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By Arnak S. Dalalyan, Mohamed Hebiri, and Johannes Lederer
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Although the Lasso has been extensively studied, the relation-
ship between its prediction performance and the correlations of the
covariates is not fully understood. In this paper, we give new insights
into this relationship in the context of multiple linear regression. We
show, in particular, that the incorporation of a simple correlation
measure into the tuning parameter leads to a nearly optimal predic-
tion performance of the Lasso even for highly correlated covariates.
However, we also reveal that for moderately correlated covariates,
the prediction performance of the Lasso can be mediocre irrespec-
tive of the choice of the tuning parameter. For the illustration of our
approach with an important application, we deduce nearly optimal
rates for the least-squares estimator with total variation penalty.
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1. Introduction. In recent years, considerable effort has been devoted to establishing sharp
theoretical guarantees for the prediction performance 1 of the Lasso [Tib96]. Although there
are already risk bounds for a variety of settings [Kol11, BvdG11], the prediction performance
of the Lasso is still not completely understood. In this paper, we review and improve the
sharpest known risk bounds to gain new insight into the prediction performance of the Lasso.

Our approach is valid for a broad class of models, but to avoid digression, we study the predic-
tion performance of the Lasso only for Gaussian linear regression models with deterministic
design. More specifically, we consider data consisting of n random observations y1, . . . , yn ∈ R
and p fixed covariates x1, . . . ,xp ∈ Rn. We further assume that there is a regression vector
β∗ ∈ Rp and a noise level σ∗ > 0 such that the residuals yi − β∗1(x1)i − . . . − β∗p(xp)i are
identically and independently distributed according to a centered Gaussian distribution with
variance σ∗2. In vector notation, this reads

y = Xβ∗ + ξ, ξ ∼ σ∗Nn(0, In), (1)

where y := (y1, . . . , yn)> ∈ Rn is the response vector, X := (x1, . . . ,xp) ∈ Rn×p the design
matrix (for which we assume, without loss of generality, that ‖xj‖22 ≤ n for all j ∈ {1, . . . , p}),
ξ ∈ Rn the noise vector, and In denotes the identity matrix in Rn×n. To keep the exposition
simple, we restrict ourselves to Gaussian distributions for the noise vector and to fixed co-
variates, but our results extend to more general classes of distributions and, if the results are
understood conditionally on the covariates, also hold for random covariates. Next, we recall
that the Lasso is any solution of the convex optimization problem

β̂Lasso
λ ∈ arg min

β

{ 1

2n
‖y −Xβ‖22 + λ‖β‖1

}
, (2)

that can be efficiently solved even for very large values of p and n [EHJT04, BJMO12]. The
magnitude of the tuning parameter λ > 0 determines the amount of penalization and, there-
fore, has a crucial influence on the performance of the Lasso. Moreover, in particular for high
dimensional models where p > n, the Lasso is typically not unique. This is irrelevant for
the following, however: due to the (strict) convexity of the two terms in (2), any two min-

ima β̂λ, β̂
′
λ fulfill Xβ̂λ = Xβ̂

′
λ and therefore yield equal prediction results.

In this paper, we study the prediction performance of the Lasso to answer the following four
questions.

1. Numerous empirical results observed on synthetic data lead to the conjecture that the
Lasso estimator used with the universal choice of the tuning parameter λ =

√
2 log(p)/n

has a prediction loss at least proportional to log(p)
n ×rank(X), where rank(X) is the rank

of X. However, as far as we know, no theoretical result corroborates this conjecture.
2. For sparse vectors β∗ with support J∗ = {j ∈ {1, . . . , p} : β∗j 6= 0} and for covariates

that are strongly correlated in the sense that all irrelevant covariates {xj : j 6∈ J∗}
are close to the linear span of relevant covariates {xj : j ∈ J∗}, empirical results

1Following [BRT09], the term prediction performance is understood here as the magnitude of the risk mea-

sured by the prediction loss 1
n
‖X(β̂−β∗)‖22. This is not to be confused with the more common understanding

of this term in machine learning literature, where the aim is to predict the label of a new unlabeled feature.
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suggest that the smallest prediction loss is obtained choosing a tuning parameter λ
that is substantially smaller than the universal one. The influence of correlations on
the prediction performance of the Lasso was first considered in [vdGL13, HL13], where
tuning parameters smaller than the classical ones are suggested if the covariates are
correlated. In particular, for rates of convergence substantially faster than the slow
rate (s∗/n)1/2 (where s∗ = |J∗|), their results suggest to incorporate the geometry of
the covariates via a function of the entropy numbers of the symmetric convex hull of
the covariates into the tuning parameters. These entropy numbers may be difficult to
compute, however. Therefore, we aim at finding tuning parameters that incorporate the
geometry of the covariates via an easily computable quantity and that lead to fast rates
for prediction when the covariates are strongly correlated.

3. For really sparse vectors, that is, for s∗ considerably smaller than n (for example, s∗ is
fixed and n → ∞), there are methods that satisfy fast rate bounds for prediction irre-
spective of the correlations of the covariates [BTW07a, DT07, RT11, DT12b, DT12a].
Fast rate bounds for Lasso prediction, in contrast, usually rely on assumptions on
the correlations of the covariates such as low coherence [CP09], restricted eigenvalues
[BRT09, RWY10], restricted isometry [CT07], compatibility [vdG07], etc.. For Lasso
prediction, it is therefore not known whether fast rate bounds are available irrespective
of the correlations of the covariates. This question is open even if we allow for oracle
choices of the tuning parameter λ, that is, if we allow for λ that depend on the true
regression vector β∗, the noise vector ξ, and the noise level σ∗.

4. Finally, known results imply fast rates for prediction with the Lasso in the following
two extreme cases: First, when the covariates are mutually orthogonal, and second,
when the covariates are all collinear. But how far from these two extreme cases can a
design be such that it still permits fast rates for prediction with the Lasso? For the
first case, the case of mutually orthogonal covariates, this question has been thoroughly
studied [BRT09, BTW07b, Zha09, vdGB09, Wai09, CWX10, JN11a]. For the second
case, the case of collinear covariates, this question has received much less attention and
is therefore one of our main topics.

