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Abstract

Since the late 90s, regression discontinuity designs have been widely used to esti-

mate local treatment effects. When the running variable is observed with continuous

errors, identification fails even if the dispersion of measurement errors is small. As-

suming non-differential measurement errors, we propose a consistent nonparametric

estimator of the LATE when the true running variable is observed in an auxiliary sam-

ple of treated individuals. Such auxiliary information is usually collected by agencies

in charge of delivering the treatment.
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1 Introduction

The regression discontinuity (RD) design has been widely emphasized for its internal va-

lidity to estimate local treatment effects and has been widely used since the late 1990s

(Imbens & Lemieux, 2008, Lee & Lemieux, 2010). Such a method relies on the fact that

assignment to the treatment T is determined (at least partially) by a continuous running

variable Z being on either side of a fixed threshold. If the joint distribution of the re-

alized outcome Y , the treatment T and the running variable Z is observed, then a local

treatment effect is identified (Hahn et al., 2001). However, for many practical reasons,

variables are often subject to measurement errors, especially with survey data (Bound

et al., 2001). In RD designs, smoothly distributed measurement errors in Z have drastic

consequences : even with a small dispersion of measurement errors, the discontinuity in the

assignment probability vanishes (see for example Hullegie & Klein, 2010 or Cahuc et al.,

2014). Hence, usual RD estimators using the running variable observed with measurement

error are inconsistent. The problem is similar to that of IVs with weak instruments.

In this paper, we show that the identification of the treatment effect can be recovered,

when auxiliary information about the distribution of the true running variable is observed.

More precisely, we consider the typical case when the econometrician observes the dis-

crepancy between the running variable and its noisy measure in a sample of treated in-

dividuals. This happens when the agency in charge of delivering the treatment collects

data on treated individuals, specifically their eligibility (the true running variable). We

can restore identification by assuming that conditional on the true running variable, its

noisy measure is independent of treatment and potential outcomes, i.e. the measurement

error is non-differential (see Bound et al., 2001). This allows us to use the structure of the

error identified on treated individuals to infer the true running variable for non-treated

individuals. Fuzzy RD designs with treated individuals on both sides of the threshold are

particularly adapted to our approach. In that case, the econometrician observes the error

structure on the whole support of the true running variable. When there are no treated
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individuals below the threshold, supplementary assumptions on the error structure are

needed. Under classical measurement error, we can ensure nonparametric identification

using a deconvolution strategy (Schennach, 2004, Hu & Ridder, 2012).

To give an intuition of our approach in the fuzzy RD design, let us denote Z∗ the true

running variable, T the treatment and Z a noisy measure of Z∗ such that Z ⊥⊥ T |Z∗. If

the distribution of (T, Z, TZ∗) is identified by the data, following D’Haultfœuille (2010),

the assignment probability p(Z∗) = E(T |Z∗) is identified by the conditional moment

E ([p(Z∗)]−1|T = 1, Z) = [E(T |Z)]−1. This conditional moment condition can be writ-

ten in a form similar to usual nonparametric IV conditions: E(T/p(Z∗) − 1|Z) = 0. We

thus adapt sieve estimation strategies from the nonparametric IV literature (Ai & Chen,

2003, Newey & Powel, 2003, Chen, 2007, Chen & Pouzo, 2012, Peter & Joel, 2005, Darolles

et al., 2011). More precisely, as estimating the treatment effect in the RD design requires

pointwise convergence of the estimator p̂(.) of p(.) at the threshold value, we follow strate-

gies that ensure uniform convergence (Ai & Chen, 2003, Chen, 2007 and Chen & Pouzo,

2012). We adapt the regularity conditions of usual nonparametric IV estimation to our

framework. First, we take into account the discontinuity of the take-up p(.) at the thresh-

old. Second, we relax usual conditions on the density of the variable Z to cope with the fact

that measurement error usually vanishes at the boundary of its support.1 We show that

under those relaxed conditions, our sieve estimator is consistent. Monte-Carlo simulations

show that our estimator outperforms naive RD estimator that ignores the measurement

error.

Our paper relates to the burgeoning literature on measurement issues in the running vari-

able of RD designs. Most of the theoretical RD literature focuses on discreteness or round-

ing error. Lee & Card (2008) show that, in RD designs with a discrete running variable,

researchers need to account for specification errors in the model. This affects the precision

of the estimated treatment effect. However Lee & Card (2008) do not really consider that
1In the usual nonparametric IV framework, the density of the instrument Z is assumed to be bounded

away from zero on its support (see for example Ai & Chen, 2003 or Chen & Pouzo, 2012).
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discreteness of the observed variable is the result of measurement error of a true continuous

underlying variable.

More directly related to our paper is thus the contribution of Dong (2014) which explicitly

addresses issues raised by rounding errors in a parametric setting. Such errors typically

prevent researchers from observing individuals just above and just below the threshold,

and the source of identification in the RD design is lost. To restore identification, Dong

(2014) uses auxiliary information on the distribution of the true running variable, as we

do. In addition, her approach makes use of parametric assumptions and of the determin-

istic relation between rounding errors and the true running variable. In our paper, the

precise form of measurement error is a priori unknown and our identification strategy is

nonparametric.

Another close contribution is Pei (2011), which assumes classical measurement error in

sharp or one-sided fuzzy RD designs. He further assumes that both the observed and the

true running variables are discrete and have bounded support. Then, when there is no

treatment on one side of the threshold, the true distribution of the running variable is

identified (using a deconvolution argument). In his context, the assignment status (which

is observed without error) informs about the position of the true running variable with

respect to the threshold. In our paper, auxiliary information on the measurement error

helps us to deal with continuous running variables and two-sided fuzzy RD designs.

When confronted with continuous measurement errors, applied researchers tend to adopt

a fully parametric approach. For example, Hullegie & Klein (2010) estimate the impact of

private health insurance on expenditures and health. They clearly illustrate that the dis-

continuity in the assignment probability disappears when their running variable (which is

income) is measured in a survey. To recover identification, they make parametric assump-

tions about the relation between the potential outcomes and the true running variable and

assume that income is measured with Berkson type error (see Wansbeek & Meijer, 2000,

Section 2.5 for a simple exposition of Berkson’s model or the original paper of Berkson,

1950). Our contribution is to show how ad-hoc parametric specifications can be abandoned
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provided that auxiliary information is available.

Our paper also complements other applied RD contributions that focus on contaminated

or corrupted data sampling, in which the observed running variable Z is a mixture of the

true running variable and of a noisy proxy (i.e. P(Z = Z∗) > 0, see Horowitz & Manski,

1995). In a paper that investigates the causal effect of retirement on consumption with

contaminated data, Battistin et al. (2009) assume that the measurement error is non-

differential (i.e. Z ⊥⊥ (Y (0), Y (1), T )|Z∗) and that z 7→ P(Z = Z∗|Z = z) is continuous at

the threshold, and thus recover the parameter of interest. However, this last assumption

of continuity can be violated when rounding errors generate heaping patterns in the data.

In the case of heaped data, Barreca, Guldi, Lindo & Waddell (2011) and Barreca, Lindo

& Waddell (2011) propose to remove observations at heaping values and estimate the

treatment effect in the decontaminated sample (this approach is called Donut-RD). Our

paper addresses a different problem where there is no mass of observations with correct

values (i.e. P(Z = Z∗) = 0). Then there is no useable information on the true running

variable in the main sample. This difficulty can be circumvented with the observation of

auxiliary information on the treated individuals.

The paper is organized as follows: in the second section, we show in detail how a measure-

ment error in the running variable Z smoothes any discontinuity in assignment and leads

to the loss of identification. In the third section, we present and discuss our identification

results. We distinguish two cases depending on the support of T |Z∗. In the case (a), when

there are treated individuals below and above the true threshold, we only assume that the

measurement error is non-differential. In the case (b), when there are no treated individ-

uals below the threshold, we further assume that the measurement error is classical. The

fourth section is devoted to estimation issues in the more general case (a), we then provide

Monte-Carlo simulations to investigate the finite sample behavior of our estimator. The

last section concludes.
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2 Framework

2.1 Regression Discontinuity design

Let T be a binary variable of treatment, Z∗ a continuous random variable with support

Z ⊂ R and 0 an interior point of Z, 0 is the cutoff of the Regression Discontinuity (RD)

design. Following Rubin’s framework, we define (Y (0), Y (1)) the potential outcomes with

respect to T and Y = Y (0)(1−T )+Y (1)T is the observed outcome. The usual assumptions

of RD design are as follows:

Assumption 1 (RD Design)

1. limz→0+ E (T |Z∗ = z) > limz→0− E (T |Z∗ = z)

2. It exists Z0 a neighborhood of 0, such that almost surely it exists an increasing random

function τ from Z0 to {0; 1} such that τ(ω)(Z∗(ω)) = T (ω) for all ω ∈ Z∗−1(Z0).

3. z 7→ E(Y (t)|Z∗ = z, τ(0+), τ(0−)) is continuous (almost-surely) for t = 0, 1.

Assumption 1.1 states that the assignment probability (or take-up) is discontinuous at the

cutoff 0, which is known by the econometrician. Assumption 1.2 is a form of monotonicity

condition. It rules out the existence of defiers, individuals who would abandon the treat-

ment had they crossed the cutoff. Assumption 1.3 states that the conditional expectations

of the potential outcomes are continuous at the cutoff. Under Assumption 1, it is well

known that the Local Average Treatment Effect (LATE)

θ = E
[
Y (1)− Y (0)|Z∗ = 0, τ(0+) > τ(0−)

]
(2.1)

is equal to a Wald’s ratio E(Y |Z∗=0+)−E(Y |Z∗=0−)
E(T |Z∗=0+)−E(T |Z∗=0−)

(see Hahn et al., 2001).

It follows that if the joint distributions of (Y, Z∗) and (T, Z∗) are identified by the obser-

vation of a large number of independent realizations, θ is identified. Estimation in such

contexts relies on consistent estimators of the four quantities E(Y |Z∗ = 0+), E(Y |Z∗ = 0−),

E(T |Z∗ = 0+), and E(T |Z∗ = 0−). Our general framework is less favorable: we observe a

proxy variable of Z∗.
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2.2 Measurement error

We denote Z the noisy measure of the true running variable Z∗. We adopt the following

assumptions on the measurement error generating process:

Assumption 2 (Measurement error)

1. (Z,Z∗) admits a density with respect to the Lebesgue measure in R2.

2. The measurement error is non-differential: Z ⊥⊥ (T, Y (0), Y (1))|Z∗.

The first assumption describes “continuous” measurement error. Specifically it rules out

rounding errors and contaminated data. The second assumption characterizes non-differential

measurement error (Bound et al., 2001). It states that the noisy measure does not yield

any supplementary information on the variables of interest, once we condition on the true

running variable. Classical measurement error verifies those assumptions. More gener-

ally, any transformation of a classical measurement error model verifies those assumptions.

(Z,Z∗) is a transformation of a classical measurement error model if there exist µ and ν

increasing C1 diffeomorphisms with derivatives bounded away from zero on Supp(Z) and

Supp(Z∗) such that µ(Z) is a classical measurement error of ν(Z∗). A direct consequence

of the transformation definition is that the difference µ(Z)− ν(Z∗) is independent of Z∗.

A multiplicative error such that Z = Z∗ × ε is a transformation model.

2.3 Loss of identification

The following proposition shows that if instead of Z∗ we observe Z a noisy measure of Z∗,

the probability to be treated is a continuous function of Z. As a consequence, the usual

framework of the RD design fails to identify the LATE θ.

Proposition 2.1 (Continuity of the take-up)

Under Assumptions 1 and 2, z 7→ E(T |Z = z) is a continuous function on the interior of

the support of Z if one of the following condition holds:
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1. z 7→ fZ|Z∗=z∗(z) is continuous z∗-almost-everywhere and E
(
supz fZ|Z∗(z)

)
<∞.

2. (Z,Z∗) is a transformation of a classical measurement error model and the density

of Z∗ is bounded.

