|θ|<1 L
a
1(θ, γ),

(θ̂2, γ̂2) = arg maxθ,γ,|θ|>1 L
a
2(θ, γ).

Second step : the approximated ML estimator is :

(θ̂, γ̂) = (θ̂1, γ̂1), if L̂a1 = La1(θ̂1, γ̂1) > L̂a2 = La2(θ̂2, γ̂2),

= (θ̂2, γ̂2), otherwise.

The approach above has at least three drawbacks.

i) First, we do not know how to simply approximate the log-likelihood func-
tion in the noninvertible case |θ| = 1.

ii) Second, this approach is difficult to implement in the multidimensional
case, when the number of regimes for ill-located roots increases and the
expressions of εt as two sided autoregressive functions of yt have to be derived.
(see Appendix 2).

iii) Third, the focus on the regimes when approximating the log-likelihood
function gives the misleading impression of a lack of continuity of the exact
log-likelihood function w.r.t. θ at |θ| = 1, whereas this exact log-likelihood
is continuous.27 Let us derive it for the discussion. We get :

ε1 = y1 + θε0, ε2 = y2 + θy1 + θ2ε0, . . . , εT = yT + θyT−1 + . . .+ θT−1y1 + θT ε0.

Thus the joint p.d.f. of y1, . . . , yT given ε0 is :

27Such an exact log-likelihood is for instance used in the Gaussian case, with |θ| < 1
by Chen, Davis, Song (2011) to analyze the properties of the ML estimator of a moving-
average parameter close to noninvertibility.
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ΠT
t=1g(

t−1∑
h=0

θhyt−h + θtε0; γ),

and the exact log-likelihood is :

L(θ, γ) = log{
∫

ΠT
t=1g(

t−1∑
h=0

θhyt−h + θtε; γ)g(ε; γ)dε.} (4.7)

The exact log-likelihood is generally a differentiable function of θ. How-
ever, its expression is not appropriate for deriving the asymptotic properties
of the ML estimators. For such derivation, it is usually shown that it can
be approximated by appropriate sums, that are La1(θ, γ), or La2(θ, γ) in our
example, sums for which the standard asymptotic theories apply [see e.g.
Lanne, Saikkonen (2013) for this approach applied to VAR models with non-
fundamentalness].

The approaches proposed in the next subsection are based on optimiza-
tion criteria, which can be decomposed into sums appropriate in order to
apply standard asymptotic theory and are sufficiently regular to avoid the
introduction of the different regimes of ill-located roots.

4.1.2 Incomplete Maximum Likelihood (IML), PML and SPML
approaches

The principle of Incomplete Maximum Likelihood (IML) is easily explained
in the case of the MA(1) process discussed above.

Let us separate the observations by throwing away an observation every
third observation. The set of observations becomes :

y1, y2, y4, y5, . . . , y3j−1, y3j−2, . . .

We have a loss of information since observations y3, y6, . . . , y3j, . . . are
not taken into account with the advantage that the pairs of observations
(y3j−1, y3j−2), j varying, are i.i.d. Thus the exact log-likelihood function cor-
responding to these incomplete observations is easily computed, naturally
decomposed as a sum and the standard asymptotic theory applies.

Let us now describe how the IML approach can be adapted to the mul-
tidimensional framework. For expository purpose, we consider a VARMA
(1,1) model :
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Yt − ΦYt−1 = εt −Θεt−1, (4.8)

where the errors εt are i.i.d., not Gaussian, with p.d.f. g(ε,Γ). The joint
distribution of the errors is chosen such that :

εt = Cηt, say,

where the ηt are independent, with a same distribution with parameter γ, say;
thus Γ = (C, γ). Such a choice of the joint distribution of the components of
εt is required in order to get mutually independent shocks when defining the
impulse response functions. 28

The roots of det Φ(z) are assumed to be outside the unit circle, but the
roots of det Θ(z) can be anywhere, inside, outside, or even on the unit circle.

Model (4.8) is a Seemingly Unrelated Regression (SUR) model :

Yt = ΦYt−1 + vt, (4.9)

and the autoregressive matrix Φ can be estimated by instrumental variable
(IV), using as instruments Yt−2 (Yt−3, Yt−4, . . .), which are uncorrelated with
vt. Let us denote Φ̂ the corresponding IV estimator.

