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1 Introduction

In recent literature, there has been a growing number of applications involv-
ing economic time series models with causal and noncausal components. The
time series modelled as noncausal processes range from the macroeconomic
data [Lanne, Saikkonen (2011), Davis, Song (2012), Chen Choi, Escanciano
(2012)], to the Standard and Poor (S & P) index prices [Gourieroux, Za-
koian (2013)], the commodity prices and electronic currency exchange rates
[Gourieroux, Hencic (2013)]. The empirical results reported in the litera-
ture suggest that the traditional Box-Jenkins methodology that restricts the
temporal dependence in linear autoregressive processes to the past only, has
been often found insufficient.

While the empirical literature on noncausal and mixed processes is rather
recent, the theoretical results have been long established since the seventies
and the eighties [see e.g. Davis, Resnick (1986), or Rosenblatt (2000) for
a general presentation of such processes]. Despite that, over the last four
decades, applied research remained strongly influenced by the Box-Jenkins
methodology, and the normality assumption that underlies the quasi max-
imum likelihood estimation method was used as an integral part of that
methodology. Because the forward- and backward-looking dynamics of a
Gaussian time series are not distinguishable, the forward-looking components
were disregarded and the past conditioning in ARMA models became a stan-
dard practice. Formally, the problem of non-identifiability of the backward
and forward-looking autoregressive polynomials in Gaussian time series was
formulated by Rosenblatt [see Rosenblatt (2000) [Th 1.3.1]]. Therefore, for
identification purposes, the assumption of normality in models with causal
and noncausal components has to be relaxed.

The noncausal and mixed processes possess an infinite moving average
representation:

+00
Yi = Z i€t (1.1)

1=—00

where (g;) is a sequence of i.i.d. variables and a;,i = —o0,...,+00 a two-
sided sequence of moving average coefficients [see e.g. Brockwell, Davis

(1991)]. Process y; exists almost surely under rather weak conditions, such
+o0

as F(|z]°) < oo, for § > 0 and Z |a;)® < co. The above M A(oco) represen-

1=—00



tation differs from the moving average processes considered in the standard
Box, Jenkins approach in the following aspects:

i) The moving average is two-sided, including a ”causal” component
o

Zaist_i, function of the current and lagged values of the error, as well

1=0
-1

as a "noncausal” component Z Q;iEr_i.
1=—00

ii) The error term is a strong white noise, instead of a weak white noise.

iii) The distribution of the error term can have fat tails. In particular, &
can have infinite variance, or even infinite expectation.

The existing methods of prediction for noncausal processes focus on point
prediction of processes with finite means. The predictions are based on con-
ditional expectations, which have no closed-form expressions and need to be
approximated by simulations [see Lanne, Luoto, Saikkonen (2012) for univari-
ate processes and Lanne, Saikkonen (2013) for some multivariate processes].

The objective of this paper is to provide a simpler prediction method that
yields complete predictive densities and prediction intervals at multiple finite
horizons in one step. The proposed method requires less simulations than
the methods focused on the optimal (point) predictor approximation and
is computationally less demanding. Especially, it is valid for non-Gaussian
processes with heavy tails, including processes with infinite error variances.
The prediction method for univariate processes is extended to multivariate
processes in order to obtain a comprehensive approach to the analysis of
noncausal processes.

Our approach exploits the unobserved component representation of non-
causal and mixed processes that distinguished the latent causal and non-
causal components of y;. This decomposition has been introduced by Lanne,
Saikkonen (2011) for univariate processes. We extend it to the multivariate
framework. The filtering procedure for the unobserved components of non-
causal and mixed processes is provided in the paper along with a simulation
algorithm. In addition, the filtering algorithm itself is used in a consistent and
asymptotically efficient parameter estimation method: The back-forecasting
BHHH algorithm is introduced as a time-efficient alternative to the approx-
imated maximum likelihood method.

The paper is organized as follows. Section 2 describes the filtering method
and introduces the unobserved ”causal” and "noncausal” component repre-



sentation of y;. It establishes a deterministic dynamic relationship between
the unobserved components, the process y; and the errors and highlights the
equivalence of various filtrations.

The nonlinear prediction in univariate processes is discussed in Section 3.
We first derive a closed-form formula of the consistent estimator of the pre-
dictive density of (yri1,...,yr+m) given the information (yi,...,yr). This
estimator is based on an extension of the look-ahead density estimator, in-
troduced in Glynn, Hendersen (1998), (2001) which circumvents the use of
simulations. This eliminates the time consuming simulations involved in
the prediction method proposed by Lanne, Luoto, Saikkonen (2012). Next,
drawings in the predictive density are performed by using a Sampling Im-
portance Resampling (SIR) method [Gelfand, Smith (1990)a,b], which serve
to generate future paths of y and prediction intervals.

In Section 4, we show as an additional outcome, the filtered component-
based back-forecasting algorithm that leads to consistent and asymptotically
efficient estimation of the parameters of the autoregressive causal and non-
causal polynomials and error distribution.

Section 5 extends the filtering and prediction methods to the multivariate
framework. A simulation study is presented in Section 6 to analyse the
properties of the filtering and prediction methods introduced in Sections 3
and 4. Section 7 concludes.

Some proofs and a description of the SIR method are gathered in appen-
dices.

2 The process and its unobserved components

2.1 Definition of unobserved components

Let us consider the autoregressive process defined as:

(L)W (L™ )y, = &, (2.1)

where the error terms are independent, identically distributed, such that
E(|g]°) < oo, for § > 0,® and ¥ are two polynomials of degrees r and s,
respectively, with roots strictly outside the unit circle and such that ®(0) =
U(0) = 1. The polynomials ® and ¥ can be inverted and the process can be
rewritten as :



1 1
®(L) W(L™)
where 1/®(L) [resp.1/¥(L™")] is an infinite series in L (resp. L™'), and the
equality in (2.2) holds almost surely [see e.g. Brockwell, Davis (1991), Prop.

13.3.1]. Hence, y; admits an infinite two sided moving average representation,
which is the unique strictly stationary solution of recursive equation (2.1).

Yt = €t, (22)

Following Lanne, Saikkonen (2011), and Lanne, Luoto, Saikkonen (2012),
we consider the following unobserved ”causal” and "noncausal” components
of process y;:

wy = ®(L)y, <> V(L N, = ¢, (2.3)

and

v = U(L Yy, <> ®(L)v, = & (2.4)

Let us now consider the filtrations generated by the error term &, =
{e,,7 < t}, and the filtrations generated by the observations y, = {y,, 7 < t},
respectively. A process is said to be causal with respect to a given filtration
if its current value belongs to the associated information set. Conversely, we
can reverse the time so that a process is said to be noncausal if its current
value depends on a future value of the process that generated the filtration.
Equations (2.3)-(2.4) lead to the following proposition :

Proposition 1 : i) u; is e-noncausal and y-causal.
ii) vy is e-causal and y-noncausal.

