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Abstract

This paper deals with aggregation of estimators in the context of regression with
fixed design, with heteroscedastic and subgaussian noise. We relate the task of aggre-
gating a finite family of affine estimators to the concentration of quadratic forms of the
noise vector, and we derive sharp oracle inequalities in deviation for model selection
type aggregation of affine estimators when the noise is subgaussian. Explicit numerical
constants are given for Gaussian noise. Then we present a new concentration result
that is sharper than the Hanson-Wright inequality under the Bernstein condition on the
noise. This allows us to improve the sharp oracle inequality obtained in the subgaus-
sian case. Finally, we show that up to numerical constants, the optimal sparsity oracle
inequality previously obtained for Gaussian noise holds in the subgaussian case. The
exact knowledge of the variance of the noise is not needed to construct the estimator
that satisfies the sparsity oracle inequality.

1 Introduction

We study the problem of recovering an unknown vector f = (f1, ..., fn)T ∈ Rn from
noisy observations

Yi = fi + ξi, i = 1, ..., n, (1.1)

where the noise random variables ξ1, ..., ξn are zero mean, subgaussian random vari-
ables. We measure the quality of estimation of the unknown vector f with the squared
euclidean norm in Rn:

‖f − f̂‖2
2,

for any estimator f̂ of f . When the noise random variables are normal, this is the Gaus-
sian sequence model, which has been extensively studied [20]. Several estimators have
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been proposed to recover the unknown vector f from the observations: the Ordinary
Least Squares, the Ridge regressors, the Stein estimator and the procedures based on
shrinkage, to name a few. Several of these estimators depend on a parameter that must
be chosen carefully to obtain satisfying error bounds. These available estimators have
different strengths and weaknesses in different scenarios, so it is important be able to
mimic the best among a given family of estimators, without any assumption on the
unknown regression vector f . The problem of mimicking the best estimator in a given
finite set is the problem of model-selection type aggregation, which was introduced in
[23, 29]. More precisely, let µ̂1, ..., µ̂M be M estimators of f based on the data Y1, ..., Yn.

The goal is to construct a new estimator or aggregate f̂ with the same data Y1, ..., Yn,
which satisfies with probability greater than 1 − ǫ:

∥∥∥f̂ − f

∥∥∥
2

2
≤ min

j=1,...,M
‖µ̂j − f‖2

2 + δn,M (ǫ),

where δn,M (·) is a function of ǫ that should be small. The above inequality is called
a sharp oracle inequality. Here, sharp means that the coefficient of the oracle risk
minj=1,...,M ‖µ̂j − f‖2

2 is 1, which is essential to derive minimax optimality results.
A first approach to mimic the best estimators in a given family is to use indepen-

dence by assuming that the estimators µ̂1, ..., µ̂n are independent of the observations
Y1, ..., Yn used for the aggregation step. For example, assume that two independent
samples (Y1, ..., Yn) and (Y ′

1 , ..., Y
′
n) are available, with Yi and Y ′

i independent and
identically distributed for all i = 1, ..., n. Then one can use the sample Y1, ..., Yn to
construct the estimators µ̂1, ..., µ̂M and use the independent sample Y ′

1 , ..., Y
′
n to ag-

gregate them. For the aggregation step, conditionally on Y1, ..., YM , the estimators
µ̂1, ..., µ̂M can be considered deterministic, thanks to independence. It is possible to
obtain such independent samples when the noise is Gaussian and the variance is known,
with sample cloning [28, Lemma 2.1], at the cost of a factor 2 in the variance of the
observations. However, this technique is specific to the Gaussian case and cannot be
used when the noise is only assumed to be subgaussian as in the present paper.

Among the procedures available to estimate f , several are linear in the observations
Y1, ..., Yn. It is the case for example of the Least Squares and the Ridge regressors,
whereas the shrinkage estimators and the Stein estimator are non-linear functions of the
observations. A description of the estimators that are linear or affine in the observations
is given in [11, Section 1.2], [1] and references therein. This linear behavior of the
estimators µ̂1, ..., µ̂M makes it possible to explicitly treat the dependence between the
estimators µ̂1, ..., µ̂M and the data Y1, ..., Yn used to aggregate them. Leung and Barron
[22] studied the problem of aggregation of projection estimators, and derived sharp
oracle inequalities in expectation with a procedure based on exponential weights. Then,
Dalalyan and Salmon [11] and Dai et al. [9] gave insights on how to construct an
aggregate to mimic the best candidate among a set or affine estimators. Here we also
consider affine estimators. Let y = (Y1, ..., Yn)T be the vector of observations. An
affine estimator is of the form µ̂j = Ajy+ bj for a deterministic matrix Aj of size n×n
and a deterministic vector bj ∈ Rn.

We consider in Section 3 that the variances of the noise random variables ξ1, ..., ξn
are known and in Section 4 that an upper bound on the subgaussian norm of the noise
vector is known. We refer the reader to [16] and the survey [17] for the problem of
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estimating the unknown vector f when the variance of the noise is unknown, which is
outside of the scope of the present paper.

As in the papers [11, 9], we consider the problem of aggregation of M affine estima-
tors with a prior probability distribution π1, ..., πM on the finite set of indices {1, ...,M}.
Prior weights is a common ingredient in deriving sharp oracle inequalities for model-
selection type aggregation [12, 10, 21, 4]. An example of such an oracle inequality
is (1.2) below. The use of sparsity-inducing prior weights is crucial to prove sparsity
oracle inequalities via sparsity pattern aggregation [25, 24, 9, 28]. When the noise is
Gaussian with variance σ2, the following sparsity oracle inequality was shown in [9] for
an estimator µ̂ and a design matrix X with p columns: with probability greater than
1 − 2 exp(−x),

‖µ̂− f‖2
2 ≤ min

θ∈Rp

(
‖Xθ − f‖2

2 + c σ2|θ|0 log

(
ep

1 ∨ |θ|0

))
+ c′σ2x.

In the previous display, c, c′ > 0 are absolute constants and |θ|0 denotes the number
of non-zero coefficients of θ. A similar result in expectation was shown in [25, 28],
also with the assumption that the noise random variables are normal. In Section 4, we
propose an estimator that achieves a similar sparsity oracle inequality in deviation, but
we only assume that the noise vector is subgaussian. It extends the previous results
[25, 24, 9, 28] to the subgaussian setting.

The papers [11, 9] derived different procedures that satisfy sharp oracle inequalities
for the problem of aggregation of affine estimators when the noise random variable are
Gaussian. Dalalyan and Salmon [11] proposed an estimator µ̂EW based on exponential
weights, for which a sharp oracle inequality holds in expectation:

E
∥∥f − µ̂EW

∥∥2

2
≤ min
j=1,...,M

(
E ‖µ̂j − f‖2

2 + β log
1

πj

)
, (1.2)

where β is a constant proportional to the largest variance of the noise random variables.
This oracle inequality in expectation holds for µ̂EW under a commutativity assumption
on the matrices Aj , which is enough to apply this oracle inequality to orthogonal pro-
jections on a set of coordinates. In the case where the matrices Aj are not symmetric,
[11] achieved a similar oracle inequality by symmetrizing the affine estimators before
the aggregation step, which suggests that the symmetry assumption can be relaxed.
Although the estimator µ̂EW achieves this inequality in expectation, it was shown in
[10] that this procedure cannot achieve a similar result in deviation, with an unavoid-
able error term of order

√
n. In Dai et al. [9], a sharp oracle inequality in deviation is

derived for an estimator µ̂Q based on Q-aggregation [10]. Namely, the estimator µ̂Q

satisfies with probability greater than 1 − δ:

∥∥f − µ̂Q
∥∥2

2
≤ min

j=1,...,M

(
‖µ̂j − f‖2

2 + 4σ2Tr(Aj) + β log
1

πj

)
+ β log

1

δ
, (1.3)

where β is a constant and the noise random variables are i.i.d. with variance σ2. This
bound shows that it is possible to achieve oracle inequalities in deviation in the context
of aggregation of affine estimators. However the extra term 4σ2Tr(Aj) may be large
in common situation where the trace of some matrices Aj is large. For example, if one
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aggregates the estimators µ̂1 = λ1y, ..., µ̂M = λMy, for some positive real numbers
λ1, ..., λM with the uniform prior πj = 1/M for all j = 1, ...,M , then the remainder
term 4σ2Tr(Aj) in the above oracle inequality is of order σ2nλj for each j = 1, ...,M ,
which is large relatively to the optimal rate σ2 logM . This term 4σ2Tr(Aj) makes the
previous oracle inequality suitable only for scenarios where the matrices Aj have small
trace.

The contributions of the present paper are the following:

• We propose an estimator that satisfies a sharp oracle inequality in deviation with-
out the extra term proportional to σ2Tr(Aj), under three different assumptions
on the noise. This is our main result and it is given in Theorem 3.1. Under the
three Assumptions 3.1 3.2 and 3.3, our estimator is suitable for situations involv-
ing matrices Aj with large trace, and it recovers the optimal rate proportional to
logM when the uniform prior is used. Assumption 3.1 deals with heteroscedastic
Gaussian noise and then explicit absolute constants are provided for the sharp
oracle inequality. Under Assumption 3.2, the noise random variables are indepen-
dent and subgaussian, and the multiplicative constant β may be arbitrarily large
for noise random variables with pathologically small variance. Assumption 3.3 is
slightly stronger than Assumption 3.2, which prevents the variance from being
too small relatively to its subgaussian norm, and under this third assumption
we can control the value of β. In earlier results [11, 9], only Gaussian noise was
considered.

• In order to prove Theorem 3.1 under Assumption 3.3, we derive a new concentra-
tion result for quadratic forms of independent random variables which is given
in Theorem 3.2. It is sharper than the Hanson-Wright inequality under Assump-
tion 3.3.