The first part of Proposition 2.1 states that under mild conditions on the measurement

error, the take-up z 7→ E(T |Z = z) is continuous. In particular, there is no discontinuity

at the RD design cutoff. The denominator of the usual Wald’s ratio E(Y |Z=0+)−E(Y |Z=0−)
E(T |Z=0+)−E(T |Z=0−)

,

defined on the observed noisy running variable, is null. The second part of Proposition 2.1

considers the specific case of a transformation of a classical measurement error. In such a

case, the boundedness of fZ∗ ensures the continuity of the take-up. No extra assumption

on the density of the error is needed.2

Proposition 2.1 shows the continuity of the take-up. Similar arguments can be used to show

the continuity of the outcome with respect to the noisy running variable. As a consequence,

the numerator of the usual Wald’s ratio is also null. We discuss below the implications of

those continuity results for the naive estimation of the Wald ratio.

LetK be a symmetric kernel function, and hn a decreasing sequence tending to 0. A popular

estimation of the Wald’s ratio in the RD framework is based on local linear regression:

a+Y − a
−
Y

a+T − a
−
T

, with a±U = arg min
α

min
β

n∑
i=1

(Ui − α− βZ∗i )2K

(
Z∗i
hn

)
1{Z∗i ∈ R±} (2.2)

For a given value of hn, this estimator boils down to the weighted two stage least square of

Y on T with covariates Z∗×1{Z∗ ∈ R+} and Z∗×1{Z∗ ∈ R−}, and excluded instrument

1{Z∗ ∈ R+}. This estimator is widely popular, because the usual inference is valid in such

a semi-parametric model (Hahn et al., 2001). However, when only a noisy measure of Z

is available, the naive adaption of such an estimator, replacing Z∗ by Z in Equation 2.2,

leads to dramatic results.
2Note that in the case of a transformation model, the result holds even if fZ∗ is not bounded provided

that the error density is bounded. Then the first condition of the proposition is verified. To illustrate this

point, let us consider the case of classical measurement error. Then fZ|Z∗(z) = fε(z− z∗) is bounded if fε

is bounded.
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Proposition 2.2 Let (Z,Z∗) be such that one of the two following conditions holds:

1. z 7→ fZ|Z∗=z∗(z) is twice continuously differentiable z∗-almost-everywhere

and E
(

supz f
(j)
Z|Z∗(z)

)
<∞ for j = 1, 2.

2. (Z,Z∗) is a transformation of a classical measurement error model and the density

of Z∗ is twice continuously differentiable.

Moreover let us assume that it exists δ > 2 such that E
(
|Y |δ

)
<∞, that z∗ 7→ E(Y 2|Z∗ =

z∗) is bounded and that Assumptions 1 and 2 hold. Then for hn ∼ n−1/5 and for any K

bounded, symmetric and nonnegative-valued kernel with compact support,

θ̂naiveLLR =
a+Y − a

−
Y

a+T − a
−
T

, with a±U = arg min
α

min
β

n∑
i=1

(Ui − α− βZi)2K
(
Zi
hn

)
1{Zi ∈ R±}

tends in distribution to a Cauchy of location Cov(Y,T |Z=0)
V(T |Z=0)

and scale
(

V(Y |Z=0)
V(T |Z=0)

− Cov2(Y,T |Z=0)
V2(T |Z=0)

)1/2
.

The two first conditions in Proposition 2.2 reinforce the conditions of Proposition 2.1. This

ensures that E(T |Z) are twice continuously differentiable. Associated with the bounded-

ness of E(Y 2|Z∗), this also ensures also that E(Y |Z), E(Y 2|Z) and V(Y |Z) are twice

differentiable. The condition E(|Y |δ) <∞ is mild but allows us to apply the Lyapounov’s

Central Limit Theorem to derive the asymptotic properties of the estimator. If K is not

symmetric, the limit distribution is no more a Cauchy but a ratio of normal with non null

expectation. The assumption on the support of K is made for simplicity but can also be

relaxed with simple conditions on the tails of K.

The main message of Proposition 2.2 is that the naive estimator does not converge to θ0

(and nor to any value!). The situation is similar to what happens in the two-stage least

squares with completely uninformative instruments. In that case, the IV estimator is also

inconsistent.

Finally, under the assumptions of Proposition 2.1, the marginal density of the noisy running

variable Z is continuous (see proof in the Appendix). This means that the McCrary test

of non-manipulation of the running variable is never rejected, when there is measurement
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error in the running variable. Similarly any tests of continuity of the covariates are not

rejected.3

3 Identification with auxiliary information

To recover the identification of the LATE in the presence of measurement errors in the

running variable, we rely on an auxiliary sample of treated individuals, for whom we

observe the true running variable Z∗. This naturally occurs when individuals apply to

an independent agency in order to be treated and then, declare their running variable on

their application form. In such a context, it is very likely that the agency in charge of the

treatment checks the eligibility conditions and keeps a record of the correct running variable

for the treated. Many programs, which could be evaluated in RD designs, feature this

institutional process: means-tested treatment as in Hullegie & Klein (2010), conditional

subsidies to firms as in Cahuc et al. (2014), etc.

In the following, we distinguish two types of RD designs, depending on the support of

the score P(T = 1|Z∗). In the first subsection, we consider two-sided fuzzy designs, i.e

P(T = 1|Z∗) > 0 almost-surely. In the second subsection, we consider the case when

individuals below the cutoff cannot apply for treatment (P(T = 1|Z∗) = 0 with a positive

probability).

3.1 RD Design with support condition on the score

Assumption 3 (Observation from the data)

We observe an iid sample S of (Y, T, Z) with n observations and an iid auxiliary sample

Sa of (Z,Z∗)|T = 1 with na observations.

Assumption 3 holds when we observe an iid sample of (Y, Z, T, TZ∗), i.e. when Sa is a
3This is true as long as the measurement error is non-differential in the most general terms: for any

variable X, Z ⊥⊥ X|Z∗
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subset of S and when we can match the two samples. However Assumption 3 is more

general: samples may not be nested or cannot be matched.

Assumption 4 (Completeness Condition)

∀g such that E(|g(Z∗)|) < +∞, E (g(Z∗)|Z) = 0⇒ g = 0.

Assumption 4 is equivalent to the rank condition when Z∗ and Z have finite support:

rk[P(Z∗ = i|T = 1, Z = j)]i=1,...,I,j=1,...,J = I where I is the dimension of the support of

Z∗. Intuitively, this means that there is enough variation in Z to identify g ∈ L1(Z∗)

when we observe E(g(Z∗)|Z). Assumption 4 is usual in the nonparametric IV framework.

Examples of data generating processes such that the completeness condition holds can be

found in Newey & Powel (2003) or D’Haultfœuille (2011). Interestingly, D’Haultfœuille

(2011) shows that in the context of a transformation model, the completeness condition

holds for all the usual classes of parametric distributions of the measurement error (as soon

as the error characteristic function has isolated zeros). For estimation issues, we will further

assume that E(Y |Z∗) is bounded and that there exists c > 0 such that c < P (T = 1|Z∗),

then the completeness condition may be replaced by the weaker bounded completeness

condition.4

We now state the main result of identification when the support condition on the score is

verified.

Theorem 3.1 (Identification of FZ∗,Z,T,Y and θ)

Under Assumptions 1, 2, 3 and 4, when the support condition on the score is verified, i.e.

P(T = 1|Z∗) > 0 Z∗-almost-surely, the joint distribution of Z∗, Z, T, Y and the LATE (θ)

are identified.

The complete proof of the identification of the joint distribution (Z∗, Z, T, Y ) and of the

LATE is reported in the Appendix. We now briefly give some intuition about the identifi-

cation of θ.
4The bounded completeness condition holds if the implication is true for any bounded function g(.).
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To identify θ, we need to identify P(T = 1|Z∗ = z∗) = p(z∗) and E(Y |Z∗ = z∗) = m(z∗) in

the neighborhood of z∗ = 0. Under Assumption 2 and the support condition on the score,

m and p are solutions of the following moment conditions:

E
(

1

p(Z∗)
|T = 1, Z

)
=

1

E(T |Z)
(3.1)

E
(
m(Z∗)

p(Z∗)
|T = 1, Z

)
=

E(Y |Z)

E(T |Z)
(3.2)

Under Assumption 3, the right-hand sides of these equations are identified because the

distribution of (Y, T, Z) is identified from the main sample S. Moreover, ∀ known function

f , E(f(Z∗)|T = 1, Z) is identified, because the distribution of (Z∗, Z)|T = 1 is identified

from the auxiliary sample Sa. Hence, the region of identification of 1/p(z∗) (respectively

m(z∗)/p(z∗)) is the set of functions f such that E(f(Z∗)|T = 1, Z) = 1/E(T |Z) (respec-

tively E(Y |Z)/E(T |Z)). Assumption 4 ensures that these regions reduce to a single element

because E(f(Z∗)|T = 1, Z) = 0 implies that f(Z∗)p(Z∗) = 0, and that f(Z∗) = 0, because

of the support condition. So 1/p(z∗) and m(z∗)/p(z∗) are identified and then, m(z∗), p(z∗),

and finally θ are identified.

A similar reasoning can be performed to prove the identification of E(g(Y, T )|Z∗ = z∗) for

any function g(.). As a consequence, the conditional distribution (Y, T )|Z∗ is identified.

The identification of the full joint distribution (Z∗, Z, T, Y ) naturally follows (see the proof

in the Appendix).

Under mild conditions on the measurement error, the support condition is likely to be

necessary to obtain identification. We cannot directly adapt the previous proof to the case

without support condition. To see this, let us consider that the econometrician knows the

set S = {z∗ : p(z∗) > 0}. If P(Z∗ ∈ S) < 1, then Equation 3.1 has to be adapted into:

E
(
1{Z∗ ∈ S}
p(Z∗)

|T = 1, Z

)
=

P(Z∗ ∈ S|Z)

E(T |Z)
.

In such a case, identification fails because P(Z∗ ∈ S|Z) is not identified without any

supplementary assumption. The auxiliary sample of treated individuals only identifies

(Z,Z∗)|Z∗ ∈ S, T = 1, which is not informative on the distribution of (Z,Z∗)|Z∗ /∈ S. To

recover identification, we need supplementary assumptions that enable us to extrapolate

outside of S.
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In many practical cases, institutional rules ensure that P(T = 1|Z∗) = 0 if Z∗ is below (or

respectively over) a fixed threshold. For instance, many public benefits are means-tested.

In such cases, the support condition fails to hold. So, we next reinforce our assumptions

to ensure the LATE identification.

3.2 RD Design without support condition on the score

To extrapolate the distribution of Z∗ outside of the support of the score, we use a supple-

mentary Assumption on the structure of error. We assume a classical measurement error.

Such a structure is sufficiently informative so that we can relax the assumption on what

we observe from the data. Measurement error is identified even when the true running

variable and its noisy proxy are observed in different samples.

Assumption 5 (Observation from the data)

We observe an iid sample of (Y, T, Z) and an iid sample of Z∗|T = 1.

Assumption 6 (Classical measurement error)

1. Z = Z∗ + ε with ε ⊥⊥ Y (0), Y (1), T, Z∗.

2. (Z∗, ε) is dominated by the Lebesgue measure on R2.

3. The sets of zeros of the Fourier transforms of fε and of fZ∗|T=1 have an empty

interior.

As already mentioned Assumption 6 implies Assumptions 2 and 4. More precisely, the

classical measurement error is non-differential (Assumptions 6.1 and 6.2 imply Assumption

2). Furthermore, Assumption 6.3 is a form of completeness assumption.

Theorem 3.2 (Identification of FZ∗,Z,T,Y and θ)

Under Assumptions 1, 5 and 6, the joint distribution of Z∗, Z, T, Y and the LATE (θ) are

identified.
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Identification relies on the properties of Fourier transforms. Let Ff (t) =
∫
f(x)eitxdx

be the Fourier transform of an integrable function f . Ff is continuous and tends to 0

at infinity. Such a transform is injective and Ffε then characterizes the distribution of

ε. Moreover, if we denote ? the convolution product of two integrable functions, then

Ff?g = FfFg. Under Assumption 6, we have fZ = fε ?fZ∗ and fZ|T=1 = fε ?fZ∗|T=1. Then,

Ffε = FfZ|T=1
/FfZ∗|T=1

Assumption 5 ensures that the denominator is identified by the sample of Z∗|T = 1 and

the numerator is identified by the sample of (Y, Z, T ), then Ffε(t) is identified ∀t such that

FZ∗|T=1(t) 6= 0. Given Assumption 6.3, the continuity of Ffε ensures that Ffε is identified.