Process u (resp. v) is called the noncausal (resp. causal) component with
respect to the filtration associated with the error ¢.

2.2 Filtering

Suppose that we observe y over a period of length 7" and denote by (y1, .. ., yr)
the observed sequence. The values of unobserved components u and v and

errors € can be computed from a set of observations (yi, ..., yr) as follows.
(i) From equation (2.1) fort = r,...,T—s, we obtain the values £,,1,...,e7
as functions of (yi,...,yr).



(ii) From equation (2.3) : w; = ®(L)y;, t = r+1,...,T, we obtain u, 41, ..., ur.
(iii) From equation (2.4) : v; = V(L™ Yy,t = 1,...,T — s, we obtain
Viy.ooyUr—s.

When an additional observation y7,; becomes available, the set of unob-
served components can be updated by computing ep_;1 1, uri1 and vp_gy ;.

2.3 Recovering process y from unobserved components

Conversely, the observable process y can be recovered from the e-causal and
e-noncausal components. Below, we show two methods of recovering y, which
are based on partial fraction decompositions.

i) (u,v)— causal representation of y

We have :
1 L?

(L)W(LT) ~ ()LL)
where the denominator is a polynomial in L. That polynomial can be rewrit-
ten as:

1 bi(L)  bo(L)
(L)L)~ (L)  LU(IL)

where the degree of polynomial b; is d°b; < r—1, and the degree of polynomial
bg is d0b2 S s—1.

It follows that:

1 . bi(L) by (L)
. [@(L) *m(m}

Lb(L)  bo(L)
B (L)

and

Lsby (L) bo(L)
n= Sy i) -



Next, we use expressions (2.3)-(2.4) that define u and v and get:

yr = L°by (L)vy + bo(L)uy. (2.5)

Equation (2.5) provides a representation of y; as a linear function of cur-
rent and lagged £— causal and e— noncausal components v and u, respec-
tively.

ii) (u,v)—noncausal representation of y

Alternatively, we can use the partial fraction decomposition with polyno-
mials in L. We get :

— L= 15
T Tre@mpuE

L

LT b(LT) :
r th d°bf <r —1,d°% <s—1

L*"d)(L)jL\IJ(L*l) €, W1 1<r ,d'by <'s )
bi(L™h)  LTby(LY)

= g+ E¢-

o(L) T(L)

where d° denotes the degree of a polynomial. Next, using the definitions of
u and v in (2.3)-(2.4), we get:

Yy = bT(Lil)Ut + Lirbz(Lil)Ut, (26)

which is a representation of process y as a linear function of its current and
future e—causal and e— noncausal components v and u, respectively.

Below, we illustrate the two representations for a mixed causal-noncausal
autoregressive process of order (1,1), called MAR(1,1):.

Example 1 : Let us assume r = s = 1 and consider the mixed autoregressive
model MAR(1,1):

(1= @L)(1 =Ly =<,
with |p] < 1, [¢] < 1, or

B L
MU —en@ -9

7
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1 1
The equality (

0oL 1-pi ) - implies:

B 1 oL N 1
ST T T\ gL "L 1)
|
= 1 (pw(govt_l + uy). (2.7)

In this representation, y,; is a linear function of the first lag of the e-causal
component v and of the current value of the e-noncausal component u. We
also have:

- _1W(vt + ). (2.8)

In the above representation, y; is a linear function of the current value of the
e-causal component v and of the first lag of the e-noncausal component wu.

Yt

2.4 Equivalence of information sets

The following proposition establishes the equivalence of various information
sets that contain the unobserved components u and v and errors ¢ [see Lanne,
Luoto, Saikkonen (2012), or Appendix 1 for a shorter proof].

Proposition 2 : The following information sets are equivalent

1) (yb s 7yT);

11) (yla ey Yy Upgpdy e ey uT)a

111) (Ul U7 YT 5415 - - yT)a

V) (Y1, s Urs Ergty oo s ET s UT g 15+ - o, UT);
V) ('Ula sy Uy Ergly oy ET—5) YT—s+15 - - - yT)a
Vi) (U1, ey Uy Erglye e ET sy UT 541y -+ -5 UT).

The equivalence between (y1, ..., y7) and (v1, ..., Up, Epgty vy E4o1y UT—541y ey UT)
is of special importance, as the following three sets of variables (vy,...,v,),
(Ers1y---se7r—s), and (ur_gy1, ... ur) are independent. Intuitively (vy, ..., v;,)

[resp. (ur_si1,...,ur)] are the initial (resp. terminal) conditions that de-

termine the path of process y over the period {1,...,T}.

8



2.5 Simulation of a mixed causal-noncausal process

The results of the previous sections can be used for simulation of stationary
causal-noncausal process. Let us outline below the steps for simulating a
mixed autoregressive process of orders r = s = 1 MAR(1,1) defined as:

(1=oL)(1 =L )y = &
The simulation steps are as follows:
step 1: Simulate a long path of i.i.d. errors €.

step 2: Use formulas (2.3)-(2.4) to simulate the paths of the e-causal and
e-noncausal components :

up =€ +Yuy,, t=1,...,2T,

v, =€ + vy, t=-T,...,T,

starting from a far terminal condition [resp. far initial condition]| us, = uy,
say [resp. v° = vy

step 3: Obtain the simulated values of process y from the representation
given in (2.5) [or (2.6)]:

1
— ; ; t=1,..T.
yt 1— d)d} (ut + ¢Ut71)7 ) 9

3 Prediction

Let us now consider the (nonlinear) prediction of future values of process y.
We proceed in three steps as follows. First, we show that the prediction of
future values of y is equivalent to the prediction of the future values of the -
noncausal component u. Next, we introduce an estimator of the joint density
of s consecutive future values of v given the past. In order to generate y;
or future paths yri1,...,yrog, we use a Sampling Importance Resampling
(SIR) method to draw the future values of the noncausal component from
the estimated predictive density and then deduce the simulated y by applying
formula (2.3). The proposed method can be applied in one step to obtain
the forecast up to a horizon H > 1.