Next, let us consider the joint p.d.f. of vt = εt−Θεt−1, vt−1 = εt−1−Θεt−2.
This p.d.f. is given by :

h(vt, vt−1; Θ,Γ) =

∫
g(vt + Θvt−1 + Θ2ε; Γ)g(vt−1 + Θε; Γ)g(ε; Γ)dε. (4.10)

28It is often assumed that the distribution of the error term εt of the VAR belongs to
the standard multivariate Student family, but this assumption is not appropriate for the
analysis of impulse responses since this family does not include the case of independent
components. We can assume, for instance, that the ith component of ηt, follows a univari-
ate Student distribution with ν(i) degrees of freedom. Additional identification restrictions
can be introduced to fix the denomination of the errors, i.e. to solve the problem of mul-
tiplicity by change of scale and permutations. For instance, the change by permutation is
excluded, if we impose either that the degrees of freedom ν(i) are in an increasing order,
or that the elements of the first row of matrix C are in an increasing order. The second
condition seems preferable, since it is compatible with the limiting case of equal degrees
of freedom.
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The two step IML estimator of (Θ,Γ) is the solution of :

(Θ̂, Γ̂) = arg max
Θ,Γ

J=(T/3)∑
j=1

log h(Y3j−1 − Φ̂Y3j−2 − Φ̂Y3j−3; Θ,Γ).

The two step IML estimator has standard asymptotic properties, irre-
spective of the location of the roots of det Θ(z). It is in particular consistent,
asymptotically normal. and its asymptotic variance-covariance matrix can
be derived.

All the observations of (yt) are used if Φ 6= 0, but in a non optimal way.
Other consistent estimators as simple to implement and using observations
in a more efficient way can be based on the same idea.

We can consider the estimator solution of :

(Θ̃, Γ̃) = arg max
Θ,Γ

T∑
t=2

log h(Yt − Φ̂Yt−1, Yt−1 − Φ̂Yt−2; Θ,Γ). (4.11)

This two step Pseudo Maximum Likelihood (PML) estimator is using the
information on all the v′ts [see e.g. Gourieroux, Monfort, Trognon (1985)].
It is also consistent, asymptotically normal, but the asymptotic variance-
covariance matrix is now computed by a sandwich formula (also involving a
general central limit theorem).

The IML and PML likelihood functions depend on integrals of the same
dimension as the VAR system. We can approximate the integral in function
h by simulation to get a two-step Simulated Pseudo Maximum Likelihood
(SPML) estimator. The numerical optimization of the approximated crite-
rion is :

(Θ∗,Γ∗) = arg max
Θ,Γ

T∑
t=1

log ĥ(Yt − Φ̂Yt−1, Yt−1 − Φ̂Yt−2; Θ,Γ), (4.12)

where :

ĥ(vt, vt−1; Θ,Γ) =
1

S

S∑
s=1

{g(vt+Θvt−1+Θ2εs(Γ), g(vt−1+Θεs(Γ); Γ)}, (4.13)
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and the εs(Γ) are drawn independently in distribution g(ε; Γ).29

When the number S of simulations tends to infinity sufficiently fast w.r.t.
the number T of observations, the SPML estimator has the same asymptotic
properties as the PML estimator itself [see Gourieroux, Monfort (1996) for a
general presentation of Simulation Based Estimation Methods].

Remark 1 : The objective functions used in the IML or PML approaches are
well-specified and misspecified log-likelihood functions, respectively. Thus
they can be used to develop Bayesian approaches [see Muller (2013) for
Bayesian approaches with misspecified models].

Remark 2 : The IML , PML, SPML approaches provide subefficient con-
sistent estimators. Even if the lack of efficiency is expected reasonable, we
can look for efficient estimators. This is done as follows:

First step : Apply a IML (PML, SPML) approach. This provides a con-
sistent estimator Θ̂ of Θ and of the true regime of nonfundamentalness. Then
we can derive the expression of the (approximated) log-likelihood function
Las(Φ,Θ,Γ) corresponding to this regime s. In a second step, we maximize
this approximated Las to derive the efficient ML estimator. The advantage of
this two-step approach compared to the first step ML approach is to focus
on one regime instead of a large number. This two step approach is a kind
of pre-test estimation approach, in which the one step IML (PML, SPML) is
used to detect the right regime of roots.