For any integrable function g of (Y, T ), we also have E(g|Z)fZ = fε?(E(g|Z∗)fZ∗). It follows

that E(g|Z∗)fZ∗ is identified for any g, then the distribution of (Y, T )|Z∗ is identified, which

is sufficient to identify θ. The identification of the joint distribution (Y, Z, Z∗, T ) naturally

follows.

4 Nonparametric estimation

We now propose an estimation strategy of the LATE in the case with support condition

(two-sided fuzzy design). When the support condition holds, our identification strategy

relies on the nullity of conditional moments that are similar to those involved in the estima-

tion of nonparametric IV models. So, following Newey & Powel (2003), Ai & Chen (2003),

Chen (2007), Chen & Pouzo (2012), Blundell et al. (2007), we adopt a sieve estimator.

We prove consistency. Further, we perform Monte-Carlo simulations to illustrate its finite

sample performance and how it can be used in practice.
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4.1 Consistency

The LATE depends on the values in the neighborhood of 0 of three functions: p(z∗) =

E(T |Z∗), m0(z
∗) = E(Y |T = 0, Z∗ = z∗) and m1(z

∗) = E(Y |T = 1, Z∗ = z∗). It writes:

θ0 =
m0(0

+)(1− p(0+)) +m1(0
+)p(0+)−m0(0

−)(1− p(0−))−m1(0
−)p(0−)

p(0+)− p(0−)

In this section, we write the LATE as a function of both m0 and m1, whereas it could have

been written as a function of m(z∗) = E(Y |Z∗ = z∗) only. As it will become clearer below,

this distinction is useful when the main and auxiliary samples can be matched. Accordingly,

we adapt the moment conditions 3.1 and 3.2 to identify p, m0 and m1. Denoting W =

(T, Z, Z∗, Y ), the conditional moment conditions write:

E(ρp(W ; p)|Z) := E(T/p(Z∗)− 1|Z) = 0 (4.1)

E(ρ0(W ; p,m0)|Z) := E(m0(Z
∗)(1/p(Z∗)− 1)T − Y (1− T )|Z) = 0 (4.2)

E(ρ1(W ;m1)|Z) := E((m1(Z
∗)− Y )T |Z) = 0 (4.3)

The previous identification conditions ensure that

Q(p̃, m̃0, m̃1) := E
(
E (ρp(W ; p̃)|Z)2

)
+ E

(
E (ρ0(W ; p̃, m̃0)|Z)2

)
+ E

(
E (ρ1(W ; m̃1)|Z)2

)
is null only for (p̃, m̃0, m̃1) = (p,m0,m1). Our estimation strategy is based on the minimiza-

tion of an empirical counterpart of Q. We consider a sieve GMM estimator of (p,m0,m1)

(or equivalently a sieve minimum distance (MD) estimator, see Chen (2007), Section 2.2.4

for a discussion of the relation between sieve-MD and sieve-GMM).

First, we define series estimators of the conditional moments. Recall that n and na are the

sizes of the main and auxiliary samples, respectively S and Sa. Let Ipn,na (respectively I
0
n,na

and I1n,na) be a sequence of finite dimensional subspaces of L∞(Z), such that
⋃
n,na
Ipn,na is

dense in L∞(Z) for the supremum norm. Let Bp(z) = (bp1(z), ..., bplp(n,na)(z)) (respectively

B0(z), B1(z)) be a row vector of elements of L∞(Z) such that span(Bp) = Ipn,na . l
p(n, na) is

the dimension of Ipn,na . The series estimator of E(ρj(W )|Z = z) based on Bj (for j = p, 0, 1)
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is:

Ê(ρj(W )|Z = z) = Bj(z)Ê(Bj′(Z)Bj(Z))−1Ê(Bj′(Z)ρj(W )).

It is natural to define Ê(Bj′(Z)Bj(Z)) as the mean in the main sample. ρj can be written

as ρj(W ) = qj(Z
∗)T + rj(Y, T ), then a consistent estimator for Ê(Bj′(Z)ρj(W )) is:

Ê(Bj′(Z)ρj(W )) =

(
1

n

∑
i∈S

Ti

)(
1

na

∑
i∈Sa

Bj′(Zi)qj(Z
∗
i )

)
+

(
1

n

∑
i∈S

Bj′(Zi)rj(Yi, Ti)

)

Given the above definition of series estimators, the sieve-GMM estimator p̂, m̂0, m̂1 is the

solution to the following minimization program :

min
(p,m0,m1)∈Hn,na

Q(n,na)(p,m0,m1) := min
(p,m0,m1)∈Hn,na

∑
j=p,0,1

1

n

∑
i∈S

Ê(ρj(W )|Z = Zi)
2,

where Hn,na = Hp
n,na ×H

0
n,na ×H

1
n,na is a sequence of finite dimensional functional spaces

such that
⋃
n,na
Hn,na is dense for a given norm in H = Hp × H0 × H1 a functional

space containing (p,m0,m1). To avoid that the minimization of Qn,na gives an infinity of

solutions, we naturally impose that dim(Ipn,na) ≥ dim(Hp
n,na), dim(I0n,na) ≥ dim(H0

n,na)

and dim(I1n,na) ≥ dim(H1
n,na).

Note that, in the previous program, we have, for j = p, 0, 1:

1
n

∑
i∈S Ê(ρj(W )|Z = Zi)

2 = Ê(Bj′(Z)ρj(W ))′
[
1
n

∑
i∈S B

j′(Zi)B
j(Zi)

]−1 Ê(Bj′(Z)ρj(W )).

Note also that, when the two samples can be matched, Sa = {i ∈ S : Ti = 1} and then

Ê(Bp′(Z)ρp(W )) reduces to 1
n

∑
i∈S B

p(Zi)
(

Ti
p(Z∗i )

− 1
)
. Similar simplifications occur for

the two other moments. Then, our framework is very close to Ai & Chen (2003), except

that, in their case, the model is such that the finite dimension parameter θ0 is
√
n estimable.

The convergence of (p̂, m̂0, m̂1) depends on the degree of ill-posedness of the problem, and

on the rate of uniform convergence in probability of Qn,na towards Q, which we control

assuming the following regularity conditions on the data generating process.

Assumption 7 (Regularity Conditions)

1. The support of Z∗ is [−1; 1],
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2. The conditional probability p(z∗) = P (T = 1|Z∗ = z∗) is bounded below by a known

constant c > 0, and m0 and m1 are bounded by a known constant c,

3. p, m0 and m1 are C1 on [−1; 0[ and ]0; 1] and their first derivatives are bounded by a

known constant C,

4. fZ has a compact support [l, u], is bounded below on any compact included in ]l, u[, is

differentiable with derivative f ’ and it exists Cu, Cl, αu, αl > 0 such that fZ(z) ∼z∼u

Cu(u − z)αu, fZ(z) ∼z∼l Cl(z − l)αl, f ′Z(z) ∼z∼u −αuCu(u − z)αu−1 and f ′Z(z) ∼z∼l

αlCl(z − l)αl−1,

5. z 7→ fZ|Z∗=z∗(z) is continuously differentiable z∗-almost-everywhere and for any z0 ∈

]l, u[, it exists a neighborhood V (z0) such that E(supz∈V (z0) |f
′
Z|Z∗|) <∞.

Assumption 7.1 essentially means that Z∗ has a compact support with the discontinuity

threshold inside this compact. The choice of [−1; 1] is simply a normalization that can be

assumed without loss of generality. Assumption 7.2 is a small reinforcement of the support

condition that is necessary for identification. Assumption 7.3 is a convenient way to ensure

that the model is well-separated. Indeed in this case, (p,m0,m1) belongs to a compact and

the continuity of the theoretical objective function ensures that the model is well-separated.

This kind of Assumption is usual in parametric framework (see for instance Chapter 5, page

46 and Problem 5.27 of van der Vaart (2000)). Assumption 7.3 also imposes a regularity

condition that ensures that the problem is not ill-posed, which is usual in nonparametric

frameworks (see for instance Chen (2007) or Newey & Powel (2003) for the case of sieve

estimators).

Assumption 7.4 is necessary to control the rate of uniform convergence ofQn,na toQ. Newey

(1997), Burman & Chen (1989), Huang (1998), Blundell et al. (2007) or Chen & Pouzo

(2012) use a stronger assumption, assuming that fZ is bounded below on its support.

In our framework, this is not a credible assumption, because measurement errors entail

smoothness and continuity at the boundary of the support of fZ . For example, in the case

of classical measurement error, Z = Z∗+ε with Z∗ and ε independent, with convex compact
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support and fZ∗ and fε bounded below by positive constants on their supports, then fZ

tends towards 0 at the bounds of its support. However it verifies Assumption 7.4 with

αu = αl = 1. More generally, in the case of a transformation of a classical measurement

error model (such that Z = µ−1(ν(Z∗) + ε) with ν and µ increasing C-1 diffeomorphisms),

if fZ∗(x) ∼1 C+
Z∗(1 − x)α

+
Z∗ , ν ′(x) ∼1 C+

ν′(1 − x)α
+
ν′ , (µ−1)′(x) ∼u C+

(µ−1)′(u − x)
α+

(µ−1)′

and fε(x) ∼ε C+
ε (ε − x)α

+
ε for ε = sup Supp(ε), then Assumption 7.4 is verified with

αu = α+
Z∗+α+

ε +1−α+
ν′+α+

(µ−1)′ . As a consequence, the decreasing to 0 at the boundary of

the support of fZ prevents us from using usual results from the approximation theory (see

Huang (1998)) and we find lower rate of convergence. Assumptions 7.4 and 7.5 ensure that

if G is a class of functions uniformly bounded, then the functions z 7→ E(g(Z∗)|Z = z) are

uniformly bounded and satisfy a Lipschitz condition (see Lemma A.3 in the Appendix).

In practice, we consider for H0
n,na the piecewise linear functions bounded by the known

constant c and with Lipschitz constant C. More precisely, it exists δ0, δ0 (independent of

(n, na)), integers k0+n,na , k
0−
n,na and knots (1 = z0+

k0+n,na+1
> z0+

k0+n,na
> ... > z0+1 > z0+0 = 0 =

z0−0 > ... > z0−
k0−n,na

> z0−
k0−n,na+1

= −1) verifying δ

k0±n,na
≤ |z0±j − z0±j−1| ≤ δ

k0±n,na
, such that:

H0
n,na =



f : ∃(a+j )j=1,...,k0+n,na
, (a−j )j=1,...,k0−n,na

such that

f(z∗) = f(0+)1{z∗>0} +
∑k0+n,na

j=0 a+j (z∗ − z0+j )1{z∗−z0+j >0}

+f(0−)1{z∗<0} +
∑k0−n,na

j=0 a−j (z∗ − z0−j )1{z−z0−j <0}

supz∗ |f(z∗)| < c and supz∗ |f ′(z∗)| < C


We obtain a sequence of such functional spaces H0

n,na by increasing the number of knots

with n and na. The union of the resulting sequence enables us to approach any function m0

verifying Assumptions 7.1, 7.2 and 7.3. Similar spaces are considered for H1
n,na , associated

with constants δ1, δ1 and k1±n,na knots z1±j . Hp
n,na is defined similarly except that the

condition supz∗ |f(z∗)| < c is replaced by c ≤ f ≤ 1.

Theorem 4.1 (Consistency)

Under Assumptions 1, 2, 3, 4 and 7, if n
na
→ λ ∈]0; +∞[, then:

θ̂ =
m̂0(0

+)(1− p̂(0+)) + m̂1(0
+)p̂(0+)− m̂0(0

−)(1− p̂(0−))− m̂1(0
−)p̂(0−)

p̂(0+)− p̂(0−)
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converges in probability to θ0 if minj=p,0,1(k
j+
n,na , k

j−
n,na) → ∞ with maxj=p,0,1(dim(Ijn,na)) =

o(n1/(2+max(αu,αl))).

The proof of Theorem 4.1 is reported in the Appendix. In Theorem 4.1, we show that,

when n and na tend to infinity, the estimator (p̂, m̂0, m̂1) consistently estimates (p,m0,m1),

if the dimension of Hn,na tends to infinity and the dimension of Ijn,na (for all j = p, 0, 1)

tends to infinity sufficiently slowly.

