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Abstract

We adapt the exclusion model of Choné and Linnemer (2014) to reflect the notion
that dominant firms are unavoidable trading partners. In particular, we introduce the
share of the buyer’s demand that can be addressed by the rival as a new dimension of
uncertainty. Nonlinear price-quantity schedules allow the dominant firm to adjust the
competitive pressure placed on the rival to the size of the contestable demand, and to
distort the rival supply at both the extensive and intensive margins. When disposal costs
are sufficiently large, this adjustment may yield highly nonlinear and locally decreasing
schedules, such as “retroactive rebates”.

JEL codes: L12, L42, D82, D86

Keywords: Inefficient exclusion; buyer opportunism; disposal costs; quantity rebates; incom-
plete information.



1 Introduction

The notions of market power and dominance in competition law are multi-faceted. They are
often modeled by assuming incumbency and commitment power. Following this approach, we
have explored the exclusionary properties of nonlinear pricing in a companion paper, Choné
and Linnemer (2014). Building on the methodology developed there, we now introduce another
common feature of dominant firms, namely the fact that those firms often are unavoidable
trading partners –at least to a certain extent and over a certain period of time. For instance,
the European Commission has observed that:

“Competitors may not be able to compete for an individual customer’s entire de-
mand because the dominant undertaking is an unavoidable trading partner at least
for part of the demand on the market, for instance because its brand is a “must
stock item” preferred by many final consumers or because the capacity constraints
on the other suppliers are such that a part of demand can only be provided for by
the dominant supplier.”1

Adapting the model of our companion paper, we assume here that the rival can address
only a fraction of the buyer’s demand. The contestable share of the buyer’s demand depends
on the characteristics of the rival good, which are not known when the buyer and the dominant
firm agree on a price-quantity schedule. We therefore treat this parameter as a new dimension
of uncertainty, on top of the rival’s cost and product quality. We are thus able to relate the
shape of the optimal price-quantity schedule to the joint distribution of rival characteristics,
and to describe exclusionary effects in a way that is both transparent and consistent with the
recent practice of competition agencies.

By lowering the price of contestable units, the dominant firm forces the rival to match lower
prices, which, depending on its cost efficiency, he may not be able to do profitably. The average
price of contestable units, also known as the “effective price”, is therefore negatively related
to the competitive pressure placed on the rival. We introduce the notion of elasticity of entry
to measure the rival’s sensitivity to competitive pressure, i.e., by how much (in percentage
terms) the probability that the rival can profitably serve the contestable demand decreases as

1Communication on abusive exclusionary conduct by dominant undertakings (2009/C 45/02). This line of
reasoning appears in a number of landmark European cases, such as Van den Bergh Foods Limited (distribution
of ice-cream products in Ireland), Court of First Instance (T-65/98) 23 October 2003; British Airways (air
tickets) Court of First Instance (Third Chamber, Case C-95/04 P), 15 March 2007; Michelin (new and retreaded
tyres for trucks and buses) Judgment of the Court of First Instance (Third Chamber, T-203/01), 30 September
2003. For an economic perspective on the case see Motta (2009); Tomra (reverse vending machines for
containers) C-549/10 P Judgment of the Court of First Instance (Third Chamber), 19 April 2012; Intel
(Central Processing Units, CPU).Commission Decision COMP/C-3 /37.990 of 13 May 2009. Jing and Winter
(2014) discuss a Canadian case involving the scanner-based information company Nielsen.
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the effective price set by the dominant firm falls. For any given size of the contestable demand,
the elasticity reflects the extent to which more pressure placed on the rival (i.e., lower effective
prices) translates into more exclusion.

Next, we explain how using a nonlinear schedule helps the dominant firm to adjust the
competitive pressure placed on the rival to the size of the contestable demand. In particular,
the optimal schedule is linear only when the elasticity is constant, which occurs if and only
if the size of the contestable demand and the rival’s efficiency index are independent. When
the elasticity of entry increases with the contestable market share, the dominant firm wants
to place less pressure on larger competitors, and hence the effective price increases with the
number of units. This tends to make the optimal schedule concave. Concavity, in the present
context, is associated with complete exclusion of efficient rival types. In contrast, in the one-
dimensional model of Choné and Linnemer (2014), globally concave schedules are associated
with distortions of the rival supply at the intensive margin only.

The new dimension of uncertainty allows for much richer patterns. When the elasticity
is non-monotonic in the contestable share, optimal schedules may exhibit highly nonlinear
shapes and even admit decreasing parts. The distortion of the rival supply, here, can be at
both the extensive and the intensive margins. We find so-called “retroactive rebates” when
the dominant firm places more pressure on rival types with intermediate size than with small
or large size. Such rebates, also called “all-units discounts”, are granted for all purchased units
once a quantity threshold is reached. They induce downward discontinuities in price-quantity
schedules –a pattern that has received much attention from antitrust enforcers.2

The analysis must be modified when the buyer is allowed to dispose of or to resell uncon-
sumed units because strong quantity rebates, and a fortiori decreasing parts in a price-quantity
schedule, might induce her to purchase unneeded units of incumbent good with the sole pur-
pose of pocketing the rebates. We know from our companion paper that this extreme form of
buyer opportunism is never seen in equilibrium. Yet the mere possibility of such a behavior
may constrain the shape of optimal schedules when disposal costs are weak. In fact, in the
present context, the constraint is active only in the presence of a super-efficient rival, i.e., a
rival who is so efficient that the buyer, had she purchased enough units of incumbent good to
meet her entire demand, would nevertheless want to supply her contestable demand from the
rival and hence would prefer throwing part of the purchased units away rather than consuming
them. Driving a super-efficient rival out of the market is not possible under a non-conditional
schedule. To do so, the dominant firm needs to let the price of the incumbent good depend
on the quantity supplied from the rival.

The introduction of a new dimension of uncertainty in Choné and Linnemer (2014) is
made possible by assuming that the buyer’s demand is inelastic and by abstracting away from

2See, among others, Waelbroeck (2005) and Faella (2008).
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horizontal differentiation. Recall that under a non-conditional schedule (whereby the price
of the incumbent good depends only on the quantity of that good), the buyer purchases the
efficient quantity of rival good given that of incumbent good. The quantity sold by the rival is
thus indirectly controlled by the price-quantity schedule. Granting rebates for the incumbent
good allows the dominant firm to lower the buyer’s incentives to supply from the rival, but this
comes at a cost: the buyer purchases inefficiently many units of incumbent good given the rival
supply. Hence the “buyer opportunism” phenomenon at the heart of our companion paper.
The demand specification adopted here dramatically simplifies the analysis as in equilibrium
the quantities of the two goods sum up to the total demand and each quantity is efficient given
the other (no buyer opportunism). Technically, the dominant firm has a single instrument to
screen out multidimensional types, a situation we handle with a method analogous to the
profile demand technique of Wilson (1993).

A number of papers have adopted a demand specification close to the one used here, but
all of them assume perfect information. Colon and Mortimer (2013) study the relationships
between the chocolate candy manufacturer Mars Inc. and a retail vending operator in down-
town Chicago. They provide empirical evidence that all-units discounts foreclose competition:
“Specifically, the retailer can increase profits by substituting a Hershey product for a Mars
product, but the threat of losing the rebate discourages him from doing so.” DeGraba (2013)
models the competitor as being capacity constrained as we do. His approach is in the tra-
dition of the “naked exclusion” literature (Rasmusen, Ramseyer, and Wiley (1991) and Segal
and Whinston (2000)). Also in a complete information framework (with a timing similar to
ours), Feess and Wohlschlegel (2010) study all-units rebates and Chao and Tan (2013) com-
pare all-units discounts, quantity forcing, and three-part tariff. Finally, Figueroa, Ide, and
Montero (2014) analyze a model close to ours under one-dimensional uncertainty, the rival’s
production capacity being known. They show that restricting the buyer-incumbent coalition’s
ability to share rents through transfers limits the scope for inefficient exclusion.

The paper is organized as follows. Section 2 presents the model. Section 3 proceeds to
the pointwise maximization of the virtual surplus and shows how to obtain two-part tariffs
and concave schedules. Section 4 characterizes the implementable second-best allocations and
presents a general method to construct optimal schedules. Section 5 examines a couple of
typical schedules, such as retroactive rebates. Section 6 introduces conditional schedules and
explains the role of disposal costs. Section 7 concludes.

2 Model

As in Choné and Linnemer (2014), we consider a dominant firm and a competitor who suc-
cessively interact with a large buyer. The main modeling difference is that the buyer’s utility
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function now involves a second dimension of uncertainty, namely the share of the buyer’s
demand that can be addressed by the rival.

