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Abstract

The changes-in-changes model extends the widely used difference-in-differences to situ-
ations where outcomes may evolve heterogeneously. Contrary to difference-in-differences,
this model is invariant to the scaling of the outcome. This paper develops an instrumen-
tal variable changes-in-changes model, to allow for situations in which perfect control and
treatment groups cannot be defined, so that some units may be treated in the “control
group”, while some units may remain untreated in the “treatment group”. This is the
case for instance with repeated cross sections, if the treatment is not tied to a strict rule.
Under a mild strengthening of the changes-in-changes model, treatment effects in a pop-
ulation of compliers are point identified when the treatment rate does not change in the
control group, and partially identified otherwise. We show that simple plug-in estimators
of treatment effects are asymptotically normal and that the bootstrap is valid. Finally,
we use our results to reanalyze findings in Field (2007) and Duflo (2001).
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1 Introduction

Difference-in-differences (DID) is a popular method to evaluate the effect of a treatment in
the absence of experimental data. In its basic version, a “control group” is untreated at two
dates, whereas a “treatment group” becomes treated at the second date. If the effect of time
is the same in both groups, the so-called common trends assumption, one can measure the
effect of the treatment by comparing the evolution of the outcome in both groups. DID only
require repeated cross section data, which may explain why this method is so pervasive.

Notwithstanding, the common trends assumption raises a number of concerns. First, it is
unlikely to hold if the effect of time is heterogenous. Suppose for instance that one studies the
effect of job training on wages, using data where low-wage workers benefit from job training
after a given date. If high wages increase more than low wages, the common trends assumption
fails to hold. Second, the common trends assumption is not invariant to monotonic transfor-
mations of the outcome. It requires that the effect of time and group on the outcome be
additively separable, which cannot be true for both the outcome and its logarithm.

To deal with these problems, Athey & Imbens (2006) consider a nonlinear extension of
difference-in-differences, the changes-in-changes (CIC) model.1 It relies on the assumption
that a control and a treatment unit with the same outcome at the first period would also have
had the same outcome at the second period if the treatment unit had then not been treated.
Hereafter, we refer to this condition as the common change assumption. This condition allows
for heterogeneous effects of time, and it is invariant to monotonic transforms of the outcome.

However, many natural experiments cannot be analyzed within the standard DID or CIC
framework. They do not lead to a sharp change in treatment rate for any group defined by a
set of observable characteristics, but only to a larger increase of the treatment rate in some
groups than in others. With panel data at hand, the analyst could define the treatment group
as units going from non treatment to treatment between the two periods, and the control
group as units remaining untreated at the two periods. But this definition of groups might
violate the common trends assumption. Units choosing to go from non treatment to treatment
between the two periods might do so because they experience different trends in outcomes.

In such settings, the standard practice is to use linear instrumental variable (IV) regressions
to estimate treatment effects. A good example is Duflo (2001), who uses a school construction
program in Indonesia to measure returns to education. Many schools were constructed in
districts where there were few schools previous to the program, while few schools were con-
structed in districts which already had many schools. She uses the first group of districts as a
treatment group, and the second as a control group. Because more schools were constructed

1Their estimator is closely related to an estimator proposed by Juhn et al. (1993) and Altonji & Blank
(2000) to decompose the Black-White wage differential into changes in the returns to skills and changes in the
relative skill distribution.
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in treatment districts, years of schooling increased more there. The author then estimates
returns to schooling through an IV regression in which time and group fixed effects are used
as included instruments for treatment, while the excluded instrument is the interaction of time
and group. The resulting coefficient for treatment in this “IV-DID” regression is the ratio of
the DID on the outcome and on treatment, which is sometimes referred to as the Wald-DID.
Other examples of papers estimating “IV-DID” regressions include Burgess & Pande (2005),
Lochner & Moretti (2004), Field (2007), and Akerman et al. (2013), among many others.

We start showing that IV-DID relies on substantially stronger assumptions than DID. On
top of standard common trends assumptions, IV-DID also requires that the effect of the
treatment be homogeneous in the treatment and control groups. Assume for instance that the
effect of the treatment strictly positive in both groups, but twice as large in the control than
in the treatment group. Assume also that the treatment rate increased twice as much in the
treatment than in the control group. Then, the Wald-DID is equal to 0: the lower increase
of the treatment rate in the control group is exactly compensated by the fact that the effect
of the treatment is higher in this group. The Wald-DID does not estimate the effect of the
treatment in any of the two groups, or a weighted average of the two, because the effect of
the treatment is different in the two groups.

Therefore, we study an instrumental variable changes-in-changes (IV-CIC) model which cir-
cumvents the shortcomings of IV-DID. This model does not require common trend assump-
tions, is invariant to monotonic transforms of the outcome, and does not impose homogeneity
of the effect of the treatment in the treatment and in the control groups. It combines an
increasing production function for the outcome as in Athey & Imbens (2006), and a latent
index model for treatment choice in the spirit of Vytlacil (2002). Relative to Athey & Im-
bens (2006), the main supplementary ingredient we impose is a strengthening of the common
change assumption. Formally, we impose that the unobserved terms in the outcome and treat-
ment equations jointly satisfy the common change assumption. Importantly, this allows for
endogenous selection, including Roy models where potential outcomes evolve heterogeneously.

In this framework, we show that the marginal distributions of potential outcomes for compliers
are point identified if the treatment rate remains constant in the control group, and partially
identified otherwise. The intuition for this result goes as follows. When the treatment rate is
constant in the control group, any change in the distribution of the outcome of this group can
be attributed to time. By the common change assumption, time has the same effect in both
groups among individuals with the same outcome. We can therefore use the control group
to identify the effect of time, and remove this effect in the treatment group. Any remaining
change in the distribution of the outcome in the treatment group can then be attributed to
the increase in treatment rate it experienced over time. Thus, the marginal distributions of
potential outcomes for compliers are identified. But when the treatment rate is not constant
in the control group, the evolution of the outcome in this group may stem both from the
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effect of time and from the change in the treatment rate. Therefore, the effect of time is only
partially identified, which in turn implies that the marginal distributions of potential outcomes
for compliers are partially identified as well. We exhibit bounds on these distributions, and
show that they are sharp under testable monotonicity conditions. The smaller the change of
the treatment rate in the control group, the tighter the bounds.

We also develop inference on average and quantile treatment effects. Using the functional delta
method, we show that simple plug-in estimators of treatment effects in the fully identified
case, and of the bounds in the partially identified one, are asymptotically normal under mild
conditions. Because the variance takes a complicated form, the bootstrap is convenient to use
here, and we prove that it is consistent.

Finally, we apply our results to three different data sets. We first revisit Field (2007), who
studies the effect of granting property titles to urban squatters on their labor supply. As
the treatment rate is stable in the comparison group used by the author, we are in the point
identified case. Our IV-CIC model allows us to study distributional effects of the treatment.
We show that property rights have a stronger relative effect on households with a low initial
labor supply. We then study the effect of a new medical treatment to ease smoking cessation.
The treatment rate slightly increases in our comparison group. Therefore, we are in the
partially identified case but our bounds are tight. We show that this new treatment reduces
the share of smokers who fail to quit and remain heavy smokers. Finally, we revisit results
in Duflo (2001) on returns to education. The treatment rate substantially changes in the
comparison group used by the author, so our bounds are wide and uninformative. Our IV-
CIC model does not allow us to draw informative conclusions on returns to education from
the natural experiment studied by the author.

Researchers must therefore find a control group in which the treatment rate is stable over time
to point identify treatment effects under our non linear IV-CIC model. This might be possible
to achieve when a group is excluded from treatment at both dates, when a policy is extended
to a previously ineligible group, or when a program or a technology previously available in
some geographic areas is extended to others (see e.g. Field, 2007, or Akerman et al., 2013).
When exposure to treatment slightly changes in the control group, researchers can still use our
model to derive tight bounds for treatment effects. When exposure to treatment substantially
changes in the control group, using our IV-CIC model will result in wide and uninformative
bounds. In such instances, point identification can still be achieved using IV-DID, at the
expense of imposing more stringent conditions.

Besides Athey & Imbens (2006), our paper is related to several papers in the literature.
Blundell et al. (2004) and Abadie (2005) consider a conditional version of the common trend
assumption, and adjust for covariates using propensity score methods. Donald & Lang (2007)
and Manski & Pepper (2012) allow for some variations in the way time affects the control and
treatment groups, provided these variations satisfy some restrictions. Bonhomme & Sauder

3



(2011) consider a linear model allowing for heterogeneous effects of time, and show how it can
be identified using an instrument. D’Haultfoeuille et al. (2013) study the possibly nonlinear
effects of a continuous treatment using repeated cross sections. de Chaisemartin (2013) studies
the identifying assumptions underlying IV-DID regressions.

The remainder of the paper is organized as follows. In section 2 we consider a toy model
to convey the point that IV-DID might not capture the effect of the treatment if this effect
is not the same in the treatment and in the control groups. In Section 3, we introduce our
IV-CIC model. Section 4 is devoted to identification. Section 5 deals with inference. In
section 6 we apply our results to the three aforementioned data sets. Section 7 concludes.
The appendix gathers the main proofs. Due to a concern for brevity, a number of extensions
and proofs are deferred to a web appendix (see de Chaisemartin & D’Haultfoeuille, 2014). In
this appendix, we show how our framework can accommodate for covariates, how it can be
extended to settings with many periods and many groups, and how our model can be tested.