When the samples can be matched, an alternative estimator may be of interest. It consists

in estimating m1 by local linear regression on the one hand, and p and m0 using Equations

4.1 and 4.2 on the other hand. A straightforward adaptation of the proof of Theorem 4.1

ensures the consistency of this alternative estimator.

4.2 Monte-Carlo Simulations

In this section, we investigate the finite sample properties of our main sieve estimator by

Monte-Carlo simulations. We assume that Z∗ is uniformly on [−1; 1] and that P(T =

1|Z∗ = z∗) = 1/8 + 1/4 · Φ(5 · z∗) + 1/2 · 1{z∗ ≥ 0}, in which Φ is the cdf of the

standard normal distribution. The conditional probability to be treated increases with

Z∗ from 1/8 in -1 to 7/8 in 1 and jumps from 1/4 to 3/4 when Z∗ crosses the threshold

0. Consequently, the proportion of compliers is 1/2 whereas always-takers (respectively

never-takers) represent 1/4 of the population. The DGPs of the potential outcomes are:

Y (0) = 4 + 3Z∗ + v0,

Y (1) = 1{C}+ 21{AT,NT}+ 3Z∗ + v1,

where 1{C} and 1{AT,NT} are dummies for the types of individuals (compliers versus

always or never-takers), and (v0, v1)|Z∗, C, AT,NT ∼ N (0,Σ) with Σ = 1
16

 1 1/2

1/2 1

.

The true LATE θ0 = E(Y (1)− Y (0)|Z∗ = 0, C) is then equal to 1− 4 = −3.

The noisy running variable is drawn from the following multiplicative process:

Z + 1 = (Z∗ + 1)(ε+ 1),
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with ε uniformly distributed and independent of (Z∗, T, Y (0), Y (1)). To investigate the

impact of the size of the measurement error, we let the dispersion of ε vary. Below we

consider two cases: (i) small measurement error with ε ∼ U[−0.1;0.1], and (ii) large measure-

ment error with ε ∼ U[−0.2;0.2]. In the Appendix, we also present simulations in the case of

additive classical measurement error.

We compare our sieve estimator (p̂(Z∗) = Ê(T |Z∗) or m̂(Z∗) = Ê(Y |Z∗)) to the naive

estimator obtained by ignoring measurement error (ÊLLR(T |Z) or ÊLLR(Y |Z)). The naive

estimation relies on a standard local linear regression (LLR) where Z∗ is directly replaced

by Z. We make the following assumptions on the parameters of our sieve estimation.

We choose the same space for Ipn,na ,I
0
n,na and I1n,na , namely linear splines with equidistant

knots on Supp(Z). Similarly, Hp
n,na , H

0
n,na and H1

n,na have the same equidistant knots.

The numbers of knots are chosen such that dim(Ipn,na) = dim(Hp
n,na). Consequently, all

the functional spaces manipulated have the same dimension. Last, concerning the bounds

c, c, and C of functions in Hn,na , we have chosen 0.05, 15 and 10. Note that, given the

underlying DGP, every value lower than 1/8 is admissible for c, every value larger than 7

is admissible for c and every constant larger than max( 5
4
√
2π
, 3) ' 3.14 is admissible for C.

Figure 1 plots the take-up (upper panel) and the mean outcome (lower panel) conditional

on the true or noisy running variables. These are usual RD graphs used in applied research.

The left panel plots one simulation obtained with a small measurement error (case (i)),

while the right panel corresponds to the case (ii) with large measurement error. We simu-

late 25,000 observations. On each graph, we plot the true conditional expectation (E(T |Z∗)

or E(Y |Z∗)), the naive estimate of the conditional expectation obtained by ignoring mea-

surement error (ÊLLR(T |Z) or ÊLLR(Y |Z)) and our sieve estimate (p̂(Z∗) = Ê(T |Z∗) or

m̂(Z∗) = Ê(Y |Z∗)). Figure 1 clearly illustrates that the discontinuity vanishes when mea-

surement error is ignored: dashed lines do not reproduce the discontinuity of full lines.

The loss of discontinuity is clear in all graphs, except maybe in the left lower panel. When

the measurement error is small, the conditional expectation is steep at the cutoff value.

Consequently, it may appear as discontinuous if the bandwidth of the local linear regression
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is too large. Figure 1 also illustrates that our proposed estimator is able to recover the

discontinuity of the true conditional expectation.

Figure 1: Monte-Carlo simulations
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Notes: the panel plots the take-up (upper panel) and the mean outcome (lower panel) conditional

on the running variables. The left panel plots the simulations obtained with a small measurement

error, while the right panel corresponds to the case with large measurement error. On each

graph, we plot the true conditional expectation (E(T |Z∗) or E(Y |Z∗)), the naive estimation of

the conditional expectation obtained by ignoring measurement error (ÊLLR(T |Z) or ÊLLR(Y |Z))

and our sieve estimator (p̂(Z∗) = Ê(T |Z∗) or m̂(Z∗) = Ê(Y |Z∗)). The naive estimation relies

on a a standard local linear regression with bandwidth around 0.1, where Z∗ is directly replaced

by Z. Our sieve estimator is obtained with three positive and three negative knots. We select

for each column one simulation of the DGP described in section 4.2 with 25,000 observations.

Table 1 reports the bias, variance and MSE of various estimators, averaged over 1,000
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Monte-Carlo simulations. In Columns 3 to 5, we report results concerning our sieve es-

timator; in Columns 6-8, those concerning the naive estimator; and, in Columns 9-11,

those concerning the unfeasible estimator obtained by LLR assuming that Z∗ is observed.

In the upper panel, we report results when the measurement error is small; in the lower

panel when it is large. We report results for three different sample sizes 1,000, 5,000 and

25,000 observations. We also let the number of knots of our sieve estimation vary. When

the number of knots is null, the approximating functions are linear on both sides of the

threshold. When the number of knots is one (resp. two), we allow for one (resp. two)

change in slope on each side.

Overall, the absolute bias of our estimator is below one, whatever the size of the measure-

ment error, the sample size or the number of knots. It outperforms the naive estimator

which is almost always over one in Table 1. As expected, the absolute bias of the unfeasible

estimator is below 0.05. The variance of our estimator is always lower than the one of the

naive estimator. Consistently with Proposition 2.2, the bias of the naive estimator and

its variance are quite erratic across the Table, and its variance does not decrease with the

sample size.

Table 1 also informs us about the influence of the number of knots on our sieve estimator.

For a given sample size, the bias tends to decrease with the number of knots and the

variance tends to increase. This reflects the usual influence of smoothing parameters on

the trade-off between bias and efficiency.

Our estimator performs better, when the measurement error is small. When the difference

between the bias with small and large errors is significant, it is lower in the case of small

measurement errors. Moreover, the variance is smaller with small measurement error,

except for the estimation with only one segment (or 0 knot).

In the Appendix, we report supplementary Monte-Carlo simulations. First, we explicitly

consider the case when the main and auxiliary samples are matched. As explained above,

we can estimate the conditional mean of the outcome on the treated by LLR. The results

are very close to those of our main sieve estimator (see Columns 6-8 of Table 2 in the
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Table 1: Estimation in finite samples, Multiplicative Error

Nb. of Sample Our estimator Naive estimator Unfeasible estimator

knots size Bias Var. MSE Bias Var. MSE Bias Var. MSE

A. Small Measurement Error

1000 -0.969 10.63 11.57 -1.840 6689 6693 0.021 0.168 0.168

0 5000 0.344 1.009 1.128 -1.526 3.993 6.323 0.011 0.043 0.043

25000 0.678 0.024 0.484 -2.013 577.3 581.4 0.005 0.011 0.011

1000 -0.53 24.98 25.26 -0.881 53.66 54.44 0.040 0.154 0.156

1 5000 0.351 0.328 0.451 -1.463 4.929 7.070 0.005 0.043 0.043

25000 0.512 0.078 0.340 -2.597 6.486 13.23 0.011 0.010 0.011

1000 -0.738 325.0 325.5 -1.715 734.1 737.1 0.014 0.169 0.170

2 5000 0.074 0.578 0.584 -1.484 15.41 17.61 0.011 0.045 0.045

25000 0.172 0.097 0.127 -2.355 52.38 57.93 0.004 0.012 0.012

B. Large Measurement Error

1000 -0.009 2.818 2.818 9.125 40095 40178 0.021 0.168 0.168

0 5000 0.681 0.127 0.591 136.3 2×107 2×107 0.011 0.043 0.043

25000 0.806 0.018 0.667 -60.54 3×106 3×106 0.005 0.011 0.011

1000 -0.188 31.85 31.89 -0.794 34973 34973 0.040 0.154 0.156

1 5000 0.349 0.423 0.545 -2.919 50204 50212 0.005 0.043 0.043

25000 0.512 0.110 0.373 2.605 1076 1083 0.011 0.010 0.011

1000 0.249 943.9 943.9 -91.40 7×106 8×106 0.014 0.169 0.170

2 5000 0.142 2.639 2.660 0.897 1140 1141 0.011 0.045 0.045

25000 0.174 0.573 0.603 -4.893 25264 25288 0.004 0.012 0.012
Note : Computation obtained with 1000 simulations. The same set of simulations is used for

all the estimators on the same line. The set of simulations changes across lines.

Z + 1 = (Z∗ + 1) · (1 + ε) with ε ∼ U[−0.1;0.1] for the DGP with small measurement error and

ε ∼ U[−0.2;0.2] for the DGP with large measurement error. Number of knots equal to 0 means

that p, m0 and m1 are approximated by linear functions on [−1; 0] and [0; 1]. When the number

of knots is 1 (resp. 2), change in slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3, 1/3, 2/3).
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Appendix). Second, we compare our main estimator to the Donut estimator (see Dong,

2014 or Barreca, Guldi, Lindo & Waddell, 2011). The Donut estimator corresponds to the

naive estimator in a truncated sample. Observations around the threshold (according to the

noisy measure) are removed from the estimation sample. The bias of the Donut estimator

is large (around 2) and greater than the bias associated with the naive estimator (see

Columns 9-11 of Table 2 in the Appendix). Third, we repeat all the previous Monte-Carlo

exercises, replacing the multiplicative error by an additive classical measurement error.

Our estimator clearly outperforms the naive estimator when the sample size is larger than

5,000. The influence of the number of knots on the bias and on the variance is qualitatively

similar to the case with multiplicative error (see Tables 3 and 4 in the Appendix).

5 Conclusion

Non-differential measurement error in the running variable has dramatic consequences for

the identification of treatment effects in Regression Discontinuity designs. As soon as there

is no mass of individuals with correct values of their running variable, all discontinuities are

smoothed out in the noisy data. The usual estimator of the Local Average Treatment Effect

(LATE) is then inconsistent. In this paper, we proposed to take advantage of naturally-

occurring auxiliary data to recover identification. Agencies in charge of delivering the

treatment usually keep record of the correct running variable for the treated individuals.

Under the assumption of non-differential measurement error, the auxiliary information can

be used to extrapolate the true running variable distribution on the non-treated, and to

identify the joint distribution of the true running variable, the treatment and the potential

outcomes. We then proposed a sieve estimator for the LATE, showed its consistency and

investigated its performance in finite samples. Our simulations suggest that our estimator

outperforms the naive estimator that ignores measurement error.

The estimator we proposed can be extensively applied. In many surveys, running variables,

such as income, firms’ size, even test scores, are measured with errors. Hullegie & Klein
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(2010) and Cahuc et al. (2014) are perfect examples of the loss of discontinuity in the take-

up when the running variable is noisy. Provided that administrative data about eligibility

are matched with those samples, the LATE of those different programs could be easily

estimated using our approach. Our approach could also be applied to the estimation of the

return of schooling using discontinuity in tuition costs with respect to the parental income.

Schools only check and record the parental income of students that effectively decide to

follow a supplementary year of schooling, whereas, for individuals who stop their schooling,

the econometrician only observes a proxy of income (for instance, parental income in the

previous academic year).
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A Appendix: Proofs

A.1 Proof of Proposition 2.1

We begin by proving the first part of the proposition. This is a direct application of the

dominated convergence theorem. Our function of interest verifies:

E[T |Z = z]fZ(z) = E[E[T |Z∗ = z∗, Z = z]|Z = z]fZ(z)

= E[E[T |Z∗ = z∗]|Z = z]fZ(z)

=
∫
E[T |Z∗ = z∗]fZ|Z∗=z∗(z)fZ∗(z

∗)dz∗,

where we use that the error is non differential (Z ⊥⊥ T |Z∗). We also have:

fZ(z) =
∫
fZ|Z∗=z∗(z)fZ∗(z

∗)dz∗ .