Let us stress that we focus only on the behavior of the Lasso in terms of the prediction loss and
do not explore here such important aspects of the Lasso as variable selection and estimation.

1.1. Notation. Throughout the paper, for every integer k ∈ N, we set [k] = {1, . . . , k}. For
every q ∈ [0,∞], we denote by ‖u‖q the usual `q-(quasi)norm of a vector u ∈ Rk, that is

‖u‖q =


Card({j : uj 6= 0}), q = 0,

(
∑

j∈[k] |uj |q)1/q, 0 < q <∞,
maxj∈[k] |uj |, q =∞.

For any set T ⊂ [p], we denote by T c and |T | the complementary set [p]\T and the cardinality
of T , respectively. For every matrix A ∈ Rp×q and any subset T of [q], we denote by AT the
matrix obtained from A by removing all the columns belonging to T c. For a vector u ∈ Rp
and a set T ⊂ [p], uT is the vector obtained from u by removing all the coordinates belonging
to T c. The transpose and the Moore-Penrose pseudoinverse of a matrix A are denoted by
A> and A†, respectively. For two vectors u and u′ of the same dimension p, we define �
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as the coordinatewise product, that is u � u′ = (u1u
′
1, . . . , upu

′
p)
>. We write 1p (resp. 0p)

for the vector of Rp having all coordinates equal to one (resp. zero). For the design matrix
X and any subset T of [p], we denote by VT the linear subspace of Rn spanned by the
columns of XT . Further, we denote by ΠT the orthogonal projector onto VT and by ρT the
maximal Euclidean distance between the normalized columns of X and the set VT , that is
ρT = maxj∈[p] minv∈VT ‖v − n−1/2xj‖2 = n−1/2 maxj∈[p] ‖(In − ΠT )xj‖2. For two vectors

β,β′ ∈ Rp, we denote by `n(β,β′) the prediction loss 1
n‖X(β − β′)‖22. In all the asymptotic

considerations, we will write an . bn for two positive sequences (an) and (bn) when for some
c ∈ (0,∞) it holds that limn→∞(an/bn) ≤ c. Further, we write an � bn for two sequences (an)
and (bn) which are of the same order, that is an . bn . an.

1.2. Outline of the paper. The rest of this work is organized as follows. The next section
presents some new risk bounds for the prediction risk of the Lasso under no condition on
the covariates. These results provide an answer to the first question above. We also present
in Section 2 an example showing that for some particularly unfavorable design matrices it is
impossible to get rates faster than 1/

√
n, even if |J∗| is very small. Section 3 is devoted to

some refinements of the sharp sparsity oracle inequalities with fast rates based on compatibil-
ity factors. They imply, in particular, that the total variation estimator of piecewise constant
signals is nearly rate optimal. A bunch of results, establishing “slow” rates that involve the
quantity ρT , accounting for the severity of the correlations within covariates, are developed
in Section 4. In particular, they allow us to answer the second and the fourth questions raised
in the Introduction. Discussion with related work and some remarks on the computational
complexity of the compatibility factors are placed in Section 5. We summarize the contribu-
tions of this work and outline some open questions in Section 6. The proofs of all the results
stated in the paper are deferred to Section 7.

2. Statistical complexity of the Lasso without any condition on the design. The
goal here is to present some new results concerning the accuracy of the Lasso in terms of
the prediction loss when almost no assumption on the relationship between the covariates
is required. In particular, we will show that the estimator Xβ̂Lasso

λ of the mean Xβ∗ of the
vector y, when projected on a subspace of Rn spanned by a small number of columns of
X, achieves fast rates of convergence provided that λ is of the order of n−1/2. This will be
complemented in Section 4, were we establish new results characterizing the so called slow
rates for the Lasso and show that, in some circumstances, these rates may be significantly
faster than (s∗/n)1/2.

2.1. Fast rates for Lasso projections. We begin by discussing one of the main points that
contrasts our approach with the previous ones used in the literature. Let T be a subset of [p]
which may be the set of relevant covariates or any other set. Let ΠT = XT (X>TXT )†X>T be
the orthogonal projector onto the subspace of Rn spanned by the columns of XT . An idea
underpinning our results below is that when only noisy observations of the vector Xβ∗ are
available, it is practically impossible to make the difference between the true vector β∗ and
the vector β∗,T defined by the relations

β∗,TT = β∗T + (X>TXT )†X>T ξ and β∗,TT c = β∗T c .



4 DALALYAN, HEBIRI, AND LEDERER

In fact, one easily checks that

y = XTβ
∗
T + XT cβ

∗
T c + ξ = Xβ∗,T + (In −ΠT )ξ. (3)

When the rank of ΠT is much smaller than the sample size n, the noise vectors ξ and (In−ΠT )ξ
exhibit similar behavior. Therefore, both β∗ and β∗,T may be seen as the signal part of
the noisy observation y. In what follows, we exploit this idea in order to establish oracle
inequalities2 on the prediction error `n(β̂Lasso

λ ,β∗,T ) and some other related quantities. Since

β∗,T is merely a perturbation of β∗, all the bounds proved for `n(β̂Lasso
λ ,β∗,T ) carry over

similar bounds on the conventional prediction loss `n(β̂Lasso
λ ,β∗).

Theorem 1. Let T be any subset of [p] and let3 νT = infu∈R|T |

√
|T |·‖XTu‖2√
n‖u‖1

. For every λ > 0,

it holds that
1

n
‖ΠTX(β̂Lasso

λ − β∗,T )‖22 ≤
λ2|T |
ν2
T

.

A remarkable fact is that the claim of the foregoing theorem is valid under very weak assump-
tions on the design matrix X, for every value of the tuning parameter λ > 0 and whatever
the noise vector ξ is. An immediate consequence of this result that follows from the triangle
inequality is

1√
n
‖ΠTX(β̂Lasso

λ − β∗)‖2 ≤
(
λ
√
|T |

νT
+
‖ΠT ξ‖2√

n

)
, ∀T ⊂ [p]. (4)

Note that the vector ΠT ξ/
√
n appearing in the last term in this inequality is exactly equal to

the stochastic error of the least squares estimator when only the covariates {xj : j ∈ T} are
considered as relevant. The Euclidean norm of this vector is typically of the order of σ∗

√
|T |/n

and represents a lower bound on the risk when no information other than |T |-sparsity of β∗ is
available. Since it is usually recommended to choose λ not larger than σ∗

√
2 log(p/δ)/n, for

some prescribed tolerance level δ ∈ (0, 1), we conclude that ΠTXβ̂Lasso
λ estimates the vector

ΠTXβ∗ with the fast rate of convergence σ∗
√
|T | log(p)/n.