• The assumptions on the matrices A1, ..., AM are relaxed. In particular, they can
be non-symmetric and have negative eigenvalues.

• Using sparsity pattern aggregation, we derive a sparsity oracle inequality in de-
viation when the noise vector is subgaussian, without assuming independence of
the noise components. Theorem 4.1 recovers up to absolute constants the sparsity
oracle inequality obtained when the noise is Gaussian [25, 24, 9].

The paper is organized as follows. In Section 2 we define the notation used through-
out the paper. Section 3 defines an estimator and shows that it achieves sharp oracle
inequalities in deviation for aggregation of affine estimators under three different as-
sumptions on the noise. In Section 4, we derive a sparsity oracle inequality when the
noise vector is subgaussian. The concentration inequalities used in the paper are given
in Appendix A and the proofs are given in Appendix B.

2 Notation

We study an aggregation problem for the regression model with fixed design and het-
eroscedastic subgaussian noise. A random variable X is said to be subgaussian if and
only if the quantity

‖X‖ψ2
= sup

p≥1
p−1/2 (E|X |)1/p

4
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is finite. Several other definitions are used in the literature, see [30, Section 5.2.3] for
a review of their equivalence.

Let (f1, ..., fn)T ∈ Rn be an unknown regression vector. We observe n random
variables (1.1) where ξ1, ..., ξn are subgaussian random variables, with E[ξi] = 0 and
E[ξ2

i ] = σ2
i . The model is heteroscedastic, which means that the random variables

ξ1, ..., ξn may have different variances. It can be rewritten in the vector form y = f + ξ

where y = (Y1, ..., Yn)T , f = (f1, ..., fn)T and ξ = (ξ1, ..., ξn)T .

For any estimator f̂n of f , we measure the quality of estimation of f with the loss
‖f − f̂n‖2

2 where ‖·‖2 denotes the Euclidean norm in Rn. Let M ≥ 2. As in [11, 9], we
consider M affine estimators of the form

µ̂j = Ajy + bj, j = 1, ...,M.

The matrices A1, ..., AM and the vectors b1, ..., bM ∈ Rn are deterministic. Define the
simplex in RM :

ΛM =
{
θ ∈ RM ,

M∑

j=1

θj = 1, ∀j = 1 . . .M, θj ≥ 0
}

and for any θ ∈ ΛM , let µ̂θ =
∑M

j=1 θj µ̂j . Let e1, ..., eM be the vectors of the canonical

basis in RM . Then µ̂j = µ̂ej for all j = 1, ...,M .
Finally, for any n×n real matrix A = (ai,j)i,j=1,...,n, define the operator norm of A,

the Hilbert-Schmidt (or Frobenius) norm of A and the nuclear norm of A respectively
by:

|||A|||2 = sup
x 6=0

‖Ax‖2

‖x‖2

, ‖A‖HS =

√ ∑

i,j=1,...,n

a2
i,j , ‖A‖1 = Tr

(√
ATA

)
. (2.1)

3 Model-selection type oracle inequalities

3.1 The proposed estimator

For any θ ∈ ΛM define

Ĥn(θ) = ‖µ̂θ‖2
2 − 2yT µ̂θ + 2

M∑

j=1

θjTr(DσAjDσ) (3.1)

+ 1
2 p̂en(θ) + β

M∑

j=1

θj log
1

πj
,

where β > 0 is a constant, Dσ = diag(σ1, ..., σn) and

p̂en(θ) =

M∑

j=1

θj ‖µ̂θ − µ̂j‖2
2 . (3.2)
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We consider the estimator µ̂θ̂ where

θ̂ ∈ argmin
θ∈ΛM

Ĥn(θ). (3.3)

When θ is fixed and deterministic, the term

‖µ̂θ‖2
2 − 2yT µ̂θ + 2

M∑

j=1

θjTr(DσAjDσ) (3.4)

in the definition of Ĥn is an unbiased estimate of the quantity

‖µ̂θ‖2
2 − 2fT µ̂θ = ‖µ̂θ − f‖2

2 − ‖f‖2
2 , (3.5)

which is the quantity of interest ‖µ̂θ − f‖2
2 up to the additive constant ‖f‖2

2. The term
involving the trace of the matrices DσAjDσ comes from the quadratic term in ξ:

M∑

j=1

θjTr(DσAjDσ) = E[
M∑

j=1

θjξ
TAjξ] = E[ξT µ̂θ].

The estimators from [22, 11, 9] are all obtained with an unbiased estimate of the
quantity (3.5), so the term (3.4) comes as no surprise in the definition of Ĥn.

The penalty (3.2) is borrowed from the Q-aggregation procedure, which is a power-
ful tool to derive sharp oracle inequalities in deviation when the loss is strongly convex
[10, 21, 4]. Since the estimators µ̂1, ..., µ̂M depend on the data, the penalty (3.2) is
data-driven, which is not the case when the estimators to aggregate are deterministic
vectors as in [10]. In order to give some geometric insights on the penalty (3.2), let

c ∈ Rn satisfies the M linear equations 2cT µ̂j = ‖µ̂j‖2
2 and assume only in the rest of

this paragraph that c is well defined, even though this assumption cannot be fulfilled
for M > n. Then

p̂en(θ) =
M∑

j=1

θj ‖µ̂j‖2
2 − ‖µ̂θ‖2

2 = 2cT µ̂θ − ‖µ̂θ‖2
2 = ‖c‖2

2 − ‖µ̂θ − c‖2
2 . (3.6)

Assume also only in this paragraph that the function θ → µ̂θ is bijective from the
simplex ΛM to the convex hull of {µ̂1, ..., µ̂M}. Then we can write p̂en(θ) = g(µ̂θ)
for some function g defined on the convex hull of {µ̂1, ..., µ̂M}. Equation (3.6) shows
that the level sets of the function g are euclidean balls centered at c. The function g
is non-negative, it is minimal at the extreme points µ̂1, ..., µ̂M since g(µ̂j) = 0 for all
j = 1, ...,M and g is maximal at the projection of c on the convex hull of {µ̂1, ..., µ̂M}.
Intuitively, the penalty (3.2) pushes θ away from the center of the simplex towards the
vertices. Thus, the level sets of the function θ → p̂en(θ) in RM are ellipsoids centered
at θc, where θc is the unique point in RM such that µ̂θc = c. If M > n or if the vector
c is not well defined, the level sets of p̂en(·) are more intricate and cannot be described
as simply.

Finally, the term

β

M∑

j=1

θj log
1

πj
(3.7)

6
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allows to weight the candidates µ̂1, ..., µ̂M with the prior probability distribution (πj)j=1,...,M

based on some prior knowledge about the estimators µ̂1, ..., µ̂M . That prior probabil-
ity distribution (πj)j=1,...,M is deterministic and cannot depend on the data Y1, ..., Yn.
For example, if the estimators are projection estimators, one can set prior weights that
decrease with the rank of the projections [24], we use this strategy in Section 4. The
same term is used in [21] whereas [9] uses the Kullback-Leibler divergence of θ from π.
It is shown in [10] that for aggregation of deterministic vectors, one may use a quantity

of the form β
∑M

j=1 θj log(ρ(θj)/πj) where ρ(·) satisfies ρ(t) ≥ t and t → t log(ρ(t))
is convex. This suggests that we could use the Kullback-Leibler divergence of θ from
π instead of (3.7), but in their current form, our proofs only hold with the “linear
entropy” (3.7).

Finally, notice that the function Ĥn is convex, as it has the form Ĥn(θ) = 1
2 ‖µ̂θ‖2

2 +
lin(θ) where lin(·) is a linear function. This can be seen using (B.2) with g = 0. Thus
minimizing Ĥn over the simplex is a quadratic program for which efficient algorithms
are available. The convexity of Ĥn also proves that θ̂ is well defined, although it may
not be unique (for example if all µ̂j are the same then Ĥn is constant on the simplex).

3.2 Assumptions on the noise

We state here the three different assumptions under which our mail result, Theorem 3.1
below, holds. The value of β given below is used in the construction of the estimator
θ̂ defined in (3.3). The value of β depends on the assumption on the noise.

The constant L > 0 is independent of the noise and its role will be specified in
Theorem 3.1.

Assumption 3.1 (Gaussian noise). Assume that the noise components ξ1, ...ξn are
normal, independent, zero mean, and ξi has variance σ2

i . In this case, let

β = (12 + 16L+ 6L2)

(
max

i=1,...,n
σ2
i

)
. (3.8)

Assumption 3.2 (Subgaussian noise). Let K > 0 and assume that the noise compo-
nents ξ1, ..., ξn are independent, zero mean, ‖ξi‖ψ2

≤ K and ξi has variance σ2
i . Here,

let

β = K2

(
cw1

(2 + L)2L+ 2c2
h(1 + L)2 + 1

2c
2
w2

max
i=1,...,n

‖ξi‖2
ψ2

σ2
i

(2 + L)2

)
, (3.9)

where cw1
, cw2

and ch are the absolute constants given in Propositions A.2 and A.3.

Assumption 3.3 (Bernstein condition on ξ2
1 , ..., ξ

2
n). Let K > 0 and assume that the

noise components ξ1, ..., ξn are independent and satisfy

∀p ≥ 1, E|ξi|2p ≤ 1
2 p! σ

2
i K

2(p−1). (3.10)

Here, let
β = 392 + 1408L+ 608L2. (3.11)
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Assumption 3.3 is the natural assumption to derive a Bernstein concentration in-
equality for the sum of random variables ξ2

1 + ... + ξ2
n. Although Assumption 3.3 is

less common than Assumptions 3.1 and 3.2, its interest resides in the concentration
inequality given in Theorem 3.2, which is sharper than the Hanson-Wright inequality.
Under this assumption, it is possible to remove the expression maxi=1,...,n ‖ξi‖ψ2

/σi
from the value of β.