The dominated convergence theorem then ensures that z 7→ E[T |Z = z]fZ(z) and z 7→

fZ(z) are both continuous for all z if the first condition holds. As a consequence, z 7→

E[T |Z = z] is continuous on any interior point of Supp(Z).

We now prove that the second condition is also sufficient to ensure the continuity of

z 7→ E[T |Z = z]. Note that because µ−1 is continuous, the continuity of z 7→ E(T |Z = z)

is equivalent to the continuity of z̃ 7→ E(T |µ(Z) = z̃). Moreover, the boundedness

of the density of Z∗ is equivalent to the boundedness of the density of ν(Z∗) because

infz∗∈Supp(Z∗) ν
′(z∗) > 0. So without loss of generality, we can restrict the proof to the

case where µ = ν = id, i.e. the case of classical measurement error (where Z = Z∗ + ε

with ε ⊥⊥ Z∗). Note also that boundedness of fε ensures that the first condition of the

proposition holds, because fZ|Z∗=z∗(z) = fε(z−z∗). Then we obtain directly the continuity

of z 7→ E(T |Z = z). The proof is different in the case of classical measurement error with

a bounded density on fZ∗ .

Let us begin with some usual notation. For any function f , let τhf denote the func-

tion z 7→ f(h− z). For any measurable function f , let ||f ||1 and ||f ||∞ denote respectively
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the L1 and the supremum norm of f : ||f ||1 =
∫
|f(z)|dz and ||f ||∞ = supz |f(z)| (both

could be equal to +∞).

Let us consider our quantity of interest. In the case of classical measurement error, it

writes as follows:
fZ(z) =

∫
fZ|Z∗=z∗(z)fZ∗(z

∗)dz∗

fZ(z) =
∫
fε(z − z∗).fZ∗(z∗)dz∗

fZ(z) =
∫
τzfε(z

∗).fZ∗(z
∗)dz∗

.

We are now able to prove the continuity of z 7→ fZ(z), using Lemma A.1, because

|fZ(z + h)− fZ(z)| ≤ ||fZ∗||∞||τz+hfε − τzfε||1

≤ ||f ∗Z ||∞||τhfε − fε||1.

The proof is similar for the continuity of z 7→ E(T |Z = z)fZ(z). It follows that z 7→

E(T |Z = z) is continuous on the interior of the support of Z.

Lemma A.1 limh→0 ||τhf − f ||1 = 0 for any integrable f .

Proof of Lemma A.1: For any continuous function g with a compact support, the

dominated convergence Theorem ensures that limh→0 ||τhg − g||1 = 0. Because the space

of continuous functions with a compact support is dense (for the norm ||.||1) in space of

integrable functions, we know that for any integrable function f and any δ > 0, it exists g

continuous with compact support such that ||f − g||1 < δ and then:

||τhf − f ||1 ≤ ||τhf − τhg||1 + ||τhg − g||1 + ||g − f ||1

≤ 2δ + ||τhg − g||1.
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A.2 Proof of Proposition 2.2

Let us introduce some notations:

B+ =
(
∫+∞
0 u2K(u)du)

2
−(

∫+∞
0 u3K(u)du)(

∫+∞
0 uK(u)du)

2(
∫+∞
0 u2K(u)du)(

∫+∞
0 K(u)du)−(

∫+∞
0 uK(u)du)

2

B− =
(
∫ 0
−∞ u2K(u)du)

2
−(

∫ 0
−∞ u3K(u)du)(

∫ 0
−∞ uK(u)du)

2(
∫ 0
−∞ u2K(u)du)(

∫ 0
−∞K(u)du)−(

∫ 0
−∞ uK(u)du)

2

V + =
∫+∞
0 [(

∫+∞
0 s2K(s)ds)−(

∫+∞
0 sK(s)ds)u]

2
K(u)2du

fZ(0)
[
(
∫+∞
0 u2K(u)du)(

∫+∞
0 K(u)du)−(

∫+∞
0 uK(u)du)

2
]2

V − =
∫ 0
−∞[(

∫ 0
−∞ s2K(s)ds)−(

∫ 0
−∞ sK(s)ds)u]

2
K(u)2du

fZ(0)
[
(
∫ 0
−∞ u2K(u)du)(

∫ 0
−∞K(u)du)−(

∫ 0
−∞ uK(u)du)

2
]2

Under Condition 1 of Proposition 2.2, the dominated convergence Theorem ensures that

fZ and E(T |Z) are twice differentiable on the interior of the support of Z, similar reasoning

holds for E(Y 2|Z) and E(Y |Z), because E(Y 2|Z∗) and then |E(Y |Z∗)| are bounded. Then

Assumptions 1, 2, 3 and 5 of Hahn et al. (1999) hold. Under Condition 2 of Proposition

2.2, the dominated convergence Theorem ensures that the convolution product of fν(Z∗)

and fε is twice continuously differentiable, then Assumptions 1, 2, 3 and 5 of Hahn et al.

(1999) also holds in such case.

The conditions on the kernel K and the bandwidth ensure that Assumptions 4 and 7 of

Hahn et al. (1999) hold.

Last, the condition E(|Y |δ|Z) <∞ of Proposition 2.2 ensure that E(|Y −E(Y |Z)|δ|Z) <∞,

which is a sufficient condition to Assumption 6 of Hahn et al. (1999), when δ ≥ 3.

Hence, we can directly apply Hahn et al. (1999) when δ ≥ 3. Moreover, their reasoning,

which is based on Lyapounov’s central limit Theorem, also holds for δ ∈]2; 3[. We obtain:

n2/5

 â+Y − E(Y |Z = 0)

â+T − P(T = 1|Z = 0)

→ N
B+

 ∂2zE(Y |Z = 0+)

∂2zP(T = 1|Z = 0+)

 , V +

 V(Y |Z = 0+) Cov(Y, T |Z = 0+)

Cov(Y, T |Z = 0+) V(T |Z = 0+)



n2/5

 â−Y − E(Y |Z = 0)

â−T − P(T = 1|Z = 0)

→ N
B−

 ∂2zE(Y |Z = 0−)

∂2zP(T = 1|Z = 0−)

 , V −

 V(Y |Z = 0−) Cov(Y, T |Z = 0−)

Cov(Y, T |Z = 0−) V(T |Z = 0−)



The symmetry of K ensures that B+ = B− and V + = V −. Moreover, the continuity of

z 7→ ∂2zE(T |Z = z) on the interior of the support of Z ensures that ∂2zE(T |Z = 0+) =
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∂2zE(T |Z = 0−) = ∂2zE(T |Z = 0). Similar argument holds for ∂2zE(Y |Z = 0), V(Y |Z = 0),

Cov(Y, T |Z = 0) and V(T |Z = 0) = E(T |Z = 0)(1 − E(T |Z = 0)). The continuous

mapping Theorem ensures that:

n2/5

 â+Y − â
−
Y

â+T − â
−
T

→ N
 0

0

 , 2V +

 V(Y |Z = 0) Cov(Y, T |Z = 0)

Cov(Y, T |Z = 0) V(T |Z = 0)


It follows that θ̂LLR tends in distribution to a Cauchy of location Cov(Y,T |Z=0)

V(T |Z=0)
and scale(

V(Y |Z=0)
V(T |Z=0)

− Cov2(Y,T |Z=0)
V2(T |Z=0)

)1/2
.

A.3 Proof of Theorem 3.1

We follow the steps of D’Haultfœuille (2010). We first prove that P(T = 1|Z∗) = p(Z∗) is

identified. Under Assumption 2, the support condition and the law of iterated expectation,

we have:

E
(

1

P(T = 1|Z∗)
|T = 1, Z

)
=

1

P(T = 1|Z)
(A.1)

Under Assumption 3, the right hand side of this equation is identified because the distri-

bution of (Y, T, Z) is identified from the main sample. Moreover, for any known function

f , E(f(Z∗)|T = 1, Z) is identified because the distribution of (Z∗, Z)|T = 1 is identi-

fied from the auxiliary data. It follows that the region of identification of 1/p(z∗) is the

set of functions f such that E(f(Z∗)|T = 1, Z) = 1/E(T |Z). Suppose that there exist

two functions f and g verifying equation A.1. Then their difference verifies: E(f(Z∗) −

g(Z∗)|T = 1, Z) = 0. Using Assumption 2 and the law of iterated expectation, we have:

E((f(Z∗)− g(Z∗)).p(Z∗)|Z) = E(f(Z∗)− g(Z∗)|T = 1, Z).P(T = 1|Z). This ensures that

E((f(Z∗) − g(Z∗)).p(Z∗)|Z) = 0. Following the completeness condition (Assumption 4),

this implies that (f(Z∗) − g(Z∗)).p(Z∗) = 0. Because of the support condition, we ob-

tain that f = g. The region of identification reduces to one single element and p(Z∗) is

identified.

For any function g, we now prove identification of E(g(Y, T )|Z∗ = z∗) = h(z∗). We follow
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the same reasoning as above. The identifying moment condition writes:

E
(

h(z∗)

P(T = 1|Z∗)
|T = 1, Z

)
=

E(g(Y, T )|Z)

P(T = 1|Z)
(A.2)

We obtain that the ratio h(z∗)/p(z∗) is identified. As p(z∗) is identified above, h(z∗) =

E(g(Y, T )|Z∗ = z∗) is identified. As this is true for any function g, the joint distribution

of (Y, T )|Z∗ is identified. This is sufficient to identify the Wald ratio θ.

The distribution of Z|Z∗, T = 1 is identified from the sample of treated and Assumption 2

ensures that the distribution of Z|Z∗ is identified and then the distribution of (Y, T, Z)|Z∗.

The distribution of Z∗ is identified because P(T = 1|Z∗) is identified by Equation 3.1 and

the distribution of T and Z∗|T = 1 are directly identified from the data. It follows that

the distribution of (Z∗, Z, T, Y ) is identified.

A.4 Proof of Theorem 4.1

Let ξ0 = (p,m0,m1) and ξ̂ = (p̂, m̂0, m̂1). Note that Q(ξ) ≥ 0 for any ξ ∈ H and the

condition of identification ensures that Q(ξ) = 0 ⇔ ξ = ξ0. Let ||ξ̂ − ξ0||∞ = sup(||p̂ −

p||∞, ||m̂0 − m0||∞, ||m̂1 − m1||∞) We will prove that for any δ > 0, P
(
||ξ̂ − ξ0||∞ ≥ δ

)
tends to zero.

For any sequence ξn,na ∈ Hn,na the following inequalities hold:

Q(ξ̂) ≤ Q(ξ̂)−Qn,na(ξ̂) +Qn,na(ξ̂)−Qn,na(ξn,na)

+Qn,na(ξn,na)−Q(ξn,na) +Q(ξn,na)

≤ Qn,na(ξ̂)−Qn,na(ξn,na) + 2 supξ∈Hn,na |Qn,na(ξ)−Q(ξ)|+Q(ξn,na)

Let Un,na = infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ). Assume thatQ(ξn,na) = o (Un,na) and supξ∈Hn,na |Qn,na(ξ)−

Q(ξ)| = op (Un,na). In that case:

lim sup
n,na

P
(
||ξ̂ − ξ0||∞ ≥ δ

)
≤ lim sup

n,na

P
(
Un,na ≤ Qn,na(ξ̂)−Qn,na(ξn,na) + op(Un,na)

)
The right hand side tends to zero because Qn,na(ξ̂)−Qn,na(ξn,na) ≤ 0 and Un,na > 0, and

in that case the consistency of our estimator is ensured.

So the proof is decomposed is three steps:
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1. Control of infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

2. Existence of a sequence ξn,na such that Q(ξn,na) = o
(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
3. Uniform control onHn,na : supξ∈Hn,na |Qn,na(ξ)−Q(ξ)| = op

(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
In the first step of the proof, we will show that it exists c(δ) an increasing function of δ

that does not depend on n, na such that infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ) ≥ c(δ) > 0. Then, in the

second and third step, we only need to show that Q(ξn,na) = op(1) and supξ∈Hn,na |Qn(ξ)−

Q(ξ)| = op (1).