Buyer’s demand The buyer cannot consume more that sE units of the rival good and
one unit of both goods altogether. When she consumes xE ≤ sE units of the rival good and
xI units of the incumbent good, she earns a gross profit of vExE +vIxI as long as xE +xI ≤ 1.
This specification corresponds to the special case of Choné and Linnemer (2014) where the
convex function h(xE, xI) is zero when xE ≤ sE and xE +xI ≤ 1, and +∞ otherwise. The two
goods are vertically differentiated when vE and vI differ. The specification, however, does not
capture horizontal differentiation; in this respect, the reader will notice a number of formal
analogies with the limit case of the quadratic example in Choné and Linnemer (2014) where
the imperfect substitution parameter, σ, equals one.

As in our companion paper, the buyer may purchase more units than she needs, and
dispose of the unconsumed units at some cost or possibly resell them on a secondary market.
To account for the latter possibility, we allow the per unit disposal cost γk to be negative, but
assume that reselling entails a productive inefficiency, i.e., the total costs γI + cI and γE + cE

are always nonnegative. Finally, the utility derived by the buyer from purchasing quantities qE
and qI of rival and incumbent good is given by

V (qE, qI ; sE, vE) = max
(xE ,xI)∈X(qE ,qI)

vExE + vIxI − γE(qE − xE)− γI(qI − xI) (1)

where X(qE, qI) reflects the constraints xE ≤ qE, xI ≤ qI , xE + xI ≤ 1, and xE ≤ sE: the
buyer cannot consume more of each good than the purchased quantity, more of both goods
together than her total requirement, and more of good E than the contestable demand.

When qE ≤ sE and qE + qI ≤ 1, the buyer consumes all the purchased units. The “no-
disposal region” is located below the dashed line on Figures 1a to 1c. In this region, the buyer
utility is simply vEqE + vIqI .

Efficiency The total surplus W (qE, qI) = V (qE, qI ; sE, vE)− cEqE − cIqI is maximal in the
no-disposal region because producing units to throw them away is obviously inefficient. In
this region, the total surplus equals ωEqE +ωIqI , where ωE = vE− cE and ωI = vI − cI denote
the unit surplus of each good. The efficient quantities, therefore, depend on ωE and sE, but
not on the magnitude of the disposal costs:

(q∗∗E (ωE, sE), q∗∗I (ωE, sE)) =

{
(sE, 1− sE) if ωE > ωI

(0, 1) if ωE < ωI .
(2)

The welfare isolines in the no-disposal region are straight lines of slope −ωE/ωI . When ωI >

ωE, it is efficient that the incumbent firm serves all of the buyer’s demand, and the maximum
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of W is achieved at point A′, see Figure 1a. When ωE > ωI , it is efficient that the rival serves
the contestable demand, and the maximum of W is at point A, see Figures 1b and 1c.

Figure 1a: Conditionally efficient quantities when
ωE < ωI < vE + γE . Welfare maximum at A′

Figure 1b: Conditionally efficient quantities when
ωI < ωE < vI + γI . Welfare maximum at A

Figure 1c: Super-efficient rival: ωE > vI + γI . Welfare maximum at A.

The conditionally efficient quantity of rival good, i.e., the quantity qE that maximizes the
social welfare W given qI , is

q∗E(qI ;ωE, sE) =

{
min {1− qI , sE} if ωE < vI + γI

sE otherwise.

Consider first the situation where the rival is inefficient or moderately efficient, specifically
ωE < vI + γI . If the buyer has purchased more than 1 − sE units of incumbent good, it is
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efficient that she consumes those units and, if necessary, complete her supply with units of rival
good to meet her demand. It follows that when qI is larger than one, the conditionally efficient
quantity of rival good is zero, see Figures 1a and 1b; in the terminology of our companion
paper, the rival is not super-efficient.

In contrast, when the surplus created by the rival good is very high, ωE > vI +γI , efficiency
requires that the buyer disposes of the purchased units of incumbent good in excess of 1− sE
and supplies all of the contestable part of her demand from the rival. In this case, the
conditionally efficient quantity of rival good, q∗E(qI), is sE however large qI becomes, see
Figure 1c; the rival firm, in other words, is super-efficient. When γI tends to −cI , super-
efficiency becomes equivalent to standard efficiency. When disposal costs are infinite, there
are no super-efficient rival types.

It is easy to check that the conditionally efficient quantity of incumbent good, q∗I (qE), is
given by

q∗I (qE) =

{
max {1− qE, 1− sE} if ωI < vE + γE

1 otherwise.

For further reference, it is worthwhile noticing along the upper part of the boundary of the
no-disposal region, i.e., along the segment (AA′) on Figures 1a to 1b, each quantity is efficient
given the other. This property is due in large part to the absence of horizontal differentiation.
In the presence of such differentiation, for instance in the quadratic example of our companion
paper, the curves qE = q∗E(qI) and qI = q∗I (qE) cross at a single point (the efficient allocation);
in contrast, here, they coincide along a whole segment. This property has strong implica-
tions for the comparison the allocation under conditional and non-conditional schedules, see
Section 6).

Timing and information The timing of the game and the informational setup are very
similar to those employed in our companion paper with the major difference that a new
dimension of uncertainty is introduced.

At the first stage of the game, the buyer B and the dominant firm I design a price-quantity
schedule to maximize (and split) their joint expected surplus, knowing the characteristics of
the incumbent good, i.e., the constant marginal cost cI and willingness to pay vI . At this
stage, however, they do not know the characteristics of the rival good, which now include the
size of the contestable demand, sE, on top of the constant marginal cost cE and the willingness
to pay vE. In most of the paper, we concentrate on non-conditional schedules T (qI), for which
the price of the incumbent good only depends on the quantity of that good.3

At the second stage of the game, the buyer and the rival discover cE, sE and vE, the terms
3Conditional schedules, whereby the price T (qI , qE) also depends on the purchased quantity of rival good,

are studied in Section 6.

6



of the agreement between B and I being common knowledge. B and E jointly decide on a
transfer pE and quantities qE and qI . As in our companion paper, the negotiation takes place
under complete information and is modeled as Nash bargaining where β denotes the rival’s
bargaining power.

Purchase decisions At the last stage of the game, the buyer and the rival choose the
quantities to maximize their joint surplus

SBE = max
qE ,qI

V (qE, qI)− T (qI)− cEqE, (3)

with no consideration for the incumbent’s cost or profit. The latter equation shows that
under a non-conditional schedule T (qI), the quantity of rival good is efficient given that of the
incumbent good, formally qE = q∗E(qI); in particular, no unit of the rival good is produced and
disposed of. As a result, to save on disposal and production costs, the buyer and the rival,
who negotiate under perfect information, never trade more than sE units. It follows that the
inequality qE ≤ sE holds for all values of (cE, sE, vE); hence an alternative interpretation of
the model where the non-contestable share of the market reflects a rival’s capacity constraint
rather than a demand characteristics. Under both interpretations, the rival firm can address
the fraction sE of the buyer’s demand.

Without loss of generality, the competitor’s outside option is normalized to zero. As to
the buyer, she may source exclusively from the incumbent, so her outside option is

V 0
B = max

qI≥0
V (0, qI)− T (qI). (4)

The reservation utility V 0
B, which depends on the price schedule by (4), is endogenous but

independent from ωE. The surplus created by the the buyer and the rival firm can thus be
written as

∆SBE = SBE − V 0
B. (5)

Denoting by β ∈ (0, 1) the competitor’s bargaining power vis-à-vis the buyer, we derive the
competitor’s and buyer’s profits:

ΠE = β ∆SBE

ΠB = (1− β) ∆SBE + V 0
B.

(6)

If β = 0, the competitor has no bargaining power and may be seen as a competitive fringe
from which the buyer can purchase any quantity at price cE. On the contrary, the case β = 1

happens when the competitor has all the bargaining power vis-à-vis the buyer.
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Virtual surplus Ex ante, the buyer and the incumbent design the price schedule to max-
imize their expected joint surplus, equal to the total surplus minus the profit left to the
competitor:

EcE ,sE ,vEΠBI = EcE ,sE ,vE {W (qE, qI ; cE, vE)− ΠE} , (7)

where qE and qI are solution to (3) and ΠE is given by (6). The expectation is to be taken
against the distribution of the rival good’s characteristics (cE, sE, vE). As all the purchased
units of rival good are consumed, the surplus depends on the uncertain cost and preference
parameters cE and vE through the difference ωE = vE − cE. It follows that only the joint
distribution of sE and ωE matters, and we adopt the following set of assumptions on that
distribution.

Assumption 1. The cumulative distribution function of sE, denoted by G, admits a positive
and continuous density function g on [sE, s̄E].