3.3 Main result

Theorem 3.1. Let L > 0 be a positive real number and M ≥ 2. For j = 1, ...,M ,
consider the estimators µ̂j = Ajy + bj with bj ∈ Rn and Aj a real matrix of size n×n.
Assume that the matrices A1, ..., AM satisfy |||Aj −Ak|||2 ≤ 2L for any j, k.

Assume one of the Assumptions 3.1, 3.2 or 3.3 on the noise ξ = (ξ1, ..., ξn) and set

the value of β accordingly. Once β is set, let θ̂ be defined in (3.3). Then for all x > 0,
with probability greater than 1 − 2 exp(−x),

∥∥µ̂θ̂ − f
∥∥2

2
≤ min
j=1,...,M

(
‖µ̂j − f‖2

2 + 2β log
1

πj

)
+ βx. (3.12)

The proof of Theorem 3.1 is given in Appendix B.2. We now discuss the assumptions
of section 3.2 and compare Theorem 3.1 to previous results.

Subgaussian noise. One of the contribution of the present paper is to provide
a sharp oracle inequality such as (3.12) under Subgaussian noise. To our knowledge,
(3.12) is the first result on sharp oracle inequality in deviation for model selection type
aggregation obtained without assuming that the noise is Gaussian.

The traces of the matrices A1, ..., AM . The sharp oracle inequality in devia-
tion given in [9] presents an additive term proportional to σ2Tr(Aj), as in (1.3). An
improvement of the present paper is the absence of this additive term which can be
large for matrices Aj with large trace. Our analysis shows that the quantities σ2Tr(Aj)
are not meaningful for the problem of aggregation of affine estimators. So even in the
Gaussian noise setting, Theorem 3.1 improves upon the earlier result of [9]. When the
uniform prior is used, i.e., πj = 1/M for all j = 1, ...,M , the sharp oracle inequality
(3.12) matches the lower bound from [25, Proof of Theorem 5.3 with S = 1] showing
that 3.12 is optimal in a minimax sense.

Motivation behind Assumption 3.3. Under Assumption 3.2 (Subgaussian
noise), our analysis leads to a remainder term that can be large for random vari-
ables that have pathologically small variance relatively to their subgaussian norm: β
defined in (3.9) is proportional to maxi=1,...,n ‖ξi‖ψ2

/σi. Under Assumption 3.3 which
is slightly stronger and prevents the variance from being pathologically small, this issue
can be fixed. We will come back to Assumption 3.3 in Section 3.5 below.

The quantities involved in β. The constant β in the oracle inequality is of the
order K2(1 ∨L2), where K2 is the supremum of the variances or the supremum of the
squared subgaussian norms, and 2L upper bounds the operator norms of all Aj − Ak
for j, k = 1, ...,M . In most practical cases, L will be smaller than 1 since all admissible
estimators of the form Ajy satisfy |||Aj |||2 ≤ 1 [8], thus the fact that β is proportional
to 1 ∨ L2 is not an issue. Interestingly, the operator norm of the matrices A1, ..., AM
does not appear in the sharp oracle inequality in expectation given in [11], while it

8
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plays a crucial role here. On the other hand, the factor K2 may be more problematic,
especially for heteroscedastic noise: β is proportional to the largest variance (resp.
the largest subgaussian norm) even if most of the noise random variables have small
variance (resp. small subgaussian norm).

General matrices A1, ..., AM . We relax all assumptions on the matricesA1, ..., AM ,
for instance they may be non-symmetric and have negative eigenvalues. Earlier works
studied projection matrices [22], assumed some commutativity property of the matrices
[11] or their symmetry and positive semi-definiteness [9]. Although it is shown in [8]
that all admissible linear estimators are symmetric with non-negative eigenvalues, some
linear estimators used in practice are not symmetric. For example, the last example of
[11, Section 1.2] (“moving averages”), exhibits linear estimators that need not be sym-
metric: if two neighbors of the graph i, j have a different number of neighbours, then
aij 6= aji. Our result also shows that the restrictions on the matrices A1, ..., AM present
in [22, 11, 9] were not intrinsic to the problem of aggregation of affine estimators.

3.4 Outline of the proof

The following lemma shows that we can derive a sharp oracle inequality for the esti-
mator µ̂θ̂ by controlling the concentration of terms of the form ξTQξ and ξT v, where
Q is a n × n deterministic matrix and v is a deterministic vector in Rn. We use the
following lemma proved in Appendix B.1.

Lemma 3.1. Let θ̂ be defined in (3.3). Then almost surely,

∥∥µ̂θ̂ − f
∥∥2

2
≤ min
J∗=1,...,M

(
‖µ̂J∗ − f‖2

2 + 2β log
1

πJ∗

)
+ max
j,k=1,...,M

ζj,k

where

ζj,k = ξTQj,kξ − E[ξTQj,kξ]

+ ξT vj,k

− β log
1

πkπj
− 1

2 ‖(Ak −Aj)Dσ‖2
HS − 1

2 ‖(Ak −Aj)f + bk − bj‖2
2 , (3.13)

and the matrix Dσ, the matrices Qj,k and the vectors vj,k are defined by

Dσ := diag(σ1, ..., σn),

Qj,k := 2(Ak −Aj) − 1
2 (Ak −Aj)

T (Ak −Aj), (3.14)

vj,k := 2
(
In×n − 1

2 (Ak −Aj)
T
)

((Ak −Aj)f + bk − bj) . (3.15)

In Appendix B.2, we prove Theorem 3.1 by applying Lemma 3.1 and controlling the
concentration of terms of the form ξTQj,kξ and ξT vj,k under the different Assumptions
3.1, 3.2 and 3.3.

A sketch of the proof of Theorem 3.1 under Assumption 3.1 (Gaussian Noise) goes

as follows. The quantity W linear
j,k := 1

2 ‖(Ak −Aj)f + bk − bj‖2
2 in (3.13) is of the order

of the variance of ξT vj,k. Using (A.1) applied to v = vj,k, it is shown that for all t > 0,
with probability greater than 1 − exp(−t),

ξT vj,k −W linear
j,k ≤ γβt,

9
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where γ ∈ (0, 1) and β is the constant given in (3.8). Similarly, the quantity W quad
j,k :=

1
2 ‖(Ak − Aj)Dσ‖2

HS in (3.13) is of the order of the variance of ξTQj,kξ. Using the
concentration inequality (A.2) applied to Qj,k, we prove that with probability greater
than 1 − exp(−t),

ξTQj,kξ − E[ξTQj,kξ] −W quad
j,k ≤ (1 − γ)βt.

For fixed j and k, these concentration inequalities and the union bound lead to

∀t > 0, P

(
ζj,k + β log

1

πjπk
> βt

)
≤ 2 exp(−t).

Finally, the non-random term −β log 1
πkπj

is used to perform the union bound on

j, k = 1, ...,M , such that for all x > 0,

P

(
max

j,k=1,...,M
ζj,k > βx

)
≤

∑

j,k=1,...,M

P

(
ζj,k + β log

1

πjπk
> β(x+ log

1

πjπk
)

)

≤
∑

j,k=1,...,M

πjπk2 exp(−x) = 2 exp(−x).

The proof is similar under the two other assumptions 3.2 and 3.3, but different concen-
tration inequalities are used. The proof of Lemma 3.1 can be found in Appendix B.1
and the proof of Theorem 3.1 is given in Appendix B.2.

3.5 Assumption 3.3: examples and concentration inequality

The goal of this section is to present the motivation behind Assumption 3.3 and to
present the concentration inequality of Theorem 3.2. This concentration inequality is of
independent interest as it provides sharper bounds than the Hanson-Wright inequality.

This assumption is sufficient to remove the quantity maxi=1,...,n ‖ξi‖ψ2
/σi from the

expression (3.9) of β in the sharp oracle inequality of Theorem 3.1. It was the weakest
assumption we could find that allowed us to remove the quantity maxi=1,...,n ‖ξi‖ψ2

/σi.

Example 3.1. Centered variables almost surely bounded by K and zero mean Gaussian
random variables with variance smaller than K2 satisfy (3.10).

Example 3.2 (Log-concave random variables). In [27], the authors consider a slightly
stronger condition [27, Definition 1.1]. They consider random variables Z satisfying
for any integer p ≥ 1 and some constant K:

E[|Z|p] ≤ p K E[|Z|p−1], (3.16)

and they showed in [27, Section 7] that any distribution that is log-concave satisfies
(3.16). Thus, if X2 is log-concave then our assumption (3.10) holds. See [2, Section 6]
for a comprehensive list of the common log-concave distributions.

The next theorem provides a concentration inequality for quadratic forms of inde-
pendent random variables satisfying the moment assumption (3.10). It is sharper than
the Hanson-Wright inequality given in Proposition A.3.

10



version 97ee437

Theorem 3.2. Assume that the noise random variable ξ = (ξ1, ..., ξn)T satisfies As-
sumption 3.3 for some K > 0. Let A be any n× n real matrix. Then for all t > 0,

P

(
ξTAξ − E[ξTAξ] > t

)
≤ exp

(
− min

(
t2

192K2 ‖ADσ‖2
HS

,
t

256K2|||A|||2

))
, (3.17)

where Dσ = diag(σ1, ..., σn). Furthermore, for any x > 0, with probability greater than
1 − exp(−x),

ξTAξ − E[ξTAξ] ≤ 256K2|||A|||2x+ 8
√

3K ‖ADσ‖HS

√
x. (3.18)

The proof of Theorem 3.2 is given in Appendix A.3.2. A key ingredient to prove this
concentration result is a decoupling inequality [14, 13]. A simple decoupling inequality
for quadratic forms can be found in [31] or [15, Theorem 8.11], and we use this result
in order to prove Theorem 3.2.