Remark 3 : Why not consider a simulated maximum likelihood (SML)
approach ? The SML estimators would be defined as :

(
ˆ̂
Θ,

ˆ̂
Γ) = arg max

Θ,Γ
log{ 1

S

S∑
s=1

ΠT
t=1g(

t−1∑
h=0

Θh(Yt−h − Φ̂Yt−h−1) + Θtεs(Γ); Γ)}.

However, the expression of the objective function has been derived back-
ward, which implies terms like Θtεs(Γ). If the true representation is nonfun-
damental and T is rather large, Θt will have exploding components when t
is increasing. Thus the SML estimator will be very sensitive to drawings of
simulated ε in the tail and not robust. The IML approach and its extensions
do not have this drawback.

29As usual the same basic drawings must be kept when Γ is modified in the optimization
algorithm.
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4.2 Semi-parametric estimation of a SVAR model with
nonfundamental representation.

In this section we consider semi parametric estimation methods, i.e. methods
which do not make parametric assumptions on the distribution of the errors.

For expository purpose, let us consider a SVAR(1) model :

Yt = ΦYt−1 + εt, (4.14)

with i.i.d. non Gaussian error terms, with zero mean. 30

The BJ approach, based on a Gaussian pseudo-likelihood, estimates the
Seemingly Unrelated Regression model (4.14) by ordinary least squares, or
equivalently by an instrumental variable approach with instrument Yt−1. This
method is valid if Yt−1 and εt are uncorrelated, that is, if all the roots of
det Φ(z) are outside the unit circle. It is not valid if some roots are inside
the unit circle, since Yt has a two-sided moving average representation that
creates correlation between Yt−1 and εt.

However the serial independence between the errors implies moment re-
strictions of the type :

Cov[a(Yt − ΦYt−1), b(Yt−h − ΦYt−h−1)] = 0, (4.15)

for any h, and any square integrable functions a and b. These restrictions can
be the basis for covariance estimators. In particular, for a square integrable
process Yt−1

31 we have :

E[(Yt − ΦYt−1)b(Yt−1 − ΦYt−2)] = 0, for any square integrable function b.
(4.16)

In other words, the variables b(Yt−1−Φ0Yt−2), where Φ0 is the true value of
the autoregressive matrix, are valid instruments for the SVAR model (4.14),
and the moment conditions (4.16) are used to estimate jointly Φ and these
instruments.

30Other moment restrictions can be used for MA processes. See the discussion in Ap-
pendix 3 iii).

31When the process has fat tails as in the case of explosive bubble solutions of rational
expectation models in Section 2.2, we have to select a and b functions, such as a(y) =
exp(ia′y), b(y) = exp(ib′y), say.
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In practice a set of functions b has to be selected to apply the Gener-
alized Method of Moments (GMM). When choosing only the identity func-
tion, the identification issue is likely not solved. 32 Other functions, such
as polynomial functions of degree 2, 3, have to be added to identify which
nonfundamental representation is the right one,

The GMM can be applied in several steps.
i) Step 1 : Consistent estimation.

First calibrate parameter Φ from a set of moment conditions without
trying to introduce optimal weights. The corresponding estimator Φ̃ is
consistent and can be used to deduce approximated instrumental variables
b̃(Yt−1 − Φ̃Yt−2), where the set of b̃ functions can be larger than b.

ii) Step 2 : Efficiency improvement.

Apply to the model :

Yt = ΦYt−1 + εt,

a Two Stage Instrumental Variable (2SIV) approach based on instruments
b̃(Yt−1− Φ̃Yt−2). This second step provides closed form estimators once Φ̃ has
been derived and avoids an additional nonlinear optimization.

iii) Step 3 : Diagnostic tools for serial independence.