The conditional distribution of ωE given sE has a positive density f(ωE|sE) on its support
[ωE, ωE], with ωE < ωI < ωE. The hazard rate f/(1− F ) is nondecreasing in ωE.

Following Choné and Linnemer (2014), we observe that the rival’s rent is convex in ωE,
with its derivative being βqE. We then integrate the rent by parts with respect to ωE, for each
size of the contestable demand sE, and rewrite the buyer-incumbent objective as a function
of the virtual surplus

EsE ,ωE
ΠBI = EsE ,ωE

S v(qE, qI ;ωE, sE)− ΠE(ωE, sE),

where
S v(qE, qI ;ωE) = W (qE, qI ;ωE)− βqE

1− F (ωE)

f(ωE)
.

Under a non-conditional schedule, the buyer purchases the efficient quantity of rival good
given that of incumbent good, qE = q∗E(qI). Accordingly, we start by maximizing the virtual
surplus for each value of ωE and sE subject to the constraint that qE = q∗E(qI), which we
call the “relaxed problem”. The solution of the relaxed problem is the second-best allocation
provided that it is implementable with a non-conditional schedule.

3 Elasticity of entry

To concentrate on the role of the heterogeneity about contestable demand, we assume in this
and the next two sections that disposal costs are very large, vI +γI > ωE, so the rival is never
super-efficient. Under this circumstance, the conditionally efficient quantity of rival good is
given by q∗E(qI) = min(1 − qI , sE), and the constraint qE = q∗E(qI) is the equation of the
boundary of the no-disposal region, as shown on Figures 1a and 1b.
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The relaxed problem For each sE and ωE, we maximize the virtual surplus subject to
the constraint that qE = min(1 − qI , sE), i.e., along the boundary of the no-disposal region.
Since the virtual surplus increases with qI , the maximum is achieved on the upper part of that
boundary, namely on the segment (AA′). Along this segment, we have qE + qI = 1 and, given
the expression of the virtual surplus, it is convenient to parameterize the problem with qE

rather with qI . We thus rewrite the virtual surplus on (AA′) as

S v(qE, qI ;ωE) = ωEqE + ωIqI − βqE
1− F (ωE)

f(ωE)
= ωI + sv(sE, ωE)qE,

where we define the virtual surplus per unit of rival good as

sv(sE, ωE) = ωE − β
1− F (ωE)

f(ωE)
− ωI .

The unit virtual surplus can in turn be rewritten as

sv(sE, ωE) = ωE[1− β/ε(ωE|sE)]− ωI , (8)

where we define the elasticity of entry ε(ωE|sE) as the percentage decrease in the probability
that the rival efficiency index is above some threshold when that threshold rises by 1%:

ε(ωE|sE) =
ωEf(ωE|sE)

1− F (ωE|sE)
= −∂ ln [1− F (ωE|sE)]

∂ lnωE

. (9)

Lemma 1. Assume that the rival is never super-efficient, vI + γI > ωE. Then the virtual
surplus achieves its maximum subject to qE = q∗E(qI) at the point (qE, qI = 1− qE) given by

qE(sE, ωE) =

{
0 if ωE ≤ ω̂E(sE)

sE otherwise,

where ω̂E(sE) ∈ (ωI , ωE) is the unique solution to

ω̂E(sE)− ωI

ω̂E(sE)
=

β

ε(ω̂E(sE)|sE)
. (10)

The fraction of efficient types that are inactive increases with the rival’s bargaining power
vis-à-vis the buyer and decreases with the elasticity of entry.

Proof. By linearity of the virtual surplus, the maximization problem generically yields a corner
solution, either qE = 0 or qE = sE. In the former case, the maximum is at point A, see
Figure 2a; in the latter, it is at A′, see Figure 2b. On the figures, the dashed lines represent
the isolines of the virtual surplus. At the maximum, we have qE = sE (respectively qE = 0)
when sv > 0 (resp. sv < 0). The unit virtual surplus sv is positive if and only if

ωE − ωI

ωE

>
β

ε(ωE|sE)
.
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The left-hand side increases in ωE, and the right-hand side is non-increasing in ωE by As-
sumption 1, which yields the uniqueness of a solution (10). Moreover, the virtual surplus per
unit is negative for ωE = ωI and positive for ωE = ωE. Hence the existence of a solution to
equation (10) lying between ωI and ωE. Straightforward comparative statics shows that ω̂E

increases with β and decreases with ε.

Figure 2a: Entry: ωE > ω̂E(sE) > ωI Figure 2b: Inefficient exclusion: ωI < ωE <

ω̂E(sE)

We interpret the threshold ω̂E(sE) as the height of the entry barrier that the buyer and the
incumbent would want to erect if the size of the contestable demand sE were known. When
the elasticity of entry increases (respectively decreases) with sE, the barrier is lower (resp.
higher) as the size of the contestable demand rises. The next lemma relates the variations
of ε(ωE|sE) with sE to the primitives of the model.

Lemma 2. The random variables sE and ωE are independent if and only if the elasticity of
entry, ε(ωE|sE), does not depend on sE. If the elasticity of entry increases (decreases) with sE,
then ωE first-order stochastically decreases (increases) with sE.

Proof. The elasticity of entry varies with sE in the same way as the hazard rate h given by

h(ωE|sE) =
f(ωE|sE)

1− F (ωE|sE)
.

We have ∫ ωE

ωE

h(x|sE) dx = − ln[1− F (ωE|sE)].
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If the elasticity of entry does not depend on (increases with, decreases with) sE, the same is
true for the hazard rate, and hence also for the cdf F (ωE|sE), which yields the results.4

Two-part tariffs When sE and ωE are independent, the threshold ω̂E(sE) is flat, as repre-
sented on Figure 3a: the rival serves all of the contestable demand when ωE is higher than
the constant level of ω̂E, and is inactive otherwise. We now show that this allocation is
implementable by a two-part tariff with slope (vI − ω̂E).

Proposition 1. When sE and ωE are independent, the buyer and the incumbent sell con-
testable units of incumbent good at price (vI − ω̂E).

Figure 3a: Quantity purchased from the rival Figure 3b: Optimal price schedule

Proof. We compute the surpluses SBE, V 0
B, and ∆SBE given by (3), (4) and (5) for a two-part

tariff with slope (vI − ω̂E), i.e., for T (qI) = T (1) + (vI − ω̂E)(qI − 1). We first recall that
under such a non-conditional schedule qE is conditionally efficient and no unit of rival good is
left unconsumed, hence qE ≤ sE. Next, we observe that the marginal price of the incumbent
good, vI − ω̂E, is above −γI by assumption, and hence the buyer consumes all the purchased
units of incumbent good, too. Finally, since the price vI − ω̂E is lower than the willingness to
pay vI , the buyer purchases as much units of incumbent good as necessary to meet its total
demand, hence qE + qI = 1. The surplus created with the rival can thus be rewritten as

SBE = vEqE + vIqI − cEqE − T (1)− (vI − ω̂E)(qI − 1) = vI − T (1) + (ωE − ω̂E)qE. (11)

For the same reasons, we get V B
0 = vI − T (1), and hence ∆SBE = (ωE − ω̂E)qE, showing that

the buyer supplies the contestable part of her demand from the rival if and only if ωE > ω̂E. It
4The variable ωE first-order stochastically decreases (increases) with sE if and only if F (ωE |sE) increases

(decreases) with sE .
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follows that the proposed tariff allows the buyer and the incumbent to solve the rent-efficient
tradeoff when the elasticity of entry ε(ωE|sE) and the corresponding entry threshold ω̂E(sE)

do not depend on the size of the contestable demand sE.

The contestable units are sold below cost as vI − ω̂E < vI − ωI = cI . Such a tariff is
represented on Figure 3b assuming that ω̂E < vI . It may well be the case, however, that ω̂E is
larger than vI while being lower than vI + γI to respect the assumption made in this section;
in this case, contestable units of incumbent units would be sold at a negative price.

Effective price We define the “effective price” of the incumbent good as the average incre-
mental price of the last units :

pe(x) =
T (1)− T (1− x)

x
. (12)

This is the price the rival must match to supply the contestable demand when the buyer
has the same willingness to pay for the two goods, vE = vI . The effective price, therefore,
is negatively related to the competitive pressure placed on the rival: the lower the effective
price, the higher the entry barrier and the more pressure placed on the rival.

For the two-part tariff studied above, the effective price is constant and equal to pe =

vI − ω̂E. Decreasing pe is equivalent to increasing the entry threshold ω̂E, and thus the
probability that the rival is driven out of the market. The elasticity of entry measures the
sensitivity of the rival to competitive pressure.