In the following for any integer d > 0 and any vector in v ∈ Rd, ||v||2 denotes the Euclidian

norm of v.

1. First step: Control of infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ).

Let Cp = 1 + C,C0 = C1 = c + C, and BR closed balls of radius C· of the Hölder

space C1,1(] − 1; 0[∪]0; 1[), i.e. ||f ||H = ||f ||∞ + supz 6=z′
|f(z)−f(z′)|
|z−z′| < R. We have

Hn,na ⊂ H ⊂ BCp × BC0 × BC1 . The Arzelà-Ascoli Theorem ensures that BCp and

BC0,1 are compact for the supremum norm. Then BCp×B2
C0,1

is a compact space (for

the norm ||ξ||∞ = sup(||p||∞, ||m0||∞, ||m1||∞)). As a close subset of a compact, H

and then H ∩ {ξ : ||ξ − ξ0||∞ ≥ δ} are compact.

Moreover Q(ξ) is continuous for the supremum norm on H, then Q(H ∩ {ξ : ||ξ −

ξ0||∞ ≥ δ}) is compact. And the condition of identification ensures that Q is mini-

mum (and null) only for ξ = ξ0.

So, it exists ξ∗ ∈ H ∩ {ξ : ||ξ − ξ0||∞ ≥ δ} that does not depend on n, na such

that infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ) ≥ infξ∈H,||ξ−ξ0||∞≥δ Q(ξ) ≥ Q(ξ∗) > 0. Then it follows

(with a slight abuse of notation) that "op
(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
= op(1)" and

"o
(
infξ∈Hn,na ,||ξ−ξ0||∞≥δ Q(ξ)

)
= o(1)".

2. Second step: Existence of a sequence ξn,na such that Q(ξn,na) = o (1).
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The spline properties ensures that for every ξ0 inH, it exists ξn,na = (pn,na ,m0,n,na ,m1,n,na)

such that ||ξn,na − ξ0||∞ = O((min(kp+n,na , k
p−
n,na , k

0+
n,na , k

0−
n,na , k

1+
n,na , k

1−
n,na))

−1). The con-

dition of the Theorem 4.1 ensures that ||ξn,na − (p,m0,m1)||∞ = o(1) and then by

continuity of Q on H, Q(ξn,na) tends to Q(ξ0) = 0.

3. Third step: uniform control of Qn,na(ξ)−Q(ξ) on Hn,na .

We have:

supξ∈Hn,na |Qn,na(ξ)−Q(ξ)| ≤∑
j=p,0,1 supξj∈Hn,na

∣∣∣ 1n∑i∈S Ê (ρj(W, ξ)|Z = Zi)
2 − E (ρp(W, ξ)|Z = Zi)

2
∣∣∣

In the following, we prove that:

sup
ξ∈Hn,na

∣∣∣∣∣ 1n∑
i∈S

Ê (ρp(W, ξ)|Z = Zi)
2 − E (ρj(W, ξ)|Z = Zi)

2

∣∣∣∣∣ = Op(ln,na/n)

The same reasoning and the same results hold for the two others terms (j = 0, 1) of

the previous sum.

First, we restrict the proof to the case where we observe an iid sample of W =

(Y, Z, TZ∗, T ), in this case
∑

i∈Sa Ti = na and Sa = {i ∈ S : Ti = 1}.

For any ξ ∈ Hp
n,na , let ĝp(z, ξ) = Ê(ρp(W, ξ)|Z = z) = Bp(z)Ê(Bp′(Z)Bp(Z))−1Ê(Bp′(Z)ρp(W, ξ))

and gp(z, ξ) = E(ρp(W1, ξ)|Z1 = z), with ρp(W, ξ) = T
ξ(Z∗)

− 1. For any ξ ∈ Hp
n,na and

any i ∈ S, we have:

ĝ2p(Zi, ξ)− g2p(Zi, ξ) = (ĝp(Zi, ξ)− gp(Zi, ξ))2 + 2gp(Zi, ξ) (ĝp(Zi, ξ)− gp(Zi, ξ))

≤ (ĝp(Zi, ξ)− gp(Zi, ξ))2 + 2 |gp(Zi, ξ)| |ĝp(Zi, ξ)− gp(Zi, ξ)|

Then by Cauchy-Schwartz inequality,

1
n

∑n
i=1 ĝ

2
p(Zi, ξ)− g2p(Zi, ξ) ≤ 1

n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

+2
(
1
n

∑n
i=1 gp(Zi, ξ)

2
)1/2 ( 1

n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

)1/2
≤ 1

n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

+2 sup
(

1, 1
c
− 1
) (

1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

)1/2
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Then to control 1
n

∑n
i=1 ĝ

2
p(Zi, ξ) − g2p(Zi, ξ), uniformly on Hp

n,na , we have to control

uniformly 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2.

Adapting the proof of Theorem 1 of Newey (1997), we can show that for any ξ ∈ Hp
n,na

that 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2 = Op

(
ln,na
n

+ l−γn,na

)
. However this result is not

sufficient because it is not uniform. To show that this holds uniformly on Hp
n,na , we

will use various theorems related to the behavior of empirical process, as explained

in van der Vaart (2000), Chapter 19 or in van der Vaart & Wellner (1996).

Up to an affine change from [0; 1] to [l;u], the base B considered in Lemma A.2 verifies

Assumption 2 of Newey (1997), i.e. E (B′(Z)B(Z)) has a smallest eigenvalue bounded

away from 0 uniformly in ln,na := dim
(
Ipn,na

)
by λ and supz ||B(z)||2 ≤ ζ0(ln,na) =

l
[max(αu,αl)+1]/2
n,na . The condition of the Theorem 4.1 ensures that ζ0(ln,na)2ln,na/n→ 0.

Let B(z) = B(z)E (B′(Z)B(Z))−1/2, B is such that supz ||B(z)||2 ≤ ζ0(ln,na) =

1
λ
ζ0(ln,na), with ζ0(ln,na)2ln,na/n→ 0 and E

(
B
′
(Z)B(Z)

)
= Iln,na+1. Because means

square prediction is invariant by linear transformation of regressors, we can assume

without loss of generality that B(Z) is used as the base of Ipn,na .

Let An = 1{infu∈Rk u
′Ê
(
B
′
(Z)B(Z)

)
u ≥ ||u||22/2}, the dummy variable that the

smallest eigenvalue of the empirical estimator Ê
(
B
′
(Z)B(Z)

)
= 1

n

∑n
i=1B

′
(Zi)B

′
(Zi)

is greater than 1/2 (or equivalently the dummy variable that the highest eigenvalue

of
[
1
n

∑n
i=1B

′
(Zi)B

′
(Zi)

]−1
is lower than 2). Under the conditions of Theorem 4.1,

namely lpn,na = o(n1/(2+max(αu,αl))), An tends to 1 in probability.

Let B the matrix of size n× k of elements Bj(Zi), and let Gp(ξ) the column vector

of component E(ρp(W, ξ)|Z = Zi). We define g̃p(Zi, ξ) = B(Zi)(B
′
B)−1B

′
Gp(ξ).

Following the usual strategy (see for instance Newey (1997) or Chen & Pouzo (2012)),

we use the triangle inequality to split 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2 in three terms:[

1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

]1/2 ≤ [
1
n

∑n
i=1 (ĝp(Zi, ξ)− g̃p(Zi, ξ))2

]1/2
+
[
1
n

∑n
i=1

(
g̃p(Zi, ξ)−B(Zi)πξ

)2]1/2
+
[
1
n

∑n
i=1

(
B(Zi)πξ − gp(Zi, ξ)

)2]1/2
,
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The second term can be bounded by the third one, because of the projection prop-

erties of B:

1
n

∑n
i=1

(
B(Zi)πξ − g̃p(Zi, ξ)

)2
= 1

n

∑n
1=1

(
B(Zi)(B

′
B)−1B

′
(Bπξ −Gp(ξ))

)2
= 1

n
(Bπξ −Gp(ξ))

′B(B
′
B)−1B

′
(Bπξ −Gp(ξ))

≤ 1
n

(Bπξ −Gp(ξ))
′ (Bπξ −Gp(ξ))

= 1
n

∑n
i=1

(
B(Zi)πξ − gp(Zi, ξ)

)2
Applying Lemma A.3 to the function z∗ 7→ E(ρp(W )|Z∗ = z∗), we know that there

exists πξ such 1
n

∑n
i=1

(
B(Zi)πξ − gp(Zi, ξ)

)2
= Op(l

−γ
n,na) uniformly on Hn,na .

The rest of the proof is dedicated to bound the first term of inequality 3. This is

sufficient to bound this term under the condition of event An (because An tends to 1

in probability). Let ε(ξ) the vector of component εi(ξ) = ρp(Wi, ξ)−gp(Zi, ξ). When

the smallest eigenvalue of Ê(B
′
(Z)B(Z)) = 1

n
B
′
B is greater than 1/2 (An = 1), we

have:
An supξ∈Hn,na

1
n

∑n
i=1 (ĝp(Zi, ξ)− g̃p(Zi, ξ))2

≤ An supξ∈H
1
n

∑n
i=1 (ĝp(Zi, ξ)− g̃p(Zi, ξ))2

= An supξ∈H
1
n
ε(ξ)′B

(
B
′
B
)−1

B
′
ε(ξ)

≤ 2An supξ∈H
1
n2 ε(ξ)

′BB
′
ε(ξ)

= 2An supξ∈H
∑ln,na

j=1

(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
≤ 2An

∑ln,na
j=1 supξ∈H

(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
Moreover, the Markov inequality ensures that there exists a constant M (uniform in

ln,na) such that :

P
(∑ln,na

j=1 supξ∈H
(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
> M ln,na

n

)
≤ n

Mln,na
E
(∑ln,na

j=1 supξ∈H
(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2)
≤ 1

M
max1≤j≤ln,na E

(
supξ∈H

(
1√
n

∑n
i=1Bj(Zi)εi(ξ)

)2)
= 1

M
max1≤j≤ln,na E

((
supξ∈H

∣∣∣ 1√
n

∑n
i=1Bj(Zi)εi(ξ)

∣∣∣)2)
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Conditions of regularity imply that the class Ej of functions f(Wi) = Bj(Zi)εi(ξ)

indexed by ξ ∈ Hp has for enveloppe function

F Ej(Wi) = |Bj(Zi)| ×max

(∣∣∣∣Tic − E(T |Z = Zi)

∣∣∣∣ , ∣∣∣∣Ti − E(
T

c
|Z = Zi)

∣∣∣∣) ,
which is always square integrable and such that:

Bj(Z)2(1 + c−1)2 ≥ E
(
F Ej(W )2|Z

)
≥ Bj(Z)2(1− c)2.

Then for any j = 1, ..., ln,na , because E
(
Bj(Zi)εi(ξ)

)
= 0, Theorem 2.14.5 of van der

Vaart & Wellner (1996) ensures that it exists an universal constant M0 such that:

E
((

supξ∈H

∣∣∣ 1√
n

∑n
i=1Bj(Zi)εi(ξ)

∣∣∣)2)
≤M0E

(
supξ∈H

∣∣∣ 1√
n

∑n
i=1Bj(Zi)εi(ξ)

∣∣∣)
+M0(1 + c−1)

Theorem 2.14.2 of van der Vaart & Wellner (1996) ensures that it exists another

universal constant M1 such that:

E
(

supξ∈H

∣∣∣ 1√
n

∑n
i=1Bj(Zi)εi(ξ)

∣∣∣) ≤M1(1 + c−1)
∫ 1

0

(
1 + LogN[]

(
u(1− c), Ej, ||.||L2(W )

))1/2
du

where, for a class of function F ⊂ Lr(W ), the bracketing number N[](u,F , Lr(W ))

denotes the minimum number of u-bracket necessary to cover F . A u-bracket in

Lr(W ) is a set of the form {f ∈ F : f ≤ f ≤ f} with f, f ∈ Lr(W ) and ||f −

f ||Lr(W ) ≤ u.

Let Oj the class of functions f(Wi) = Bj(Zi)ρp(Wi, ξ) indexed by ξ ∈ H. For any

f1, f2 ∈ Ej it exists ξ1, ξ2 ∈ Hp such that fq(W ) = Bj(Z)ρp(W, ξq)−Bj(Z)E(ρp(W, ξq)|Z).