Let us denote ε̂t = Yt − Φ̂Yt−1, the associated residuals, where Φ̂ denotes
the 2SIV estimator. We have to check if the vectors εt are serially inde-
pendent. We can perform tests of serial independence, based for instance on
power cross-moments at any lag, for all these estimated shocks. The standard
analysis of ACF and cross ACF of BJ has to be completed by considering
ACF and cross ACF on nonlinear transforms of the ε̂t . Typically square
ACF and square cross ACF have to be considered to detect possible ARCH
effects creating nonlinear dependence, or cross ACF between ε2

t and εt−h to
detect leverage effects, and so on.33

32In the univariate case, it is easily seen that ϕ satisfies the second order equation
ϕ0 − ϕ(1 + ϕ2

0) + ϕ2ϕ0 = 0, where ϕ0 is the true value of ϕ and this equation has two
solutions ϕ0 and 1/ϕ0. Moreover, adding the condition E[(yt−ϕyt−1) (yt−1−ϕyt−2)2] = 0,
we get a third order equation in ϕ which admits ϕ0 as a solution, but not 1/ϕ0, in general.

33The generalized spectrum approach proposed in Hong (1999), Chen et al. (2012)
considers complex exponential transforms exp(ia′ε̂t) and exp(ib′ε̂t−h), say.

30



If the serial independence hypothesis is rejected, the SVAR model cannot
be used for computing impulse response functions. Otherwise, we have still
to check if the vector of errors depends linearly on independent ”structural”
shocks.

iv) Step 3 : Analysis of mutual independence.

The hypothesis of mutual independence can be written as :

H0 = {∃ C: εt = Cηt, the components of ηt being independent }.

The test of this hypothesis and the estimation of the C matrix can be
done by applying Independent Component Analysis [see e.g. Hyvarinen,
Karhunen, Oja (2001), Hyvarinen et al. (2008), Moneta et al. (2013)].

If this hypothesis is rejected, the SVAR model is misspecified. Otherwise
we know how to estimate a C matrix by ICA, that is how to ”orthogonalize”
the components of εt.

34

4.3 Simulation

Even if it is possible to derive the asymptotic variance-covariance estimators
of the different estimators introduced in Sections 4.1, 4.2, the rather limited
number of observations in macroeconomic applications make preferable to
measure the accuracy by bootstrap. To apply the bootstrap, we have to know
how to simulate the path of a SVARMA with nonfundamental representation
in either the autoregressive or the moving average components.

i) The SVARMA (1,1) parametric model

Let us first consider the model of Section 4.1 and denote Φ̂, Θ̂, Γ̂ the
estimated parameters. In this case the simulation is straightforward:
• First draw independently εst in the distribution g(ε, Γ̂);
• Then compute the simulated wst = εst − Θ̂εst−1

34This multistep IV approach can be compared with extension of the LiNGAM [Linear
Non-Gaussian Acyclic Model] maximum likelihood approach introduced in Hyvarinen et
al. (2010). The authors propose to maximize a pseudo log-likelihood, where the p.d.f.
of the independent shock components of η are of the type : log g(η) = −

√
2|η| + const.

[see eq.9, in Hyvarinen et al. (2010)]. However the consistency of the original LINGAM
method is lost in the extension.
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• The simulated Yt are obtained by applying :

Y s
t =

∞∑
h=0

Φ̂hwst−h,

with some truncation in practice.

ii) The SVAR semi-parametric model

The simulations are more difficult when the nonfundamental representa-
tion concerns the autoregressive part. Indeed the process is mixed causal/non-
causal, with a two sided moving average representation. However, the sim-
ulations are still rather easy to implement if we introduce the appropriate
state variables summarizing the past and the future, respectively. This is
done along the following steps [see Gourieroux, Jasiak (2014)];
First step : Compute the estimated roots of det(Id − Φ̂z). Some estimated
roots are well-located (outside the unit circle), the others are ill-located (in-
side the unit circle).