Nondecreasing effective price From now on, we consider cases where the elasticity of
entry varies with sE and hence two-part tariffs are no longer optimal: the optimal tariff
must exhibit some curvature. We start with the case where the elasticity increases with sE:
larger competitors, i.e., competitors with a larger contestable demand, are more sensitive to
competitive pressure. Under this circumstance, the efficiency-rent tradeoff leads the buyer and
the incumbent to place less competitive pressure on larger competitors.

Proposition 2. When the elasticity of entry ε(ωE|sE) increases with sE, the buyer and the
incumbent set the effective price pe(sE) at vI − ω̂E(sE). The price schedule is concave in the
neighborhood of qI = 1. It is globally concave if ω̂E is concave or moderately convex in sE.
The equilibrium features inefficient exclusion; partial foreclosure is not present.

Proof. When ε(ωE|sE) increases with sE, the threshold ω̂E given by (10) decreases with sE, see
Figure 4a. Suppose the buyer and the incumbent set the effective price pe(sE) at vI − ω̂E(sE),
which increases in sE. From the definition of the effective price, (12), we recover the price
schedule as

T (qI) = T (1) + (vI − ω̂E)(qI − 1),
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where ω̂E is evaluated at sE = 1− qI . The same observations as in the proof of Proposition 1
yield the expression (11) for the surplus SBE. Since ω̂E decreases in qE, the surplus is maximum
either at qE = 0 or at qE = sE. The rival makes no sales if ωE < ω̂E(sE) and serves all the
contestable demand if ωE > ω̂E(sE).

To prove concavity in the neighborhood of qI = 1, we differentiate the above expression
twice with respect to qI , which yields T ′′(qI) = 2ω̂′E + (1 − qI)ω̂

′′
E. The term ω̂′E, which is

negative for any qI , tends to make the tariff concave. Assuming that ω̂′′E(0) is not infinite, we
get T ′′(1) = 2ω̂′E(0) < 0, hence the concavity at the top.

Figure 4a: Second best with ε(ωE |sE) increas-
ing in sE

Figure 4b: Optimal price schedule with sE = 0

and vI < ω̂E(0)

Proposition 2 assumes that the elasticity of entry is nondecreasing in the size of the con-
testable demand. According to Lemma 2, this assumption implies that rival types with
larger sE tend to generate a lower surplus ωE and hence are more sensitive to competitive
pressure. The buyer and the dominant firm therefore exert less pressure on larger rival types,
and the optimal effective price pe(qE) = [T (1) − T (1 − qE)]/qE increases with qE. Geometri-
cally, the effective price is the slope of a chord drawn from the point (1, T (1)). The chords,
represented by the dotted lines on Figure 4b, are indeed steeper as the number of concerned
units rises: they are upwards-slopping for large values of qE, approximately flat for intermedi-
ate values, and decreasing for low values. The latter property happens here the figure assumes
ω̂E(0) > vI , implying that the effective price pe(qE) is negative for low values of qE, which gives
the buyer strong incentives to supply exclusively from the dominant firm when the contestable
market is small. For any concave schedule, the effective price (i.e., the slope of the chord) is
monotonic, but the reverse is not true in general: the monotonicity of the effective price is a
weaker property than concavity.
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4 Derivation of the optimal allocation

When the elasticity of entry is not constant or increasing in the size of the contestable demand,
solving the problem for each sE separately does not yield an incentive compatible allocation.
To illustrate, suppose that the entry barrier ω̂E depends on sE as shown on Figure 5. In such
a case, the solution to the relaxed problem, which is zero below the dotted line and sE above,
is not incentive compatible. Indeed, the rival of type B = (ωB

E , s
B
E) would be inactive and

hence would earn zero profit, while the rival A = (ωA
E , s

A
E), with sAE < sBE and ωA

E = ωB
E , would

serve all of the contestable demand. It follows that type B would have an incentive to mimic
type A and to sell s′E rather than sE.

Figure 5: The relaxed solution is not implementable

To solve the problem, we therefore need a proper characterization of implementable quan-
tity allocations. After providing such a characterization, we explain how to construct the
optimal allocation. The main idea is that configurations like the one represented on Figure 5
give rise to quantity distortions at the intensive margin (partial foreclosure), for which an
appropriate first-order condition must be derived.

Implementable allocations The buyer and the competitor maximize their joint surplus
under a given price-quantity schedule T (qI). We know that the quantity of rival good is
conditionally efficient, hence qE ≤ sE. As disposal costs are infinite by assumption in this
section, all units are consumed, qE + qI ≤ 1. Finally, if the effective price of incumbent units
is below her willingness to pay, i.e., if pe(q) ≤ vI for all q,5 the buyer finds it optimal to
supplement her supply from the rival with enough incumbent units to meet her total purchase

5This inequality will be checked below.

14



requirements. Under this circumstance, we can replace qI with 1− qE and rewrite the buyer-
rival problem (3) as

SBE = max
qE≤sE

ωEqE + vI(1− qE)− T (1− qE). (13)

A quantity function qE(sE, ωE) is implementable with a non-conditional price schedule if and
only if there exists a function T (qI) such that qE(sE, ωE) is solution to (13) for all (sE, ωE).

The buyer and the rival, when solving (13), hit the constraint qE ≤ sE when the rival
efficiency index ωE is large. This is because qE is nondecreasing in ωE (recall that βqE is the
derivative of the rival’s rent which is convex in ωE). Formally, for any sE > 0,there exists a
threshold Ψ(sE) such that the buyer supplies all the contestable units from the competitor,
qE(sE, ωE) = sE, if and only if ωE ≥ Ψ(sE). We define the boundary line ωE = Ψ(sE)

associated to the quantity function qE(sE, ωE) by

Ψ(sE) = inf{x ∈ [ωE, ωE] | qE(x, sE) = sE},

with the convention Ψ(sE) = ωE when the above set is empty. Above the boundary line,
qE(sE, ωE) equals sE; below that line, qE(sE, ωE) is independent from sE.

Figure 6: Implementable quantity function (isolines)

As shown on Figure 6, an implementable quantity function is entirely described by the
associated boundary line. The bunching sets, i.e., the sets on which the quantity qE(sE, ωE)

is constant, are determined by the boundary line. They can be of three types: (i) vertical
segments above decreasing portions of the boundary line (e.g. qE = s3

E and qE = s4
E on the

15



Figure); (ii) two-dimensional areas whose left border is vertical, being included either in the
ωE-axis (then qE = 0, see the shaded area on Figure 6) or in a vertical part of the boundary
line (see the light shaded area on Figure 13b); (iii) “L”-shaped unions of a vertical segment
and a horizontal segment intersecting on an increasing portion of the boundary line (e.g.
qE = s1

E, qE = s2
E and qE = s5

E). For instance, the types represented by points A and B on
Figure 6 belong to such a L-shaped bunch: both types have qE = s2

E, with A (respectively B)
corresponding to a corner solution (resp. an interior solution) of (13). Note that type C does
not belong to the same bunch, see below.

Increasing parts of the boundary function thus translate into horizontal bunching segments
or into two-dimensional bunching areas, and hence into partial foreclosure: 0 < qE(sE, ωE) <

sE for some types located below the boundary. (To illustrate, type B on Figure 6 sells qE = s2
E,

which is lower than the size of its contestable market.) In such regions, the constraint qE ≤ sE

is slack: increasing sE does not allow the competitor to enter at a larger scale and qE does
not depend on sE.

Lemma 3. A quantity function qE(., .) is implementable if and only if there exists a boundary
function Ψ(.) defined on [0, 1] such that

qE(sE, ωE) =

{
min{ x ≤ sE | Ψ(y) ≥ ωE for all y ∈ [x, sE]} if Ψ(sE) > ωE,

sE if Ψ(sE) ≤ ωE.
(14)

When (13) has multiple solutions, the above definition selects the highest. For instance,
type C on Figure 6 is indifferent between s2

E and s3
E and, by convention, is assumed to choose

s3
E. Notice that the quantity function jumps from s2

E to s3
E at C; more generally, implementable

quantity functions are discontinuous along decreasing parts of their boundary line.

Proof. Starting from a boundary line Ψ, we derive the associated quantity function qE(sE, ωE)

with the bunching pattern described above. We then check in Appendix A that replacing q
with qE(sE, ωE) in the following equation

T (1)− T (1− q) = (vI − ωE)q + ∆SBE(sE, ωE), (15)

where
∆SBE(sE, ωE) =

∫ ωE

ωE

qE(sE, x) dx, (16)

unambiguously defines a non-conditional price-quantity schedule, T (q). We also check that
the buyer and the rival facing that schedule indeed agree on the considered quantity func-
tion qE(sE, ωE).