Relation (4) also demonstrates that the prediction loss of the Lasso decreases to zero at the
fast rate of convergence s log(p)/n in some particular cases with strongly correlated covariates.
This result is stated in the following proposition.

Proposition 1. If there is a subset T of [p] of cardinality s such that all the covariates
{xj : j ∈ T c} belong to the linear span of {xj : j ∈ T}, then for every λ > 0

`n(β̂Lasso
λ ,β∗)1/2 ≤ λ

√
s

νT
+
‖ΠT ξ‖2√

n
. (5)

In particular, for every random vector ξ such that E[ξ] = 0 and maxi E[ξ2
i ] ≤ σ∗2,

E[`n(β̂Lasso
λ ,β∗)] ≤ 2λ2s

ν2
T

+
2σ∗2s

n
. (6)

2We refer the reader to [BTW07b] for an introduction to sparsity oracle inequalities.
3It follows from the Cauchy-Schwarz inequality that νT is not smaller than the smallest singular value of

the matrix 1√
n
XT .
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If, in addition, ξ ∼ σ∗Nn(0, In), then with probability at least 1− δ

`n(β̂Lasso
λ ,β∗) ≤ 2λ2s

ν2
T

+
4σ∗2(s+ 2 log(1/δ))

n
. (7)

The first two claims of this proposition trivially follow from (4), while the third claim fol-
lows from (5) using the fact that ‖ΠT ξ‖22 is drawn from the chi-squared distribution χ2

s in
conjunction with the well-known results on the tails of the latter.

This proposition answers to the first question raised in the introduction concerning the per-
formance of the Lasso as a function of the rank of X when the latter is small as compared
to n. In fact, let us denote by ν̄r the maximal value of νT over all possible subsets of [p] of
cardinality r = rank(X): ν̄r = maxT :|T |=r νT . It follows from (7) that when ξ is Gaussian and

λ =
√

2 log(p)/n, for every δ ∈ (0, 1), with probability 1− δ,

`n(β̂Lasso
λ ,β∗) ≤ 4 log(p) rank(X)

nν̄2
r

+
4σ∗2(rank(X) + 2 log(1/δ))

n
. (8)

2.2. Limits of fast rates: an example. Unfortunately, in sparsity oracle inequalities with fast
rates similar to (4) one cannot replace ΠT by In without further assumptions on X. To the
best of our knowledge, this fact—although not so surprising—has never been formally proved
in the literature. Here, we provide an example of matrix X and a 2-sparse vector β∗ for which
the prediction loss `n(β̂Lasso

λ ,β∗) of the Lasso is at best of the order of n−1/2 with probability
1/2, whatever the tuning parameter is.

Example 1. Let n ≥ 2 be an integer. We set m to be the largest integer less than
√

2n and
define the design matrix X ∈ Rn×2m by

X =

√
n

2

 1>m 1>m
Im −Im

0(n−m−1)×m 0(n−m−1)×m

 .

If we denote by {ej : j ∈ [n]} the canonical basis of Rn, the columns of this matrix are
of the form xj =

√
n/2 (e1 + ej+1) for j = 1, . . . ,m and xj =

√
n/2 (e1 − ej−m+1) for

j = m + 1, . . . , 2m. To avoid unnecessary technicalities, we assume in this example that the
noise vector is composed of i.i.d. Rademacher random variables, that is P(ξ = s) = 2−n

for every s ∈ {±1}n (thus σ∗ = 1). Let the true regression vector be β∗ ∈ R2m such that
β∗1 = β∗m+1 = 1 and β∗j = 0 for every j ∈ [2m] \ {1,m+ 1}.

Proposition 2. For any λ > 0, the prediction loss of the Lasso β̂Lasso
λ satisfies the inequality

P
(
`n(β̂Lasso

λ ,β∗) ≥ 1

2
√

2n

)
≥ 1

2
.

There are at least three reasons that make this example particularly instructive. First, it shows
that the correlations between the covariates need not be close to ±1 to cause the failure of
the fast rates. Even in the case of small fixed correlations the rate of convergence of the Lasso
in prediction loss may be not smaller than Cn−1/2. Second, the foregoing result is true for
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every λ > 0. Thus, even an oracle choice of λ cannot prevent slow rates. Third, it is valid
for a small value of sparsity index: the `0-norm of β∗ is equal to 2. In the literature, other
examples on which the Lasso fails to achieve fast rates have been proposed (see Section 2
in [CP09]), however, to the best of our knowledge, this is the first counter-example in which
such a result is analytically proved for fixed sparsity, fixed correlations, any value of λ and a
β∗ independent of n.

This example clearly demonstrates the limits of the Lasso as a method of prediction. While for
several other prediction procedures [DT07, RT11, DT12b, DT12a] fast rates are valid without
any condition on the correlations between the predictors, some relatively strong assumptions
are necessary for the Lasso to achieve fast rates. It should be noted in defense of the Lasso
that it presents major advantages in terms of computational complexity.

3. Fast rates under relaxed compatibility assumptions on the design matrix. To
the best of our knowledge, the sharpest oracle inequality for the Lasso available in the lit-
erature is the one presented in [SZ12]. We begin by stating their result4 in order to discuss
what can be learnt from it concerning the questions presented in the introduction. Then, we
state a new oracle inequality that combines the proof of [SZ12] and the idea of estimating
β∗,T instead of β∗ in order to get some improvements.

For every set T ⊂ [p] and any c̄ > 0 we recall the definition of the compatibility factor
κT,c̄ ≥ 0:

κT,c̄ = inf
δ∈Rp:‖δTc‖1<c̄‖δT ‖1

|T | · ‖Xδ‖22
n(‖δT ‖1 − c̄−1‖δT c‖1)2

. (9)

Theorem 2 ([SZ12], Theorem 4). Let δ ∈ (0, 1) be a fixed tolerance level. If for some γ > 1,

the tuning parameter of the Lasso satisfies λ = γσ∗
(

2
n log(p/δ)

)1/2
, then with probability at

least 1− δ,

`n(β̂Lasso
λ ,β∗) ≤ inf

β̄∈Rp,T⊂[p]

{
`n(β̄,β∗) + 4λ‖β̄T c‖1 +

2(1 + γ)2σ∗2|T | log(p/δ)

nκT,(γ+1)/(γ−1)

}
.