2 A cautionary tale of IV-DID

We are interested in the effect of a binary treatment D on some continuous outcome. Y (1) and
Y (0) denote the two potential outcomes of the same individual with and without treatment.
The observed outcome is Y = DY (1) + (1−D)Y (0). Let T ∈ {0, 1} denote time and let G be
a dummy equal to 1 for subjects in the treatment group. We consider a fuzzy setting, where
D 6= G× T . Some units may be treated in the control group or at period 0, and all units are
not necessarily treated in the treatment group at period 1. But we assume that at period 1,
individuals in the treatment group receive extra incentives to get treated. We model this by
introducing the binary instrument Z = T ×G. The two corresponding potential treatments,
D(1) andD(0), stand for the treatment an individual would choose to receive with and without
this supplementary incentive. The observed treatment is D = ZD(1) + (1− Z)D(0).

In such settings, a first strategy to estimate the effect of the treatment is to run an IV
regression of the outcome on the treatment with time and group as included instruments, and
the interaction of the two as the excluded instrument. However, this estimation strategy relies
on strong assumptions. It requires common trend assumptions for both potential outcomes
and treatments, and it also requires that the effect of the treatment be homogeneous in the
treatment and in the control groups (see de Chaisemartin, 2013).

To convey this last point, let us consider a simple model in which the coefficient arising from
the aforementioned regression might not have any causal interpretation if the effect of the
treatment differs in the two groups. For any random variable X, let

DIDX = E(X|T = 1, G = 1)− E(X|T = 0, G = 1)− (E(X|T = 1, G = 0)− E(X|T = 0, G = 0)) .

The estimand arising from the “IV-DID” regression described above is the Wald-DID, which
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is equal to DIDY
DIDD

. Now, assume that the causal model generating the potential outcomes is

Y (d) = α+ βT + γG+ δ0d(1−G) + δ1dG+ U, (1)

where U is a random variable with mean 0, supposed to be mean independent of (T,G):

E(U |T,G) = 0. (2)

In this model, the effect of time is assumed to be constant, while the effect of the treatment
is allowed to vary across groups. If potential outcomes follow the model defined by Equations
(1) and (2), it is easy to show that

DIDY = δ1 (P (D = 1|T = 1, G = 1)− P (D = 1|T = 0, G = 1))

− δ0 (P (D = 1|T = 1, G = 0)− P (D = 1|T = 1, G = 0)) . (3)

If the effect of the treatment is the same in the two groups, i.e. if δ0 = δ1 = δ, Equation (3)
implies that the Wald-DID is equal to δ. But if δ0 6= δ1, the Wald-DID might not have any
causal interpretation. Assume for instance that

P (D = 1|T = 1, G = 1)− P (D = 1|T = 0, G = 1) > 0,

P (D = 1|T = 1, G = 0)− P (D = 1|T = 1, G = 0) > 0,

δ0 > 0, and δ1 = δ0 ×
P (D = 1|T = 1, G = 0)− P (D = 1|T = 1, G = 0)

P (D = 1|T = 1, G = 1)− P (D = 1|T = 0, G = 1)
.

The Wald-DID is then equal to 0 while every observation in the population has a strictly
positive treatment effect. de Chaisemartin (2013) shows that this result extends to more
general models with heterogeneous effects of time and of the treatment. In these models, the
Wald-DID captures a causal effect if the average effect of the treatment is the same in the
treatment and in the control groups, at least among subjects whose treatment status changes
over time.

This homogeneity condition might sometimes be a strong assumption. In Duflo (2001), it
requires that returns to schooling be the same in districts in which many schools were con-
structed as in districts in which few schools were constructed. Districts in which many schools
were constructed are those where few schools were available previous to the program. Returns
to education might be higher in those districts, for instance if they suffer from a shortage of
qualified labor. But those districts are probably less developed, so returns to education might
also be lower if there are no jobs available for educated workers in these areas.

3 The instrumental variable Changes-in-Changes model

IV-DID relies on strong assumptions. As an alternative, we propose an IV-CIC model that
does not require common trends or treatment effect homogeneity assumptions, and whose
assumptions have a more straightforward economic interpretation.
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Let us first introduce more notations. For any random variables R and S, R ∼ S means that
R and S have the same probability distribution. S(R) and S(R|S) denote respectively the
support of R and the support of R conditional on S. As Athey & Imbens (2006), for any
random variable R we introduce the corresponding random variables Rgt such that

Rgt ∼ R|G = g, T = t.

Let FR and FR|S denote the cumulative distribution function (cdf) of R and its cdf conditional
on S. For any event A, FR|A is the cdf of R conditional on A. With a slight abuse of notation,
P (A)FR|A should be understood as 0 when P (A) = 0. For any increasing function F on the
real line, we denote by F−1 its generalized inverse:

F−1(q) = inf {x ∈ R/F (x) ≥ q} .

In particular, F−1
X is the quantile function of X. We adopt the convention that F−1

X (q) =

inf S(X) for q < 0, and F−1
X (q) = supS(X) for q > 1. We let λd = P (D01 = d)/P (D00 = d)

be the ratio of the shares of people receiving treatment d in period 1 and period 0 in the
control group. For instance, λ0 > 1 when the share of untreated observations increases in
the control group between period 0 and 1. λ0 > 1 implies that λ1 < 1 and conversely.
µd = P (D11 = d)/P (D10 = d) is the equivalent of λd for the treatment group.

As in Athey & Imbens (2006), we consider the following model for the potential outcomes:

Y (d) = hd(Ud, T ), d ∈ {0; 1} . (4)

We also consider the following assumptions.

Assumption 1 (Monotonicity)

hd(u, t) is strictly increasing in u for all (d, t) ∈ {0, 1}2.

Assumption 2 (Latent index model for potential treatments)

D(z) = 1{V ≥ vz(T )} with v0(t) > v1(t) for t ∈ {0; 1}.

Assumption 3 (Time invariance within groups)

For d ∈ {0, 1}, (Ud, V ) ⊥⊥ T |G.

Remarks on these assumptions are in order. Ud can be interpreted as an ability index. V

represents taste for treatment. Our latent index model for potential treatments is the same
as in Vytlacil (2002), except that the threshold can depend on time. As shown by Vytlacil
(2002), this model implies that the instrument must have a monotonic effect on treatment, as
in Imbens & Angrist (1994). As it is formulated in Assumption 2, it also implies that time
can affect treatment in only one direction. Actually, all our theorems would remain valid if Ud
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and V were indexed by time (and then denoted by U td and V t), except that we would have to
rewrite Assumption 3 as follows: for d ∈ {0, 1},

(
U0
d , V

0
)
|G ∼

(
U1
d , V

1
)
|G. This would allow

individual ability and taste for treatment to change over time, provided their distribution
remains the same in each group. In this model, time could induce some observations to go
from non-treatment to treatment, while having the opposite effect on other observations. In
what follows, we do not index Ud and V by time to alleviate the notational burden.

Assumption 3 requires that the joint distribution of ability and propensity for treatment re-
mains stable in each group over time. It implies Ud ⊥⊥ T |G and V ⊥⊥ T |G, which correspond
to the time invariance assumption in Athey & Imbens (2006). As a result, Assumptions 1-3 im-
pose a standard CIC model both on Y and D. But Assumption 3 also implies Ud ⊥⊥ T |G,V ,
which means that in each group, the distribution of ability among people with a given taste
for treatment should not change over time. This is the key supplementary ingredient with
respect to the standard CIC model that we are going to use for identification.

This supplementary ingredient is compatible with Roy selection in a model where time has
heterogeneous effects on the outcome, provided the treatment does not affect this pattern of
heterogeneity. Assume potential treatments follow a Roy model: D(z) = 1{Y (1) − Y (0) ≥
c(z)}. Assume also that

Y (d) = Ud + ηdT + γUdT, (5)

and that the standard CIC assumption is verified:

(U0, U1) ⊥⊥ T |G. (6)

Equation (5) allows for different trends in potential outcomes across ability levels. It satisfies
Assumption 1 provided γ > −1. One can then rewrite

D(z) = 1

{
U1 − U0 ≥

c(z)− (η1 − η0)T

1 + γT

}
.

Assumption 2 is satisfied with V = U1 − U0 and vz(T ) = [c(z) − (η1 − η0)T ]/(1 + γT ).
(U0, U1) ⊥⊥ T |G then implies that Assumption 3 is satisfied as well. On the contrary, with
γd instead of γ in Equation (5), Assumption 3 may be violated because then V = U1 − U0 +

T (γ1U1 − γ0U0). Therefore, Assumption 3 is compatible with a Roy model in which time can
have heterogeneous effects on the outcome across ability levels, provided these heterogeneous
effects are not affected by the treatment. This is not an innocuous assumption, but this is an
improvement relative to IV-DID which is incompatible with Roy selection and Equation (5).2

Hereafter, we refer to Assumptions 1-3 as to the IV-CIC model. Finally, we impose the two
following assumptions, which are directly testable in the data.

2IV-DID relies on common trend assumptions on potential outcomes and treatments (see de Chaisemartin,
2013). Together with Roy selection and Equation (5), these assumptions imply U1−U0 ⊥⊥ G. This amounts to
assuming that groups are as good as randomly assigned, in which case we do not need to resort to a longitudinal
analysis to capture treatment effects.
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Assumption 4 (Data restrictions)

1. S(Ygt|D = d) = S(Y ) = [y, y] with (y, y) ∈ R2, for (g, t, d) ∈ {0; 1}3.

2. FYgt|D=d is strictly increasing and continuous on S(Y ), for (g, t, d) ∈ {0; 1}3.

Assumption 5 (Rank condition)

P (D11 = 1)− P (D10 = 1) > 0.