When t is small, the right hand side of (3.17) becomes

exp

(
− t2

192K2 ‖ADσ‖2
HS

)
,

whereas the right hand side of the Hanson-Wright inequality (A.4) yields

exp

(
−c t2

K4 ‖A‖2
HS

)
,

for some absolute constant c > 0. The element of the diagonal matrix Dσ are bounded
by K, so Theorem 3.2 gives a sharper bound than the Hanson-Wright inequality in
this regime. Under the moment assumption (3.10), we were able to remove the factor
maxi=1,...,n(‖ξi‖ψ2

/σi) using the concentration inequality from Theorem 3.2.
In particular, the sharp oracle inequality (3.12) with β given in (3.11) holds for all

the noise distributions described in Examples 3.1 and 3.2.

4 Sparsity oracle inequality

The goal of this section is to prove a sparsity oracle inequality, when the noise is a
subgaussian vector. We are given p deterministic vectors in Rn that are the columns
of a n × p real matrix X, and the goal is to find an estimator θ̂ ∈ Rp such that the
quantity ‖Xθ̂ − f‖2

2 is close to ‖Xθ∗ − f‖2
2 for some sparse θ∗ ∈ Rp for which Xθ∗ is a

good approximation of the unknown regression vector f . We will make the following
assumption on the noise random vector ξ.

Assumption 4.1 (Subgaussian vector). Let K > 0 and assume that the noise random
vector ξ satisfy:

∀α ∈ Rn, E exp(αT ξ) ≤ exp

(
‖α‖2

2 K
2

2

)
.

11
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Contrary to the previous section, the components of ξ are not assumed to be inde-
pendent. The same assumption is made in [10]. A direct consequence is the following
Hoeffding-type concentration inequality:

P

(
αTx > K ‖α‖2

√
2x
)

≤ exp(−x). (4.1)

Under this assumption, the following concentration inequality was proven in [19].

Proposition 4.1 (One sided concentration [19]). Let ξ be a random vector in Rn

satisfying Assumption 4.1 for some K > 0. Let A be a real n×n positive semi-definite
symmetric matrix. Then for all x > 0, with probability greater than 1 − exp(−x),

ξ
TAξ ≤ K2

(
TrA+ 2 ‖A‖HS

√
x+ 2|||A|||2x

)
. (4.2)

This result is remarkable as it holds with the same constants as in the Gaussian
case (A.2), under the weak Assumption 4.1. Unlike the previous concentration results
given in Appendix A used in Section 3, the above inequality is only one-sided, and
it is not known if the above result holds as a two-sided inequality or without the
positive semi-definiteness of A. Another difference with the concentration inequalities
of Appendix A is that the term TrA in (4.2) is an upper bound on the expectation of
ξTAξ up to constants. Again, it is not known whether this concentration inequality
holds with the constant term K2TrA replaced by E[ξTAξ].

The authors of [19] used this result to prove the following inequality for the ordinary
least squares estimator µ̂OLSV on a d-dimensional linear subspace V of Rn. The ordinary
least squares estimator µ̂OLSV is defined as the orthogonal projection of y on the linear
subspace V .

Lemma 4.1 ([19]). Under Assumption 4.1, with probability greater than 1 − exp(−x):

∥∥µ̂OLSV − f
∥∥2

2
≤ min

µ∈V
‖µ− f‖2

2 + K2(d+ 2
√
dx+ 2x),

≤ min
µ∈V

‖µ− f‖2
2 + K2(2d+ 3x). (4.3)

The following corollary extends Proposition 4.1 to general matrices.

Corollary 4.1 (Corollary of Proposition 4.1 for any real matrix A). Under Assump-
tion 4.1 and for any real matrix A, with probability greater than 1 − exp(−x), the
following holds:

ξ
TAξ ≤ K2

(
‖A‖1 + 2 ‖A‖HS

√
x+ 2|||A|||2x

)
. (4.4)

Proof. To see this, let As := 1
2 (A+AT ) and consider |As| :=

√
A2
s, the unique square

root of the positive semi-definite matrix A2
s. By definition of |As| and the triangle

inequality,

ξTAξ = ξTAsξ ≤ ξT |As|ξ, Tr(|As|) = ‖As‖1 ≤ ‖A‖1 ,

||||As||||2 = |||As|||2 ≤ |||A|||2, ‖|As|‖HS = ‖As‖HS ≤ ‖A‖HS .

Thus applying (4.2) to the matrix |As| proves (4.4).

12
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Under Assumption 4.1, we obtain the following oracle inequality with proof tech-
niques similar to Theorem 3.1. Define for any θ ∈ ΛM

V̂n(θ) = ‖µ̂θ‖2
2 − 2yT µ̂θ +K2

∑

j=1,...,M

θj(2 ‖Aj‖1 + 4 ‖Aj‖2
HS)

+ 1
2 p̂en(θ) + β

∑

j=1,...,M

θj log
1

πj
,

where β > 0 is a constant, p̂en(·) is the penalty (3.2) and the matrix norms are defined
in (2.1). We consider the estimator µ̂θ̂ of f where

θ̂ ∈ argmin
θ∈ΛM

V̂n(θ). (4.5)

The function V̂n is equal to the the sum of Ĥn (3.1) and some linear function of θ.
Thus V̂n is also convex and minimizing V̂n over the simplex is a quadratic program.

Proposition 4.2. Let K,L > 0 be real numbers. Assume that the random vector ξ

satisfies Assumption 4.1. Assume that the matrices A1, ..., AM satisfy |||Aj −Ak|||2 ≤
2L for any j, k. Let θ̂ be defined in (4.5) with

β = K2(6 + 8L+ 4L2). (4.6)

Then for all x > 0, with probability greater than 1 − 2 exp(−x),

∥∥µ̂θ̂ − f
∥∥2

2
≤ min

j=1,...,M

(
‖µ̂j − f‖2

2 + 8K2 ‖Aj‖2
HS + 4K2 ‖Aj‖1

+ 2β log
1

πj

)
+ βx. (4.7)

This oracle inequality presents the extra terms proportional to K2 ‖Aj‖2
HS and

K2 ‖Aj‖1 compared to the sharp oracle inequality (3.12). However, this oracle inequal-
ity presents some advantages. First, it holds under Assumption 4.1 which is weaker
that the noise assumptions of Section 3 since the noise coordinates do not need to
be independent. Second, the quantity maxi=1,...,n ‖ξi‖ψ2

/σi appearing in (3.9) is not

present here, which is possible at the cost of the terms proportional to ‖Aj‖2
HS and

‖Aj‖1. Finally, one does not need to know the variance of the noise in order to compute
the proposed estimator; its construction only relies on K which is an upper bound on
the subgaussian norm of the random vector ξ.

Remark 4.1 (Estimation of an upper bound on the variance). It is easier to construct
an estimator that upper bounds the variance than to construct an estimator of the
variance itself. For example, for Gaussian noise with variance σ2, the estimator σ̂2

proposed in [16, Equation (5)] is a positively biased estimator of the variance, for any
subspace S∗ of Rn [16, Section 2.2]. In our setting, a reasonable choice for S∗ is the
subspace of vectors proportional to (1, ..., 1).

We now use the oracle inequality (4.7) to perform sparsity pattern aggregation
[25, 24, 9, 28]. For each subset J ⊂ {1, ..., p}, let µOLSJ be the ordinary least squares

13
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estimator on the linear span of the columns of X whose indices are in J . This estimator
satisfies the oracle inequality (4.3) with d ≤ |J |, where |J | denotes the cardinal of J .
We aggregate these 2p ordinary least squares estimators using the method (4.5) and

the prior distribution given by πJ ∝ e−|J|
(
p

|J|

)−1
. As sparsity pattern aggregation is

not central in the present paper, we keep this presentation short and refer the reader
to [25, 24, 9, 28] for the construction of ordinary least squares estimators and sparsity
pattern aggregation for more details.

As the ordinary least squares estimators are projections of the form µOLSJ = AJy for
some projection matrix AJ , we can take L = 1 in Proposition 4.2 and the inequalities
‖AJ‖1 ≤ |J | and ‖AJ‖2

HS ≤ |J | hold. Define θ̂SPA such that

Xθ̂SPA = µ̂θ̂, (4.8)

where θ̂ is the estimator from (4.5) and µ̂θ̂ is obtained by aggregating the M = 2p

estimators (µ̂OLSJ )J⊂{1,...,p}. Then the following sparsity oracle inequality holds, where
|β|0 is the number of non-zero coefficients of β.

Theorem 4.1. Let X be a deterministic design matrix with p columns and let θ̂SPA

the sparsity pattern aggregate defined in (4.8). Under Assumption 4.1 on the noise ξ,
with probability greater than 1 − 3 exp(−x),

∥∥∥Xθ̂SPA − f

∥∥∥
2

2
≤ inf

θ∈Rp

[
‖Xθ − f‖2

2 + 21K2x

K2

(
18 + 12|θ|0 + 72|θ|0 log

(
ep

1 ∨ |θ|0

))]
. (4.9)

Theorem 4.1 improves upon the previous results on sparsity pattern aggregation
[9, 25, 24, 28] in several aspects.

First, the noise ξ is only assumed to be subgaussian and its components need not be
independent, whereas previous results only hold under Gaussianity and independence
of the noise components. Theorem 4.1 shows that the optimal bounds previously known
for Gaussian noise [9, 25, 24, 28] are of the same form when the noise is only assumed
to be subgaussian.