More specifically, the prediction of interest is the future path (yry1,...,yren),
given the observations (y,...,yr). It is accomplished by deriving (or esti-
mating) the conditional p.d.f. I(yri1, ..., yr+m |y1,---,y7r), and next by
drawing in that density function in order to obtain the conditional quantiles
and prediction intervals.

This approach differs from the traditional point prediction, which will not
be followed for the following reasons:

i) For second-order stationary processes, the optimal predictor is the con-
ditional expectation E(Yyip |y1,.--,yr),h =1,..., H. However, this condi-
tional expectation may not exist in non-Gaussian processes if the errors (and
therefore the Y/s) have fat tails. !

ii) For noncausal and non-Gaussian processes with finite variances, the
formula of the optimal predictor is complicated, in general. While, for Gaus-
sian processes, the conditional expectation E(Yrin|vr,...,yr),h=1,...,H
is a linear function of the observed values, when the error term is not Gaus-
sian, the best predictor E(Y7ip|yi,...,yr) is a nonlinear function of the
observed values [see e.g. Rosenblatt (2000), Theorem 5.3.1].2

Therefore, it is difficult to define and study point prediction in noncausal
models that are non-Gaussian and include processes with fat tails. Below, we
introduce a prediction method that provides a complete predictive density
and not only at a location parameter of that density.

3.1 Equivalence of predictions

In Section 2.4, we showed that the information set (yi,...,yr) is equivalent
to the information set (v1, ..., Up, Epstye- vy ET s, UT—541y -« -, UT).

Therefore, the information contained in (y1,...,yryy) is equivalent to
the information in (v1, ..., Vp, Erity ey ETLH sy UT L H—s11,- -+, Ursp), and it

!For causal autoregressive processes, whose innovation €; have stable symmetric distri-
butions with fat tails, Stuck (1977) proposed a linear predictor Y7 defined by minimizing
E(|Y7in —Yrin]®), where a is the tail index of the stable distribution. These predictions
could be computed recursively from an extended Kalman filter. The nonlinear predictors
of causal processes computed from minimizing the a— distance measure turned out to be
accurate in a non Gaussian framework.

2When the error term is integrable with infinite variance, the prediction is linear in the
past value only for errors with symmetric stable distributions [see Cambanis, Fakhre-Zakeri
(1994)].

10



is also equivalent to that in (vy,...,0r, &r 41,y ET s, UT 541, -+ -, UTtH), DE-
cause U(L "y, = ¢4, t =T —s+1,...,T+ H — s by formula (2.3).

Thus, instead of predicting the future value of y, we can equivalently
predict the future value of the s-noncausal component wu, by finding the
conditional p.d.f :

Hurgr, - uriem|Yi, s Y1)
l(uT—i-la ) uT+H|U17 ey Ury &gl e o ET sy UT 415+ -y UT)
= l(uryr, - urimg|ur —spr, - -5 ur), (3.1)
given that (ur_s11,...,ur ) are independent of the unobserved components
U1,...,v, and errors €,41,...,67_, in the information set.

The conditional p.d.f. in (3.1) can also be written as :

l(UT+1, S UT+H|UT—s+la e ,UT)
_ Z(UT,5+1,...,’LLT,’LLT+1,...,’LLT+H)
ZS(UT,SJA, Ceey U,T)
(wgp— . _ _ .
_ ( T—s5+1, , UT+H s|UT+H s+1, ,UT+H)ls(uT+Hfs+1;---,UT+H)7
ZS(UT,SJA, Ceey U,T)
(3.2)

where [; denotes the stationary density of s consecutive values of the e-
noncausal component u, denoted by %, si1,...,u,. The above conditional
density given the last s future states is known when polynomials ®, ¥ and
the p.d.f. g of the error £ are known too (see Section 3.2).
Example 2 : If s = 1, we get u; — Yu;.; = £;. The conditional density in
the numerator of (3.2) is :

l(UT, .- auT+H—1|UT+H)

= uplur)l(urgi|urio) - ureg 1|urym)

= g(ur — Yury1)g(uryy — Yurys) ... g(urpm—1 — Yuryn).

11



Example 3 : If s = 2, we get u; — ¥1usr1 — Youso = 4. The conditional
density is:

lur-1,- .. uryg—olurym—1, Urim)
= l(UT—1|UT, UT+1) .- -l(uT+H—2|UT+H—1a UT+H)

= g(UTfl — rur — Q?2UT+1) .- -g(UTJerZ — 1uryg—1 — T/JZUT+H)-

Example 4 : In special cases, the predictive density of the e-noncausal
component u admits a closed form. For example, when the error ¢ follows a
Cauchy distribution, the predictive density is:

1 1 1+ (1 — [¢])%u7
714 (up — Yupp)? 1+ (1 — [¢])%ud 4

l(UT+1|UT) == ) (33)

1 1 1
72 1+ (ur — Yury1)? 14 (urgpr — Yurgs)?

L+ (1 —[¢])*uf
1+ (1= [9)ufyy

l(UT+1, UT+2|UT) =

3.2 Estimation of the predictive density

The predictive density of interest in formula (3.2) is generally unknown for
two reasons . First the error density ¢ and the coefficients of autoregressive
polynomials ®, ¥ are usually unknown. Second, the stationary density [ of s
consecutive future values of u is unknown too, and it may be difficult to derive
[; from the transition p.d.f. of the e-noncausal component u. Therefore, later
in this section we propose a look-ahead-type of estimator for [.
The first difficulty is easily solved, when the p.d.f g of error ¢ is parametrized

by a parameter denoted by f. The autoregressive parameters in ®, ¥, and 6
can be estimated consistently and asymptotically efficiently by the approx-
imated maximum likelihood method [see e.g. Breidt et al. (1991), Lanne,
Saikkonen (2011)], or by using a filter-based estimation method introduced
in Section 4. Then, the conditional density in the numerator of formula (3.2)
can be approximated by replacing the true current and past u;, ¢ < T, by
their filtered values, computed from the observations on y [see section 2.2]

12



and ® 3. Let us assume H > s. Then, the approximated conditional density
in the numerator of formula (3.2) is:

l(UT—s—l—la S UT+H—s|UT—H—s+17 SO UT+H)
~

UUr—si1y -, Upy Uity - oo UT b H—s | UT— H 5415 - - -, Ut 1), SAY.(3.4)

Let us now focus on the second difficulty concerning the estimation of the
unknown stationary p.d.f. [,. By the Iterated Expectation Theorem, it
follows that :

ls (u:—s—I—la T uj—)
— E[Z(U/;k_is+1,...,U:_|UT+1,...,UT+S)]

= E{g(u:——s-i-l - ¢1ui_5+2 e T ,QZ)SUT-H) s g(u:— - z/)IUT-H e T ,QZ)SUT—l—s)}a

where the expectation is taken with respect to the joint density of (U, 11, ..., Uris).
It is consistently approximated by :

ls(uikrferlv te 7“:)

T—s
1 k k *
= T Z{!J(UT—SH = PIU gy = Vsu) o g(uF — ity — st
t=1

and, after replacing g by g, v; by z/;j, and the current and past e-noncausal
components u by their filtered values, we get:

S
-

R 1 R R .

lS(uj——s-Hv T 7“:) = T — s {g(uj——s-i-l - z/)lui—s-m e T z/)sut)
t=1

cog(ul = Pty . — ws@tﬂ)} )

(3.5)

3As shown in Example 3, the estimates of ¢ and ¥ are also needed at this stage,
although they don’t appear explicitely in formula (3.2).