The first condition of Assumption 4 is a common support condition. Athey & Imbens (2006)
take a similar assumption and show how to derive partial identification results when it is not
verified. Point 2 is satisfied if the distribution of Y is continuous with positive density in each
of the eight groups × period × treatment status cells. Assumption 5 is a rank condition. Our
IV-CIC model requires that the treatment rate changes in at least one group. If it decreases
in the two groups we can just consider 1−D as the treatment variable.

Before getting to the identification results, it is useful to define five subpopulations of interest.
Assumptions 2 and 3 imply that

P (D10 = 1) = P (V ≥ v0(0)|G = 1)

P (D11 = 1) = P (V ≥ v1(1)|G = 1).

Therefore, under Assumption 5 v0(0) > v1(1). Similarly, if the treatment rate increases (resp.
decreases) in the control group, v0(0) > v0(1) (resp. v0(0) < v0(1)). Finally, Assumption 2
implies v1(1) ≤ v0(1). Let always takers be such that V ≥ v0(0), and let never takers be such
that V < v1(1). Always takers are units who get treated in period 0 even without receiving any
incentive for treatment. Never takers are units who do not get treated in period 1 even after
receiving an incentive for treatment. Let TC = {V ∈ [min(v0(0), v0(1)),max(v0(0), v0(1)))}.
TC stands for “time compliers,” and represents observations whose treatment status switches
between the two periods because of the effect of time. Let IC = {V ∈ [v1(1), v0(1))}.3

IC stands for instrument compliers and corresponds to observations which become treated
through the effect of Z only. Finally, let C = {V ∈ [v1(1), v0(0))}. C stands for compliers and
corresponds to untreated observations at period 0 who become treated at period 1, through
both the effect of Z and time. If the treatment rate increases in the control group, we have
C = IC ∪ TC, while if it decreases we have C = IC \ TC.
Our identification results focus on compliers. Our parameters of interest are the cdf of Y (1)

and Y (0) within this population, as well as their Local Average Treatment Effect (LATE) and
Quantile Treatment Effects (QTE). Their LATE and QTE are respectively defined by

∆ = E (Y11(1)− Y11(0)|C) ,

τq = F−1
Y11(1)|C(q)− F−1

Y11(0)|C(q), q ∈ (0, 1).

3IC is defined to be empty when v0(1) = v1(1).
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4 Identification

4.1 Point identification results

We first show that when the treatment rate does not change between the two periods in the
control group, the cdf of Y (1) and Y (0) among compliers are identified. Consequently, the
LATE and QTE are also point identified. Let Qd(y) = F−1

Y01|D=d ◦FY00|D=d(y) be the quantile-
quantile transform of Y from period 0 to 1 in the control group conditional on D = d. This
transform maps y at rank q in period 0 into the corresponding y′ at rank q as well in period
1. Also, let QD = DQ1 + (1 − D)Q0. Finally, let Hd(q) = FY10|D=d ◦ F−1

Y00|D=d(q) be the
inverse quantile-quantile transform of Y from the control to the treatment group in period 0
conditional on D = d. This transform maps rank q in the control group into the corresponding
rank q′ in the treatment group with the same value of y.

Theorem 4.1 If Assumptions 1-5 hold and for d ∈ {0, 1} P (D00 = d) = P (D01 = d) > 0,
FY11(d)|C(y) is identified by

FY11(d)|C(y) =
P (D10 = d)FQd(Y10)|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

=
P (D10 = d)Hd ◦ FY01|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)
.

This implies that ∆ and τq are also identified. Moreover,

∆ =
E(Y11)− E(QD(Y10))

E(D11)− E(D10)
.

This theorem combines ideas from Imbens & Rubin (1997) and Athey & Imbens (2006). We
seek to recover the distribution of, say, Y (1) among compliers in the treatment × period
1 cell. When the treatment rate does not change in the control group, v0(0) = v0(1). As a
result, there are no time compliers, and compliers are merely instrument compliers. To recover
the distribution of Y (1) among them, we start from the distribution of Y among all treated
observations of this cell. As shown in Table 1, those include both compliers and always takers.
Consequently, we must “withdraw” from this distribution the cdf of Y (1) among always takers,
exactly as in Imbens & Rubin (1997). But this last distribution is not observed. To reconstruct
it, we adapt the ideas in Athey & Imbens (2006) and apply the quantile-quantile transform
from period 0 to 1 among treated observations in the control group to the distribution of Y (1)

among always takers in the treatment group in period 0.

Intuitively, the quantile-quantile transform uses a double-matching to reconstruct the unob-
served distribution. Consider an always taker in the treatment × period 0 cell. She is first
matched to an always taker in the control × period 0 cell with same y. Those two always takers
are observed at the same period of time and are both treated. Therefore, under Assumption
1 they must have the same u1. Second, the control × period 0 always taker is matched to
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her rank counterpart among always takers of the control × period 1 cell. We denote y∗ the
outcome of this last observation. Because U1 ⊥⊥ T |G,V ≥ v0(0), those two observations must
also have the same u1. Consequently, y∗ = h1(u1, 1), which means that y∗ is the outcome that
the treatment × period 0 cell always taker would have obtained in period 1.

Treatment Group

20% treated: Always Takers                  
65% treated: Always Takers and 

Compliers                                        

80% untreated: Never Takers and 
Compliers                   

35% Untreated: Never Takers              

Period 0 Period 1

Control Group

30% treated: Always Takers                   30% treated: Always Takers                  

70% untreated: Never Takers and 
Compliers               

70% untreated: Never Takers and 
Compliers               

Table 1: Populations of interest when P (D00 = 0) = P (D01 = 0).

Note that our LATE estimand is similar to the LATE estimand in Imbens & Angrist (1994).

∆ =
E(Y |G = 1, T = 1)− E(QD(Y )|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

This is the standard Wald ratio in the treatment group with T as the instrument, except that
we have QD(Y ) instead of Y in the second term of the numerator. QD(Y ) accounts for the
fact time is not a standard instrument. It influences selection into treatment, a condition all
instruments must satisfy, but it is also directly included in the potential outcome equations,
meaning that it violates the standard exclusion restriction. When the treatment rate is stable
in the control group, we can identify this direct effect by looking at how the distribution of
the outcome evolves in this group. We can then net out this direct effect in the treatment
group, so as to recover the effect of time on the outcome which only goes through the effect
of time on treatment. This is exactly what QD(.) does.

Under Assumptions 1-5, the LATE and QTE for compliers are point identified when 0 <

P (D00 = 0) = P (D01 = 0) < 1, but not in the extreme cases where P (D00 = 0) = P (D01 =

0) ∈ {0, 1}. For instance, when P (D00 = 1) = P (D01 = 1) = 1, FY11(1)|C is identified by
Theorem 4.1, but FY11(0)|C is not. Such situations are likely to arise in practice, for instance
when a policy is extended to a previously ineligible group, or when a program or a technology
previously available in some geographic areas is extended to others (see Subsection 6.1 below).
We therefore consider a mild strengthening of our assumptions under which both FY11(0)|C and
FY11(1)|C are point identified in those instances.

10



Assumption 6 (Common effect of time on both potential outcomes) h0(u, t) = h1(u, t) =

h(u, t) for every (u, t) ∈ S(U)× {0, 1}.

Assumption 6 requires that the effect of time be the same on both potential outcomes. It
implies that two observations with the same outcome in period 0 will also have the same
outcome in period 1 if they do not switch treatment between the two periods, even if they do
not share the same treatment at period 0. Under this assumption, if P (D00 = 1) = P (D01 =

1) = 1, changes in the distribution of Y in the control group over time allow us to identify the
effect of time both on Y (0) and Y (1), hence allowing us to recover FY11(0)|C and FY11(1)|C .

Theorem 4.2 If Assumptions 1-6 hold and P (D00 = d) = P (D01 = d) = 0 for some d ∈
{0, 1}, FY11(d)|C(y) and FY11(1−d)|C(y) are identified by

FY11(d)|C(y) =
P (D10 = d)FQ1−d(Y )10|D=d(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)

FY11(1−d)|C(y) =
P (D10 = 1− d)FQ1−d(Y )10|D=1−d(y)− P (D11 = 1− d)FY11|D=1−d(y)

P (D10 = 1− d)− P (D11 = 1− d)
.

This implies that ∆ and τq are also identified. Moreover,

∆ =
E(Y11)− E(Q1−d(Y10))

E(D11)− E(D10)
.

A last situation worth noting is when the treatment rate is equal to 0 at both dates in the
control group, and is also equal to 0 in the first period in the treatment group. This is a
special case of Theorem 4.2, but in such instances we can actually identify the model under
fewer assumptions. To see this, note that in such situations,

FY11(1)|C = FY11|D=1 (7)

because there are no always takers in the treatment group. Therefore, we only need to recover
FY11(0)|C . But since the distribution of Y11(0) among never takers is identified by FY11|D=0,
under Assumption 2 we only need to recover FY11(0). This can be achieved under the standard
changes-in-changes assumptions, as the control group remains fully untreated at both dates.

4.2 Partial identification

When P (D00 = d) = P (D01 = d), FY11(d)|C is identified under Assumptions 1-5 or Assump-
tions 1-6. We show now that if this condition is not verified, the functions FY11(d)|C are
partially identified. For that purpose, we must distinguish between two cases.

First, when P (D00 = d) 6= P (D01 = d) and P (D00 = d) > 0, the second matching described
in the previous section collapses, because treated (resp. untreated) observations in the control
group are no longer comparable in period 0 and 1. For instance, when the treatment rate
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increases in the control group, treated observations in the control group include only always
takers in period 0. In period 1 they also include time compliers, as is shown in Table 2. There-
fore, we cannot match period 0 and period 1 observations on their rank anymore. However,
under Assumption 3 the respective weights of time compliers and always takers in period 1
are known. We can therefore derive best and worst case bounds for the distribution of the
outcome for always takers in period 1, and match period 0 observations to their best and worst
case rank counterparts.