Finally applying (15) for q = sE and ωE = Ψ(sE), we find T (1)−T (1−q) = [vI −Ψ(sE)] q,
implying that the effective price pe(q) is below vI . This condition ensures that the buyer
purchases enough units to meet her demand, qE + qI = 1, see footnote 5.
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Construction of the optimal allocation We now explain intuitively how to correct the
height of the entry barrier ω̂E(sE) when sE is unknown. A formal construction of the optimal
boundary line ωE = Ψ(sE) is presented in Appendix B.6

Consider a type (sE, ωE) with ωE > ω̂E(sE). If the virtual surplus is always positive at the
right of this point, there is no objection to setting qE = sE. In contrast, if the virtual surplus
is negative at the right of this point, setting qE = sE implies that qE will have to be positive in
an area where the virtual surplus is negative. We show in appendix that the expected virtual
surplus on horizontal bunching segments is zero, as under the standard ironing procedure.
Denoting by (AB) such a segment (see Figure 7b), we get

E( sv | [AB] ) = 0, (17)

with the boundary conditions that the virtual surplus is positive at A and zero at B. This
leads to the following construction of the optimal boundary line ωE = Ψ(sE). We first draw
the line ωE = ω̂E(sE). For sE = s̄E, we set Ψ(s̄E) = ω̂E(s̄E). Then we consider lower values
of sE. If ω̂E decreases at s̄E, we stick to the original entry barrier ω̂E, as long as it remains
decreasing. When ω̂E starts increasing (possibly at s̄E), we know that there is horizontal
bunching. Equation (17) provides a unique value for Ψ(sE). If the candidate boundary hits
the line ωE = ω̂E(sE) at some lower value of sE, it must be on a decreasing part of that line
and, from that value on, the optimal boundary again coincides with ω̂E (as long as ω̂E remains
decreasing). Proposition 3, proved in Appendix B, presents sufficient conditions for the above
construction to yield the optimal allocation.

Figure 7a: The relaxed solution locally de-
creases with sE .

Figure 7b: Entry barrier ω̂E for known sE
(dashed). Optimal boundary Ψ (solid)

6Deneckere and Severinov (2009) propose a similar method for solving a general class of screening problems,
which relies on a characterization of “isoquants”.
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Proposition 3. Assume that one of the following conditions holds: (i) The conditional density
f(ωE|sE) is nondecreasing in ωE; or (ii) the elasticity of entry is bounded from below and from
above by ε and ε̄ satisfying

β(ε̄− ε)2 ≤ 4εε̄. (18)

Then the optimal boundary line Ψ can be constructed from the following properties:

1. Ψ(s̄E) = ω̂E(s̄E);

2. Ψ = ω̂E where Ψ is non-increasing;

3. Ψ is given by (17) where it is increasing.

The sufficient conditions of Proposition 3 are fairly mild. Under Assumption 1, the con-
struction yields the optimal allocation provided that condition (18) holds, i.e., the range of
the entry elasticity is not too wide. For instance, if the rival has all the bargaining power
vis-à-vis the buyer (β = 1), the elasticity of entry ε(ωE|sE) may vary freely between 0.6 and
3 in the set of possible rival types.

When none of the two sufficient conditions holds, the above construction may not yield a
function of sE, as is the case in the example shown on Figure 8a.7 Under this circumstance,
the optimal allocation features two-dimensional bunching, see the shaded region D pictured
on Figure 8b. The constant value of the rival quantity on the bunching region, denoted by ŝ on
the picture, is determined by the first-order condition that the expected unit virtual surplus
is zero on that region, E(sv|D) = 0.

5 The shape of optimal price schedules

After mentioning a set of general properties we exhibit circumstances under which optimal
price-quantity schedules have convex parts and feature retroactive rebates.

General properties In Appendix C, we prove a number of properties that link the shape
of the price schedule to that of the boundary line. In particular, we check that flat parts of the
boundary line correspond to linear parts of the schedule (see Figure 3a and 3b) and increasing
parts of the boundary line correspond to convex parts of the schedule (see Figures 9a and 9b as
well as the portion A1A3 on Figures 10a and 10b). An upward discontinuity in the boundary
line, that induces two-dimensional bunching, corresponds to a convex kink in the schedule, see
Figures 8a and 8b, as well as Figures 13a and 13b in the appendix.

7We have constructed this example as follows: the elasticity of entry is ε = 1.75 for sE > s̃ and ε̄ = 9.5

for sE < s̃, with s̃ = .7; the size of the contestable demand belongs to (0, s̃) with probability .95 and to (s̃; 1)

with probability .05, and is uniformly distributed on each of the two intervals. Finally ωI = ωE = 1.
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Figure 8a: Entry barrier for known sE

(dashed). Left extremity of bunching inter-
val from (17) (solid line)

Figure 8b: Two-dimensional bunching area:
qE = ŝ in D. Boundary line Ψ in bold.

In contrast, the curvature of the schedule may change along decreasing parts of the bound-
ary: the schedule is concave near local maxima of the boundary line and convex near local
minima. Local maxima of the boundary line thus correspond to inflection points of the tariff.
An example is the point A3 on Figures 10a and 10b.

Convex price schedules We now turn to the case where the elasticity of entry ε(ωE|sE)

decreases with sE. Under this circumstance, the efficiency-rent tradeoff leads the buyer and
the incumbent to place more competitive pressure on larger competitors: the threshold ω̂E(sE)

is monotonically increasing in sE.
If qE were equal to sE above this threshold and zero below, the quantity purchased from the

rival would locally decrease with sE, which is impossible. Hence the presence of bunching along
the sE-dimension. Following the constructive method presented of Section 4, we find bunching
intervals such as the horizontal interval (AC) represented on Figure 9a. A rival whose type
belongs to (AC) sells s1

E units, where s1
E denotes the left extremity of the bunching interval.

The unit virtual surplus sv(sE, ωE) is positive on (AB) and negative on (BC), as ωE is above
(resp. below) ω̂E(sE) in these respective regions. The buyer and the incumbent must leave a
positive rent to rival types in (BC) because those types can serve less than their contestable
demand (i.e., “mimic” types with lower sE). Under the sufficient conditions of Proposition 3,
the virtual surplus is zero in expectation on bunching segments∫ s̄E

sE

sv(s, ωE)f(ωE|s)g(s) ds = 0,

and the above equation defines an increasing relationship between ωE and sE, denoted by
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ωE = Ψ(sE) on Figure 9a.

Proposition 4. Assume that ε(ωE|sE) decreases with sE. Then the optimal tariff is convex.
The equilibrium outcome exhibits inefficient exclusion, in the form of both full and partial
foreclosure.

Proof. For all sE ∈ [sE, s̄E], consider a rival type (s′E, ωE) with ωE = Ψ(sE) and s′E > sE. For
such a type, the solution of the buyer-competitor problem (13) is interior. Assuming no two-
dimensional bunching, the solution is given by the first-order condition T ′(1−sE) = vI−Ψ(sE)

or T ′(qI) = vI − Ψ(1 − qI), which increases with qI because Ψ is an increasing function. We
conclude that the price-quantity schedule T is convex. The analysis holds in the presence
of two-dimensional bunching as well, with the minor difference the price schedule is locally
non-differentiable (it admits a convex kink).

Figure 9a: Entry barrier for known sE

(dashed), second-best threshold Ψ(sE) (bold)
with decreasing elasticity

Figure 9b: Optimal price schedule with sE = 0

and vI > ω̂E(1).

The price schedule plays the role of a barrier to expansion. When T (qI) is convex in qI ,
the objective of the buyer-rival pair, (ωE − vI)qE − T (1 − qE), is concave in qE. The buyer
and the rival compare the surplus created by an extra unit of rival good, ωE, with the surplus
foregone by consuming one unit less of incumbent good, vI−T ′(1−qE). The light-shaded area
on Figure 9a represents the set of types for which the solution is interior, 0 < qE(sE, ωE) < sE,
and hence the rival is partially foreclosed from the market, i.e., the quantity distortion is at
the intensive margin.

“Retroactive” price schedules We now show that the dominant firm uses “retroactive
rebates”, also known as “all-units discounts” if a simple condition on the elasticity of entry
is satisfied. Rebates are said to be retroactive when (i) they are granted provided that the
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buyer reaches a certain quantity threshold; and (ii) they apply to all the purchased units,
not only to the units above the threshold. Such rebates induce downwards discontinuities in
price-quantity schedules. Figure 11a shows the most simple retroactive price schedule. The
slopes of the two segments correspond to the unit prices that are applied to all units depending
on whether or not the quantity threshold q̄I is attained.

We assume here that the elasticity of entry is first decreasing then increasing as the size
of the contestable demand rises: competitors with intermediate size are less sensitive to com-
petitive pressure than competitors with small or large size. Under this circumstance, the
efficiency-rent tradeoff leads the buyer and the incumbent to place strong competitive pres-
sure on competitors with intermediate size and less pressure on small or large competitors:
the entry barrier ω̂E(sE) is hump-shaped as shown on Figure 10a.