An important feature of this inequality is its sharpness, reflected by the fact that the constant
in front of the infimum, often referred to as the leading constant of an oracle inequality (OI),
is equal to one. The first sharp OI with fast rate of convergence of the remainder term has
been proved in [KLT11]. It was then refined and extended to the procedure square-root Lasso
(also known as the scaled Lasso) in [SZ12].

Two particularly interesting consequences of this inequality can be obtained as follows. First,
by choosing β̄ to be any sparse vector and T to be the support J(β̄) of β̄, we get

`n(β̂Lasso
λ ,β∗) ≤ min

β̄∈Rp

{
`n(β̄,β∗) +

2(1 + γ)2σ∗2‖β̄‖0 log(p/δ)

nκJ(β̄),(γ+1)/(γ−1)

}
. (10)

4The results stated below do not match exactly with those stated in [SZ12], but they can be easily deduced
from the proofs in [SZ12]
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Second, choosing β̄ = β∗ and T = J∗s , the set of s largest in absolute value coefficients of β∗,
we get

`n(β̂Lasso
λ ,β∗) ≤ 4γσ∗

( 2

n
log(p/δ)

)1/2
‖β∗(J∗s)c‖1 +

2(1 + γ)2σ∗2s log(p/δ)

nκJ∗s ,(γ+1)/(γ−1)
. (11)

Finally, let us mention that an intermediate result in [SZ12] implies that if the tuning param-

eter of the Lasso satisfies λ ≥ σ∗
(

2
n log(p/δ)

)1/2
, then

`n(β̂Lasso
λ ,β∗) ≤ min

β̄

{
`n(β̄,β∗) + 4λ‖β̄‖1

}
. (12)

This kind of inequalities are frequently referred to as sparsity oracle inequalities with slow
rates. They have the advantage of requiring no assumption on the relationship between the
covariates but provides rates of convergence of the order of σ∗( s log p

n )1/2 which in typical
situations are slower than those available for orthogonal design matrices.

Let us state now some refinements of Theorem 2. For any subset T of [p], let us introduce the
weights5

ωj(T,X) =
1√
n
‖(In −ΠT )xj‖2, ω̄j(T,X) =

ωj(T,X)

max`∈[p] ω`(T,X)
, ∀j ∈ [p]. (13)

Since xj are normalized to have an `2 norm at most equal to
√
n, the weights ωj(T,X) are

all between zero and one. Furthermore, they vanish whenever xj belongs to the linear span of
{x`, ` ∈ T}. In particular, ωj(T,X) = 0 for every j ∈ T . Using these weights and any γ > 0,
we define the sets

C0(T, γ,ω) =
{
δ ∈ Rp : ‖(1p − γ−1ω)T c � δT c‖1 < ‖δT ‖1

}
.

When ω = 1p, we write C0(T, γ) instead of C0(T, γ,ω).

Definition 1 (Compatibility factors). For every vector ω ∈ Rp with nonnegative entries,
we call the weighted compatibility factor the quantity

κ̄T,γ,ω = inf
δ∈C0(T,γ,ω)

|T | · ‖Xδ‖22
n
{
‖δT ‖1 − ‖(1p − γ−1ω)T c � δT c‖1

}2 .

The weighted compatibility factors with weights ω and ω̄ defined in (13) are particularly
useful for explaining the accuracy of the Lasso as measured by the prediction loss. They relax
the assumptions previously known in the literature that lead to fast rates.

Theorem 3. Let δ ∈ (0, 1) be a fixed tolerance level. If for some value γ > 1, the tuning
parameter of the Lasso satisfies λ = γσ∗

√
2 log(p/δ)/n, then on an event of probability at

least 1− 2δ, the following bound holds:

`n(β̂Lasso
λ ,β∗) ≤ inf

β̄∈Rp,T⊂[p]

{
`n(β̄,β∗) + 4λ‖β̄T c‖1 +

4σ∗2|T | log(p/δ)

n
· rn,p,T

}
, (14)

5In the definition of ω̄, we use the convention 0/0 = 0.



8 DALALYAN, HEBIRI, AND LEDERER

where the remainder term is given by rn,p,T = log−1(p/δ) + 2|T |−1 + γ2κ̄−1
T,γ,ω. Furthermore,

if for some T ⊂ [p] and some γ > 1, λ = γσ∗ρT
√

2 log(p/δ)/n, then with probability at least
1− 2δ, the following bound holds

`n(β̂Lasso
λ ,β∗) ≤ inf

β̄

{
`n(β̄,β∗) + 4λ‖β̄T c‖1

}
+

4σ∗2ρ2
T |T | log(p/δ)

n
· r̄n,p,T , (15)

where the remainder term is given by r̄n,p,T = (1+2|T |−1 log(1/δ))
ρ2
T log(p/δ)

+ γ2

κ̄T,γ,ω̄
.

The main difference between inequalities (14) and (15) is the presence of the factor ρ2
T in

the numerator of the last term. This factor is always not larger than 1. However, in order to
introduce it we needed to replace the compatibility factor κ̄T,γ,ω by κ̄T,γ,ω̄ and to deflate λ
by the factor ρT . From a practical point of view, this last modification is not always easy to
implement, since the quantity ρT depends on the set T which can be thought of as the best
possible set of covariates. This set being unknown, the claim of (15) is to be interpreted as a
theoretical justification for choosing the tuning parameter smaller than the universal value.
Such a choice can be made, for instance, by cross validation. It is also possible to perform a
sparse PCA on the set of covariates in order to choose a suitable value of λ (cf. Section 5.2
for more details).