35% treated: Always Takers and Time 
Compliers

65% untreated: Never Takers and 
Instrument Compliers

70% untreated: Never Takers, 
Instrument Compliers and Time 

Compliers

25% treated: Always Takers and Time 
Compliers 60% treated: Always Takers and 

Instrument Compliers

75% untreated: Never Takers and 
Instrument Compliers. 40% Untreated: Never Takers and 

Time Compliers

30% treated: Always Takers

P(D01 = 1) < P(D00 = 1)

Period 1

Control Group

Treatment Group

Period 0

P(D01 = 1)  ≥ P(D00 = 1)

Treatment Group

Control Group

35% treated: Always Takers and Time 
Compliers

Period 0 Period 1

30% treated: Always Takers

70% untreated: Never Takers, 
Instrument Compliers and Time 

Compliers      

65% untreated: Never Takers and 
Instrument Compliers     

25% treated: Always Takers 

75% untreated: Never Takers, 
Instrument Compliers and Time 

Compliers                     

60% treated: Always Takers, 
Instrument Compliers and Time 

Compliers

40% Untreated: Never Takers                    

Table 2: Populations of interest when P (D01 = 1) > P (D00 = 1).

Second, when P (D00 = d) = 0 the first matching collapses. For instance, if P (D00 = 1) = 0,
there are no treated observations in the control group in period 0 to which treated observa-
tions in the treatment group in period 0 can be matched. Still, the cdf of Y among treated
observations in the treatment × period 1 cell writes as a weighted average of the cdf of Y (d)

among compliers and always or never takers. We can use this fact to bound FY11(d)|C .

The derivation of our bounds relies on the following lemma which relates FY11(d)|C to observed
distributions and one unidentified cdf.

Lemma 4.1 If Assumptions 1-5 hold, then:

- If P (D00 = d) > 0,

FY11(d)|C(y) =
P (D10 = d)Hd ◦ (λdFY01|D=d(y) + (1− λd)FY01(d)|TC(y))− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)
.

- If P (D00 = d) = 0,

FY11(d)|C(y) =
P (D10 = d)FY11(d)|(2d−1)V >(2d−1)v0(0)(y)− P (D11 = d)FY11|D=d(y)

P (D10 = d)− P (D11 = d)
.
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When P (D00 = d) > 0, we need to bound FY01(d)|TC to derive bounds on FY11(d)|C . To do so,
we must take into account the fact that FY01(d)|TC is related to two other cdf. To alleviate
the notational burden, let Td = FY01(d)|TC , Cd(Td) = FY11(d)|C , G0(T0) = FY01(0)|V <v0(0) and
G1(T1) = FY01(1)|V≥v0(0). With those notations, we have

Gd(Td) = λdFY01|D=d + (1− λd)Td

Cd(Td) =
P (D10 = d)Hd ◦Gd(Td)− P (D11 = d)FY11|D=d

P (D10 = d)− P (D11 = d)
.

Let M0(x) = max(0, x) and m1(x) = min(1, x), and let

T d = M0

(
m1

(
λdFY01|D=d −H−1

d (µdFY11|D=d)

λd − 1

))
,

T d = M0

(
m1

(
λdFY01|D=d −H−1

d (µdFY11|D=d + (1− µd))
λd − 1

))
.

T d (resp. T d) is the lowest (resp. highest) possible value of Td compatible with the fact
that Td, Gd(Td) and Cd(Td) should all be included between 0 and 1. We can therefore bound
FY11(d)|C by Cd(T d) and Cd(T d), but these bounds can be further improved by remarking that
FY11(d)|C must be increasing. Therefore, we define our bounds as:

Bd(y) = supy′≤y Cd (T d) (y′),

Bd(y) = infy′≥y Cd
(
T d
)

(y′).
(8)

If the support of the outcome is unbounded, B0 and B0 are proper cdf when λ0 > 1, but
they are defective when λ0 < 1. When λ0 < 1, time compliers belong to the group of treated
observations in the control × period 1 cell (cf. Table 2). Their Y (0) is not observed in period
1, so the data does not impose any restriction on FY01(0)|TC : it could be equal to 0 or to 1,
hence the defective bounds. On the contrary, when λ0 > 1, time compliers belong to the group
of untreated observations in the control × period 1 cell. Moreover, under Assumption 3, we
know that they account for 100(1 − 1/λ0)% of this group. Consequently, the data imposes
some restrictions on FY01(0)|TC . For instance, we must have

FY01|D=0,Y≥α ≤ FY01(0)|TC ≤ FY01|D=0,Y≤β,

where α = F−1
Y01|D=0 (1/λ0) and β = F−1

Y01|D=0 (1− 1/λ0). B0 and B0 are trimming bounds in
the spirit of Horowitz & Manski (1995) when λ0 > 1, but not when λ0 < 1, which is the reason
why they are defective then. On the contrary, B1 and B1 are always proper cdf, while we
could have expected them to be defective when λ0 > 1. This asymmetry stems from the fact
that when λ0 > 1, time compliers do not belong to our population of interest (C = IC \TC),
while when λ0 < 1, they belong to it (C = IC ∪ TC).
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When P (D00 = d) = 0, our bounds are much simpler. We simply bound FY11(1)|(2d−1)V≥(2d−1)v0(0)

by 0 and 1. For d = 1, this yields

B1(y) = M0

(
P (D11 = d)FY11|D=d − P (D10 = d)

P (D11 = d)− P (D10 = d)

)
B1(y) = m1

(
P (D11 = d)FY11|D=d

P (D11 = d)− P (D10 = d)

)
. (9)

For d = 0, this yields trivial bounds: B0(y) = 0 and B0(y) = 1.

In the following theorem, we show that Bd and Bd are indeed bounds for FY11(d)|C . We also
consider whether these bounds are sharp or not. Hereafter, we say that Bd is sharp if there
exists a sequence of cdf (Gk)k∈N such that supposing FY11(d)|C = Gk is compatible with both
the data and the model, and for all y, limk→∞Gk(y) = Bd(y). We establish that Bd and Bd

are sharp under Assumption 7 below. Note that this assumption is testable from the data.

Assumption 7 (Increasing bounds)

For (d, g, t) ∈ {0, 1}3, FYgt|D=d is continuously differentiable, with positive derivative on
◦
S(Y ).

Moreover, either (i) P (D00 = d) = 0 or (ii) T d, T d, Gd(T d) and Gd(T d) are increasing and
Cd(T d) and Cd(T d) are strictly increasing.

We can finally state the theorem summarizing the discussion on partial identification.

Theorem 4.3 If Assumptions 1-5 hold, we have

Bd(y) ≤ FY11(d)|C(y) ≤ Bd(y).

Moreover, if Assumption 7 holds, Bd(y) and Bd(y) are sharp.

A consequence of Theorem 4.3 is that QTE and LATE are partially identified when P (D00 =

0) 6= P (D01 = 0) or P (D00 = 0) ∈ {0, 1}. To ensure that the bounds on the LATE are well
defined, we impose the following technical condition.

Assumption 8 (Existence of moments)∫
|y|dB1(y) < +∞ and

∫
|y|dB1(y) < +∞.

Corollary 4.4 If Assumptions 1-5 and 8 hold and P (D00 = 0) 6= P (D01 = 0) , ∆ and τq are
partially identified, with∫

ydB1(y)−
∫
ydB0(y) ≤ ∆ ≤

∫
ydB1(y)−

∫
ydB0(y),

max(B
−1
1 (q), y)−min(B−1

0 (q), y) ≤ τq ≤ min(B−1
1 (q), y)−max(B

−1
0 (q), y).

Moreover, these bounds are sharp under Assumption 7.
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When S(Y ) is unbounded and λ0 < 1, our bounds on ∆ will be infinite because our bounds
for the cdfs of Y (1) and Y (0) of compliers are defective. Our bounds on τq will also be infinite
for low and high values of q. On the contrary, when λ0 > 1 our bounds on τq will be finite
for every q ∈ (0, 1). Our bounds on ∆ will also be finite provided B0 and B0 admit an
expectation.

5 Inference

In this section, we develop inference on LATE and QTE in the point and partially identified
cases. In both cases, we impose the following conditions.

Assumption 9 (Independent and identically distributed observations)

(Yi, Di, Gi, Ti)i=1,...,n are i.i.d.

Assumption 10 (Technical conditions for inference 1)

S(Y ) is a bounded interval [y, y]. Moreover, for all (d, g, t) ∈ {0, 1}3, Fdgt = FYgt|D=d and
FY11(d)|C are continuously differentiable with strictly positive derivatives on [y, y].

Athey & Imbens (2006) impose a condition similar to Assumption 10 when studying the
asymptotic properties of their estimator.

We first consider the point identified case, which corresponds either to 0 < P (D00 = 0) =

P (D01 = 0) < 1 under Assumptions 1-5, or to P (D00 = 0) = P (D01 = 0) ∈ {0, 1} under
Assumptions 1-6. For simplicity, we focus hereafter on the first case but the asymptotic
properties of the estimator are similar in the second case. Let F̂dgt (resp. F̂−1

dgt) denote the
empirical cdf (resp. quantile function) of Y on the subsample {i : Di = d,Gi = g, Ti = t} and
Q̂d = F̂−1

d01 ◦ F̂d00. We also let Igt = {i : Gi = g, Ti = t} and ngt denote the size of Igt for all
(d, g) ∈ {0, 1}2. Our estimator of the LATE is

∆̂ =
1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Q̂Di(Yi)

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

Let P̂ (Dgt = d) be the proportion of subjects with D = d in the sample Igt, let Ĥd =

F̂d10 ◦ F̂−1
d00, and let

F̂Y11(d)|C =
P̂ (D01 = d)Ĥd ◦ F̂d01 − P̂ (D11 = d)F̂d11

P̂ (D10 = d)− P̂ (D11 = d)
.