Figure 10a: Entry barrier for known sE (dashed),
second-best threshold (solid) with U-shaped elas-
ticity

Figure 10b: Optimal price schedule with sE =

0 and s̄E = 1

We rely on Figures 10a and 10b to explain the shape of the optimal price schedule in this
instance. Above the solid curve on Figure 10a, the competitor serves all of the contestable
demand. In the light-shaded area below the solid curve, the quantity purchased from the
competitor does not depend on the size of the contestable market. For instance, a rival whose
type lies on the horizontal segment (A1A3) sells s1

E units. On such an interval, the unit virtual
surplus is negative at the right of the dashed line ωE = ω̂E(sE) and positive at its left.

When the size of the contestable demand is small, specifically between A0 and A2 , the
equation of the light-shaded area’s upper boundary, ωE = Ψ(sE), follows from the condition
that the expected virtual surplus is zero on the bunching intervals such as the interval (A1A3).
As already noticed, the quantity chosen by the buyer and the competitor is an interior solution
of their surplus maximization and is therefore given by the first-order condition: T ′(1− sE) =

vI −Ψ(sE); the price-quantity schedule T is convex in this region, see Figure 10b.
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Between A2 and A4, we recover the tariff by expressing that the quantity purchased from
the rival is constant on the bunching segments. For example, if the rival is at A3, the buyer-rival
pair is indifferent between buying s1

E or s3
E: (ωE−vI)s1

E−T (1−s1
E) = (ωE−vI)s3

E−T (1−s3
E).

As T (1 − s1
E) is known, one can infer T (1 − s3

E). At points A1 and A3, we have ωE = vI ,
and hence T (1 − s1

E) = T (1 − s3
E). It is readily confirmed that T ′′ = 0 at A2, i.e., T has an

inflection point, see point 4 of Lemma C.1.
Thus, a U-shaped elasticity of entry yields an optimal price-quantity schedule that is

neither globally concave nor globally convex. The decreasing part of the price schedule gives
the buyer a strong incentive to supply from the incumbent beyond the point A1.

Figure 11a: Retroactive rebate approximating
an optimal price schedule

Figure 11b: Retroactive rebate when the con-
testable demand takes three values

When the distribution of types is continuous, the optimal price schedule is continuous. If
instead the size of the contestable demand takes a finite number of values, a price schedule
with a retroactive rebate, such as the one superimposed on Figure 11a, is optimal. Specifically,
suppose that the support of sE consists of three points s1

E < s2
E < s3

E and that the distribution
of ωE given sE is such that ω̂E(s2

E) > max(ω̂E(s1
E), ω̂E(s3

E)). Then the rent-efficiency tradeoff
leads the buyer and the incumbent to place more (less) competitive pressure on the rival types
with contestable demand s2

E (s1
E and s3

E). This can be done with the schedule shown on
Figure 11b. Critical on this figure are the slopes of the three dashed lines, which reflect the
pressure put at each level.8 Rival types with contestable market share s2

E or s3
E serve all of the

contestable demand when they generate a high surplus ωE, sell s1
E units when they generate

a moderate surplus (partial foreclosure) or are inactive when they generate a low surplus.

The analysis so far has assumed that disposal costs are very large. To illustrate, suppose
8The quantity threshold (the discontinuity point in the schedule) can take any value between 1 − s2E and

1− s1E .
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that the magnitude of disposal costs, γI , is smaller than the absolute value of the slope
between A1 and A2 on Figure 11b. (This is the case for instance under free disposal, i.e., if
γI = 0.) Then, to pocket the rebate, the buyer who has purchased s2

E units from the rival
finds it ex post optimal to purchase qI = 1 − s1

E from the dominant firm and to dispose of
s2
E−s1

E units of incumbent good. This opportunistic behavior generates inefficient production
and disposal costs and violates the equality qE +qI = 1 which has been taken for granted since
the beginning of Section 4.

6 Disposal costs and conditional schedules

We now investigate how the magnitude of disposal costs affects the equilibrium outcome under
a conditional and a non-conditional schedule.

Starting with a conditional schedule T (qE, qI), we rewrite the buyer-rival problem (3) as

SBE = max
qE≤sE

ωEqE − τ(qE), (19)

with τ(qE) = −maxqI vIqI − T (qI , qE). By considering schedules of the form T (qE, qI) =

cIqI + P (qE) and letting the penalty function P vary, we generate any function τ of qE, and
hence the same set of implementable quantity allocations as by letting the non-conditional
schedule T (qI) vary in (13). At the same time, we are sure that the buyer purchases the
conditionally efficient quantity of incumbent good, qI = q∗I (qE), irrespective of the magnitude
of disposal costs. The construction presented in Sections 4 to 5, therefore, yields the optimal
allocation under a conditional schedule for all γI ≥ −cI . Many schedules implement that
allocation as cI can be replaced with any price between −γI and cI while maintaining qI = q∗I .

Turning back to non-conditional schedules, we recall from Choné and Linnemer (2014) that
the buyer’s ability to dispose of unconsumed units at cost γI constrains the marginal price to
be above −γI , formally T ′ ≥ −γI . For instance, under free disposal (γI = 0), the portion of
the schedule between A1 and A3 on Figure 10b is irrelevant, and can be replaced with a flat
part between these two points. Indeed the point A1 dominates any point in (A1A3) from the
buyer’s ex post perspective. As a second example, suppose that the slope of the tax schedule
is −γI at point B1 on Figure 12b. Then the nonlinear portion of the schedule tariff above the
segment (B1B2) is immaterial because the buyer prefers B1 to any point between B1 and B2.
More generally, changing T into T̂

T̂ (qI) = inf
q≥qI

T (q) + γI(q − qI). (20)

trims portions of the schedule that decrease more rapidly that γI . Intuitively, the modified
schedule T̂ offers the buyer the possibility of purchasing less units and to pay the corresponding
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Figure 12a: Truncated second-best threshold
(solid) with U-shaped elasticity

Figure 12b: Optimal price schedule under γI =

∞ (dashed); trimmed schedule (solid)

disposal costs directly to the dominant firm. It is immediate to check that the slope of T̂ is
never lower than −γI .

The following proposition shows that the constraint T ′ ≥ −γI is binding if and only if the
efficiency-rent tradeoff leads to exclude some super-efficient rival types, i.e., ω̂E(sE) ≥ vI + γI

for some sE. The intuition is that when the rival is not super-efficient, maximizing the virtual
surplus and maximizing the constrained virtual surplus are the same thing, because the curves
qE = q∗E(qI) and qI = q∗I (qE) coincide with the segment (AA′) on Figures 1a and 1b.

Proposition 5. The magnitude of the disposal costs, γI , affects the optimal allocation as
follows:

1. The optimal conditional schedule T (qE, qI) does not depend on γI ;

2. When γI is larger than max ω̂E − vI , the second-best allocation is the same whether the
schedule is conditional or not;

3. When γI is smaller than max ω̂E−vI , the optimal non-conditional schedule corresponding
to γI = ∞ should be trimmed according to (20). The expected profit of the buyer-
incumbent pair, EΠBI , is nondecreasing and total welfare is non-increasing in γI .

Proof. The first point of the proposition has been demonstrated at the beginning of the section.
To establish the second point, we derive the optimal boundary Ψ as explained in Section 4
and recover the schedule using (13)

T (1)− T (1− sE) = [vI − ωE]sE + ∆SBE(sE, ωE), (21)
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with ωE = Ψ(sE). Differentiating with respect to sE and observing that the terms coming
from ωE cancel out by the envelope theorem, we get

T ′(1− sE) = vI −Ψ(sE) +
∂∆SBE

∂sE
. (22)

Since ∆SBE is nondecreasing in sE and that Ψ is below max ω̂E (see Section 4), we get
T ′(1 − sE) ≥ vI − max ω̂E. It follows that when γI is larger than max ω̂E − vI , all units are
sold at a price above −γI , and the buyer has no incentive to purchase unneeded units.

Suppose now that the rent-efficiency tradeoff would lead to the exclusion of super-efficient
rival types. We know that this cannot happen under a non-conditional schedule, because the
quantity purchased from the rival is conditionally efficient, hence qE = sE for super-efficient
rival types as shown on Figure 1c. This constraint is expressed in terms of boundary line by
the inequality Ψ ≤ vI + γI . Accordingly, we replace Ψ(sE) with min(Ψ(sE), vI + γI). This
truncation respects the bunching conditions on horizontal intervals and hence maximizes the
expected virtual surplus on the set ωE ≤ vI + γI .9 From (22) and the arguments below, we
know that the constraint T ′ ≥ −γI is respected.