13



The approach used here to estimate the stationary p.d.f. [ is a kind of
look-ahead estimator suggested by Glynn, Hendersen (1998), (2001) [see also
Garibotti (2004)]. The main difference is that the simulation step involved in
the look-ahead approach has been eliminated by using the (asymptotically)
stationary filtered values of the e-noncausal component wu.

We can now substitute / from (3.4) and I, given in the last expression into
the predictive density of interest. The consistent estimator of the predictive
density in (3.2) is:

lA(lALTsz, oy U, Uy, - -UT+H|UT+H75+17 R UT+H)lAs(UT+Hfs+17 s aUT+H)
zs(ahﬂ, - ,QT)
= H(UTH, S UTH|UT g1y - - e ﬁT)a say. (3-6)

Let us illustrate the predictive density IT at horizon H for a noncausal process
of order 1.
Example 5 : If s =1, we get :

~

H(’LLT+1, Ceey ’LLT+H|’LALT)

S

-1

(i — Yur)§(urr — Yurie) - g(urym — Yurim) Y | Glurpn — Piy)

t=1

T—
Z iy — T/JUt

Expression (3.6) provides a consistent approximation of the predictive
density of interest II. The look-ahead method used to estimate the station-
ary p.d.f. [, allows us to avoid simulations and considerably simplifies the
methodology, which otherwise is computationally cumbersome [see, Lanne,
Luoto, Saikkonen (2012)].

3.3 Prediction of future y

The approximate predictive density IT of the e-noncausal component u in
(3.6) can be used to generate the future values or future paths of the observ-

14
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able process y and its unobservable causal and noncausal components over a
given horizon H.

The approach consists of four steps outlined below. The future values of
y are computed from the future values of u that are drawn in I by applying
a SIR method (see Appendix 2 for a description of the method). More
specifically, the procedure is the following:

Step 1 : Use data (yi,...,yr) to compute the filtered values of in-sample
unobserved components u:

Erdis - ET—s,
Uty v oy UT s,
Upy1y ..o, UT

Step 2 : Compute the approximated predictive density IL.
Step 3: Use the SIR method to simulate future w’s: uj ,...,uj p.

Step 4: Use the recursive formulas (2.2)-(2.4) to compute the future values
y;’+17 ) y%JrHa éTferla s 7éT+Hfsa @Tferl: s 777T+Hfs-

One can draw a large number of future paths of length H in order to
obtain a complete term structure of predictive densities and prediction inter-
vals from T'+1 up to T'4+ H. From a practical point of view, it is important
to choose a computationally convenient forecast horizon H. Indeed,

i) choosing H > s is advantageous as the expression of I gets simplified.

ii) It is computationally less demanding to apply the SIR approach in one
step at horizon H = 10, say, than to apply the method recursively 10 times
at horizon 1.

iii) Drawing entire future paths of length H provides the term structure
of prediction intervals.

15



4 Estimation based on filtered components

Let us now discuss the parameter estimation in noncausal and mixed autore-
gressive processes. In recent literature, mixed autoregressive models have
been estimated by the approximated maximum likelihood (AML) method
[see e.g. Breidt et al. (1991), Lanne, Saikkonen (2011), (2013) *]. The AML
estimators of parameters 6, ®, ¥ are defined as:

T—s
NP S
(0,®,V) = arg %z?‘)yit_%-Flg((I)(L)\I/(L Vyi; 0). (4.1)

The filtered values of unobserved components of y provide us with an
alternative estimation procedure that involves a sequence of back- and fore-
casts. That alternative estimation method may be less computationally de-
manding than the AML and is based on the updating of the filtered values
of unobserved components until the numerical convergence of the parame-
ter estimates is achieved. The asymptotic properties of the associated fixed
point estimator, especially its efficiency, follow from the deterministic one-
to-one relationships between the observation on y and on each error ¢ and
unobserved components v and v.

4.1 Likelihood-based fixed point estimator

Let us consider the p' step of the algorithm that maximizes the log-likelihood
function in the AML procedure. Let also ®® ... ¥®) g®) denote the values
of the unknown parameters at step p, and

~(p) 2(p) A~ (p) ~(p)  ~(p) ~(p)
Epids -y Eplgy U1 s Up Ly Uiy ey U

denote the filtered components computed with the parameter etimates ®®), ¥®) @),
Step 1 : Updating 0

The filtered value of error ¢ is used to update the estimator of the parameter
(vector) € in error density g(6):

T—s

(p+1) _ A(p).
0 arg m;ixtzl log g(£,”; 0).

“see also Davis, Song (2012) for the multivariate framework.
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Step 2 : Updating ¢

Given that ®(L)v, = ¢, [see (2.4)], the filtered component v is substituted
into this causal autoregressive model of ¢; in order to update the estimator
of &:

T—s
(p+1) _ ~(p). p(p)
o argmgxtz_;logg[@(l/)vt ;6P
Step 3 : Updating ¥

By analogy, given that W(L1)u, = &, the filtered component u is substi-
tuted into the non-causal autoregressive model of €, in order to update the
estimator of U:

T
TP+ — argmax Z logg[\IJ(L*I)agp); 9(”)].
v .2
t=r+1
This likelihood-based approach provides efficient estimates of the parameters
(see the discussion in Section 4.2).