Example 2 (Total variation penalty for piecewise constant functions). In image denoising
and signal processing, total variation type penalties are often employed to enforce similarity
between neighboring pixels or values of the signal. In the one-dimensional setting, the problem
may be formulated as follows. Assume that a piecewise constant function f∗ : [0, 1] → R is
observed on the regular grid in a noisy environment: yi = f∗(i/n) + ξi, for i = 1, . . . , n. Let
us denote the unknown vector of values of f∗ on the grid by f∗ = (f∗(1/n), . . . , f∗(1))> and
define the total variation penalty of a vector f ∈ Rn by ‖f‖TV =

∑n
i=1 |fi − fi−1| with the

convention that f0 = 0. Then, the TV-penalized least squares estimator of f∗ is defined as

f̂TV ∈ arg min
f∈Rn

{ 1

n
‖y − f‖22 + λ‖f‖TV

}
, (16)

where λ > 0 is a tuning parameter. This estimator, hereafter referred to as TV-estimator,
has been shown to be closely related to the Lasso [HLL07, HLL10]. More precisely, if we
define the vector of differences β ∈ Rn by βj = fj − fj−1, then (16) is equivalent to (2)
with the n × n design matrix X = (1(i ≥ j))i,j . Despite its popularity in applications, it is
very surprising that the TV-estimator and, more precisely, its prediction accuracy is not yet
completely understood. In a purely asymptotic setting n→∞, [MvdG87] establish that the
`2-loss of f̂TV, defined by 1

n‖f̂
TV − f∗‖22, is of the order of n−2/3. This is, however, just an

upper bound on the risk of f̂TV, and this upper bound is much worse than the optimal rate
of convergence, known to be n−1 in the problem of estimating piecewise constant functions.
This optimal rate is achieved, for instance, by the penalized least squares with a penalty
proportional to the number of jumps, i.e., the `0-norm of the difference vector (see [BKL+09]
and the references therein). The question whether it is possible or not to improve the rate n−2/3

for the TV-penalized estimator and, eventually, to achieve the minimax rate, has remained
open so far.
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On the other hand, more recent papers [HLL07, HLL10] propose nonasymptotic risk bounds
for f̂TV. Without any assumption, they show that for λ � n−1/2 their risk bound is of the
order of n−1/2. They also notice that if the TV-estimator with λ � n−1 has only a few jumps,
then its `2-loss is of the optimal order n−1. This result is, however, not very satisfactory since
diminishing λ up to the order n−1 is quite likely to significantly increase the number of jumps
in the TV-estimator. Put differently, there is no theoretical result assessing the probability
of getting only a few jumps when λ � n−1. This raises some new questions: (a) Is it possible
to establish sharp oracle inequalities for TV-estimator with optimal rate of convergence? (b)
Is it really necessary to choose λ very small for achieving the optimal rate? (c) What is the
rate of convergence in terms of the number of jumps, when the latter is allowed to increase
with n? In order to show that the theoretical tools developed in this section provide almost
exhaustive answers to these questions, we need the following result.

Proposition 3. Let X be the n× n matrix with entries xij = 1(i ≥ j) and let a ∈ Rn+ be a
given vector of “weights”. For every T = {j1, . . . , js} ⊂ [n] and for every u ∈ Rn, we have

‖uT � aT ‖1 − ‖uT c � aT c‖1 ≤ 4‖Xu‖2
(

2
∑
j∈[n]

|aj − aj+1|2 + 2(s+ 1)‖a‖2∞∆−1
min,T

)1/2

,

where ∆min,T = min`∈[s+1] |j`+1 − j`| with the convention j0 = 1 and js+1 = 1.

The proof of this result, deferred to Section 7, is carried out using a completely new approach
based on a probabilistic argument. We believe that this argument may be used in other
situations for evaluating the compatibility factors theoretically. All the previous efforts for
evaluating the compatibility and restricted eigenvalue constants, focused on weakly correlated
designs (see, for instance, [BRT09]). In contrast with this, our approach provides bounds on
compatibility factors even for strongly correlated designs. Indeed, many pairs of columns of
matrix X corresponding to the TV-estimator have correlation of the order of 1− n−1/2.

For applying Proposition 3 to the TV-estimator, we choose aj = 1 for every j belonging to
the set T , which presumably contains the jumps of f∗, and aj = 1 − 1

2
√
n
‖(In − ΠT )xj‖2,

j ∈ T c. In what follows, we denote by ∆min,T the smallest distance between two jumps, that
is ∆min,T = min`∈[s+1] |j` − j`−1| with the convention that j0 = 1 and js+1 = n+ 1.

Proposition 4. Let f∗ be a piecewise constant vector and J∗ = {j ∈ [n] : f∗j 6= f∗j+1}. If

the tuning parameter satisfies λ = 2σ∗{(2/n) log(n/δ)}1/2, then on an event of probability at
least 1− 2δ, the following bound holds for every nonempty T ⊂ [n]:

1

n
‖f̂TV − f∗‖22 ≤ inf

f̄∈Rn

{
1

n
‖f̄ − f∗‖22 + 4λ‖f̄T c‖TV

}
+

4σ∗2|T | log(n/δ)

n
· rn,T , (17)

where the bounded remainder term is given by rn,T = 3 + 256(log(n) + (n/∆min,T )).

The risk bound (17) drastically improves the results on the `2-loss of the TV-estimator ever
proved in the literature. Not only it holds for finite samples, is with a leading constant one and
provides a risk bound valid with high probability, but, more importantly, it has a remainder
term of the order of |T |(log(n))2/n. The rate of decay to zero of this term when n → ∞ is
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much faster than what was known before and should be contrasted with n−2/3 established in
[MvdG87]. More precisely, when the true function f∗ is piecewise constant on a partition of
s intervals, taking in (17) f̄ = f∗ and T = {j ∈ [n] : f∗j 6= f∗j−1}, the terms in accolades at
the right hand-side vanish and one gets the inequality

P
( 1

n
‖f̂TV − f∗‖22 ≤

4σ∗2|J∗| log(n/δ)

n
·
(
3 + 256(log(n) + (n/∆min,J∗))

))
≥ 1− 2δ. (18)

When the vector f ∈ Rn consists of the values of a piecewise constant function f at the
points {i/n, i ∈ [n]}, of the regular grid, the term n/∆min,J∗ is bounded by a constant (for
n → ∞ and fixed f). In this case, the upper bound in (18) is of the nearly optimal order.
Furthermore, risk bound (18) holds for every |J∗|, even if it tends to infinity with n. To the
best of our knowledge, this is the first result of this type. All the previous asymptotic results
considered the number of jumps |J∗| as fixed. Moreover, our result is valid for the universal
choice of the tuning parameter and not the very small one evoked in [HLL10]. To complete
this discussion, let us mention that the constant 256 in (18) is definitely sub-optimal and it
is out of scope of this work to look for the best possible constants.