Second step : Compute the adjoint matrix Φ̃(L) of Φ̂(L) = Id− Φ̂L, that is
the transpose of the matrix of cofactors. We have :

Φ̃(L)Φ̂(L) = det Φ̂(L)Id. (4.17)

We can write :

det Φ̂(L) = ĉϕ̂(L)ψ̂(L−1)Ln−r, (4.18)

where ϕ̂(L) = Πr
j=1(1−λ̂jL), λ̂1, . . . , λ̂r being the well located roots, ψ̂(L−1) =

Πn
j=r+1 = Πn

j=r+1(1 − 1/λ̂jL
−1), λ̂r+1, . . . , λ̂n being the ill-located roots, and

ĉ the appropriate constant.

Third step : We have :

Yt =
1

ĉ

Φ̃(L)

ϕ̂(L)ψ̂(L−1)
εt+n−r =

1

ϕ̂(L)ψ̂(L−1)
ξt, (4.19)

with ξt =
1

ĉ
Φ̃(L)εt+n−r.
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The process (ξt) is a finite moving average, with possible ill-located roots,
but is easy to simulate.

Let us introduce the processes (ut) and (vt) defined respectively by :

ψ̂(L−1)ut = ξt, and ϕ̂(L)vt = ξt. (4.20)

The process ut (resp. vt) is function of the future components of ξt (resp.
past components of ξt), and we can write a partial fraction decomposition of

1

ϕ̂(L)ψ̂(L−1)
=
b1(L)

ϕ̂(L)
+

b2(L)

ψ̂(L−1)
, say, where b1, b2 are polynomials.

Thus

Yt =

[
b1(L)

ϕ̂(L)
+

b2(L)

ψ̂(L−1)

]
ξt = b1(L)vt + b2(L)ut. (4.21)

This means that the mixed process (Yt) can be decomposed into lagged
and leaded values of processes vt and ut, which are sufficient summaries of
the past and future evolutions of ξt, respectively.

Fourth step : The simulated path is obtained as follows :
• Draw the εst independently in the sample distribution of the residuals

ε̂t = Yt − Φ̂Yt−1.

• Deduce the simulated moving-average : ξst =
1

ĉ
Φ̃(L)εt+n−r.

• Compute the simulated latent processes :

ust =
1

ψ̂(L−1)
ξst , by a forward expansion,

vst =
1

ϕ̂(L)
ξst , by a backward expansion.

• Finally the simulated path is :

Y s
t = b1(L)vst + b2(L)ust .

The simulation technique above is based on the partial fraction decom-
position and completely circumvents any Blaschke transformation.
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5 Concluding remarks

We have shown in this paper that the identification difficulties in the anal-
ysis of SVARMA models are due to the poor performance of the estimation
method used in the Box-Jenkins methodology, namely the Gaussian pseudo
maximum likelihood. This approach suffers from the lack of identification
existing in the Gaussian SVARMA. Whenever the shocks are not Gaussian,
the SVARMA becomes identified up to change of scale, drift on time, and
permutation of equations.

In fact a dynamic model constructed to derive impulse response functions
requires much more structural assumptions on the error terms (i.e. indepen-
dence) than a pure forecast model for which uncorrelated errors may be
sufficient. In this respect the conventional econometric toolboxes available
for macroeconomists have been conceived for a forecast purpose and are not
appropriate for the analysis of policy shocks.

Moreover it is important to keep the structural VARMA dynamics and
not to replace it by a VAR model with higher lags. Indeed simple consistent
estimation methods can be introduced for nonfundamental representation
in the moving average dynamics, and are rather different from the IV ap-
proaches used when the nonfundamental representation concerns the autore-
gressive dynamics. Similarly the methods to simulate a path of the process
and to derive the impulse response function are very different if the autore-
gressive dynamics is causal or not. In particular nonlinear impulse response
functions may have to be used when there is a nonfundamentalness in the
autoregressive dynamics.

Because of focusing on the second-order properties the SVARMA litera-
ture often introduces ”incredible” identification assumptions that entail mis-
specification and naive interpretations of VARMA residuals. To paraphrase
Sims (1980) : ”Nonlinear analysis is getting easier, both because of improved
techniques and because of better computational hardware. This weakens the
excuse that second-order analysis has to be followed just since it is simple”.
Indeed misspecified analysis could not serve as a useful tool for economic pol-
icy. Nevertheless, as shown in the parametric and semi-parametric analysis
developed in Section 4, SVARMA and SVAR can still be useful for economic
policy, provided that the independence assumptions required for impulse re-
sponse analysis are tested and the appropriate estimation methods are used.