4.2 The Berndt, Hall, Hall, Hausman (BHHH) algo-
rithm

The back-forecasting method in Section 4.1 requires more optimizations of
the log-likelihood function than the AML approach, although with respect
to smaller numbers of parameters. From a numerical point of view, these
optimizations can be facilitated by using a BHHH algorithm described below
[see Berndt et al. (1974)]. The algorithm consists of the following steps:

Step 1 : Updating 0
Parameter (vector) 6 at step p+ 1 is :

T—s
dlogg . dlogg .
89 (gip), e(p)) 89/ (651))7 g(p))

t=r+1 t=r+1

g+l — plp) 1

Step 2 : Updating ¢
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We have :

—S

T —1
P+ = o) — {Z[@E”)l,...,@E”’r]’[@g”)l,...,@E”’r](—alogg(é?),9<p))2}
t=

r+1 Oe
T-s
; - 9logg .
Z {['U,gp)l, ce ’,U'Sli)r]IT(ng)a e(p))} .
t=r+1

Step 3 : Updating ¥

We have :

T—s 2 !
. . . . dlogg , .
wor = W—{Z[u,&f;a,...,u,sffsr[u,&fz,...,ug@s]( - <e,sp>,e<p>>)}

t=r+1

- dlogg
> {[ai’i’l, A I 9<p>)} |

t=r+1

The above BHHH algorithm converges numerically to the limiting values
() () W(*®) say. These limiting values are the solutions of the AML
likelihood equations. Hence, the BHHH algorithm applied separately to each
of the parameters provides an AML estimate.

The adjustment terms in steps 2 and 3 can be interpreted as regression
coefficients. For example, the adjustment term in step 2 is the regression
coefficient in a regression of a vector of ones as the dependent variable on
the following regressor vector:

!

mOlogg . () Ologg .
Ut(p) o= (6t79(p))7"'7vt(1—))r o= (6§P),9(p))

The BHHH algorithm given above differs from the standard BHHH algo-
rithm that is applied jointly to all parameters. While the standard algorithm
relies on the approximation of the complete information matrix:
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say, our approach sets to zero the off-diagonal blocks of the information
matrix.

Finally note that this recursive algorithm is easily applicable to stream
on-line data, and allows for continuous updating of the parameter estimates
and filtered components.

5 Filtering and prediction in multivariate pro-
cesses

The filtering and prediction methods introduced in the previous sections for
univariate processes can be easily extended to mixed autoregressive moving-
average processes or mixed vector autoregressive processes. These models
can be rewritten as a Vector Autoregressive model of order 1 (VAR(1)) when
the current and lagged values of the process are stacked in a vector of a larger
dimension.

In recent literature, one finds two different approaches to the specification
of noncausal multivariate autoregressive models, that reveals the difficulty in
finding the appropriate state variables that would facilitate the prediction
and estimation. For example, in order to generalize the results known from
univariate processes, Lanne, Saikkonen (2013) assume that the noncausal
VAR model, not necessarily of order 1, can be written as:

I(L)P(L™ )y = €,
where det(I1(2)) # 0 and det(®(z)) # 0, for |z| < 1. As noted in Davis, Song
(2012) such restrictions are strong and moreover the matrix lag polynomi-

als do not commute, in general. Therefore, the above specification differs
generally from the following one:

@*(Lfl)H*(L)yt = €¢.
Davis, Song (2012) consider an unrestricted noncausal VAR(1) model and
propose to use the Jordan canonical form of an appropriate matrix in order
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to circumvent the problem of state variables for the approximate maximum
likelihood estimation.

In this section, we introduce a mixed vector autoregressive MVAR model
and show how the filtering and prediction developed in Sections 2.3, 2.4 are
easily extended to this multivariate framework.

5.1 The MVAR(r,s) model

Let us consider the following stationary vector autoregressive model for pro-
cess y; of dimension n:

L)y = &, (5.1)
det ®(L) = ¢®*(L)U*(L 1)L,

where (£}) is a strong white noise of dimension n, and ®(L) is a n X n is an
autoregressive polynomial matrix in L of order 1. Its determinant det®(L)
admits r roots strictly outside the unit circle and s = n—r roots strictly inside
the unit circle. Accordingly, ®* and ¥* are (scalar) polynomials in the lag and
lead operators L and L~!, respectively, with roots strictly outside the unit
circle, and of the following degrees: d°®* = r d°U* = s, ®*(0) = U*(0) = 1.
In addition, ¢ is a non-zero scalar, ¢ # 0.

In order to write the (two-sided) multivariate moving average representa-
tion of y, we introduce the adjoint matrix ®(L) of ®(L), that is the transpose
of the matrix of cofactors, such that :

®O(L)®(L) = det ®(L)Id,,. (5.3)

The adjoint matrix polynomial in L is also of order 1, The stationary, mul-
tivariate two-sided moving average representation of process y is :

_ 1 )
= L 9.9
Yy = q)*(L)\I]*(L_l)nta ( . )
where
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1.
€t = 5:—1-57 U E@(L)gta (56)

and where 1/®*(L), [resp. 1/¥*(L™!)] denotes the convergent (scalar) series
in L [resp. L™'], which is an inverse of ®*(L) [resp. of U*(L™)].

Let us clarify the change of variables in (5.6). The change of the white
noise from ¢ to €, is needed for the normalization of the noise and of the
causal and noncausal lag polynomials ®*, U* to make them compatible with
the univariate analysis presented in previous sections °.

Equation (5.4) provides the two-sided multivariate moving average rep-
resentation of y; in terms of the strong white noise €, while equation (5.5)
is a two-sided multivariate moving average representation of y; in terms of
process 1, which is itself a Vector Moving Average process of order 1 [VMA

(D]

5.2 Filtering

By analogy to equations (2.3)-(2.4), we define the n-causal and n-noncausal
unobserved components and denote those processes by (u;) and (v;), respec-
tively:

Uy = (I)*(L)yt =4 \P*(Lfl)ut = T, (57)
v = V(Ly & (L), = . (5.8)

The n-causal component v and n-noncausal component u are processes of
dimension n.

Along the lines of Section 2.4, we discuss the equivalence of information sets
containing the unobserved components u, v and 7.

Proposition 3 : The following information sets are equivalent:

i) (yi,...,y7);

1) (U1, ey Upy Mrtdy e ooy Ty UT 5415+ -+, UT);

5This normalization is also required for the appropriate derivation of the approximated
likelihood function. Note that this normalization requires the knowledge of the causal and
noncausal autoregressive orders r and s.
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Proof : To prove the equivalence between i) and ii), use the same argu-
ments as in the proof of Proposition 2 (see Appendix 1). However, in the
multivariete setup, expression ii) of the information set is not of direct use,
because the terms 7,11,...,0r—s, Ur_s11, - .., ur are dependent. The equiva-
lence between i), ii) and information set iii) can be established by observing
that (9.41,...,n7—s) C (&4,...,67_) by (5.6), and that (e,,...,e7 ) C
(Y1, yr), by (5.4).