Second, to construct the aggregates in [9, 25, 24, 28] one needs the exact knowledge
of the covariance matrix of the noise. In Theorem 4.1, only an upper bound of the
subgaussian norm of the noise is needed to construct the estimator. As explained in
Remark 4.1, for Gaussian noise a rough upper bound can be estimated from the data.

Third, we do not split the data in order to perform sparsity pattern aggregation, as
opposed to the “sample cloning” approach [28, Lemma 2.1]. Sample cloning is possible
only for Gaussian noise when the variance is known; it cannot be used here as ξ can
be any subgaussian vector.

The estimator of Theorem 4.1 achieves the minimax rate for any intersection of ℓ0

and ℓq balls, where q ∈ (0, 2). This can be shown by applying the arguments of [9, 28]
and bounding the right hand side of (4.9). Indeed, although [9, 28] consider only normal
random variables, the argument does not depend on the noise distribution.

The result above holds without any assumption on the design matrix X, as opposed
to the LASSO or the Dantzig estimators which need assumptions on the design matrix
X to achieve sparsity oracle inequalities similar but weaker than (4.9).

14
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The interest of the LASSO and the Dantzig estimators is that they can be computed
efficiently for large p. The sparsity pattern aggregate based on exponential weights can
also be computed efficiently usind MCMC methods [25]. The estimator θ̂SPA proposed
here suffers the same drawback as [5] or the sparsity pattern aggregate performed
with Q-aggregation [9]: it is not known whether these estimators can be computed in
polynomial time, which makes them useful only for relatively small p.

A Concentration inequalities

A.1 Gaussian concentration

Let X be a zero mean Gaussian random variable with variance σ2. A standard bound
on the Gaussian tail is

∀x > 0, P

(
X > σ

√
2x
)

≤ exp(−x).

Let v ∈ Rn and let ξ1, ..., ξn be zero mean independent Gaussian random variables
with E[ξ2

i ] = σ2
i for all i. Then vT ξ is Gaussian with variance ‖Dσv‖2

2 and thus

∀x > 0, P

(
vT ξ > ‖Dσv‖2

√
2x
)

≤ exp(−x). (A.1)

Proposition A.1 (Gaussian chaos of order 2). Let ξ1, ..., ξn be independent zero mean
normal random variables with for all i = 1, ..., n, E[ξ2

i ] = σ2
i . Let A be any n× n real

matrix. Then for any x > 0,

P

(
ξ
TAξ − E[ξTAξ] > 2 ‖DσADσ‖HS

√
x+ 2|||DσADσ|||2x

)
≤ exp(−x). (A.2)

A proof of this concentration result is given in [6, Example 2.12] for diagonal-free
matrices. It can be easily extended to the general case via the following argument.

Proof of Proposition A.1. First, notice that if the result holds for standard normal
random variables with variance 1, then by considering the random variables ξ′

i = ξi/σi
and the matrix M = DσADσ, the result also holds when ξ1, ..., ξn have variances
different than 1. Thus in the following we assume without loss of generality that σi = 1
for all i = 1, ..., n.

Second, if the result holds for all symmetric matrices A, then for a non-symmetric

matrix A one can consider B = A+AT

2 which is symmetric. Then ξTBξ = ξTAξ and
by the triangle inequality,

|||B|||2 ≤
|||A|||2 +

∣∣∣∣∣∣AT
∣∣∣∣∣∣

2

2
= |||A|||2, ‖B‖HS ≤

‖A‖HS +
∥∥AT

∥∥
HS

2
= ‖A‖HS .

Thus if the concentration inequality (A.2) holds for the symmetric matrix B, it will
also hold for the non-symmetric matrix A. Without loss of generality, we can consider
only symmetric matrices.
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Let ξ1, ..., ξn be standard normal random variables and let A be a symmetric matrix.
There exists an invertible square matrix U with UT = U−1 such that A = UTΛU for
some diagonal matrix Λ = diag(µ1, ..., µn). By rotational invariance of the normal
distribution, if (X1, ..., Xn)T = Uξ then X1, ..., Xn are i.i.d. standard normal random
variables. As E[ξTAξ] = TrA =

∑n
i=1 µi,

ξTAξ − E[ξTAξ] =

n∑

i=1

µi(X
2
i − 1).

The rest of the proof can be treated exactly as in the proof of [6, Example 2.12], using
the bound

∀λ ∈ (0, 1/2), logE exp(λ(ξ2
i − 1) ≤ λ2

1 − 2λ
,

without assuming that A is diagonal-free.

A.2 Subgaussian concentration

Again, we present tools to control terms of the form ξTQξ and vT ξ that appear in
Lemma 3.1. Proposition A.2 below provides a concentration result for the latter.

Proposition A.2 (Hoeffding-type inequality [30, Section 5.2.3]). There exists an ab-
solute constant CH > 0 such that the following holds. Let n ≥ 1 and ξ1, ..., ξn be
independent zero mean subgaussian random variables with maxi=1,...,n ‖ξi‖ψ2

≤ K for
some real number K > 0. Let v ∈ Rn.

Then for any x > 0, with probability greater than 1 − exp(−x),

ξT v ≤ CHK ‖v‖2

√
x (A.3)

where ξ = (ξ1, ..., ξn)T .

The concentration result for a quadratic form of independent zero mean subgaus-
sian random variables given in Proposition A.3 below is known as the Hanson-Wright
inequality. First versions of this inequality can be found in Hanson and Wright [18]
and Wright [32], although with a weaker statement than Proposition A.3 below since
these results involve ||| (|aij |) |||2 instead of |||A|||2. Recent proofs of this concentration
inequality with |||A|||2 instead of ||| (|aij |) |||2 can be found in Rudelson and Vershynin
[26] or Barthe and Milman [3, Theorem A.5].

Proposition A.3 (Hanson-Wright inequality [26]). There exist absolute constants
cw1

, cw2
, c > 0 such that the following holds. Let n ≥ 1 and ξ1, ..., ξn be indepen-

dent zero mean subgaussian random variables with maxi=1,...,n ‖ξi‖ψ2
≤ K for some

real number K > 0. Let A be any n× n real matrix. Then for all t > 0,

P

(
ξTAξ − E[ξTAξ] > t

)
≤ exp

(
−cmin

(
t2

K4 ‖A‖2
HS

,
t

K2|||A|||2

))
(A.4)

where ξ = (ξ1, ..., ξn)T . Furthermore, for any x > 0, with probability greater than
1 − exp(−x),

ξTAξ − E[ξTAξ] ≤ cw1
K2|||A|||2x+ cw2

K2 ‖A‖HS

√
x. (A.5)
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A.3 Concentration under Assumption 3.3

A.3.1 Bounds on moment generating functions

The condition (3.10) leads to the following bounds on the moment generating functions
of X and X2, which are crucial to prove Theorem 3.2.

Proposition A.4. Let K > 0 and let ξi be a random variable satisfying (3.10) with
σ2
i = E[ξ2

i ]. Then for all s ∈ R:

E exp(sξi) ≤ exp(s2K2). (A.6)

Furthermore, if 0 ≤ 2sK2 ≤ 1, then

E exp(sξ2
i − sσ2

i ) ≤ exp(s2σ2
iK

2), (A.7)

E exp(sξ2
i ) ≤ exp

(
3

2
sσ2
i

)
. (A.8)

Inequality (A.6) shows that a random variable X satisfying the moment assumption
(3.10) is subgaussian and its ψ2 norm is bounded by K up to a multiplicative absolute
constant. For any vector v ∈ Rn, given n independent variables ξ1, ..., ξn satisfying the
moment assumption (3.10), the following Hoeffding-type inequality holds:

P
(
vT ξ > 2K ‖v‖2

√
x
)

≤ exp(−x), (A.9)

it is a direct application of (A.6) combined with the Chernoff bound.
The proof of Proposition A.4 is based on Taylor expansions and some algebra.

Proof of Proposition A.4. To simplify the notation, let X = ξi and σ = σi. We first
prove (A.7). We apply the assumption on the even moments of X :

E exp(sX2) = 1+sσ2+
∑

p≥2

spEX2p

p!
≤ 1+sσ2+

σ2s

2

∞∑

k=1

(sK2)k = 1+sσ2+
σ2K2s2

2(1 − sK2)
,

and using the inequality 0 < 2sK2 ≤ 1, we obtain:

E exp(sX2) ≤ 1 + sσ2 + σ2s2K2 ≤ exp(sσ2 + s2σ2K2),

which completes the proof of (A.7). Inequality (A.8) is a direct consequence of (A.7)
after applying again the inequality 2sK2 ≤ 1.

We now prove (A.6). Using the Cauchy-Schwarz inequality and the assumption on
the moments for p = 2, we get σ4 ≤ E[ξ4] ≤ σ2K2, so σ ≤ K. Let p ≥ 1. For the even
terms of the expansion of E exp(sX), we get:

s2p
EX2p

(2p)!
≤ 1

2 (sK)2p p!

(2p)!
≤ 1

2

(sK)2p

p!
,

where for the last inequality we used (p!)2 ≤ (2p)!. For the odd terms, by using the
Jensen inequality for p ≥ 1:

s2p+1
EX2p+1

(2p+ 1)!
≤ s2p+1(EX2p+2)

2p+1

2p+2

(2p+ 1)!
≤ |sK|2p+1

(
(p+1)!

2

) 2p+1

2p+2

(2p+ 1)!
≤ 1

2 |sK|2p+1 (p+ 1)!

(2p+ 1)!
.
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If |sK| > 1, we use the inequality (p+ 1)!2 ≤ (2p+ 1)! to obtain

s2p+1
EX2p+1

(2p+ 1)!
≤ |sK|2(p+1)

2((p+ 1)!)
,

and by combining the inequality for the even and the odd terms:

E exp(sX) = 1 +
∑

p≥1

s2p
EX2p

(2p)!
+
s2p+1

EX2p+1

(2p+ 1)!
≤ 1 + 1

2

∑

p≥1

(sK)2p

p!
+

|sK|2(p+1)

(p+ 1)!