The methods developed in this paper can be extended in several direc-
tions. First the asymptotic Gaussian distributions of the various estimators
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proposed can be derived and testing procedures, in particular tests of funda-
mentalness, can be obtained. Second, the identification and estimation re-
sults might be extended to the case of more shocks than observables. Indeed
identification results exist when the errors are not Gaussian [see e.g. Th 3.1.
in Eriksson, Köıvunen (2004) in the static case, or Gagliardini-Gourieroux
(2014) for a non Gaussian factor model]. This possibility to identify the dy-
namics when m > n and the shocks are not Gaussian would be important
in the discussion of the effect of omitted variables [see Giannone, Reichlin
(2006), Lütkepohl (2014)].
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Appendix 1

What is an innovation ?

The term ”innovation” is largely used in the applied literature, but of-
ten with different meanings and underlying assumptions. The aim of this
appendix is to discuss this (these) notion (s). For expository purpose we
consider a Markov process Yt.

i) Definitions for a square integrable process.

Two different notions of innovations are considered in practice :

The weak linear innovation is : yt = Yt−EL(Yt|Yt−1), where EL(Yt|Yt−1)
is the best mean square approximation of Yt by an affine function of Yt−1.

The strong linear innovation is : ut = Yt − E(Yt|Yt−1), where E(Yt|Yt−1)
denotes the conditional expectation of Yt given Yt−1.

ii) Definition for an infinite variance process

In this case the notion of weak innovation makes no sense. But the
notion of strong innovation still exists if the conditional distribution of Yt
given Yt−1 admits a first-order moment. This can occur when the process Yt
admits a first-order unconditional moment, but also sometimes for a process
without a first-order unconditional moment, as shown with the example of
the noncausal stable AR(1) process.

iii) Nonlinear innovation

The previous notions of innovation provide information on the accuracy
of a prediction of Yt, but no information when our interest is to predict
a nonlinear transform of Yt. A more appropriate notion is the nonlinear
innovation εt, say, such that :

Yt = g(Yt−1, εt),

where the εt variables are i.i.d. standard normal.
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This nonlinear autoregressive model is obtained as follows. Let us denote
F (y|Yt−1) the conditional cdf of Yt given Yt−1. It is well-known that the
variable :

Ut = F (Yt|Yt−1)

follows a uniform distribution on [0, 1] for any Yt−1 and, in particular, Ut is
independent of Yt−1. By inverting the conditional cdf, we get :

Yt = F−1(Ut|Yt−1),

and by defining εt = Φ−1(UF ), where Φ is the cdf of the standard normal we
get :

Yt = F−1[Φ(εt)|Yt−1],

Yt = g(Yt−1, εt). (say),

where g is strictly increasing in εt.

This notion of nonlinear innovation has three advantages :

• It can be used to evaluate the accuracy of the strong prediction of any
nonlinear transform of Yt.

• The ε′ts are serially independent, whereas the weak and strong linear in-
novations are serially uncorrelated, but in general dependent. Thus, in
finite sample, the weak and strong linear innovations cannot be used in
general to model the shocks at the basis of impulse response analysis.

• By recursive substitutions, we deduce a nonlinear moving average repre-
sentation of Yt as function of independent innovations εt, εt−1... and
by series expansion the Volterra representation of the Markov process
(which generally differs from its Wold expansion).

Appendix 2

The main steps of the ML and Bayes procedures
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i) The ML procedure

Let us detail this procedure for a VAR model :

Yt − Φ1Yt−1 . . .− ΦpYt−1 = Cηt, (A.1)

say, where the η′ts are i.i.d, with i.i.d. components. The common non-
Gaussian distribution of the ηj,t can be parametrized. For instance, this
might be a student distribution parametrized by the degree of freedom ν.

For disentangling the causal and noncausal components of the stationary
solution of (A.1), we have to consider the roots of det Φ(z). For stationarity
we assume that there are no roots on the unit circle.

r roots are well-located and s = np− r ones are ill-located.