QED

Information set iii), which contains 7"+ 1 vectors of unobserved com-
ponents u, v, and white noise £ is more convenient for the filtering pur-
poses than information set ii). The reason is that by (5.6-5.7) w; is a

linear combination of &;,_1,¢&y, ..... Therefore (vi,...,vr,&r,...,67 5 1) and
(er—syUr_s11,--.,ur) are independent.
Suppose that we have a sample of observations (yi,...,yr). The unob-

served components can be filtered as follows:
Uiy, UT—s, by the first equation of (5.8),
Up_si1,---,ur, by the first equation of (5.7),
Nri1s--->Nr—s, Dy the second equation of (5.7),

Eryenn,ET. by equation (5.6).

5.3 Prediction

The prediction problem is solved along the lines of Section 3. We observe
that predicting y7.1 [resp. yri1,...., yr+m),is equivalent to the prediction of
Upyq [T€SP. Uity eoee Upg ] GIVED Yy, ooy Y.

For expository purpose, let us consider short term prediction at horizon
1: H = 1. The predictive density of uz,q is :
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l(UT+1|y17 s 7yT)
= l(uT—|—1|U17 e Ury €y Epgly e o ET—5, UT 5415 -+ - UT)
= l(ursi|ler—s,ur_s11,- .-, ur), by the independence property.

The only difference with the univariate case is the presence of n-dimensional
er_s in the conditioning set. In other words, the state variable summarizing
the future of y is enlarged and includes not only s past u's, but also an .
Finally, the predictive density of yr,; given vy, ..., yr is obtained by replac-
ing ury; by ®*(L)yr4 by the first equation of (5.7), since the associated
Jacobian is equal to ®*(0) = 1.

6 Simulation Study

To illustrate the implementation of the filtering, prediction and estimation
methods presented in the previous sections above, we perform a simulation
study based on the data generating process described below. It is meant to
replicate the dynamics observed in time series such as the commodity prices,
Bitcoin/USD exchange rates and S&P 500 returns. In practice, these pro-
cesses can be modelled as stationary noncausal and mixed processes that
display short-lived explosive patterns, called bubbles. A bubble is character-
ized by a phase of slow or moderate growth, which is followed by a sudden
drop, and can be replicated in practice by assuming that the errors of the
noncausal model are Cauchy distributed [see Gourieroux, Zakoian (2013)].

6.1 The Data Generating Process
The process examined is a mixed causal-noncausal autoregressive process of
ordersr =1, s = 1:

(1= @L)(1 =Ly =<, (6.1)

with Cauchy errors :

o)=L 7 1 (6.2)

oml+e2/o? mol+e
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We consider four sets of parameter values, in which o and ¢ are constant
while parameter v takes on four different values:

o=1,0=0.3,14=0,0.3,0.5,0.9.

Figure 1 shows the simulated trajectory of length 7" = 200 for the four
sets of parameter values given above and with the same vector of simulated
Cauchy-distributed errors.

[Insert Figure 1 : Simulated Paths]

We observe several positive and negative bubbles of different durations
and magnitudes. We also find that the larger the noncausal autoregressive
parameter ¢, the longer and larger the increasing phase of the bubble.

6.2 Parameter estimation

For each DGP defined in (6.1-6.2), the parameters o, ), o are estimated by
the approximated maximum likelihood and by the BHHH algorithm of Sec-
tion 4.2. The estimated values of the parameters are given in Table 1.
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Table 1: AML and BHHH Estimates of ¢, ¢ and o

Parameter ‘ standard error ‘ t-ratio
Maximum likelihood

Y =20.0 0.004 0.015 0.285
=03 0.281 0.017 15.646

o= 0.877 0.094 8.721
v =20.3 0.303 0.014 21.428
=03 0.281 0.017 15.800

o= 0.878 0.095 8.611
Y =20.5 0.505 0.012 39.558
=03 0.280 0.018 15.318
o= 0.878 0.097 8.467
Y =20.9 0.902 0.006 131.649
=03 0.280 0.018 15.058

oc=1 0.881 0.097 9.041

BHHH

Y =20.0 0.004 0.018 0.226
=03 0.281 0.016 16.725
o= 0.877 0.086 10.101
v =20.3 0.303 0.016 18.068
=03 0.281 0.016 16.742
o= 0.878 0.087 10.091
Y =20.5 0.504 0.014 34.341
=03 0.280 0.016 16.732
o= 0.879 0.087 10.048
Y =20.9 0.902 0.006 139.427
=03 0.280 0.016 16.635
oc=1 0.881 0.087 10.057

The estimation results from the two methods are close and seem to be
quite accurate. The accuracy of parameter ¢ is almost independent of the
value of parameter v, which controls the length and size of the bubble. The
variance of 1 decreases when that parameter approaches the unit root.
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6.3 Filtering

The filtered causal and noncausal components and errors are calculated from
the simulated y and AML parameter estimates. Figure 2 shows their trajec-
tories based on the DGP with ¢ = 0.9

[Insert Figure 2 : Trajectories of the components and errors]

The series of filtered e is close to a series of independent drawings in the
Cauchy distribution. The filtered € series reveals the dates of extreme values
of Cauchy distributed errors. Recall that process y; can be represented in
terms of its unobserved e-causal and e-noncausal components as:

=1 _ o0 _1@/) (ue — Pvp—1).

Both unobserved components contribute to the formation of bubbles. Com-
ponent u with parameter ¢ determines the increasing phase of the bubble
while component v and parameter ¢ determine the bubble burst. Both com-
ponents u and v have AR(1) representations in reverse and direct times, re-
spectively. The high value of parameter ¢) = 0.9 explains strong persistence
in reverse time of the e-noncausal process u.

Figure 3 provides the sample ACF of these filtered components.

Yt

[Insert Figure 3 : ACF of the components]

The asymptotic distribution of the sample ACF of these components dif-
fers from the standard Gaussian distribution derived for processes with finite
variance. The confidence bounds have to be adjusted for Cauchy errors, as
the rates of convergence of autocorrelations estimators differ and the lim-
iting distribution involves ratios of symmetric stable distributions [see e.g.
Davis, Resnick (1986)]. The adjusted bounds are given in Figure 3 and are
significantly larger than the standard ones. We observe that the hypothe-
sis of a strong white noise cannot be rejected for the filtered € component,
while significant dependence is displayed by the e-causal v and e-noncausal
% components.