≤ 1 +
∑

p≥1

(sK)2p

p!
= exp(s2K2).

If |sK| ≤ 1, we use the inequality (p+ 1)!p! ≤ (2p+ 1)! to obtain

s2p+1
EX2p+1

(2p+ 1)!
≤ (sK)2p

2(p!)
,

and by combining the inequality for the even and the odd terms:

E exp(sX) = 1 +
∑

p≥1

s2p
EX2p

(2p)!
+
s2p+1

EX2p+1

(2p+ 1)!
≤ 1 + 1

2

∑

p≥1

(sK)2p

p!
+

(sK)2p

p!

= 1 +
∑

p≥1

(sK)2p

p!
= exp(s2K2).

A.3.2 A concentration inequality for quadratic forms

The goal of this section is to prove Theorem 3.2. We start with preliminary calculations
that will be useful in the proof. Let A be any n× n real matrix. Let λ > 0 satisfy

128|||A|||2K2λ ≤ 1, (A.10)

and define
η = 32K2λ2. (A.11)

The inequality (A.10) can be rewritten in terms of η:

512K2|||A|||22η ≤ 1. (A.12)

Let A0 be the matrix A with the diagonal entries set to 0. Then, using the triangle
inequality with A0 = A − diag(a11, ..., ann) and |aii| ≤ |||A|||2 for all i = 1, ..., n, we
obtain

|||A0|||2 ≤ 2|||A|||2. (A.13)

Let B = AT0 A0 = (bij)i,j=1,...,n and let B0 be the matrix B with the diagonal entries
set to 0. Then

∀i = 1, ..., n, 0 ≤ bii =
∑

j 6=i

a2
ji ≤ |||A|||22. (A.14)
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By using the decomposition B0 = B− diag(b11, ..., bnn) and the inequality ‖v + v′‖2
2 ≤

2 ‖v‖2
2 + 2 ‖v′‖2

2, (A.14) and (A.13), we have:

‖B0ξ‖2
2 ≤ 2 ‖Bξ‖2

2 + 2

n∑

i=1

b2
iiξ

2
i ,

≤ 2|||A0|||22 ‖A0ξ‖2
2 + 2|||A|||22

n∑

i=1

biiξ
2
i ,

≤ 8|||A|||22 ‖A0ξ‖2
2 + 2|||A|||22

n∑

i=1

biiξ
2
i .

Combining the previous display with (A.12), we obtain for any K > 0:

16K2η2 ‖B0ξ‖2
2 ≤ (512K2|||A|||22η)

(
η

4
‖A0ξ‖2

2 +
η

16

n∑

i=1

biiξ
2
i

)
≤ η

4
‖A0ξ‖2

2 +
η

16

n∑

i=1

biiξ
2
i .

(A.15)

Proof of Theorem 3.2. Throughout the proof, let λ > 0 satisfy (A.10). The value of λ
will be specified later.

First we treat the diagonal terms by bounding the moment generating function of

Sdiag :=

n∑

i=1

aiiξ
2
i −

n∑

i=1

aiiσ
2
i .

Using the independence of ξ1, ..., ξn and (A.7) with s = aiiλ with each i = 1, ..., n:

E exp(λSdiag) ≤ exp

(
λ2

n∑

i=1

a2
iiσ

2
iK

2

)
, (A.16)

provided that for all i = 1, ..., n, 2|aii|λK2 ≤ 1 which is satisfied as (A.10) holds and
|aii| ≤ |||A|||2.

Now we bound the moment generating function of the off-diagonal terms. Let

Soff−diag :=
∑

i,j=1,...,n:i6=j

aijξiξj .

Let the random vector ξ′ = (ξ′
1, ..., ξ

′
n)T be independent of ξ with the same distribution

as ξ. We apply the decoupling inequality [31] (see also [15, Theorem 8.11]) to the convex
function s → exp(λs):

E exp(λSoff−diag) ≤ E exp


4λ

∑

i,j=1,...,n:i6=j

aijξ
′
iξj


 .
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Conditionally on ξ1, ..., ξn, for each i = 1, ..., n, we use the independence of ξ′
1, ..., ξ

′
n

and (A.6) applied to ξ′
i with s = 4

∑
j=1,...,n:i6=j aijξj :

E exp


4λ

∑

i6=j

aijξ
′
iξj


 ≤ E exp


16K2λ2

∑

i=1,...,n


 ∑

j=1,...,n:i6=j

aijξj




2

 ,

= E exp
(

16K2λ2 ‖A0ξ‖2
2

)
= E exp

(η
2

‖A0ξ‖2
2

)
,

where η is defined in (A.11) and A0 is the matrix A with the diagonal entries set to 0.

Let B = AT0 A0 = (bij)i,j=1,...,n. Then ‖A0ξ‖2
2 =

∑n
i=1 biiξ

2
i +

∑
i6=j bijξiξj .

We use the Cauchy-Schwarz inequality to separate the diagonal terms from the
off-diagonal ones:

(
E exp(

η

2
‖A0ξ‖2

2)
)2

≤ E exp

(
η

n∑

i=1

biiξ
2
i

)
E exp


η
∑

i6=j

bijξiξj


 . (A.17)

For the off-diagonal terms of (A.17), using the decoupling inequality [31] (see also
[15, Theorem 8.11]) we have:

E exp


η
∑

i6=j

bijξiξj


 ≤ E exp


4η

∑

i6=j

bijξ
′
iξj


 .

Again, conditionally on ξ1, ..., ξn, for each j = 1, ..., n, we use (A.6) applied to ξ′
i and

the independence of ξ′
1, ..., ξ

′
n:

E exp


4η

∑

i6=j

bijξ
′
iξj


 ≤ E exp


16K2η2

n∑

i=1


 ∑

j=1,...,n: i6=j

bijξj




2

 ,

= E exp
(

16K2η2 ‖B0ξ‖2
2

)
,

≤ E exp

(
η

4
‖A0ξ‖2

2 +
η

16

n∑

i=1

biiξ
2
i

)
,

where we used the preliminary calculation (A.15) for the last display. Finally, the
Cauchy-Schwarz inequality yields

E exp


4η

∑

i6=j

bijξiξ
′
j


 ≤

√
E exp

(η
2

‖A0ξ‖2
2

)
√√√√E exp

(
η

8

n∑

i=1

biiξ2
i

)
.

We plug this upper bound back into (A.17). After rearranging, we find

(
E exp(

η

2
‖A0ξ‖2

2)
)3/2

≤ E exp

(
η

n∑

i=1

biiξ
2
i

)√√√√E exp

(
η

8

n∑

i=1

biiξ2
i

)
.
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As bii ≥ 0, this implies:

E exp(
η

2
‖A0ξ‖2

2) ≤ E exp

(
η

n∑

i=1

biiξ
2
i

)
.

For each i = 1, ..., n, we apply (A.8) to the variable ξi with s = biiη ≥ 0. Using the
independence of ξ2

1 , ..., ξ
2
n, we obtain:

E exp

(
η

n∑

i=1

biiξ
2
i

)
=

n∏

i=1

E exp(ηbiiξ
2
i ) ≤ exp

(
3

2
η

n∑

i=1

biiσ
2
i

)
= exp

(
3

2
η ‖A0Dσ‖2

HS

)
.

provided that for all i = 1, ..., n, 2K2biiη ≤ 1 which is satisfied thanks to (A.10) and
(A.14).

We remove η from the above displays using its definition (A.11):

E exp(λSoff−diag) ≤ exp
(

48λ2K2 ‖A0Dσ‖2
HS

)
, (A.18)

where A0 is the matrix A with the diagonal entries set to 0.
Now we combine the bound on the moment generating function of Sdiag and Soff−diag,

given respectively in (A.16) and (A.18). Using the Chernoff bound and the Cauchy-
Schwarz inequality: we have that for all λ satisfying (A.10),

P (Sdiag + Soff−diag > t) ≤ exp(−λt)E[exp(λSdiag) exp(λSoff−diag)],

≤ exp (−λt)
√
E[exp(2λSdiag)]

√
E[exp(2λSoff−diag)],

≤ exp

(
−λt+ λ2K2

(
n∑

i=1

σ2
i a

2
ii + 48 ‖A0Dσ‖2

HS

))
,

≤ exp
(

−λt+ 48λ2K2 ‖ADσ‖2
HS

)
, (A.19)

where for the last display we used the equality

‖ADσ‖2
HS =

∑

i,j=1,...,n

a2
ijσ

2
i = ‖A0Dσ‖HS +

n∑

i=1

a2
iiσ

2
i .

It now remains to choose the parameter λ. The unconstrained minimum of (A.19) is

attained at λ̄ = t/(96K2 ‖ADσ‖2
HS). If λ̄ satisfies the constraint (A.10), then

P (Sdiag + Soff−diag > t) ≤ exp

(
−t2

192K2 ‖ADσ‖2
HS

)
.

On the other hand, if λ̄ does not satisfy (A.10), then the constraint (A.10) is binding
and the minimum of (A.19) is attained at λb = 1/(128|||A|||2K2) < λ̄. In this case,

−tλb+λ2
b48K2 ‖ADσ‖2

HS ≤ −tλb+λbλ̄48K2 ‖ADσ‖2
HS = −tλb+

t

2
λb = − t

256K2|||A|||2
.
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Combining the two regimes, we obtain

P (Sdiag + Soff−diag > t) ≤ exp

(
− min

(
t2

192K2 ‖ADσ‖2
HS

,
t

256K2|||A|||2

))
.