The triangle inequality ensures:

||f1 − f2||L2(W ) ≤ ||Bj(Z)ρp(W, ξ1)−Bj(Z)ρp(W, ξ2)||L2(W )

+ ||Bj(Z)E(ρp(W, ξ1)|Z)−Bj(Z)E(ρp(W, ξ2)|Z)||L2(W )

≤ 2||Bj(Z)ρp(W, ξ1)−Bj(Z)ρp(W, ξ2)||L2(W )

It follows that N[]

(
u, Ej, ||.||L2(W )

)
≤ N[]

(
u
2
,Oj, ||.||L2(W )

)
.
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Moreover, for any f1, f2 ∈ Oj, it exists ξ1, ξ2 ∈ Hp such that |f1(w) − f2(w)| ≤
|Bj(z)|
c2
||ξ1 − ξ2||∞ with

(
E
(
Bj(Z)

2

c4

))1/2
= 1

c2
.

Theorem 2.7.11 of van der Vaart & Wellner (1996) ensures that:

N[]

(
2u

c2
,Oj, ||.||L2(W )

)
≤ N (u,Hp, ||.||∞)

where the covering number N(u,F , Lr(W )) denotes the minimal number of Lr(W )

balls of radius u needed to cover the functional set F .

Under assumptions 7.1, 7.2, 7.3 defining Hp, Theorem 2.7.1 of van der Vaart &

Wellner (1996) ensures that it exists an universal constant M2 such that:

logN (u,Hp, ||.||∞) ≤M2u
−1.

It follows that:

P
(∑ln,na

j=1 supξ∈H
(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
> M n

ln,na

)
≤ M0

M
(1 + c−1)

[
1 +M1

∫ 1

0

(
1 + 4M2

(1−c)c2u
−1
)1/2

du

]

Then
∑ln,na

j=1 supξ∈H
(
1
n

∑n
i=1Bj(Zi)εi(ξ)

)2
= Op(ln,na/n).

We now extend this result to the general case of Assumption 3, when the two samples

cannot be matched. Let ǧp(z, ξ) the previous unfeasible estimator of E(ρp(W )|Z = z)

computed under the assumption that (Y, T, Z, TZ∗) is observed in the main sample.

By triangle inequality,[
1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2

]1/2 ≤ [
1
n

∑n
i=1 (ĝp(Zi, ξ)− ǧp(Zi, ξ))2

]1/2
+
[
1
n

∑n
i=1 (ǧp(Zi, ξ)− gp(Zi, ξ))2

]1/2
,

We already have shown that the second term is such that supξ
1
n

∑n
i=1 (ǧp(Zi, ξ)− gp(Zi, ξ))2 =

Op(ln,na/n).

The first term is such that:
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An supξ
1
n

∑n
i=1 (ĝp(Zi, ξ)− ǧp(Zi, ξ))2

≤ 2An
∑ln,na

j=1 supξ

(
1
n

(∑
i∈S Ti

1
na

)∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )−

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )
)2

≤ 6An
∑ln,na

j=1 supξ
[
1
n

∑
i∈S Ti

]2 [ 1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2
+6An

∑ln,na
j=1 supξ

(
1
n

(∑
i∈S Ti

)
E
(
Bj(Z)/ξ(Z∗)|T = 1

)
− E

(
Bj(Z)T/ξ(Z∗i )

))2
+6An

∑ln,na
j=1 supξ

(
1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

))2
≤ 6Anln,na max1≤j≤ln,na supξ

[
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2
+6Anln,na

n

(
1√
n

∑
i∈S Ti − P(T = 1)

)2
max1≤j≤ln,na supξ E

(
Bj(Z)/ξ(Z∗)|T = 1

)2
+6Anln,na max1≤j≤ln,na supξ

(
1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

))2
The first inequality holds because Anu′

[
B
′
B
]−1

u ≤ 2Anu
′u and supx

∑
k fk(x) ≤∑

k supx fk(x). The second because (a+b+c)2 ≤ 3(a2+b2+c2). The third inequality

holds because T ≤ 1 and E
(
Bj(Z)/ξ(Z∗)

)
= E

(
Bj(Z)/ξ(Z∗)|T = 1

)
P(T = 1) and∑K

k=1 supx fk(x) ≤ K maxk supx fk(x).

We have
E
(
Bj(Z)/ξ(Z∗)|T = 1

)2 ≤ E
(
Bj(Z)2/ξ(Z∗)2|T = 1

)
≤ 1

c2P(T=1)
E
(
TBj(Z)2

)
≤ 1

c3
,

and
(

1√
n

∑
i∈S Ti − P(T = 1)

)2
= Op(1). Then,

6Anln,na
n

(
1√
n

∑
i∈S

Ti − P(T = 1)

)2

max
1≤j≤ln,na

sup
ξ

E
(
Bj(Z)/ξ(Z∗)|T = 1

)2
= Op(ln,na/n).

Moreover (by Markov inequality),

P
(

max1≤j≤ln,na supξ
(
1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

))2
> M ln,na

n

)
≤ 1

M
max1≤j≤ln,na E

((
supξ∈H

∣∣∣ 1√
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

)∣∣∣)2)
and

P
(

max1≤j≤ln,na supξ

(
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

))2
> M ln,na

n

)
≤ 1

M
max1≤j≤ln,na E

((
supξ∈H

∣∣∣ 1√
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)∣∣∣)2)
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The classes Fj = {f : f(z, z∗, t) = Bj(z)t/ξ(z∗), ξ ∈ Hp} (respectively F1
j =

{f : f(z, z∗) = Bj(z)/ξ(z∗), ξ ∈ Hp}) has for envelope function FFj(z, z∗, t) =

Bj(z)/c (respectively FF
1
j (z, z∗) = Bj(z)/c). We have E

(
FFj(Z,Z∗, T )2

)
= c−2

and E
(
FF

1
j (Z,Z∗, T )2|T = 1

)
= E

(
Bj(Z)2|T = 1

)
c−2 ∈ [c−1; c−3].

Theorems 2.14.5 and 2.14.2 of van der Vaart & Wellner (1996) ensure that it exists

positive numbers M3, ...M8 (depending only on c) such that:

E
((

supξ∈H

∣∣∣ 1√
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

)∣∣∣)2)
≤M3 +M4

∫ 1

0

(
1 + LogN[](M5u,Fj, ||.||L2(W ))

)1/2
du

and

E
((

supξ∈H

∣∣∣ 1√
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)∣∣∣)2)
≤M6 +M7

∫ 1

0

(
1 + LogN[](M8u,F1

j , ||.||L2(W |T=1))
)1/2

du

Moreover, |Bj(z)t
ξ1(z∗)

− Bj(z)t

ξ2(z∗)
| ≤ |Bj(z)|t

c2
||ξ1 − ξ2||∞, with E(Bj(Z)2T ) ≤ 1 and | Bj(z)

ξ1(z∗)
−

Bj(z)

ξ2(z∗)
| ≤ |Bj(z)|

c2
||ξ1 − ξ2||∞, with E(Bj(z)2|T = 1) ≤ c−1. Then Theorems 2.7.11 and

2.7.1 of van der Vaart & Wellner (1996) imply that it exists M9 and M10 depending

only on c and C such that:

N[](u,Fj, ||.||L2(W )) ≤ N[](u||Bj(Z)T ||L2(W ),Fj, ||.||L2(W )) ≤ N(u/2,HP , ||.||∞) ≤ exp(M9u
−1),

and

N[](u,F1
j , ||.||L2(W |T=1)) ≤ N[](uc

1/2||Bj(Z)||L2(W |T=1),F1
j , ||.||L2(W |T=1))

≤ N(uc1/2/2,HP , ||.||∞) ≤ exp(M10u
−1).

It follows that:

∑ln,na
j=1 supξ

[
1
na

∑
i∈Sa Bj(Zi)/ξ(Z

∗
i )− E

(
Bj(Z)/ξ(Z∗)|T = 1

)]2
= Op(ln,na/n),∑ln,na

j=1 supξ
[
1
n

∑
i∈S Bj(Zi)Ti/ξ(Z

∗
i )− E

(
Bj(Z)T/ξ(Z∗)

)]2
= Op(ln,na/n).

And then 1
n

∑n
i=1 (ĝp(Zi, ξ)− gp(Zi, ξ))2 = Op(ln,na/n).

Lemma A.2 (Smallest eigenvalue)

Let f be a positive continuous integrable function from [0; 1], bounded away from 0 on
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every compact included in ]0; 1[ and f(t) ∼t∼1 C1(1 − t)α1 and f(t) ∼t∼0 C0t
α0. Let

δ ≤ 1 ≤ δ, t0 = 0 < t1 < ... < tk = 1 such that ti+1 − ti ∈ [δ/k; δ/k] and bi(t) =

t−ti−1

ti−ti−1
1[ti−1;ti](t) + ti+1−t

ti+1−ti1[ti;ti+1](t) for i = 1, ..., k − 1, b0(t) = t1−t
t1
1[0;t1](t) and bk(t) =

t−tk−1

1−tk−1
1[tk−1;1](t). Let Bk(t) = [b0(t), ..., bk(t)] the row vector of size k + 1. The smallest

eigenvalue of kmax(α0,α1)+1
∫
[0;1]

B′k(t)Bk(t)f(t)dt is bounded away from zero.

Proof of Lemma A.2:

Let u = (u1, ..., uk+1) ∈ Rk+1, we have:

u

(∫
[0;1]

B′k(t)Bk(t)f(t)dt

)
u′ =

1

t21
(u1, u2)

∫ t1

0

 (t1 − t)2 (t1 − t)t

(t1 − t)t t2

 f(t)dt(u1, u2)
′

+
k−2∑
i=1

1

(ti+1 − ti)2
(ui+1, ui+2)

∫ ti+1

ti

 (ti+1 − t)2 (ti+1 − t)(t− ti)

(ti+1 − t)(t− ti) (t− ti)2

 f(t)dt(ui+1, ui+2)
′

+
1

(1− tk−1)2
(uk, uk+1)

∫ 1

tk−1

 (t− 1)2 (tk−1 − t)(t− 1)

(tk−1 − t)(t− 1) (tk−1 − t)2

 f(t)dt(uk, uk+1)
′

For sufficiently large k then f(t) ≥ min(f(t1), f(1 − tk−1)) ≥ min(C0, C1)k
−max(α0,α1) for

any t ∈ [t1; tk−1], we have:

k−2∑
i=1

1

(ti+1 − ti)2
(ui+1, ui+2)

∫ ti+1

ti

 (ti+1 − t)2 (ti+1 − t)(t− ti)

(ti+1 − t)(t− ti) (t− ti)2

 f(t)dt(ui+1, ui+2)
′

≥ δ

3k

(
u22/2 +

k−1∑
i=3

u2i + u2k/2

)
Ck−max(α0,α1)

Because
∫ ti+1

ti

 (ti+1 − t)2 (ti+1 − t)(t− ti)

(ti+1 − t)(t− ti) (t− ti)2

 dt = (ti+1 − ti)3/3

 1 1/2

1/2 1
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The first term is bounded below by:

1

t21
(u1, u2)

∫ t1

0

 (t1 − t)2 (t1 − t)t

(t1 − t)t t2

 f(t)dt(u1, u2)
′

≥ C0

2t21
(u1, u2)

∫ t1

0

 (t1 − t)2 (t1 − t)t

(t1 − t)t t2

 tα0dt(u1, u2)
′

=
C0

2t21
(u1, u2)

 tα0+3
1 ( 1

α0+1
− 2

α0+2
+ 1

α0+3
) tα0+3

1 ( 1
α0+2

− 1
α0+3

)

tα0+3
1 ( 1

α0+2
− 1

α0+3
) tα0+3

1 ( 1
α0+3

)

 (u1, u2)
′

≥ C0δ
α0+1λ

2kα0+1 (u21 + u22)

Where λ is smallest eigenvalue of 1
α0+1

− 2
α0+2

+ 1
α0+3

1
α0+2

− 1
α0+3

1
α0+2

− 1
α0+3

1
α0+3


Similarly, the last term is bounded below by K1

kα1+1 (u2k + u2k+1), where K1 depends only on

α1, C1 and δ.