6.4 Predictive densities

a) Short-term prediction
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The predictive density of e-noncausal component u is estimated by the
formula given in Example 4, Section 3.2. That density is shifted by a con-
stant to become the predictive density of process y. Let us first consider short
horizons H = 1,2 and the set of parameter values ¢ = 0.3,9 = 0.9,0 = 1.
The last in-sample values used for the prediction are: yr = 16.67,yr_; =
14.27, ur = 12.39. They correspond to the last values of the simulated tra-
jectory of y for T = 200 and the fourth set pf parameters given in Figure
1.

[Insert Figure 4 : Predictive density at horizon 1, yp = 16.67, uy = 12.39.]

The short term predictive density is peaked around the last observed
value yr = 16.67 and has a long left tail. For example, the probability of an
increase of y between dates T and T + 1 is equal to 0.59 and is significantly
larger than 0.5.

It is also possible to display the joint predictive density for yrii, yris.
We show that bivariate density in Figure 5 and its contour plot in Figure 6
6
[Insert Figure 5 : Joint predictive density at horizon 2, yp = 16.67,ur =
12.39.]

[Insert Figure 6: Contour plot of the predictive density at horizon 2]

The joint predictive density is rather concentrated around (yry1, yri2) =
(yr,yr) = (16.67,16.67) and the lines of the contour plot differ considerably
from ellipsoids. They resemble contour plots encountered in the joint analysis
of extreme events [see e.g. Balkema, Embrechts, Nolde (2013)]. We observe
two risk directions with left tails fatter than right tails in each direction.
Moreover, these directions are affine as the observations are defined by linear
dynamic equations.

The predictive densities were based on yr = 16.67, uyr = 12.39, that are
the last observed and filtered value of the simulated series and its unobserved
component, respectively. If the predictive density were computed at differ-
ent dates and values y, u, different shapes of predictive densities would be
obtained. This dependence is illustrated in Figure 7.

[Insert Figure 7 : Predictive densities for different states.]

6Tt is estimated by the approach described in Section 3.2, even though it is also available
in closed-form ( see Example 4).
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The location of predictive densities depends on yz, while the influence
of ur is more complex. Figure 7 shows that up can create left or right
asymmetries.

b) Future pattern recognition

The joint predictive density at horizon 2 can be used to study the likeli-
hood of different types of future dynamics of y. The simulated data is such
that yr = 16.67 > yr_1 = 14.27, which corresponds to a recent increase in y.
From the increasing pattern observed at the end of the simulated series, one
can infer that the prediction is likely performed at the beginning of a bubble.
Therefore, it is interesting to examine if that increase will continue in the
future, or will be followed by a downturn at a future date and what would
be the magnitude of that downturn. The various possible future scenarios at
horizon 2 are displayed in Figure 8.

[Insert Figure 8 : Predicted patterns.]

The plane in yry; and yr.o is divided into eight semi-orthants centered
at yr, yr. The future pattern depends on the semi-orthant, which character-
izes the future increase or decrease of yri1, Y712, and their positioning with
respect to the last observed value.

In order to provide more insights on the future patterns, we compute the
probabilities of selected future scenarios, given yr = 16.67,yr_; = 14.27

Table 2: Probabilities of future patterns

pattern probability
Yyr < yYr—1 < Yr+1 < Yr42 0.176
Yyr—1 < Yr, Yr > Y41 > Y142 0.132
Yyr—1 < Yyr < Yr+1, Yr+2 < Yr41 0.520
Yr—1 < Yr < Yr+1, Yr+2 < Yr+1, Yr+2 < Yr-1 0.008

If the future values yr 1, yr42 were "uniformly” distributed on (—oo, 00)?,
the first three probabilities would be equal to 1/8=0.125 (corresponding to
a semi-orthant) and 3/8=0.375 (corresponding to three semi-orthants). The
probability of a continuing increase over two next periods, that is of a down-
turn after date 7'+ 3 is equal to 0.176 and significantly above the benchmark
of 0.125. The probability of a downturn at T + 2 is especially large and
equal to 0.520 for a benchmark of 0.375. To see if that downturn is sharp,
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we provide in the fourth row of Table 2 the probability of y returning to the
value prior to two consecutive increases. The probability is small and equal
to 0.008, hence the downturn cannot be sharp.

¢) Medium-term prediction

When the prediction horizon H is larger than 3, the closed form expression
of the joint predictive density cannot be used directly. The contour plot is
not available and the predictive density of y7, 19 alone, say, cannot be found.
The reason is that it would require integrating out all the intermediate values
of yry1,....,yrro, which is numerically difficult. Even at a short horizon
H = 1,2, it may be difficult to derive the prediction intervals from the
closed-form formula of the predictive density. A closed form of that density
does not ensure the existence of a closed-form cdf or a closed-form quantile
function. Instead, a sampling-importance resampling approach described in
Section 2 can be used. To do that, we exploit the recursive relationship
between the g; and the u; and simulate a set of future paths of u. Given
that u; — Yu; 1 = €, we know that (u;) is a Markov process of order 1 in
reverse time. Therefore it is also a Markov process in calendar time,but with
nonlinear dynamics [see Gourieroux, Zakoian (2013)]. As the instrumental
misspecified model in the sampling step of the SIR, we use a Gaussian AR(1)
model:

Uy = Ply—1 + 06,

where €, ~ IIN(0,1) and p [resp. 7] is the sample autocorrelation of order 1
[resp. residual variance] computed from the series @, ¢t = 1,...,T. This auxil-
iary model is clearly misspecified as the true dynamics of u, is not linear, and
its first-order moment does not exist. Nevertheless, the resampling scheme
will correct for the misspecification error. The sample sizes for sampling and
resampling are S = 2000 and S* = 5000, respectively.

Figures 9 and 10 display the term structures of predictive density and the
95% prediction interval, respectively. The selected horizons are H = 9 and
H =10, respectively.

[Insert Figure 9: Term structure of predictive density]

[Insert Figure 10: Term structure of prediction interval]

The increase of the width of the prediction interval with regard to the
horizon is not surprising. However, it is interesting to compare the pattern of
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the upper quantile with the pattern of the upper quantile of a causal process
with a unit root (¢ is close to 1) and errors with finite variance. Such a
standard upper quantile changes at the rate of v/H and is a concave function
of time. In our framework, the pattern is convex. Indeed, the probability of
a bubble increases with H and the prediction interval accounts also for the
sustainability of the bubble due to the large value of .

7 Concluding remarks

This paper revisited the filtering, prediction, simulation and estimation in
mixed causal/noncausal autoregressive processes. A new prediction method
was proposed along with the back-forecasting algorithms for simulation of
mixed processes and for asymptotically efficient estimation of the causal and
noncausal dynamic parameters.