The proof of (3.17) is complete.
Now we prove (3.18). The function

t → x(t) = min

(
t2

192K2 ‖ADσ‖2
HS

,
t

256K2|||A|||2

)

is increasing and bijective from the set of positive real numbers to itself. Furthermore,
for all t > 0,

t ≤ 8
√

3K ‖ADσ‖HS

√
x(t) + 256K2|||A|||2x(t),

so the variable change x = x(t) completes the proof of (3.18).

B Proofs

B.1 Proof of Lemma 3.1

We start with some preliminary remarks. If Rn(θ) :=
∥∥µ̂θ̂

∥∥2

2
− 2yT µ̂θ̂, Rn(·) is differ-

entiable and the following identify holds for any j = 1, ...,M and θ ∈ ΛM :

∇Rn(θ)T (ej − θ) = ‖µ̂j − f‖2
2 − ‖µ̂θ − f‖2

2 − 2ξT (µ̂j − µ̂θ) − ‖µ̂θ − µ̂j‖2
2 . (B.1)

The penalty (3.2) satisfies for any g ∈ Rn and any θ ∈ ΛM :

M∑

j=1

θj ‖µ̂j − g‖2
2 = ‖µ̂θ − g‖2

2 + p̂en(θ). (B.2)

This can be shown by using simple properties of the Euclidean norm, or by noting
that the equality above is a bias-variance decomposition. The function p̂en(·) is
differentiable and for any j = 1, ...,M , and θ ∈ ΛM , one can check that

1
2 ∇ p̂en(θ)T (ej − θ) = 1

2 ‖µ̂θ − µ̂j‖2
2 − 1

2 p̂en(θ),

= ‖µ̂θ − µ̂j‖2
2 − 1

2

M∑

k=1

θk ‖µ̂j − µ̂k‖2
2 , (B.3)

where we used (B.2) with g = µ̂j for the last equality.

Proof of Lemma 3.1. Let J∗ = 1, ...,M be a deterministic integer. Since θ̂ minimizes
Ĥn over the simplex and Ĥn is convex and differentiable, a simple consequence of the
KKT conditions [7, 4.2.3, equation (4.21)] yields:

∇Ĥn(θ̂)T (eJ∗ − θ̂) ≥ 0. (B.4)
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Let W := ∇Ĥn(θ̂)T (eJ∗ − θ̂). By simple algebraic calculations using (B.1) and (B.3),
we have

W = ‖µ̂J∗ − f‖2
2 −

∥∥µ̂θ̂ − f
∥∥2

2
− 2ξ

T (µ̂J∗ − µ̂θ̂)

+ 2Tr(DσAJ∗Dσ) −
M∑

k=1

θ̂kTr(DσAkDσ)

− 1
2

M∑

k=1

θ̂k ‖µ̂k − µ̂J∗‖2
2 + β log

1

πJ∗

− β

M∑

k=1

θ̂k log
1

πk
.

Since for all j = 1, ...,M , Tr(DσAjDσ) = E[ξTAjξ], (B.4) can be rewritten

∥∥µ̂θ̂ − f
∥∥2

2
≤ ‖µ̂J∗ − f‖2

2 + 2β log
1

πJ∗

+ Z(J∗, θ̂), (B.5)

where for all J∗ = 1, ...,M and θ ∈ ΛM ,

Z(J∗, θ) := 2ξT (µ̂θ − µ̂J∗) − 2
M∑

k=1

θkE[ξT (Ak −AJ∗)ξ]

− 1
2

M∑

k=1

θk ‖µ̂J∗ − µ̂k‖2
2 − β

M∑

k=1

θk log
1

πk
− β log

1

πJ∗

.

The quantity Z(J∗, θ) is affine in its second argument θ ∈ ΛM thus it is maximized at
a vertex of ΛM , and the following upper bounds hold:

Z(J∗, θ̂) ≤ max
θ∈ΛM

Z(J∗, θ) = max
k=1,...,M

Z(J∗, ek) ≤ max
j,k=1,...,M

Z(j, ek). (B.6)

Let ζj,k := Z(j, ek) for all j, k = 1, ...,M . From (B.5) and (B.6),

∥∥µ̂θ̂ − f
∥∥2

2
≤ ‖µ̂J∗ − f‖2

2 + 2β log
1

πJ∗

+ max
j,k=1,...,M

ζj,k,

where

ζj,k = 2ξT (µ̂k − µ̂j) − 2E[ξT (Ak −Aj)ξ] − 1
2 ‖µ̂k − µ̂j‖2

2 − β log
1

πkπj
.

Let Bjk = Ak −Aj , so that µ̂k − µ̂j = Bjkξ + (Bjkf + bk − bj). Then

‖µ̂k − µ̂j‖2
2 = ‖Bjkξ‖2

2 + ‖Bjkf + bk − bj‖2
2 + 2ξTBTjk(Bjkf + bk − bj). (B.7)

After some algebra, we get

ζj,k = ξTQj,kξ − E[ξTQj,kξ] + ξT vj,k

− β log
1

πkπj
− 1

2 ‖BjkDσ‖2
HS − 1

2 ‖Bjkf + bk − bj‖2
2

where we used the equality ‖BjkDσ‖2
HS = E[‖Bjkξ‖2

2] and where Qj,k and vj,k are
defined in (3.14) and (3.15), respectively.
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B.2 Proof of Theorem 3.1

Let K,CW1
, CW2

, CH > 0 and a diagonal matrix D̄ be parameters that are specified
below for each assumption. For any v ∈ Rn and any real matrix Q, consider the
following concentration inequalities: ∀x > 0,

P

(
vT ξ > CHK ‖v‖2

2

)
≤ exp(−x), (B.8)

P

(
ξTQξ − E[ξTQξ] > CW2

K
∥∥QD̄

∥∥
HS

√
x+ CW1

K2|||Q|||2x
)

≤ exp(−x). (B.9)

Let (d̄i)i=1,..., be the diagonal elements of the matrix D̄ and let

β = K2

(
CW1

(2 + L)2L+ 2C2
H(1 + L)2 + 1

2C
2
W2

max
i=1,...,n

d̄2
i

σ2
i

(2 + L)2

)
. (B.10)

The above concentration inequalities are satisfied under the three assumptions on the
noise, with different constants:

• Under Assumption 3.1, set K = maxi=1,...,n σi, D̄ = Dσ and CH =
√

2, CW1
= 2,

CW2
= 2. With this choice of constants, the value of β (B.10) is equal to the value

(3.8), (B.8) becomes exactly (A.1) and (B.9) is a consequence of (A.2) applied to
the matrix Q and the random vector ξ.

• Under Assumption 3.2, K is given in the assumption, set

D̄ = diag(‖ξ1‖ψ2
, ..., ‖ξn‖ψ2

),

CH = ch, CW1
= cw1

and CW2
= cw2

where ch, cw1
and cw2

are the numerical
constants from Propositions A.2 and A.3. With this choice of constants, the value
of β (B.10) is equal to the value (3.9), (B.8) becomes exactly (A.3) and (B.9) is a
direct consequence of (A.5) applied to the random vector ( ξ1

‖ξ1‖ψ2

, ..., ξn
‖ξn‖ψ2

) and

the matrix D̄QD̄.

• Under Assumption 3.3, K is given in the assumption, set D̄ = Dσ and CH = 2,
CW1

= 256, CW2
= 8

√
3. With this choice of constants, the value of β (B.10) is

equal to the value (3.11), (B.8) becomes exactly (A.9) and (B.9) becomes exactly
(3.18) applied to the random vector ξ and the matrix Q.

Proof of Theorem 3.1. Let x > 0. The concentration inequalities (B.8) and (B.9) al-
ways hold, with different constants depending on the assumption on the noise as ex-
plained above.

Using Lemma 3.1, it is enough to upper bound maxj,k=1,...,M ζj,k where ζj,k is
defined in (3.13). Let j, k = 1, ...,M be fixed, and let Bj,k = Ak − Aj . We apply
the concentration inequality (B.9) to the matrix Qj,k (3.14) and the concentration
inequality (B.8) to the vector vj,k (3.15). With the union bound, on the event where
both concentration inequalities hold we get that with probability greater than 1 −
2 exp(−x),

ζj,k ≤CW1
K2|||Qj,k|||2x+ CW2

K
∥∥Qj,kD̄

∥∥
HS

√
x+ CHK ‖vj,k‖2

√
x

− β log
1

πkπj
− 1

2 ‖Bj,kDσ‖2
HS − 1

2 ‖Bj,kf + bk − bj‖2
2 . (B.11)
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Using properties of the operator norm and the Hilbert-Schmidt norm with (3.15),
(3.14):

‖vj,k‖2 ≤ 2
(
1 + 1

2 |||Bj,k|||2
)

‖Bj,kf + bk − bj‖2 ,

|||Qj,k|||2 ≤
(
2 + 1

2 |||Bj,k|||2
)

|||Bj,k|||2,∥∥Qj,kD̄
∥∥

HS
≤ 2

∥∥Bj,kD̄
∥∥

HS
+ 1

2

∥∥BTj,kBj,kD̄
∥∥

HS
,

≤
(
2 + 1

2 |||Bj,k|||2
) ∥∥Bj,kD̄

∥∥
HS

where we used in the last display that for any square matrices M,C, ‖MC‖HS ≤
|||M |||2 ‖C‖HS. We plug these inequalities in (B.11):

ζj,k ≤
(
2 + 1

2 |||Bj,k|||2
) (
CW1

K2|||Bj,k|||2x+ CW2
K
∥∥Bj,kD̄

∥∥
HS

√
x
)

+ 2CHK
(
1 + 1

2 |||Bj,k|||2
)

‖Bj,kf + bk − bj‖2

√
x

− β log
1

πkπj
− 1

2 ‖Bj,kDσ‖2
HS − 1

2 ‖Bj,kf + bk − bj‖2
2 .