4. “Slow” rates accounting for high correlations. In the preceding section, we have
discussed fast rate bounds, that is, bounds that contain the tuning parameters to the power
two. In this section, we turn to slow rate bounds, that is, bounds that contain the tuning pa-
rameters to the power one. We present slow rate bounds that entail—in contrast to what the
nomenclature suggests—fast rates if the correlations are properly incorporated into the tuning
parameters. These results corroborate and refine results in [HL13, vdGL13] and are of par-
ticular interest for the Least-Squares estimator with total variation penalty (TV-estimator).
We can deduce, in particular, that the TV-estimator is almost minimax for the estimation of
monotone or Hölder continuous signals and, therefore, improve on results in [MvdG87], for
example.

The following slow rate bound is the main result of this section.

Theorem 4. Let T ⊂ [p] be a set of indices and let δ > 0, γ ≥ 1 be constants. Then, if the
tuning parameter λ is not smaller than γσ∗ρT

√
2 log(p/δ)/n, the Lasso (2) fulfills

`n(β̂Lasso
λ ,β∗) +

2(γ−1)λ

γ
‖β̂‖1 ≤ inf

β̄∈Rp

{
`n(β̄,β∗) +

2(γ + 1)λ

γ
‖β̄‖1

}
+

2σ∗2(|T |+ 2 log(1/δ))

n

with probability at least 1− 2δ.

The factor ρT in the lower bound for the tuning parameter λ makes this theorem particularly
interesting. Slow rate bounds can be derived using the proofs in [SZ12] (see Equation (12)),
but they involve tuning parameters of order

√
log(p)/n. Theorem 4 allows for considerably

smaller tuning parameters if the variables are correlated; this then leads to rates in between
the classical slow rates and fast rates of order (neglecting logarithmic factors)

√
s/n and s/n,

respectively. Theorem 4 implies in particular fast rates for highly correlated covariates:

Corollary 1. Assume that Tn ⊂ [p] is as set of indices (that may depend on the sample
size n) such that all covariates {xj : j ∈ [p]} are very close to the linear span of the set of
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vectors {xj : j ∈ Tn} in the sense that ρTn . n−r for a positive constant r > 0. Then, if the
tuning parameter satisfies λ ≥ cσ∗

√
log(p)/n2r+1 for a sufficiently large constant c > 0, the

Lasso (2) fulfills

`n(β̂Lasso
λ ,β∗) .

(√
log(p)

n2r+1
‖β∗‖1

)∨ |Tn|
n

(19)

with high probability.
If, in particular, the irrelevant covariates {xj : j /∈ J∗} are within Euclidean distance 1 of
the linear space spanned by the relevant covariates {xj : j ∈ J∗}, it holds that r = 1/2 and,
therefore, the Lasso achieves the fast rate s/n up to logarithmic factors, provided that λ is
chosen of order

√
log(p)/n (with sufficiently large constants).

Remark 1 (Effective number of parameters). The bound (19) can be further refined replac-
ing the number of parameters p by an effective number of parameters as described in [HL13,
Section 3.2.2]. This effective number of parameters can be considerably smaller than p if the
correlations are high, therefore reducing the bound by a factor up to

√
log(p).

Corollary 1 exhibits fast rates for highly correlated but not necessarily perfectly collinear
designs. We call a design perfectly collinear if all covariates belong to the linear space spanned
by the relevant covariates, that is, {xj : j ∈ [p]} ⊂ Span{xj : j ∈ J∗}. For these designs,
fast rates can be deduced from known results. Corollary 1, in contrast, exhibits fast rates
even for designs that differ from perfectly collinear designs by an order of n−1/2 (as measured
by the maximal distance ρJ∗). Thus, Corollary 1 answers the fourth question raised in the
Introduction and, for example, corroborates the findings in [vdGL13] (see Section 5.2 for a
more detailed comparison with [vdGL13]).

The dependence of the tuning parameters on the set T in Theorem 4 and Corollary 1 can lead
to additional computational costs. For some applications, such as the total variation penal-
ization discussed below, the set T is completely predetermined. For some other applications,
however, the set T is not completely predetermined, promoting the minimization of ρT over
a class of sets (for example, all sets with a fixed cardinality), which can be computationally
expensive. Proposition 5 below provides another risk bound that helps to evade minimizations
with respect to T under favorable circumstances.

Proposition 5. Let T ⊂ [p] be a set of indices and δ > 0, γ > 1 be constants. If the tuning
parameter satisfies λ ≥ γσ∗ρT

√
2 log(p/δ)/n, the Lasso (2) fulfills

`n(β̂Lasso
λ ,β∗) ≤

4ρ2
Tγ

2

(γ − 1)2
‖β∗‖21 +

4σ∗2(|T |+ 2 log(1/δ))

n
+

2|T |λ2

ν2
T

with probability at least 1− 2δ.

As before, Proposition 5 shows that the correlations can be exploited adapting the tuning
parameter to the design via the measure ρT , but, in strong contrast to the above results,
Proposition 5 provides fast rate bounds for strongly correlated covariates even for standard,
non-adapted tuning parameters of the order

√
log(p)/n. For example, if ρJ∗ � n−1/2 and
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|J∗| � 1, fast rates can be deduced from Proposition 5 even with universal tuning parame-
ters of order

√
log(p)/n; in strong contrast, considerably smaller tuning parameters of order√

log(p)/n are required to deduce fast rates from Theorem 4 for this example. Note, however,
that Proposition 5 does not supersede Theorem 4 in general: For moderate correlations, the
first term of the bound in Proposition 5 is large, and Theorem 4 is then considerably more
beneficial.