The expression of the likelihood function of model (A.1) depends on the
number of ill-located roots and this number depends on the parameters of
the model : s = s(Φ), say. Thus the log-likelihood function can be written
as :

L(Φ, C, ν) =

np∑
s=0

{Ls[Φ, C, ν]1ls(Φ)=s}, (A.2)

where Ls(Φ, C, ν) is the expression of the log-likelihood function in regime s.
Since there are no roots on the unit circle, the subsets of parameters Φ

such that s(Φ) = s are disjoint open sets. Moreover, due to the identifiability
of the MA representation, there exits no distribution of process y belonging
to two different regimes, and the standard ML theory applies.

The ML approach can be implemented along the following steps,

step 1 : Estimate the autoregressive order p by the standard BJ methodol-
ogy, which provides a consistent estimation of the causal VAR repre-
sentation of the process (which is a weak representation if the roots of
det Φ(L) are not all outside the unit circle).

step 2 : Then maximize the log-likelihood function (A.2). Since the likeli-
hood function is not differentiable due to the effects of the regime, this
has to be done by first maximizing the regime specific log-likelihoods
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Ls under the constraints s(Φ) = s, and then by selecting the regime s
with the largest value of the regime specific log-likelihood function.

From a practical point of view, the difficulties come from :

i) the number of admissible regimes (but this number can be significantly
diminished under structural constraints)

ii) the derivation of closed form expressions of the regime specific log-
likelihoods [see e.g. Davis, Song (2012), or Lanne, Saikkonen (2013), in
special cases].

ii) The Bayes procedure

The standard Bayesian analysis of a VAR(1) model, say, consists in con-
sidering the likelihood function corresponding to the fundamental solution,
that is,

l(Φ, c, ν) = ΠT
t=1

1

|detC|
g[C−1(yt − Φyt−1), ν],

where g(., ν) denotes the joint pdf of independent variables with identical
student distributions, say, and in completing by a prior on parameters Φ, C, ν.
Usually this prior distribution attributes positive weights on values of Φ such
that some roots of det(Id − Φz) are ill-located. This standard Bayesian
approach will lead to inconsistent estimators for large T . Indeed, when some
roots are ill-located, the Bayesian model assumes that (Yt) may be non-
stationary whereas the process is assumed strictly stationary in each regime
in our framework.

Thus an appropriate Bayesian analysis has also to disentangle the different
regimes as it is done in the ML approach. More precisely, the joint p.d.f. has
to be written as :

l(Φ, C, ν) = expL(Φ, C, ν),

where L(Φ, C, ν) is given in (A.2), before specifying a prior, which can weight
all the regimes.

Appendix 3

Identifiability, reversibility and estimation in a MA(1) process
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For expository purpose, we consider the one-dimensional MA(1) process :
yt = εt− θεt−1, where the ε′ts are independent. We first consider the asymp-
totic behaviour of the approximated maximum likelihood approach. Then
we provide an example to illustrate the reason of identifiability in a non
Gaussian case, and we consider a moment estimation method.

i) Limit optimization problem in the approximate ML method

We assume that the p.d.f. of the ε′ts belongs to the family g(ε; γ).
The approximate log-likelihood function is :

LT (θ, γ) = 1l|θ|<1

T∑
t=1

log{g(
t−1∑
h=0

θhyt−h; γ)

+ 1l|θ|>1

T∑
t=1

log{ 1

|θ|
g(−

T−t−1∑
h=0

1

θh+1
yt+h+1; γ)

When T goes to infinity
1

T
LT converges to the limit function

L∞(θ, γ) = 1l|θ|<1E0 log g(
∞∑
h=0

θhyt−h; γ)

+ 1l|θ|>1E0[log
1

|θ|
g(−

∞∑
h=0

1

θh+1
yt+h+1; γ),

where E0 is the expectation with respect to the true distribution of the
process. We also have :

L∞(θ, γ) = 1l|θ|<1E0 log g[yt − Eθ(yt|yt−1
−∞), γ]