At least, kmax(α0,α1)+1
∫
[0;1]

B′k(t)Bk(t)f(t)dt is bounded away from zero.

Lemma A.3 Let R be the set of function from [−1; 1] to R bounded by 1 and B the base

of linear normalized B-splines [l, u] of cardinal k + 1. Under Assumption 7.4 and 7.5, it

exists a constant M and γ > 0 such that for any ρ ∈ R it exists πρ ∈ Rk+1 such that:

E
(
[E(ρ(Z∗)|Z)−B(Z)πρ]

2) ≤Mk−γ

Consequently,

lim
M→∞

sup
ρ∈[−1;1][−1;1]

sup
n∈N

P

(∣∣∣∣∣ 1n
n∑
i=1

(E(ρ(Z∗)|Z = Zi)−B(Zi)πρ)
2

∣∣∣∣∣ > Mkγ

)
= 0

Proof of Lemma A.3:

Let I =
[
l + bkβc/k;u− bkβc/k

]
with β < 1, for any z ∈ I:

|f ′Z(z)| =
∣∣∣∣∫ 1

−1
f ′Z|Z∗=z∗fZ∗(z

∗)dz∗
∣∣∣∣ ≤ ∫ 1

−1
sup
z∈I

∣∣f ′Z|Z∗=z∗∣∣ fZ∗(z∗)dz∗
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This implies that it exists D1 such supz∈I |f ′(z)| ≤ D1

(
1 +

(
bkβc/k

)min(αu,αl)−1
)
, similarly

it exists D2 such that supz∈I 1/|fZ(z)| ≤ D2

(
bkβc/k

)max(αl,αu).

∂

∂z
E(ρ(Z∗)|Z = z) = −f

′
Z(z)

fZ(z)
E(ρ(Z∗)|Z = z) +

1

fZ(z)

∫
ρ(z∗)f ′Z|z=z∗(z)fZ∗(z

∗)dz∗

So it existsD3 such that :
∣∣ ∂
∂z
E(ρ(Z∗|Z = z)

∣∣ ≤ D3

(
1 + k(1−β)(1−min(αl,αu))

)
k(1−β)(max(αl,αu)).

Let πρ the vector of size k with ith component equal to 0 for i = 0, ..., bkβc − 1 and

i = k − bkβc + 1, ..., k and ith component equal to E (ρ(Z∗)|Z = i/k) otherwise. Let γ =

max (αl, αu, 1−min(αl, αu) + max(αl, αu)). It existsD4 such that for all ρ: supz∈I |E(ρ(Z∗)|Z =

z)−B(z)πρ| ≤ D4k
(1−β)γ−1. It follows that,

∫
I

[E(ρ(Z∗)|Z)−B(Z)πρ]
2 fZ(z)dz ≤ D2

4k
2(1−β)γ−2.

Moreover, it exists D5, D6 such that:∫ l+bkβc/k

l

[E(ρ(Z∗)|Z)−B(Z)πρ]
2 fZ(z)dz ≤

∫ l+bkβc/k

l

fZ(z)dz ≤ D5k
(β−1)(αl+1)

∫ u

u−bkβc/k
[E(ρ(Z∗)|Z)−B(Z)πρ]

2 fZ(z)dz ≤
∫ u

u−bkβc/k
fZ(z)dz ≤ D6k

(β−1)(αu+1)

For β sufficiently close to 1, we have γ := min (2− 2(1− β)γ, (1− β)(αu + 1), (1− β)(αl + 1)) ≥

0 and M = max(D2
4, D5, D6) such that:

E
(
[E(ρ(Z∗)|Z)−B(Z)πρ]

2) ≤Mk−γ

The Markov inequality implies that:

lim
M→∞

sup
ρ∈[−1;1][−1;1]

sup
n∈N

P

(∣∣∣∣∣ 1n
n∑
i=1

(E(ρ(Z∗)|Z = Zi)− Πρ(Zi))
2

∣∣∣∣∣ > Mkγ

)
= 0

B Appendix: Tables

40



Table 2: Estimation in finite samples, Multiplicative Error

θ̂ θ̃ Donut estimator

Nb. of knots Sample size Bias Var. MSE Bias Var. MSE Bias Var. MSE

A. Small Measurement Error

1000 -0.969 10.63 11.57 -1.091 10.61 11.80 1.867 0.059 3.543

0 5000 0.344 1.009 1.128 0.212 1.033 1.078 1.846 0.012 3.421

25000 0.678 0.024 0.484 0.541 0.025 0.318 1.854 0.002 3.438

1000 -0.530 24.98 25.26 -0.547 20.44 20.73 1.870 0.062 3.557

1 5000 0.351 0.328 0.451 0.291 0.334 0.419 1.854 0.012 3.449

25000 0.512 0.078 0.34 0.444 0.079 0.277 1.850 0.002 3.425

1000 -0.738 325.0 325.5 -0.790 312.0 312.7 1.875 0.059 3.572

2 5000 0.074 0.578 0.584 0.054 0.562 0.565 1.857 0.012 3.461

25000 0.172 0.097 0.127 0.137 0.100 0.119 1.849 0.002 3.421

B. Large Measurement Error

1000 -0.009 2.818 2.818 -0.105 2.827 2.839 2.392 0.153 5.874

0 5000 0.681 0.127 0.591 0.561 0.133 0.448 2.361 0.025 5.598

25000 0.806 0.018 0.667 0.674 0.018 0.472 2.365 0.005 5.597

1000 -0.188 31.85 31.89 -0.223 22.60 22.65 2.389 0.149 5.856

1 5000 0.349 0.423 0.545 0.277 0.382 0.458 2.376 0.029 5.675

25000 0.512 0.110 0.373 0.422 0.104 0.283 2.362 0.005 5.586

1000 0.249 943.9 943.9 0.044 700.2 700.2 2.419 0.160 6.009

2 5000 0.142 2.639 2.660 0.122 1.430 1.445 2.367 0.027 5.631

25000 0.174 0.573 0.603 0.119 0.441 0.456 2.363 0.005 5.589

Note : Computation obtained with 1000 simulations. The same set of simulations is used for
all the estimators on the same line. The set of simulations changes across lines.
Z + 1 = (Z∗ + 1) · (1 + ε) with ε ∼ U[−0.1;0.1] for the DGP with small measurement error
and ε ∼ U[−0.2;0.2] for the DGP with large measurement error. Number of knots equal to 0
means that p, m0 and m1 are approximated by linear functions on [−1; 0] and [0; 1]. When the
number of knots is 1 (resp. 2), change in slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3,
1/3, 2/3). θ̂ refers to the estimator we present in the paper. θ̃ differs from θ̂ by the fact that
m1 is estimated by local linear regression on the treated. For the Donut estimator, the Wald
ratio is estimated using averages of Y and T, on individuals whose Z belong to [−0.2;−0.1] and
[0.1; 0.2].
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Table 3: Estimation in finite samples, Additive Error

Our estimator Naive estimator Unfeasible estimator

Nb. of knots Sample size Bias Var. MSE Bias Var. MSE Bias Var. MSE

A. Small Measurement Error

1000 -5.006 269.3 294.3 3.815 23638 23653 0.021 0.168 0.168

0 5000 -1.729 8.133 11.12 -1.050 106.5 107.6 0.011 0.043 0.043

25000 -0.443 2.688 2.884 -2.740 27.93 35.44 0.005 0.011 0.011

1000 -1.250 120.4 121.9 -1.045 24.15 25.24 0.040 0.154 0.156

1 5000 -0.445 3.475 3.673 -1.557 6.614 9.038 0.005 0.043 0.043

25000 -0.612 0.882 1.257 -2.726 18.53 25.96 0.011 0.010 0.011

1000 1.939 836.7 840.4 -2.321 655.6 661.0 0.014 0.169 0.170

2 5000 -0.124 18.80 18.81 -1.511 15.28 17.56 0.011 0.045 0.045

25000 0.027 1.535 1.536 -2.524 4.734 11.10 0.004 0.012 0.012

B. Large Measurement Error

1000 -4.040 123.9 140.2 -0.835 1526 1526 0.021 0.168 0.168

0 5000 -1.326 6.770 8.529 -2.688 2418 2425 0.011 0.043 0.043

25000 -0.149 1.843 1.865 -7.633 38282 38340 0.005 0.011 0.011

1000 -2.231 890.4 895.4 -1.856 3535 3538 0.040 0.154 0.156

1 5000 -0.22 3.520 3.569 0.237 2250 2250 0.005 0.043 0.043

25000 -0.309 1.122 1.218 0.383 10663 10663 0.011 0.010 0.011

1000 -15.91 2×105 2×105 -2.564 9040 9046 0.014 0.169 0.17

2 5000 0.661 285.2 285.6 28.798 8×105 8×105 0.011 0.045 0.045

25000 0.211 9.276 9.320 1.890 15287 15291 0.004 0.012 0.012

Note : Computation obtained with 1000 simulations. The same set of simulations is used for
all the estimators on the same line. The set of simulations changes across lines.
Z = Z∗ + ε with ε ∼ U[−0.1;0.1] for the DGP with small measurement error and ε ∼ U[−0.2;0.2]
for the DGP with large measurement error. Number of knots equal to 0 means that p, m0 and
m1 are approximated by linear functions on [−1; 0] and [0; 1]. When the number of knots is 1
(resp. 2), change in slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3, 1/3, 2/3).
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Table 4: Estimation in finite samples, Additive Error

θ̂ θ̃ Donut estimator

Nb. of knots Sample size Bias Var. MSE Bias Var. MSE Bias Var. MSE

A. Small Measurement Error

1000 -5.006 269.3 294.3 -5.244 287.2 314.7 1.851 0.059 3.483

0 5000 -1.729 8.133 11.12 -1.938 8.313 12.07 1.838 0.012 3.39 0

25000 -0.443 2.688 2.884 -0.644 2.760 3.174 1.843 0.002 3.401

1000 -1.250 120.4 121.9 -1.344 96.30 98.10 1.859 0.065 3.522

1 5000 -0.445 3.475 3.673 -0.594 3.509 3.862 1.843 0.012 3.409

25000 -0.612 0.882 1.257 -0.767 0.901 1.490 1.841 0.002 3.392

1000 1.939 836.7 840.4 0.995 793.6 794.6 1.861 0.060 3.525

2 5000 -0.124 18.8 18.81 -0.237 15.61 15.67 1.846 0.012 3.421

25000 0.027 1.535 1.536 -0.046 1.357 1.359 1.839 0.002 3.386

B. Large Measurement Error

1000 -4.040 123.9 140.2 -4.243 125.3 143.3 2.335 0.136 5.586

0 5000 -1.326 6.77 8.529 -1.528 6.899 9.234 2.301 0.024 5.321

25000 -0.149 1.843 1.865 -0.344 1.897 2.015 2.307 0.005 5.325

1000 -2.231 890.4 895.4 -2.263 1008 1013 2.328 0.131 5.550

1 5000 -0.220 3.520 3.569 -0.37 3.474 3.612 2.315 0.027 5.385

25000 -0.309 1.122 1.218 -0.456 1.106 1.315 2.302 0.005 5.307

1000 -15.91 2×105 2×105 -4.12 20937 20954 2.356 0.135 5.685

2 5000 0.661 285.2 285.6 0.426 189.6 189.8 2.309 0.025 5.357

25000 0.211 9.276 9.320 0.097 6.973 6.982 2.303 0.005 5.309

Note : Computation obtained with 1000 simulations. The same set of simulations is used for
all the estimators on the same line. The set of simulations changes across lines.
Z = Z∗ + ε with ε ∼ U[−0.1;0.1] for the DGP with small measurement error and ε ∼ U[−0.2;0.2]
for the DGP with large measurement error. Number of knots equal to 0 means that p, m0 and
m1 are approximated by linear functions on [−1; 0] and [0; 1]. When the number of knots is 1
(resp. 2), change in slope is allowed at −1/2 and 1/2 (resp. −2/3, −1/3, 1/3, 2/3). θ̂ refers to
the estimator we present in the paper. θ̃ differs from θ̂ by the fact that m1 is estimated by local
linear regression on the treated. For the Donut estimator, the Wald ratio is estimated using
averages of Y and T, on individuals whose Z belong to [−0.2;−0.1] and [0.1; 0.2].
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