Theorem 4 provides, in particular, minimax rates for signal denoising with total variation
penalties. In the previous section, we have studied the TV-estimator for piecewise constant
signals. In the remainder of this section, we study the TV-estimator for monotone signals (or
slightly more general, signals with bounded variation) and for Hölder continuous signals. A
recent review on this topic and a detailed analysis of the maximum likelihood estimator in
this context can be found in [SCS13] and an earlier risk bound can be found in [Zha02].

Example 3 (Predicting monotone functions with the TV-estimator). In this example, we
derive an almost minimax risk bound that is particularly interesting for signals with bounded
variation. For this, we apply Theorem 4 exploiting that the TV-estimator can be considered
as a special case of the Lasso. As mentioned earlier, the TV-estimator (16) corresponds to
the Lasso (2) with the design matrix X ∈ Rn×n with entries xij = 1(i ≥ j). To transfer
the results for the Lasso to the TV-estimator, we assume that n ≥ 3, fix a positive integer
h ∈ [n − 1], denote by k ≥ 2 the largest integer such that (k − 1)h < n, and finally set
T = {1, h+1, 2h+1, 3h+1, . . . , (k−1)h+1}. The set T induces the partition 6{J1, h+1J, Jh+
1, 2h+1J, . . . , J(k−1)h+1, n+1J} of [n] with at most h points in the last interval and exactly
h points in all other intervals. Moreover, ΠT is the orthogonal projection onto the subspace
spanned by the vectors that are constant on each of the elements of this partition. This
implies ρT = n−1/2 maxj ‖(In − ΠT )xj‖2 = maxj∈[h]

√
(j − 1)(h− j + 1)/(nh) ≤

√
h/(4n).

Using h ≤ 2n/k, we then obtain ρT ≤ 1/
√

2k so that we can deduce from Theorem 4 the
following risk bound for the TV-estimator.

Proposition 6. Assume that we observe the random vector y = f∗ + ξ, where f∗ ∈ Rn is
the fixed but unknown vector of interest obscured by Gaussian noise ξ ∼ σ∗N (0, In). Let δ > 0

be a constant and k be the smallest integer larger than
(
‖f↑‖2TVn log(n/δ)/σ∗2

)1/3
, where f↑

is the orthogonal projection of f∗ on the convex polyhedral cone of vectors with nondecreasing
entries. Then, for the tuning parameter λ = σ∗

√
log(n/δ)/(kn), the TV-estimator (16) fulfills

1

n
‖f̂TV − f∗‖22 ≤

1

n
‖f↑ − f∗‖22 +

2σ∗2(1 + 2 log(1/δ))

n
+ 6

(
σ∗4‖f↑‖2TV log(n/δ)

n2

)1/3

with probability at least 1− 2δ.

Proposition 6 has four crucial features. First, it provides nearly minimax rates for the TV-
estimator: The dominating term is typically the last term, which is minimax up to the logarith-
mic factor [Zha02, Eq. (1.4)]. We conjecture that such logarithmic factors are always required
in bounds that hold with high probability (note that the bounds in [Zha02], in contrast, are
in expectation). Second, the unknown quantities in the tuning parameter of Proposition 6

6Here and in the sequel, we use the notation Ja, bJ:= [a, b[∩N.



REFINED ANALYSIS OF THE LASSO ESTIMATOR 13

can be avoided or readily estimated: The noise variance σ∗ can most likely be avoided using
scaled versions of the Lasso [BCW13, SZ12]; the factor ‖f↑‖TV measuring the total variation
of the function f↑ can be roughly estimated7 by maxi,j(yi − yj). Third, Proposition 6 allows
for model mis-specifications with respect to monotone functions. Finally, it is nonasymptotic
holding for any sample size n ≥ 3.

Example 4 (TV-penalty for Hölder continuous functions). In this example, we derive an
almost minimax risk bound that is particularly interesting for Hölder continuous signals.
For this, we again apply Theorem 4 exploiting that the TV-estimator can be considered as
a special case of the Lasso. It is known that the least squares estimator with an `0-norm
penalty of the increments can achieve the minimax rate n−2α/(2α+1) up to logarithmic factors
over the set of Hölder continuous functions {f : [0, 1] → R : |f(x) − f(x′)| ≤ L|x − x′|α}
with parameters α ∈ (0, 1] and L > 0 [BKL+09]. In contrast, the best known rate for the
TV-estimator over these sets is n−2α/3 and therefore clearly suboptimal [MvdG87]. Using
Theorem 4, we can improve on this bound and demonstrate that the TV-estimator can also
achieve the minimax rate n−2α/(2α+1) up to logarithmic factors over these sets if the tuning
parameter is appropriately chosen.

Proposition 7. Assume that we observe the random vector y = f∗ + ξ, where f∗ ∈ Rn
is the fixed but unknown vector of interest obscured by Gaussian noise ξ ∼ σ∗N (0, In).
Let δ, L > 0 and α ∈ (0, 1] be constants and let k be the smallest integer larger than(
L2n/(σ∗2 log(n/δ))

)1/(2α+1)
. Moreover, let Hnα,L = {f ∈ Rn : |fi− fj | ≤ Ln−α|i− j|α ∀i, j ∈

[n]} be the Hölder class with parameters α and L. Then, for the tuning parameter λ =
σ∗
√

log(n/δ)/(kn), the TV-estimator (16) fulfills

1

n
‖f̂TV − f∗‖22 ≤ inf

f∈Hnα,L

{
1

n
‖f − f∗‖22

}
+

8σ∗2 log(n/δ)

n
+ 16L2

(σ∗2 log(n/δ)

nL2

)2α/(2α+1)

with probability at least 1− 2δ.

Proposition 7 for the TV-estimator and the risk bounds in [BKL+09] for the `0-penalized least-
squares estimator provide exactly the same, nearly minimax rates (n/ log(n))−2α/(2α+1). The
results differ, however, in other important aspects. Benefits of Proposition 7, on the one hand,
are its finite sample bounds and the inclusion of model mis-specifications; the risk bounds
in [BKL+09], in contrast, are purely asymptotic and do not take model mis-specifications into
account. A deficiency of Proposition 7, on the other hand, is the dependence of the tuning
parameter on the constants α and L.