Our estimator of the QTE of order q for compliers is

τ̂q = F̂−1
Y11(1)|C(q)− F̂−1

Y11(0)|C(q).
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We say hereafter that an estimator θ̂ of θ is root-n consistent and asymptotically normal if
there exists Σ such that

√
n(θ̂ − θ)

L−→ N (0,Σ). Theorem 5.1 below shows that both ∆̂

and τ̂q are root-n consistent and asymptotically normal. Because the asymptotic variances
take complicated expressions, we consider the bootstrap for inference. For any statistic T ,
we let T ∗ denote its bootstrap counterpart. For any root-n consistent statistic θ̂ estimating
consistently θ, we say that the bootstrap is consistent if with probability one and conditional
on the sample,

√
n(θ̂∗ − θ̂) converges to the same distribution as the limit distribution of

√
n(θ̂ − θ).4 Theorem 5.1 shows that bootstrap confidence intervals are asymptotically valid.

Theorem 5.1 Suppose that Assumptions 1-5, 9-10 hold and 0 < P (D00 = 0) = P (D01 =

1) < 1. Then ∆̂ and τ̂q are root-n consistent and asymptotically normal. Moreover, the
bootstrap is consistent for both ∆̂ and τ̂q.

In contrast with Athey & Imbens (2006), our proof of Theorem 5.1 is based on the weak con-
vergence of the empirical cdfs of the different subgroups, and on a repeated use of the functional
delta method. This approach can be readily applied to other functionals of (FY11(0)|C , FY11(1)|C),
and to settings with several groups and periods considered in the web appendix.

We also follow this approach in the partially identified case. First, suppose that 0 < P̂ (D00 =

0) < 1 and 0 < P̂ (D10 = 0) < 1. Let λ̂d = P̂ (D01=d)

P̂ (D00=d)
, µ̂d = P̂ (D11=d)

P̂ (D10=d)
and define

T̂ d = M0

(
m1

(
λ̂dF̂Y01|D=d − Ĥ−1

d (µ̂dF̂Y11|D=d)

λ̂d − 1

))
,

T̂ d = M0

(
m1

(
λ̂dF̂Y01|D=d − Ĥ−1

d (µ̂dF̂Y11|D=d + (1− µ̂d))
λ̂d − 1

))
,

Ĝd(T ) = λ̂dF̂Y01|D=d + (1− λ̂d)T,

Ĉd(T ) =
P̂ (D10 = d)Ĥd ◦ Ĝd(T )− P̂ (D11 = d)F̂Y11|D=d

P̂ (D10 = d)− P̂ (D11 = d)
.

To estimate bounds for FY11(d)|C , we use

B̂d(y) = sup
y′≤y

Ĉd

(
T̂ d

)
(y′), B̂d(y) = inf

y′≥y
Ĉd

(
T̂ d

)
(y′).

Therefore, to estimate bounds for the LATE and QTE, we use

∆̂ =

∫
ydB̂1(y)−

∫
ydB̂0(y), ∆̂ =

∫
ydB̂1(y)−

∫
ydB̂0(y),

τ̂ q = B̂1
−1(q)− B̂

−1

0 (q), τ̂ q = B̂
−1

1 (q)− B̂0
−1(q).

When P̂ (D00 = 0) ∈ {0, 1} or P̂ (D10 = 0) ∈ {0, 1}, the bounds on ∆ and τq are defined
similarly, but instead of B̂d and B̂d, we use the empirical counterparts of the bounds on
FY11(d)|C given by Equation (9).

4See, e.g., van der Vaart (2000), Section 23.2.1, for a formal definition of conditional convergence.
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Let B∆ = (∆,∆) and Bτq = (τ q, τ q)
′, and let B̂∆ and B̂τq be the corresponding estimators.

Theorem 5.2 below establishes the asymptotic normality and the validity of the bootstrap for
both B̂∆ and B̂τq , for q ∈ Q ⊂ (0, 1), where Q is defined as follows. First, when P (D00 =

0) ∈ {0, 1}, P (D10 = 0) = 1,5 or λ0 > 1, we merely let Q = (0, 1). When λ0 < 1, we
have to exclude small and large q from Q. This is because the (true) bounds put mass at
the boundaries y or y of the support of Y . Similarly, the estimated bounds put mass on the
estimated boundaries, which must be estimated. Because estimated boundaries typically have
non-normal limit distribution, the asymptotic distribution of the bounds of the estimated QTE
will also be non-normal. We thus restrict ourselves to (q, q), with q = B0(y) and q = B0(y).
Another issue is that the bounds might be irregular at some q ∈ (0, 1), because they include
in their definitions the kinked functions M0 and m1.6 Let

q1 =
µ1FY11|D=1 ◦ F−1

Y01|D=1( 1
λ1

)− 1

µ1 − 1
, q2 =

µ1FY11|D=1 ◦ F−1
Y01|D=1(1− 1

λ1
)

µ1 − 1

denote the two points at which the bounds can be kinked. When λ0 < 1, we restrict ourselves
to Q = (q, q)\{q1, q2}. Note that q1 and q2 may not belong to (q, q), depending on λ1 and µ1,
so that Q may in fact be equal to (q, q).

Theorem 5.2 relies on the following technical assumption, which involves the bounds rather
than the true cdf since we are interested in estimating these bounds. Note that the strict
monotonicity requirement is only a slight reinforcement of Assumption 7.

Assumption 11 (Technical conditions for inference 2)

For d ∈ {0, 1}, the sets Sd = [B−1
d (q), B−1

d (q)] ∩ S(Y ) and Sd = [B
−1
d (q), B

−1
d (q)] ∩ S(Y ) are

not empty. The bounds Bd and Bd are strictly increasing on Sd and Sd. Their derivative,
whenever they exist, are strictly positive.

Theorem 5.2 Suppose that Assumptions 1-5, 7, 9-11 hold and q ∈ Q. Then B̂∆ and B̂τq are
root-n consistent and asymptotically normal. Moreover, the bootstrap is consistent for both.

To construct confidence intervals of level 1− α for ∆ (resp. τq), one can use the lower bound
of the two-sided confidence interval of level 1 − α of ∆ (resp. τq), and the upper bound of
the two-sided confidence interval of ∆ (resp. τq). Such confidence intervals are asymptotically
valid but conservative. Alternatively, one could use one-sided confidence intervals of level 1−α
on ∆ and ∆ (resp τq and τq).7

5Assumption 4 rules out P (D10 = 0) = 0.
6This problem does not arise when λ0 > 1. Kinks can arise only at 0 or 1 in this case.
7As shown in Imbens & Manski (2004), such confidence intervals are not uniformly valid. The solutions to

this problem suggested by Imbens & Manski (2004) or Stoye (2009) require that bounds converge uniformly
towards normal distributions. In Theorem 5.2, we only show pointwise convergence. Uniform convergence is
likely to fail for QTE because of the kinks of Bd and Bd at the points q1 or q2.
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So far, we have implicitly considered that we know whether point or partial identification
holds, which is not the case in practice. This is an important issue, since the estimators and
the way confidence intervals are constructed differ in the two cases. Abstracting from extreme
cases where P (Dgt = d) = 0, testing point identification is equivalent to testing λ0 = 1. One
can conduct asymptotically valid inference by using point identification results if the t-statistic∣∣∣ λ̂0−1
σ̂λ0

∣∣∣ is lower than a sequence cn satisfying cn → +∞ and cn√
n
→ 0. This pretest ensures that

the probability of conducting inference under the wrong maintained assumption vanishes to
0 asymptotically. This procedure is similar to those recently developed in moment inequality
models, which guarantee uniformly valid inference (see for instance Andrews & Soares, 2010).
In the moment inequality literature, the choice of cn =

√
2 ln(ln(n)) has been advocated (see

Andrews & Soares, 2010), so we stick to it in our applications.

6 Applications

6.1 Property rights and labor supply

Between 1996 and 2003, the Peruvian government issued property titles to 1.2 million urban
households, the largest titling program targeted to squatters in the developing world. Field
(2007) examines the labor market effects of increases in tenure security resulting from the pro-
gram. Tenure insecurity encompasses fear of eviction by the government and fear of property
theft by other residents. Such concerns might remove individuals from the labor force.

To isolate the causal effect of property rights, the author uses a survey conducted in 2000, and
exploits two sources of variation in exposure to the titling program at that time. Firstly, this
program took place at different dates in different neighborhoods. In 2000, it had approximately
reached 50% of targeted neighborhoods. Secondly, it only impacted squatters, i.e. households
without a property title prior to the program. The author can therefore construct four groups
of households: squatters in neighborhoods reached by the program before 2000, squatters in
neighborhoods reached by the program after 2000, non- squatters in neighborhoods reached
by the program before 2000, and non- squatters in neighborhoods reached by the program
after 2000. The share of households with a property title in each group is shown in Table 4.