The truncated boundary line shifts upwards as γI rises, hence more inefficient exclusion
and a lower welfare; at the same time, the profit of the buyer-incumbent pair rises as the
constraint T ′ ≥ −γI is getting less stringent.

When the buyer and the incumbent cannot condition prices on quantities purchased from
the competitor, the buyer’s ability to dispose of unneeded units of incumbent good limits the
competitive pressure that can be placed on the rival, thus protecting super-efficient competi-
tors from exclusion. Lower disposal costs, therefore, reduce the extent of inefficient market
foreclosure. In the limit case where γI = −cI , the constraint T ′(qI) ≥ −γI leaves no scope for
anticompetitive exclusion.

7 Discussion

In this and our companion paper, we have examined nonlinear pricing through the lens of a
static theory of harm. Our results shed light on the so-called “as-efficient competitor test” that
checks whether a fictive rival firm, having the same production costs and selling a product of
similar quality as the dominant firm, could profitably match the prices offered by that firm.
The European Commission, describing its enforcement priorities, introduces the test as an
instrument to screen out cases with few anticompetitive consequences.10 The underlying logic
has received a relative consensus on both sides of the Atlantic Ocean –see, e.g., the quote by

9Here we assume away the complications of two-dimensional bunching, which is possible in particular when
the sufficient conditions of Proposition 3 are satisfied.

10European Commission (2009)
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the Department Justice that opens our companion paper, as well as the support expressed by
Shapiro and Hayes (2006).

In practice, the implementation of the test requires specifying the quantity range over
which prices and costs should be estimated. It is natural to run the test over the contestable
share of a buyer’s demand because it is on that share that competition can possibly operate. In
this paper, we have treated the number of contestable units as a random variable because “how
much of the customer’s purchase requirements can realistically be switched to a competitor”
is a fundamentally uncertain figure.11 Accordingly, the effective price is best represented as a
function of the size of the contestable demand.

If larger rivals tend to be less efficient, the effective price governs the shape of the optimal
price-quantity schedule and its exclusionary effects: either the rival can match the effective
price and then serves the contestable demand, or it cannot and is driven out of the market.
The logic prevailing in the one-dimensional model of Choné and Linnemer (2014) is different
as the exclusionary effects are determined by the marginal price rather than by the effective
price, and concavity is associated to partial, not complete, exclusion of rival types. In both
models, however, nondecreasing and concave price schedules have the potential to generate
anticompetitive market foreclosure. Competition agencies tend to see such schedules as rela-
tively innocuous, often presuming they are justified by economies of scales. Our findings call
for caution in this respect.

For other patterns of correlation between contestable demand and rival efficiency, the
optimal effective price is non-monotonic, which generates partial exclusion of efficient rival
types. Defendants in antitrust litigation commonly put forward that the alleged abuse did not
prevent competitors from achieving a sizeable share of the market. Our analysis points out
that antitrust enforcers are right to discard this line of defense as a positive market share is
not incompatible with (partial) anticompetitive foreclosure.

Under non-conditional schedules, the buyer’s ability to dispose of unneeded units limits the
competitive pressure that can be placed on the rival. Higher disposal costs are associated to
more exclusion and lower values of the expected total welfare. Antitrust authorities, therefore,
should pay close attention to contracting provisions that help increase disposal costs. Condi-
tional schedules, in effect, render disposal costs infinite and should therefore be subjected to
close scrutiny.

11Assessed from an ex ante perspective, the distribution of uncertainty should reflect the players’ beliefs at
the time. For instance, in Intel, the Commission sought to determine “what volumes were actually thought to
be at risk during the period examined” (emphasis added).
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Appendix

A Proof of Lemma 3

We first observe that (vI − ωE)qE(sE, ωE) + ∆SBE(sE, ωE) is constant on qE-isolines. Indeed,
both qE(., ωE) and ∆SBE(., ωE) are constant on horizontal isolines (located below the bound-
ary line Ψ). On vertical isolines (above the boundary), ∆SBE(sE, .) is linear with slope sE,
guaranteing, again, that the above expression is constant. This shows that (15) unambiguously
defines T (1)− T (1− q) on the range of the quantity function qE(., .).12

We now prove that the buyer and the competitor, facing the above defined tariff T , agree
on the quantity qE(sE, ωE). We thus have to check that

∆SBE(sE, ωE) ≥ (ωE − vI)q′ + T (1)− T (1− q′) (A.1)

for any q′ ≤ sE. When q′ is the range of the quantity function, we can write q′ = qE(s′E, ω
′
E)

for some (s′E, ω
′
E), with q′ ≤ s′E. Observing that q′ = qE(q′, ω′E) and using successively the

monotonicity of ∆SBE in sE and its convexity in ωE, we get:

∆SBE(sE, ωE) ≥ ∆SBE(q′, ωE) ≥ ∆SBE(q′, ω′E) + (ωE − ω′E)q′,

which, after replacing T (1)− T (1− q′) with its value from (15), yields (A.1). To check (A.1)
when q′ is not in the range of the quantity function (q′ belongs to a hole (s1

Es
2
E) as explained

in Footnote 12), use (A.1) at s1
E and the linearity of the tariff between s1

E and q′.
12Notice that the range of qE may be disconnected when Ψ is above ωE on some intervals. Specifically, if Ψ

is above ωE on the interval I = [s1E , s
2
E ], then qE does not take any value between s1E and s2E . In this case, we

define T as being linear with slope vI−ωE on the corresponding interval: T (1−s1E)−T (1−q) = (vI−ωE)(q−s1E)

for q ∈ I.

28

http://ec.europa.eu/competition/antitrust/art82/020.pdf
http://ec.europa.eu/competition/antitrust/art82/020.pdf
http://dx.doi.org/10.1093/joclec/nhi001


B Proof of Proposition 3

In Section B.1, we offer a convenient parametrization of horizontal bunching intervals. In Sec-
tion B.2, we state and prove a one-dimensional optimization result, which serves to maximize
the expected virtual surplus for a given level of ωE. In Section B.3, we rewrite the complete
problem as the maximization of the expected virtual surplus under monotonicity constraints.
In Section B.4, we show that these constraints are not binding under fairly mild conditions.

B.1 Parameterizing horizontal bunching intervals

Consider an implementable quantity function qE. For any ωE, the function of one variable
qE(., ωE) is nondecreasing on [0, 1], being either constant or equal to the identity map: qE = sE.
By convention, we call regions where it is constant “odd intervals”, and regions where qE = sE

“even intervals”.
We are thus led to consider any partition of the interval [0, 1] into “even intervals” [s2i, s2i+1)

and “odd intervals” [s2i+1, s2i+2), where (si) is a finite, increasing sequence with first term
zero and last term one.13 We associate to any such partition the function of one variable
that coincides with the identity map on even intervals, is constant on odd intervals, and is
continuous at odd extremities. We denote by K the set of the functions thus obtained.

For any implementable quantity function qE, the functions of one variable, qE(., ωE), belong
to K for all ωE. Conversely, any quantity function such that qE(., ωE) belong to K for all ωE

is implementable if and only if even (odd) extremities do not increase (decrease) as ωE rises.
Hereafter, we call the conditions on the extremities the “monotonicity constraints”.

Even (odd) extremities constitute decreasing (increasing) parts of the boundary line. Odd
intervals, [s2i+1, s2i+2), constitute horizontal bunching segments, or, more precisely, the hori-
zontal portions of the L-shaped bunching regions.

B.2 A one-dimensional optimization result

In this section, we maximize a linear integral functional on the above-defined set K.

Lemma B.1. Let a(.) be a continuous function on [0, 1]. Then the problem

max
r∈K

∫ 1

0

a(s)r(s) ds

admits a unique solution r∗ characterized as follows. For any interior even extremity s2i
E , the

function a equals zero at s2i
E and is negative (positive) at the left (right) of s2i

E . For any interior
13 For notational consistency, we denote the first term of the sequence by s0 = 0 if the first interval is even

and by s1 = 0 if the first interval is odd. Similarly, we denote the last term by s2n = 1 if the last interval is
odd and by s2n+1 = 1 if the last interval is even.
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odd extremity s2i+1
E , the function a is positive at s2i+1

E and satisfies∫ s2i+2
E

s2i+1
E

a(s) ds = 0. (B.1)

If a(1) > 0, then r∗(s) = s at the top of the interval [0, 1]. If a(1) < 0, then r∗ is constant at
the top of the interval.