We apply the inequality st ≤ s2+t2

2 twice, first with

s = CW2
K
(
2 + 1

2 |||Bj,k|||2
)
∥∥Bj,kD̄

∥∥
HS

‖Bj,kDσ‖HS

√
x

and t = ‖Bj,kDσ‖HS, second with s = 2CHK
(
1 + 1

2 |||Bj,k|||2
)√

x and t = ‖Bj,kf + bk − bj‖2.

In both cases, the term t2

2 cancels and we obtain

ζj,k ≤K2x
(
CW1

(
2 + 1

2 |||Bj,k|||2
)

|||Bj,k|||2 + 1
2C

2
W2

∥∥Bj,kD̄
∥∥2

HS

‖Bj,kDσ‖2
HS

(
2 + 1

2 |||Bj,k|||2
)2
)

+ 2C2
HK

2
(
1 + 1

2 |||Bj,k|||2
)2
x− β log

1

πkπj
.

Let (bi,l)i,l=1,...,n be the elements of the matrix Bj,k = Ak −Aj , and (d̄i)i=1,..., be the
diagonal elements of the matrix D̄. Since

∥∥Bj,kD̄
∥∥2

HS

‖Bj,kDσ‖2
HS

=

∑
i,l d̄

2
i b

2
i,l∑

i,l σ
2
i b

2
i,l

≤ max
i=1,...,n

d̄2
i

σ2
i

,

we obtain ζj,k ≤ βx− β log 1
πkπj

where β is given in (B.10).

For any t > 0, let x = t+ log 1
πkπj

. The inequality ζj,k ≤ βt holds with probability

greater than 1 − 2πjπk exp(−t). Using the union bound on j, k = 1, ...,M , we have
maxj,k=1,...,M ζj,k ≤ βt with probability greater than 1 −∑j,k=1,...,M 2πjπk exp(−t) =
1 − 2 exp(−t).

B.3 Sparsity oracle inequality

Proof of Proposition 4.2. Let J∗ = 1, ...,M be a deterministic integer. Since θ̂ mini-
mizes V̂n over the simplex and V̂n is convex and differentiable, a simple consequence of
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the KKT conditions [7, 4.2.3, equation (4.21)] yields:

∇V̂n(θ̂)T (eJ∗ − θ̂) ≥ 0. (B.12)

Let W := ∇V̂n(θ̂)T (eJ∗ − θ̂). Using (B.1), (B.3) and some algebra, we obtain

W = ‖µ̂J∗ − f‖2
2 −

∥∥µ̂θ̂ − f
∥∥2

2
− 2ξT (µ̂J∗ − µ̂θ̂)

− 1
2

M∑

k=1

θ̂k ‖µ̂k − µ̂J∗‖2
2 + β log

1

πJ∗

− β
M∑

k=1

θ̂k log
1

πk

+K2
(

4 ‖AJ∗‖2
HS + 2 ‖AJ∗‖1 −

M∑

k=1

θ̂k(4 ‖Ak‖2
HS + 2 ‖Ak‖1)

)
.

Inequality (B.12) can be rewritten as

∥∥µ̂θ̂ − f
∥∥2

2
≤ ‖µ̂J∗ − f‖2

2 + 8K2 ‖AJ∗‖2
HS + 4K2 ‖AJ∗‖1 + 2β log

1

πJ∗

+ z(J∗, θ̂)

where

z(J∗, θ̂) := 2ξT (µ̂θ̂ − µ̂J∗) − 2K2 ‖AJ∗‖1 − 2K2
M∑

k=1

θ̂k ‖Ak‖1

− 4K2 ‖AJ∗‖2
HS − 4K2

M∑

k=1

θ̂k ‖Ak‖2
HS

− 1
2

M∑

k=1

θ̂k ‖µ̂k − µ̂J∗‖2
2 − β log

1

πJ∗

− β

M∑

k=1

θ̂k log
1

πk
.

The function z(J∗, ·) is affine in its second argument. Thus it is maximized at a vertex
of ΛM , and

z(J∗, θ̂) ≤ max
θ∈ΛM

z(J∗, θ) = max
k=1,...,M

z(J∗, ek) ≤ max
j,k=1,...,M

z(j, ek).

As it holds for all deterministic J∗ = 1, ...,M , we proved that

∥∥µ̂θ̂ − f
∥∥2

2
≤ min

J∗=1,...,M

(
‖µ̂J∗ − f‖2

2 + 8K2 ‖AJ∗ ‖2
HS + 4K2 ‖AJ∗‖1

+ 2β log
1

πJ∗

)
+ max
j,k=1,...,M

ζjk,

where

ζjk := z(j, ek) = 2ξT (µ̂k − µ̂j) − 2K2(‖Aj‖1 + ‖Ak‖1) − β log
1

πjπk

− 1
2 ‖µ̂k − µ̂j‖2

2 − 4K2(‖Ak‖2
HS +A ‖Aj‖2

HS).
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Let Bjk = Ak −Aj . Using µ̂k − µ̂j = Bjkξ + (Bjkf + bk − bj) and (B.7), we get

ζjk = 2ξT (Ak −Aj)ξ − 2K2(‖Aj‖1 + ‖Ak‖1) − 4K2(‖Ak‖2
HS + ‖Aj‖2

HS)

+ ξTαjk − 1
2 ‖Bjkf + bk − bj‖2

2

− 1
2 ‖Bjkξ‖2

2 − β log
1

πjπk
,

where αjk := 2(In×n − 1
2B

T
jk)(Bjkf + bk − bj). The vector αjk satisfies

‖αjk‖2 ≤ 2(1 + 1
2 |||Bjk|||2) ‖Bjkf + bk − bj‖2 .

We have − ‖Bjkξ‖2
2 ≤ 0 almost surely and by the triangle inequality:

−2K2(‖Aj‖1 + ‖Ak‖1) ≤ −2K2 ‖Ak −Aj‖1 ,

−4K2(‖Aj‖2
HS + ‖Ak‖2

HS) ≤ −2K2 ‖Ak −Aj‖2
HS .

Let x > 0. We now apply the concentration inequality (4.4) to the matrix 2(Ak −Aj)
and the Hoeffding-type inequality (4.1) to the vector αjk. Using the union bound, the
following holds with probability greater than 1 − 2 exp(−x):

ζjk ≤ 4K2|||Aj −Ak|||2x+ 4K2 ‖Ak −Aj‖HS

√
x− 2K2 ‖Ak −Aj‖2

HS

+ 2K(1 + 1
2 |||Bjk|||2) ‖Bjkf + bk − bj‖2

√
2x− 1

2 ‖Bjkf + bk − bj‖2
2

− β log
1

πjπk
.

Finally, using the inequality st ≤ s2+t2

2 we obtain

4K2 ‖Ak −Aj‖HS

√
x− 2K2 ‖Ak −Aj‖2

HS ≤ 2K2x.

We apply this inequality again with t = ‖Bjkf + bk − bj‖2 and s = 2K(1+ 1
2 |||Bjk|||2)

√
2x:

2K(1 + 1
2 |||Bjk|||2) ‖Bjkf + bk − bj‖2

√
2x− 1

2 ‖Bjkf + bk − bj‖2
2

= st− t2

2
≤ s2

2
= 4K2(1 + 1

2 |||Bjk|||2)2x.

The above displays yield the following bound on ζjk, with probability greater than
1 − 2 exp(−x):

ζjk ≤ K2(6 + 4|||Bjk|||2 + |||Bjk|||22)x− β log
1

πjπk
≤ β(x − log

1

πjπk
),

since β = K2(6 + 8L + 4L2). We finish the proof using the change of variable x′ =
x−log 1

πjπk
and the union bound on j, k = 1, ...,M , as in the proof of Appendix B.2.

We follow exactly the strategy given in [9, 24] to prove Theorem 4.1 by combining
the oracle inequalities (4.3) and (4.7).
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Proof of Theorem 4.1. Let θ̄ ∈ Rp be a minimizer of the right hand side of (4.9) and
let J̄ ⊂ {1, ...,M} be the support of θ̄, hence |θ̄|0 = |J̄ |.

We apply the oracle inequality of Proposition 4.2 with L = 1 and the oracle in-
equality (4.3) to the ordinary least squares µ̂OLS

J̄
. With the union bound, we have

with probability greater than 1 − 3 exp(−x):

∥∥∥Xθ̂SPA − f

∥∥∥
2

2
≤
∥∥µ̂OLS

J̄
− f
∥∥2

2
+ 8K2 ‖AJ̄‖2

HS + 4K2 ‖AJ̄‖1 + 2β log
1

πJ̄
+ βx,

∥∥µ̂OLSJ̄ − f
∥∥2

2
≤
∥∥Xθ̄ − f

∥∥2

2
+K2(2|θ̄|0 + 3x),

where AJ̄ is the projection matrix such that µ̂OLS
J̄

= AJ̄y and β is given in (4.6). By

properties of orthogonal projections, ‖AJ̄‖2
HS ≤ |θ̄|0 and ‖AJ̄‖1 ≤ |θ̄|0. Combining the

two oracle inequalities above with the following bound from [24, Section 5.2.1]:

log
1

πJ̄
≤ 2|θ̄|0 log

(
ep

|θ̄|0

)
+

1

2
,

it yields

∥∥∥Xθ̂SPA − f

∥∥∥
2

2
≤
∥∥Xθ̄ − f

∥∥2

2
+K212|θ̄|0 + β + 4β|θ̄|0 log

(
ep

|θ̄|0

)
+K2(3 + β)x,

and replacing β by the expresssion of the RHS of (4.6) with L = 1 finishes the proof.
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