Table 3: Share of households with a property right

Reached after 2000 Reached before 2000

Squatters 0% 71%
Non-squatters 100% 100%

In Table 5 of her paper, the author estimates IV-DID regressions to capture the effect of having
a property right on hours worked per week by the household. Whether the neighborhood was
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reached before or after 2000 plays the role of time, while squatters and non-squatters are
the two groups. In what follows, we apply our IV-CIC model to the same data. P (D10 =

1) = 0, so FY11(1)|C(y) is identified by FY11|D=1(y) as shown in Equation (7). Moreover, as
P (D00 = 1) = P (D10 = 1) = 1, we can use Theorem 4.2 to identify FY11(0)|C(y). The
resulting estimates are displayed in Figure 1. F̂Y11(0)|C stochastically dominates F̂Y11(1)|C ,
which indicates that property rights have a positive impact on the number of hours worked over
the entire distribution of hours. We test for stochastic dominance by adapting to our context
the bootstrap test of Abadie (2002). We reject the null hypothesis that the two distributions
are equal hypothesis at the 10% level (p-value=0.09). Details on the construction of the test
are provided in de Chaisemartin & D’Haultfoeuille (2014).
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Figure 1: Estimated cdf of Y (0) and Y (1) for compliers.

As per our IV-CIC model, the LATE of titling on hours of work is equal to 23.3. This LATE
is 17% lower than the one we would have obtained through an IV-DID regression (27.2), and
the difference between the two is statistically significant (p-value=0.02).8 Quantile treatment
effects are shown in Figure 2. They are fairly constant, most of them being close to +20

hours of work per week. This implies that the effect of the treatment is highly heterogeneous
in relative terms. We compute that being granted a property title increases labor supply by
more than 40% for households at the 25th percentile of the distribution of hours worked per

8Our IV-DID LATE does not match exactly the “Tilted” coefficient in the second column of Table 5 in
Field (2007). We estimated the same regression as the author, but without control variables. This is to ensure
that the resulting coefficient is comparable with our IV-CIC LATE, which is estimated without controls. Our
IV-CIC model allows for discrete controls, but here the sample size is too small to include as many as the
author did.
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week, and by 10% only for households at the 75th percentile. The difference between the two
is marginally significant (p-value=0.12). An explanation for this pattern could go as follows.
The main source of variation in hours worked per week at the household level is presumably
the size of the household. In every household, only one household member has to stay home
to look after the household’s residence, irrespective of the household size. Being granted a
property title therefore allows this household member to increase her labor supply, but has no
effect on the labor supply of other members.
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Figure 2: Estimated QTE on the number of hours worked.

6.2 Effectiveness of a smoking cessation treatment

Smoking rate among the adult population in France is around 30%. This is much higher than
in most western countries (see e.g. Beck et al., 2007). Varenicline, a pharmacotherapy for
smoking cessation, has been marketed in France since February 2007. Randomized controlled
trials (RCT) have shown Varenicline to be more efficient than other pharmacotherapies used
in smoking cessation (see e.g. Jorenby et al., 2006). However, there have been few studies
based on non experimental data to confirm the efficacy of this new drug in real life settings.

We use a database from 17 French smoking cessation clinics, in which doctors, nurses, and
psychologists help smokers quit. When a patient comes for the first time, the clinic staff
measure the number of carbon monoxide (CO) parts per million in the air she expires. CO
is a biomarker for recent tobacco use. After collecting those measures and discussing with
the patient, they may advise her treatments, such as nicotine replacement therapies, to help
her quit. Patients then come back for follow-up visits. During those visits, CO measures are
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made to validate tobacco abstinence. This measure is much more reliable than daily cigarettes
smoked, because it is not self-reported. Below 5 parts per million, a patient is regarded as a
non smoker by clinics staff. She is regarded as a light smoker when her CO is between 5 and
10, as a smoker when it is between 10 and 20, and as a heavy smoker when it is above 20.9

The rate of prescription of Varenicline after February 2007 ranges from 0% to 37% across
clinics. A very strong predictor of clinics propensity to prescribe varenicline is the share of
their staff holding the “diplome universitaire de tabacologie” (DUT) in 2005-2006, i.e. before
varenicline was released. The DUT is a university degree awarded to staff who followed a
60 hours course on how to help smokers quit. The share of staff holding it ranges from 0 to
100% across clinics, with a median equal to 60%. The correlation between prescription rate
and share of staff holding this degree is equal to 0.63. Staff who took this training a few
years before varenicline got market approval might have then been told that preliminary RCT
showed this new drug to be promising. They might also have a stronger taste for learning than
those who do not take this training, and might be more prone to adopting medical innovations.

We use the share of staff holding this degree in 2005-2006 to construct two groups of “control”
and “treatment” clinics. Control clinics are those belonging to the first tercile of this measure,
while treatment clinics are those belonging to the third tercile. Period 0 covers the 2 years
before the release of Varenicline (February 2005 to January 2007), while period 1 extends over
the 2 years following it (February 2007 to January 2009). Our sample is made up of the 7,468
patients who attended control and treatment clinics over these two periods and who came
to at least one follow-up visit. By construction, the prescription rate of Varenicline is 0% in
control and treatment clinics at period 0. At period 1, it is equal to 4.9% in control clinics
and 25.4% in treatment clinics. This differential evolution of treatment rates over time across
those two groups of clinics is the source of variation we use to measure the effect of varenicline.

Table 4: Share of patients prescribed varenicline

Before February 2007 After February 2007

Treatment clinics 0% 25.4%
Control clinics 0% 4.9%

P (D10 = 1) = 0, so FY11(1)|C(y) is identified by FY11|D=1(y) as shown in Equation (7). On
the other hand, P̂ (D00 = 1) 6= P̂ (D01 = 1) and our pretest rejects λ0 = 1. We therefore use
partial identification results of Theorem 4.3 to estimate bounds for FY11(0)|C(y).

Figure 3 shows estimated bounds for QTE controlling for quartiles of expired CO at baseline.10

9Typically, light smokers smoke less than 10 cigarettes a day, smokers smoke between 10 and 20 cigarettes
a day, and heavy smokers smoke more than 20 cigarettes.

10In de Chaisemartin & D’Haultfoeuille (2014) we discuss how our model can incorporate discrete controls.
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The two bounds are very close to 0 up to the 50th percentile, but τq is significantly different
from 0 for q ∈ (0.62, 0.82).11 Varenicline does not have an impact on low and median values
of CO at follow-up, but it has a strong effect on high values.
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Figure 3: Estimated bounds for QTE, including baseline CO as a control.

Finally, we use our results to analyze the effect of varenicline on the probability of being a
non smoker, a light smoker, a smoker, or an heavy smoker at follow-up. Results are displayed
in Table 5. Varenicline does not significantly increase the share of non smokers at follow-up,
even though our bounds point towards a small, positive effect. However, it has a large and
significant negative effect on the share of heavy smokers: even as per our worst case upper
bound, it decreases this share by 13.4 percentage points.

QTE without controls are similar to those displayed in Figure 3, but they are less precisely estimated.
11We show results up to the 82% percentile only, because q = 0.82.
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Table 5: Effect of Varenicline on shares of non, light, medium, & heavy
smokers.

P (Y11(1) ∈ I|C)− P (Y11(0) ∈ I|C)

I Lower bound Upper bound p-value

[0;5] 0.4% 19.5% 0.48
(5;10] -19.1% 8.2% 0.93
(10;20] 4.5% 15.1% 0.27
(20;+∞) -24.0% -13.4% 0.02

Notes: the p-value corresponds to the test of the null hypoth-

esis that P (Y11(1) ∈ I|C)− P (Y11(0) ∈ I|C) = 0.

6.3 Returns to education

In 1973, the Indonesian government launched a major school construction program, the so-
called Sekolah Dasar INPRES program. It led to the construction of more than 61,000 primary
schools between 1973-1974 and 1978-1979. Duflo (2001) uses the 1995 SUPAS census to
measure the effect of this program on completed years of education in a first step, and returns
to education in a second step. In what follows, we only consider the latter set of results.

There was substantial variation in treatment intensity across regions, as the government tried
to allocate more schools to districts with low initial enrolment. The author thus constructs
two groups of high and low program regions, by regressing the number of schools constructed
on the number of children in each region. High treatment regions are those with a positive
residual in that regression, as they received more schools than what their population predicts.
Exposure to treatment also varied by cohort: children between 2 and 6 in 1974 were exposed
to the treatment as they were to enter primary school after the program was launched, while
children between 12 and 17 in 1974 were not exposed as they were to have finished primary
school by that time.

Number of years of education is larger for the second cohort in the two groups of regions, as
schools were constructed in both groups. But the difference is larger in high treatment regions
because more schools were constructed there. The author exploits this pattern to measure
returns to education. She uses first a simple IV-DID regression in which birth cohort plays
the role of the time variable, while low and high treatment regions are the two groups. The
resulting coefficient, which we can infer from Table 3 in the paper, is imprecisely estimated,
so the author turns to richer specifications. All of them include cohort and region of birth
fixed effects, so one can show that the resulting coefficient is a weighted average of Wald-DID
across all possible pairs of regions and birth cohorts.

In what follows, we apply our IV-CIC model to the same data. As it does not allow for a
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multivariate treatment, we consider a dummy for primary school completion as our treatment
variable. The program was a primary school construction program. The larger increase in
completed years of education in high program regions mostly comes from a larger increase
in the share of individuals completing primary school. For instance, the share of individuals
completing middle school did not evolve differently in the two groups. Our binary treatment
should capture most of the variation in educational attainment induced by the program.