+ 1l|θ|>1E0{−
1

2
log θ2 + log g[−1

θ
(yt+1 − Eθ(yt+1|y∞t+2); γ]}

with Eθ(yt|yt−1
−∞) = −

∞∑
h=1

θhyt−h and Eθ(yt+1|y∞t+2) =
∞∑
h=1

1

θh+1
yt+h+1

In the Gaussian case, where the distribution of εt is N(0, σ2), we get :
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L∞(θ, σ2) = 1l|θ|<1E0[−1

2
log σ2 − 1

2σ2
(yt − Eθ(yt|yt−1

−∞))2]

+ 1l|θ|>1E0{−
1

2
log(θ2σ2)− 1

2σ2
[

1

θ2
(yt+1 − Eθ(yt+1|y∞t+2))]2}

The limit optimization problem is :

min
(θ,σ2)

[1l|θ|<1L
a
1(θ, σ2) + 1l|θ|>1L

a
2(θ, σ2)]

with La1(θ, σ2) = log σ2 +
1

σ2
E0(yt − Eθ(yt|yt−1

−∞))2,

La2(θ, σ2) = log(θ2σ2) +
1

θ2σ2
E0(yt+1 − Eθ(yt+1|y∞t+2)2).

Due to the reversibility of the Gaussian process the true distribution
of yt+1 − Eθ(yt+1|y∞t+2) if |θ| > 1 is the same as the true distribution of
yt+1 − E1/θ(yt+1|yt−∞).

Let us assume that |θ0| < 1 and let us consider the solutions of the limit
optimization problem.

In order to minimize L1(θ, σ2) on |θ| < 1 we can concentrate with respect
to σ2 and we get :

min
θ

logE0[yt − Eθ(yt|yt−1
−∞)]2 + 1.

The minimum is reached for θ = θ0 and the value at the minimum is :
log σ2

0 + 1.
In order to minimize L2(θ, σ2) on |θ| > 1, we can put θ2σ2 = σ̃2; we get

min
θ

logE0[yt+1 − E1/θ(yt+1|yt−∞)] + 1.

The minimum is reached for θ =
1

θ0

and the minimum is again log σ2
0 + 1.

When |θ0| is larger than 1, we can see that L1(θ, σ2) is optimal for
1

θ0

and L2(θ, σ2) for θ0 and we still have two inverse values of θ giving the same
optimum namely log(θ2

0σ
2
0) + 1. The model is not asymptotically identifiable.
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Note however that, in finite sample, the optimal values of La1 and La2 are
different, even in the Gaussian case. Thus the approximated ML approach
will provide a unique solution, not necessarily well-located.

ii) Identification in the non-Gaussian case

Let us consider the joint distribution of (yt, yt−1). The characteristic
function of this distribution is :

ψ(u, v) = E exp[i(uyt + vyt−1)]

= E exp(iuεt)E exp[i(v − uθ)εt−1]E[exp(−ivθεt−2)].

Let us for instance assume that εt follows a stable distribution, we get :

ψ(u, v) = exp[−c(|u|α + |v − uθ|α + |vθ|α)]

Is this function of (c, θ) injective ?
If α = 2, i.e. in the Gaussian case, we verify that :

c[u2 + (v − uθ)2 + v2θ2] = c[(u2 + v2)(1 + θ2)− 2uvθ]

takes the same value for (c, θ) and (cθ2,
1

θ
) and we do not have identifiability.

On the contrary for α 6= 2, we see, for instance, that ψ(u, v) is not differ-
entiable in u = 0, v = 0 and θ = v/u, and the latter condition implies the
identifiability of θ.

iii) Moment method

If we do not want to make a parametric assumption about the distribution
of εt we can use a moment method based on higher order cross moments.

Let us consider again the one-dimensional MA(1) process. We have :

E(yty
2
t−1) = −θEε3

t ,

E(y2
t yt−1) = θ2Eε3

t ,

and therefore :

θ = −E(y2
t yt−1)

E(yty2
t−1)

,
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whenever εt has a skewed distribution, i.e. E(ε3
t ) 6= 0. Thus the location of

θ w.r.t. 1 is identified from the no time reversibility of the process.
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