Proof. Letting I(r) =
∫ 1

0
a(x)r(x) dx, we have

I(r) =
∑
i

∫ x2i+1

x2i

xa(x) dx+
∑
i

x2i+1

∫ x2i+2

x2i+1

a(x) dx,

where the index i in the two sums goes from either i = 0 or i = 1 to either i = n− 1 or i = n,
in accordance with the conventions exposed in Footnote 13. Differentiating with respect to an
interior even extremity yields

∂I

∂x2i

= a(x2i).[x2i−1 − x2i].

The first-order condition therefore imposes a(x∗2i) = 0. The second-order condition for a
maximum shows that a must be negative (positive) at the left (right) of x∗2i.

Differentiating with respect to an interior odd extremity yields

∂I

∂x2i+1

=

∫ x2i+2

x2i+1

a(x) dx.

The first-order condition therefore imposes
∫ x∗

2i+2

x∗
2i+1

a(x) dx. The second-order condition for a
maximum imposes that a is nonnegative at x∗2i+1.

If a(1) > 0, then it is easy to check that r∗(x) = x at the top, namely on the interval
[x∗2n, x

∗
2n+1] with x∗2n being the highest zero of the function a and x∗2n+1 = 1. If the function a

admits no zero, it is everywhere positive and hence r∗(x) = x on the whole interval [0, 1].

If a(1) < 0, then r∗ is constant at the top, namely on the interval [x∗2n−1, x
∗
2n], with x∗2n = 1

and
∫ 1

x∗
2n−1

a(x) dx = 0. If the integral
∫ 1

y
a(x) dx remains negative for all y, then r∗ is constant

and equal to zero on the whole interval [0, 1].

B.3 Solving the complete problem

The complete problem consists in maximizing the expected virtual surplus subject to the
even (odd) extremities being nonincreasing (nondecreasing). The latter conditions are called
hereafter the “monotonicity constraints”.

Applying Lemma B.1 with a(sE) = sv(sE, ωE) for any given ωE, we find that the virtual
surplus is zero at candidate even extremities: sv(x2i(ωE), ωE) = 0 and is negative (positive)
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at the left (right) of these extremities. In other words, Ψ = ω̂E at candidate even extremities.
Thus, as regards even extremities, the monotonicity constraints are never binding.

Lemma B.1 also implies that the virtual surplus is positive at odd extremities. At these
extremities, we must therefore have Ψ > ω̂E. By the first-order condition (B.1), the expected
virtual surplus is zero on horizontal bunching intervals:

E(sv|H) = 0, (B.2)

where H is a horizontal bunching interval with extremities s2i+1
E and s2i+2

E . The virtual sur-
plus on a bunching interval is first positive, then negative as sE rises, and its mean on the
interval is zero. The segment (AB) on Figure 7b is an example of horizontal bunching interval
(in fact the horizontal part of an “L”-shaped bunching set). Unfortunately, the first-order
condition (B.2) does not imply that candidate odd extremities x2i+1(ωE) are nondecreasing
in ωE: odd extremities might decrease with ωE in some regions, generating two-dimensional
bunching.

B.4 Sufficient conditions

We now check that each of the three conditions mentioned in Proposition 3 is sufficient for
the odd extremities s2i+1

E (ωE) to be nondecreasing in ωE. We can restrict attention to efficient
rival types, ωE ≥ ωI .14 We rewrite equation (B.2) as A(s2i+1

E , ωE) = 0 with

A(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

sv(s, ωE)f(ωE|s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f(ωE|s)− β(1− F (ωE|s))] g(s) ds.

The function A is nonincreasing in s2i+1
E , as the virtual surplus is nonnegative at this point:

∂A

∂s2i+1
E

(s2i+1
E , ωE) = −sv(s2i+1

E , ωE)f(ωE|s2i+1
E )g(s2i+1

E ) ≤ 0.

Differentiating with respect to ωE, we get

∂A

∂ωE

(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f
′(ωE|s) + f(ωE|s) + βf(ωE|s)] g(s) ds,

where we denote by f ′ the derivative of f in ωE.

When f is nondecreasing in ωE, or f ′ ≥ 0, we have ∂A/∂ωE ≥ 0, and hence the odd
extremities are nondecreasing in ωE. We now examine successively the cases where the hazard

14For ωE < ωI , the virtual surplus is negative for all sE and the solution is qE = 0 for all sE .
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rate is nondecreasing in ωE (a weaker condition than f ′ ≥ 0) and the elasticity of entry is
nondecreasing in ωE (an even weaker condition).

We now assume that the hazard rate, f/(1 − F ), is nondecreasing in ωE, which can be
expressed as f ′ ≥ −εf/ωE. Using ωE ≥ ωI , we find that

∂A

∂ωE

≥
∫ s2i+2

E

s2i+1
E

[
−(ωE − ωI)

ε

ωE

+ 1 + β

]
f(ωE|s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

{
ε

[
ωI

ωE

− 1 +
β

ε

]
+ 1

}
f(ωE|s)g(s) ds.

On a horizontal interval H, the variable ωE is constant, and only the elasticity ε may vary.
Hence, the first order condition (B.2) yields: E(1− β/ε |H) = ωI/ωE. The right-hand side of
the above inequality is equal, up to a positive multiplicative constant, to 1−cov (ε, 1− β/ε|H).
We now look for a sufficient condition for this expression to be nonnegative for any distribution
of ε. Noting m = E(ε|H) the expectation of ε on H, the condition can be rewritten as

E
[
(ε−m)

(
1− β

ε

)∣∣∣∣H] ≤ 1.

The function (ε−m)(1−β/ε) is convex in ε. We denote by [ε, ε̄] the support of the distribution
of ε. For given values of ε, ε̄ and m = E(ε|H), the expectation of this convex function is
maximal when the distribution of ε has two mass points at ε and ε̄, associated with the
respective weights (ε̄−m)/(ε̄− ε) and (m− ε)/(ε̄− ε). We thus need to make sure that

(ε̄−m)(ε−m)

(
1− β

ε

)
+ (m− ε)(ε̄−m)

(
1− β

ε̄

)
≤ ε̄− ε,

for any m ∈ [ε, ε̄]. The left-hand side of the above inequality is maximal for m = (ε+ ε̄)/2. It
follows that the inequality holds for all m ∈ [ε, ε̄] if and only if the condition (18) is satisfied.

C From the boundary function to the price schedule

Lemma C.1. The shape of the boundary function Ψ and the curvature of the price schedule
T are linked in the following way:

1. If Ψ is increasing (resp. constant) around sE, then the tariff is strictly convex (resp.
linear) around 1− sE.

2. If Ψ decreases and is concave around sE, then the tariff is concave around 1− sE.

3. If Ψ decreases and is convex around sE and sE is close to a local minimum of Ψ, then
the tariff is convex around 1− sE.
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4. If Ψ has a local maximum at sE, then the tariff has an inflection point at 1− sE.

Proof. First, suppose that Ψ is nondecreasing on a neighborhood of sE. Let s′E slightly above
sE. Then qE = sE is an interior solution of the buyer-rival pair’s problem (13) for s′E and
ωE = Ψ(sE). It follows that the first order condition Ψ(sE) − vI + T ′(1 − sE) = 0 holds,
implying property 1 of the lemma. The property holds when Ψ has an upward discontinuity
at sE, in which case the tariff has a convex kink at 1− sE. To illustrate, Figures 13a and 13b
consider the case where the boundary line is a nondecreasing step function with two pieces.

Figure 13a: Convex kink in the price sched-
ule

Figure 13b: Two-step increasing boundary
line

Next, suppose that the boundary line decreases around sE. Here we assume that Ψ is twice
differentiable. We denote by [σ(sE), sE] the set of value s′E such that qE(s′E, ωE) = σ(sE),
where ωE = Ψ(sE). The buyer-rival surplus ∆SBE(sE, ωE) is convex and hence continuous in
ωE. It can be computed slightly below or above Ψ(sE). At (sE,Ψ(sE)), the buyer and the
rival are indifferent between quantities sE and σ(sE):

∆SBE(sE,Ψ(sE)) = [Ψ(sE)− vI ]σ(sE)− T (1− σ(sE)) = [Ψ(sE)− vI ]sE − T (1− sE).

Differentiating and using the first-order condition at σ(sE) yields

T ′(1− sE) = −Ψ′(sE)[sE − σ(sE)]−Ψ(sE) + vI .

Differentiating again yields

T ′′(1− sE) = Ψ′′(sE)[sE − σ(sE)] + Ψ′(sE)[2− σ′(sE)]. (C.1)

In the above equation, the two bracketed terms are nonnegative (use σ′ ≤ 0), and the slope Ψ′

is negative by assumption, which yields item 2 of the lemma. Around a local minimum of Ψ,
Ψ′ is small, and the first term is positive, hence property 3. Property 4 follows from items 1
and 2.
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