The proposed methods simplify those introduced in the literature on non-
linear prediction of the process with causal and noncausal components.

Moreover, the proposed univariate methods of filtering, prediction and
estimation were extended to the multivariate framework and illustrated by a
simulation study.
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APPENDIX1

Proof of Proposition 2

i) is equivalent to ii) by applying recursively the first equality of (2.3).
i) is equivalent to iii) by applying recursively the first equality of (2.4).
ii) is equivalent to iv) by applying recursively the second equality of (2.3).
iii) is equivalent to v) by applying recursively the second equality of (2.4).

iv) is equivalent to vi) by applying the (u — v) noncausal decomposition
(2.6).

v) is equivalent to vi) by applying the (u — v) causal decomposition (2.5).
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APPENDIX?2

The Sampling Importance Resampling (SIR) Method

This approach has been introduced in Rubin (1988) and its were prop-
erties studied in Geldfand, Smith (1992). It is a weighted variant of the
bootstrap resampling procedure [Efron (1982)]. The aim of the procedure is
to draw independent values in a distribution whose density f is known, but
the quantile function difficult to compute. The method requires an instru-
mental (or importance) distribution with known density g, in which it is easy
to draw.

The steps are the following ones :
step 1 : Sampling

First draw independent values X*,s =1,..., 5, in distribution G.
step 2 : Importance Resampling

Then draw independent values Y, ..., Y in the simulated set { X', ..., X5},
with weights f(X*)/g(X®),s=1,...,8S.

We have :

for any integrable function a.
If the number S of replications is large, we get :
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We deduce that the simulated values Y, ..., Y are drawn in distribution

F, when § — oo.

Moreover, since E[a(Y;)|X", ..., X5] ~ E[a(Y,)] for S large, these simu-
lated values are asymptotically independent.

The sample size can be as large as desired and the distribution can be
multivariate. As usual in Monte-Carlo integration, the more g resembles
f, the smaller the number of replications S needed to get accurate results.
We can also use different simulation lengths S and S* in the sampling and
resampling steps.
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APPENDIX3

Backward/-Forward Linear Regressions

It seems natural to apply the methods described in Sections 4.1-4.2 after
replacing the true density g of the errors by a Gaussian pseudo-density. This
could simplify the algorithm, but this approach inherits the identification
problem encountered in the Gaussian case, even if we alternate backward
and forward regressions. We first describe the algorithm and then discuss
the notions of pseudo-autocorrelation and pseudo-Yule-Walker equations.

A.3.1 The algorithm
The algorithm is as follows and focuses on parameters ® and V.
Step 1 : Updating ¢

The autoregressive parameters o1, ..., @, are estimated at step p by re-

: ~(p) ~(p) ~(p)
gressing U, ° on Uy, ..., 0.

Step 2 : Updating ¥
The autoregressive parameters 11, ..., 1, are obtained by regressing

~(p) ~(p) ~(p)
Uy " ON Uy e ey Uy

Compared to the approach in Section 4.1, the advantage is to avoid the
nonlinear optimisation at each step, since the OLS estimators have simple
analytical expressions.

If T is large enough, this approach ensures that the estimated roots of
lag-polynomials are well located outside the unit circle. The mixed nature
of the process is taken into account by this recursive sequence of backward
and forward regressions.

Let us now consider an example to see if this algorithmic approach is
consistent, or if it inherits the identification problem existing in the Gaussian
case.

Example : Let us consider the case r = s = 1 and denote ©® and ¢® the
p'" step values of the parameters. We first compute :
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Uy = yt_@(p)yt_l,t:2,---,T,

and 0 = y— Py t=1,...,T—1.
Then we get :

S

-1 T-1
o = Y5 S
t t=2

||
N

T-1 T-1
o = 3 alal/ 3 [l
t=2 t=2

These recursive equations can be rewritten as functions of the sample
ACF of the observed process y. Let us denote p(1) and p(2) the first and
second-order sample autocorrelations, we get :

PPt W+ (1 +¢P2)p(1) — P p(2) al
1+ qp(p)? — 2¢(p),5(1) ’
PO+ = —o + 1+ ¢®?]p(1) — pPp(2) 9

1+ p®)2 — 2P 5(1)

These forward/backward OLS estimators are moment estimators based
on the first and second-order sample autocorrelations of process y.

The system of equations (a.1)-(a.2) is symmetric in the sequence of ap-
proximations of ¢ and . This explains why the identification problem is not
solved by this backward-forward regression approach. Indeed let us assume
T large and starting values oI, (1) such that ¢ () are close to the
true values of the parameters ¢y, 1y, say. Then by selecting as new starting
values ¥V for ¢ and ¢V for 1, the algorithm will produce values close to 1
for ¢ and ¢q for 1. Therefore, even if we are sure that this algorithm provides
estimates of ¢ and v inside the unit circle, this algorithm does not always
properly assign the true values to the causal and noncausal components.

A.3.2 Pseudo-correlation and pseudo Yule-Walker equations for a
mixed model of order r =s =1

The computations of the example in Appendix A.3.1 are valid with the
true values of ¢ and v, and for large 7. It has been proven in Davis,
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Resnick (1986) that the sample autocorrelations (1) and p(2) tend to lim-
its p*(1), p*(2), say. These limits cannot be interpreted as autocorrelations,
when the second-order moments of ¥ do not exist. These are pseudo auto-
correlations. The last system in the example shows how to compute these
pseudo autocorrelations in terms of causal and noncausal autoregressive pa-
rameters ¢ and . They are the analogues of the Yule-Walker equations, but
written in the mixed case.

When r = s = 1, these equations are :

p = —r(+ V?)p*(1) — ¢p*(2)
1+ 92 = 29p(1) ’

—p+ (1 +¢%)p(1) — ¢p*(2)
1+ ¢? — 2pp*(1)

We deduce a bivariate linear system in p*(1), p*(2), which can be solved
to get the pseudo autocorrelations in terms of the autoregressive parameters.
Since the problem is symmetric w.r.t. the causal and noncausal components,
the expressions of p*(1), p*(2) are symmetric in ¢ and . We get :

Yp*(2) — pr (DL + P + 200] = = — (1 + ¢?),

-

0p"(2) = p (D1 + ¢* + 20¢] = —p — (1 + ¢?).
The determinant of this system is equal to : (¢ — ¢)(1 + @), and thus
this system has a unique solution if ¢ # . This solution is :
PHY 9y = P+ ¢ + 209 + %
1+ @t 1+ ot '

p*(1) =

49