Table 6: Share of individuals completing primary school

Older cohort Younger cohort

High treatment regions 81.2% 90.0%
Low treatment regions 89.8% 94.3%

Table 6 shows that the share of individuals completing primary school increased more in high
than in low treatment regions. Still, it increased in low treatment regions as well, and our
pretest rejects λ0 = 1. We therefore use Theorem 4.3 and estimate bounds for FY11(0)|C(y)

and FY11(1)|C(y). The resulting estimates are displayed in Figure 4. The bounds are wide.
The bounds for QTE are uninformative, as 0 always lies between τ̂ q and τ̂ q. This is because
the increase in treatment rate was not much larger in high than in low treatment regions.
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Figure 4: Estimated bounds on the cdf of Y (0) and Y (1) for compliers.

This application shows that when exposition to treatment substantially changes in the control
group as well, using our IV-CIC model may result in wide and uninformative bounds. In such
instances, point identification can still be achieved using IV-DID, but this strategy relies on
more stringent conditions than our IV-CIC model, as discussed in Section 2 and de Chaise-
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martin (2013). Besides common trend conditions on potential outcomes and treatments,
IV-DID requires that returns to education be homogeneous across high and low treatment
regions. Low treatment regions had fewer schools previous to the program. Returns to educa-
tion could be higher in those areas if they face a shortage of qualified labor. They could also
be lower if they are less developed and few qualified jobs are available there.

Finally, another strategy to recover point identification would be to look for another control
group in which educational attainment did not change over time, and then use our IV-CIC
model. One could for instance use regions in which primary school completion rate changed
the least across the two cohorts.

7 Conclusion

In this paper, we develop an IV-CIC model to identify treatment effects when the treatment
rate increases more in some groups than in others, for instance following a legislative change.
Our model brings several improvements to IV-DID, the model currently used in the literature
in such settings. It does not require common trend assumptions, it is invariant to monotonic
transforms of the outcome, and it does not impose that some subgroups of observations in the
treatment and in the control groups have the same treatment effects.

We show that when the treatment rate is stable between period 0 and 1 in the control group, a
LATE and QTE among compliers are point identified under our IV-CIC assumptions. When
the treatment rate also changes between period 0 and 1 in the control group, the same LATE
and QTE are partially identified. The smaller the change in the treatment rate in the control
group, the tighter the bounds. We conduct inference on treatment effects and sharp bounds
estimators by proving their asymptotic normality and showing the validity of the bootstrap.

Applied researchers must therefore find a control group in which the treatment rate does not
evolve too much over time to derive informative conclusions under our non linear IV-CIC
model. If such a control group is not available, point identification can still be achieved using
IV-DID, but results will rely on stronger assumptions.
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A Main proofs

The proofs of Theorems 5.1 and 5.2 rely on technical lemmas appearing in our web appendix
(see de Chaisemartin & D’Haultfoeuille (2014)).

Lemma 4.1

We only prove the formula for d = 0, the reasoning being similar for d = 1. We first show that

FY11(0)|C(y) =
P (D10 = 0)FY11(0)|V <v0(0)(y)− P (D11 = 0)FY11|D=0(y)

P (D10 = 0)− P (D11 = 0)
. (10)

To this aim, note first that

P (C|G = 1, T = 1, V < v0(0)) =
P (V ∈ [v1(1), v0(0))|G = 1, T = 1)

P (V < v0(0)|G = 1, T = 1)

=
P (V < v0(0)|G = 1, T = 1)− P (V < v1(1)|G = 1, T = 1)

P (V < v0(0)|G = 1, T = 1)

=
P (V < v0(0)|G = 1, T = 0)− P (V < v1(1)|G = 1, T = 1)

P (V < v0(0)|G = 1, T = 0)

=
P (D10 = 0)− P (D11 = 0)

P (D10 = 0)
.

The third equality stems from Assumption 3, and P (D10 = 0) > 0 because of Assumption 5.
Then

FY11(0)|V <v0(0)(y) = P (V ∈ [v1(1), v0(0))|G = 1, T = 1, V < v0(0))FY11(0)|V ∈[v1(1),v0(0))(y)

+P (V < v1(1)|G = 1, T = 1, V < v0(0))FY11|V <v1(1)(y)

=
P (D10 = 0)− P (D11 = 0)

P (D10 = 0)
FY11(0)|C(y) +

P (D11 = 0)

P (D10 = 0)
FY11|D=0(y)

This proves (10), and thus the second point of the lemma.

To prove the first point of the lemma, we show that for all y ∈ S(Y11(0)|V < v0(0)),

FY11(0)|V <v0(0) = FY10|D=0 ◦ F−1
Y00|D=0 ◦ FY01(0)|V <v0(0). (11)

By Assumption 3, (U0,1{V < v0(0)}) ⊥⊥ T |G, which implies

U0 ⊥⊥ T |G,V < v0(0).

As a result, for all (g, t) ∈ {0, 1}2,

FYgt(0)|V <v0(0)(y) = P (h0(U0, t) ≤ y|G = g, T = t, V < v0(0))

= P (U0 ≤ h−1
0 (y, t)|G = g, T = t, V < v0(0))

= P (U0 ≤ h−1
0 (y, t)|G = g, V < v0(0))

= FU0|G=g,V <v0(0)(h
−1
0 (y, t)).
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The second point of Assumption 4 combined with Assumptions 1 and 3 implies that FU0|G=g,V <v0(0)

is strictly increasing. Hence, its inverse exists and for all q ∈ (0, 1),

F−1
Ygt(0)|V <v0(0)(q) = h0

(
F−1
U0|G=g,V <v0(0)(q), t

)
.

This implies that for all y ∈ S(Yg1(0)|V < v0(0)),

F−1
Yg0(0)|V <v0(0) ◦ FYg1(0)|V <v0(0)(y) = h0(h−1

0 (y, 1), 0), (12)

which is independent of g.

Now, we have

S(Y10|D = 0) = S(Y00|D = 0)

⇒ S(Y10(0)|V < v0(0)) = S(Y00(0)|V < v0(0))

⇒ S(h0(U0, 0)|V < v0(0), G = 1, T = 0) = S(h0(U0, 0)|V < v0(0), G = 0, T = 0)

⇒ S(U0|V < v0(0), G = 1) = S(U0|V < v0(0), G = 0)

⇒ S(h0(U0, 1)|V < v0(0), G = 1, T = 1) = S(h0(U0, 1)|V < v0(0), G = 0, T = 1)

⇒ S(Y11(0)|V < v0(0)) = S(Y01(0)|V < v0(0)),

where the third and fourth implications are obtained combining Assumptions 1 and 3. There-
fore, for all y ∈ S(Y11(0)|V < v0(0)),

F−1
Y10(0)|V <v0(0) ◦ FY11(0)|V <v0(0)(y) = F−1

Y00(0)|V <v0(0) ◦ FY01(0)|V <v0(0)(y).

This proves (11), because V < v0(0) is equivalent to D = 0 when T = 0, and because the
second point of Assumption 4 implies that F−1

Y10|D=0 is strictly increasing on (0, 1).

Finally, we show that

FY01(0)|V <v0(0)(y) = λ0FY01|D=0(y) + (1− λ0)FY01(0)|TC(y). (13)

Suppose first that λ0 ≤ 1. Then, v0(1) ≤ v0(0) and TC is equivalent to the event V ∈
[v0(1), v0(0)). Moreover, reasoning as for P (C|G = 1, V < v0(0)), we get

λ0 =
P (V < v0(1)|G = 0)

P (V < v0(0)|G = 0)
= P (V < v0(1)|G = 0, V < v0(0)).

Then

FY01(0)|V <v0(0)(y) = P (V < v0(1)|G = 0, V < v0(0))FY01(0)|V <v0(1)(y)

+P (V ∈ [v0(1), v0(0))|G = 0, V < v0(0))FY01|V ∈[v0(1),v0(0))(y)

= λ0FY01|D=0(y) + (1− λ0)FY01(0)|TC(y).

If λ0 > 1, v0(1) > v0(0) and TC is equivalent to the event V ∈ [v0(0), v0(1)).

1

λ0
= P (V < v0(0)|G = 0, V < v0(1))
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and
FY01|D=0(y) =

1

λ0
FY01(0)|V <v0(0)(y) +

(
1− 1

λ0

)
FY01(0)|TC(y),

so that we also get (13).

Finally, the first point of the lemma follows by combining (10), (11) and (13).

Theorem 4.1

The proof follows from Lemma 4.1: λ0 = λ1 = 1 when P (D00 = d) = P (D01 = d) > 0.

Theorem 4.2

Assume that P (D00 = 0) = P (D01 = 0) = 0 (the proof is symmetric when P (D00 = 1) =

P (D01 = 1) = 0). This implies that P (D00 = 1) = P (D01 = 1) > 0, so for FY11(1)|C(y) the
proof directly follows from Lemma 4.1, by noting that λ1 = 1.

For FY11(0)|C(y), one can use the same steps as in the proof of Lemma 4.1 to show that
Equation (10) also holds here:

FY11(0)|C(y) =
P (D10 = 0)FY11(0)|V <v0(0)(y)− P (D11 = 0)FY11|D=0(y)

P (D10 = 0)− P (D11 = 0)
. (14)

Then, let v denote the lower bound of S(V |G = 0). Following similar steps as those used to
establish Equation (12), one can show that for all y ∈ S(Y01(0)|V < v0(0)) = S(Y00(0)|V ≥
v0(0)) = S(Y ),

F−1
Y10(0)|V <v0(0) ◦ FY11(0)|V <v0(0)(y) = h0(h−1

0 (y, 1), 0),

F−1
Y00(1)|V≥v ◦ FY01(1)|V≥v(y) = h1(h−1

1 (y, 1), 0).

Under Assumption 6, this implies that for all y ∈ S(Y ),

FY11(0)|V <v0(0)(y) = FY10(0)|V <v0(0) ◦ F−1
Y00(1)|V≥v ◦ FY01(1)|V≥v(y)

= FY10|D=0 ◦ F−1
Y00|D=1 ◦ FY01|D=1(y), (15)

where the second equality follows from the fact that P (D00 = 1) = P (D01 = 1) = 1. Combin-
ing Equations (14) and (15) yields the result for FY11(0)|C(y).

Theorem 4.3

We focus on the case where P (D00 = d) > 0. When P (D00 = d) = 0, the proofs are immediate.

1. Construction of the bounds.

We only establish the validity of the bounds for d = 0, the reasoning being similar for d = 1.
We start by considering the case where λ0 < 1. We first show that in such instances, 0 ≤
T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (16)
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Indeed, G0(T0) is included between 0 and 1 if and only if

−λ0FY01|D=0

1− λ0
≤ T0 ≤

1− λ0FY01|D=0

1− λ0
,

while C0(T0) is included between 0 and 1 if and only if

H−1
0 (µ0FY11|D=0)− λ0FY01|D=0

1− λ0
≤ T0 ≤

H−1
0 (µ0FY11|D=0 + (1− µ0))− λ0FY01|D=0

1− λ0
.

Since −λ0FY01|D=0/(1 − λ0) ≤ 0 and (1 − λ0FY01|D=0)/(1 − λ0) ≥ 1, T0, G0(T0) and C0(T0)
are all included between 0 and 1 if and only if

M0

(
H−1

0 (µ0FY11|D=0)− λ0FY01|D=0

1− λ0

)
≤ T0 ≤ m1

(
H−1

0 (µ0FY11|D=0 + (1− µ0))− λ0FY01|D=0

1− λ0

)
. (17)

By composing each term of these inequalities by M0(.) and then by m1(.), we obtain (16)
since M0(T0) = m1(T0) = T0 and M0 ◦m1 = m1 ◦M0.

Now, when λ0 < 1, G0(T0) is increasing in T0, so C0(T0) as well is increasing in T0. Combining
this with (16) implies that for every y′,

C0(T0)(y′) ≤ C0(T0)(y′) ≤ C0(T0)(y′).

Because C0(T0)(y) is a cdf,

C0(T0)(y) = inf
y′≥y

C0(T0)(y′) ≤ inf
y′≥y

C0(T0)(y′). (18)

The lower bound follows similarly.

Let us now turn to the case where λ0 > 1. Using the same reasoning as above, we get that
G0(T0) and C0(T0) are included between 0 and 1 if and only if

λ0FY01|D=0 − 1

λ0 − 1
≤ T0 ≤

λ0FY01|D=0

λ0 − 1
,

λ0FY01|D=0 −H−1
0 (µ0FY11|D=0 + (1− µ0))

λ0 − 1
≤ T0 ≤

λ0FY01|D=0 −H−1
0 (µ0FY11|D=0)

λ0 − 1
.

The inequalities in the first line are not binding since they are implied by those on the second
line. Thus, we also get (17). Hence, using the same argument as previously,

T0 ≤ T0 ≤ T0. (19)

Besides, when λ0 > 1, G0(T0) is decreasing in T0, so that C0(T0) as well is decreasing in T0.
Combining this with (19) implies that for every y, (18) holds as well. This proves the result.

2. Sketch of the proof of sharpness.

The full proof is in our web appendix (see de Chaisemartin & D’Haultfoeuille, 2014). We only
consider the sharpness of B0, the reasoning being similar for the upper bound. The proof is
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also similar and actually simpler for d = 1. The corresponding bounds are indeed proper cdf,
so we do not have to consider converging sequences of cdf as we do in case b) below.

a. λ0 > 1. We show that if Assumptions 4-7 hold, then B0 is sharp. For that purpose, we
construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vZ(T )};

(ii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iii) (Ũ0, Ṽ ) ⊥⊥ T |G;

(iv) F
h̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v0(0),v0(1))

= T 0.

(i) ensures that Equation (4) and Assumption 2 are satisfied on the observed data. Because
we can always define Ỹ (0) as h̃0(Ũ0, T ) when D = 1 and D̃(z) = 1{Ṽ ≥ vz(T )} when
Z 6= z without contradicting the data and the model, (i) is actually sufficient for Equation
(4) and Assumption 2 to hold globally, not only on observed data. (ii) and (iii) ensure that
Assumptions 1 and 3 hold. Finally, (iv) ensures that the DGP corresponding to (h̃0, Ũ0, Ṽ )

rationalizes the bound. If (h̃0, Ũ0, Ṽ ) satisfy Assumptions 1-5 and are such that T̃0 = T 0, we
can apply Lemma 4.1 to show that the bound is attained.

The construction of h̃0, Ũ0, and Ṽ is long, so its presentation is deferred to our web appendix.

b. λ0 < 1. The idea is similar as in the previous case. A difference, however, is that when
λ0 < 1, T 0 is not a proper cdf, but a defective one, since limy→y T 0(y) < 1. As a result,
we cannot define a DGP such that T̃0 = T 0, However, by Lemma 3 (see de Chaisemartin &
D’Haultfoeuille (2014)), there exists a sequence (T k0)k of cdf such that T k0 → T 0, G0(T k0) is
an increasing bijection from S(Y ) to (0, 1) and C0(T k0) is increasing and onto (0, 1). We can
then construct a sequence of DGP (h̃k0(., 0), h̃k0(., 1), Ũk0 , Ṽ

k) such that Points (i) to (iii) listed
above hold for every k, and such that T̃ k0 = T k0. Since T

k
0(y) converges to T 0(y) for every y in

◦
S(Y ), we thus define a sequence of DGP such that T̃ k0 can be arbitrarily close to T 0 on

◦
S(Y )

for sufficiently large k. Since C0(.) is continuous, this proves that B0 is sharp on
◦
S(Y ). This

construction is long, so its exposition is deferred to our web appendix.

Corollary 4.4

See de Chaisemartin & D’Haultfoeuille (2014).

Theorem 5.1

Hereafter, we let C0 and C1 denote respectively the set of continuous functions and the set of
continuously differentiable functions with strictly positive derivative on S(Y ).
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We first show that (F̂Y11(0)|C , F̂Y11(1)|C) tends to a continuous gaussian process. Let θ̃ =

(F000, F001, ..., F111, µ0, µ1). By Lemma 4, ̂̃θ = (F̂000, F̂001, ..., F̂111, µ̂0, µ̂1) converges to a con-
tinuous gaussian process. Let

πd : (F000, F001, ..., F111, µ0, µ1) 7→ (Fd10, Fd00, Fd01, Fd11, 1, µd) , d ∈ {0, 1},

so that (F̂Y11(0)|C , F̂Y11(1)|C) =
(
R1 ◦ π0(θ̃), R1 ◦ π1(θ̃)

)
, where R1 is defined as in Lemma

5. πd is Hadamard differentiable as a linear continuous map. Because Fd10, Fd00, Fd01, Fd11

are continuously differentiable with strictly positive derivative by Assumption 10, µd > 0, and
µd 6= 1 under Assumption 4, R1 is also Hadamard differentiable at (Fd10, Fd00, Fd01, Fd11, 1, µd)

tangentially to (C0)4×R. By the functional delta method (see, e.g., van der Vaart & Wellner,
1996, Lemma 3.9.4), (F̂Y11(0)|C , F̂Y11(1)|C) tends to a continuous gaussian process.

Now, by integration by parts for Lebesgue-Stieljes integrals,

∆ =

∫ y

y
FY11(0)|C(y)− FY11(1)|C(y)dy.

Moreover, the map ϕ1 : (F1, F2) 7→
∫
S(Y )(F2(y)−F1(y))dy, defined on the domain of bounded

càdlàg functions, is linear. Because S(Y ) is bounded by Assumption 10, ϕ1 is also con-
tinuous with respect to the supremum norm. It is thus Hadamard differentiable. Because
∆̂ = ϕ1

(
F̂Y11(1)|C , F̂Y11(0)|C

)
, ∆̂ is asymptotically normal by the functional delta method.

The asymptotic normality of τ̂q follows along similar lines. By Assumption 10, FY11(d)|C

is differentiable with strictly positive derivative on its support. Thus, the map (F1, F2) 7→
F−1

2 (q)− F−1
1 (q) is Hadamard differentiable at (FY11(0)|C , FY11(1)|C) tangentially to the set of

functions that are continuous at (F−1
Y11(0)|C(q), F−1

Y11(1)|C(q)) (see Lemma 21.3 in van der Vaart,
2000). By the functional delta method, τ̂q is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma 4, the bootstrap is
consistent for θ̂. Because both the LATE and QTE are Hadamard differentiable functions of
θ̂, as shown above, the result simply follows by the functional delta method for the bootstrap
(see, e.g., van der Vaart, 2000, Theorem 23.9).

Theorem 5.2

Let θ = (F000, ..., F011, F100, ..., F111, λ0, µ0, λ1, µ1). By Lemma 6, for d ∈ {0, 1} and q ∈ Q,
θ 7→

∫ y
y Bd(y)dy, θ 7→

∫ y
y Bd(y)dy, θ 7→ B

−1
d (q), and θ 7→ B−1

d (q) are Hadamard differentiable

tangentially to (C0)4 × R2. Because ∆ =
∫
S(Y )B0(y) − B1(y)dy, ∆ is also a Hadamard

differentiable function of θ tangentially to (C0)4 ×R2. The same reasoning applies for ∆, and
for τq and τq for every q ∈ Q. The theorem then follows from Lemma 4, the functional delta
method, and the functional delta method for the bootstrap.
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