5. Discussion.

5.1. Conditions of Belloni, Chernozhukov and Wang [BCW13]. Using an intelligent trick,
the authors of [BCW13] managed to replace κT,c̄ by κT,1 by means of introducing a new con-
stant %T,γ which is the 1−δ quantile of the stochastic term maxu∈C0(T,γ) |(ξ/σ∗)>Xu|/‖Xu‖2.

7One may also expect that choosing λ by cross validation or by minimizing an unbiased estimator of the risk
would lead to bounds similar to that of Proposition 5. However, we have no theoretical result corroborating
this claim.
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The fact of being able to replace c̄ by 1 leads to a qualitative enlargement of the set of ma-
trices satisfying the condition κT,c̄ > 0. In fact, as proved in [BCW13], while κT,1 is invariant
by including identical columns in X, κT,c̄ with any c̄ > 1 vanishes if we copy a column of XT

in XT c or vice-versa. Note that this property of invariance by copying covariates from T to
T c and, reciprocally, from T c to T holds true for the weighted compatibility factors defined
in Section 3 as well.

Combining our approach with the idea of [BCW13], it is possible to replace κ̄−1
T,γ,ω in (14) by

1
|T | %̄

2
T,γ,ω+κ−1

T,1, where %̄T,γ,ω is the (1−δ)-quantile of the random variable maxu∈C0(T,γ,ω) |ξ>(In−
ΠT )XT cuT c |/‖Xu‖2. At the first sight this upper bound is tighter than the one of Theorem 3,
but it is less interpretable because of the presence of %̄T,γ,ω. However, as we prove below in
Proposition 8, quantities like %̄T,γ,ω do not really lead to a substantially smaller risk bound
than the one expressed in terms of compatibility factors. To complete the comparison of our
results with those in [BCW13], let us simply remark that since our model is simpler than the
one considered in [BCW13], the results we get are sharper. Indeed, we get a leading constant
one in the oracle inequality, while the proof technique of [BCW13] would produce a leading
constant strictly larger than one in the mis-specified case.

Proposition 8. Let δ ∈ (0, 1/2) and %T,c̄ be the 1 − δ quantile of the random variable

η̄ = supu∈Rp:‖uTc‖1≤c̄‖uT ‖1
|ξ>Xu|
σ∗‖Xu‖2 . For every 10 ≤ |J | ≤ n we have

%T,c̄ ≥
λmin,J |T |1/2

16κ
1/2
T,c̄

∧ |J |1/2
4

, (20)

where λmin,J is the smallest singular value of the matrix 1√
n
XJ .

In many concrete examples of design matrices X, there is a set J ⊂ T c of cardinality of the
same order as n such that XJ is of full rank. For such matrices, λmin,J is a constant and the
proposition tells us that |T |−1%2

T,c̄ is of the order of κ−1
T,c̄ ∧ (n/|T |). As we already mentioned,

the risk bound in [BCW13] is proportional to |T |−1%2
T,c̄ + κ−1

T,1 � κ−1
T,c̄. Therefore, according

to the result of the last proposition, there is no significant gain in the rate of convergence nor
in the severity of the assumptions imposed on X when using %T,c̄ instead of κT,c̄.

Remark 2. The constant %̄T,c̄ slightly differs from the one used in [BCW13], where the
additional constraint ‖β∗+u‖1 ≤ c̄‖β∗‖1 is included in the definition of C0(T, c̄). On the one
hand, more generally, one can define the set C0(T, c̄,β) = {u ∈ Rp : ‖β + u‖1 − ‖βT ‖1 <
(c̄ − 1)(c̄ + 1)−1‖u‖1}, contained in the one used in [BCW13], and let %T,c̄,β be the 1 − δ
quantile of

η̄ = sup
u∈C0(T,c̄,β)

|ξ>Xu|
σ∗‖Xu‖2

.

Then the risk bound of [BCW13] holds true with %̄T,c̄ replaced by %̄T,c̄,β∗ . On the other
hand, if one looks for a characteristic independent of β∗, then it is necessary to take a
supremum over all β∗ that are zero outside T . This amounts to taking the supremum over
∪β∗:‖β∗Tc‖1=0C0(T, c̄,β∗) = C0(T, c̄), that is to considering the quantity %̄T,c̄ of Proposition 8.
Finally, one can repeat the arguments of the proof of Proposition 8 to check that for every
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J ⊂ T c satisfying 10 ≤ |J | ≤ n, we have %T,c̄,β∗ ≥
λmin,J |T |1/2

16κ̃
1/2
T,c̄,β∗

∧ |J |
1/2

4 , where κ̃T,c̄,β∗ is the inf

over all u ∈ C(T, c̄,β∗) of the ratio 1
n‖Xu‖

2
2/(‖β∗T ‖1 + (c̄− 1)(c̄+ 1)−1‖u‖1 − ‖β∗ + u‖1).

5.2. Relation to the previous work on the Lasso with correlated covariates. Our bound (19)
is close in spirit to the bound in [HL13, Theorem 3.1] which is a consequence of results in
[vdGL13]. Both bounds demonstrate that the Lasso can achieve fast rates for prediction even
for highly correlated design matrices if the tuning parameter is chosen appropriately. In order
to make the comparison with our results easier, let us state the main result of [vdGL13]
using the notation of the present work. In fact, Theorem 4.1 in [vdGL13] establishes that for
any α ∈ [0, 1), λ > 0, and λ0 > 0, on the event Bα,λ0 = {supβ:‖β‖1=1 4|ξ>Xβ|/‖Xβ‖1−α2 ≤
n(1+α)/2λ0}, it holds that

`n(β̂Lasso
λ ,β∗) ≤ 7 inf

β̄∈Rp,T⊂[p]

{
`n(β̄,β∗) +

8λ

3
‖β̄T c‖1 +

7

6

(
λ0

λα

) 2
1−α

+
224λ2|T |
κT,6

}
, (21)

where κT,6 is the compatibility constant (9). Furthermore, the authors of [vdGL13] provide
sufficient conditions in terms of the entropy of the set F = {β ∈ Rp : ‖Xβ‖22 ≤ n; ‖β‖1 ≤ 1}
ensuring that the probability of the event Bα,λ0 is close to one for some α ∈ (0, 1) and
λ0 � (log(n)/n)1/2. The main advantages of the results stated in the present work as compared
to (21) are that (a) the risk bounds are with leading constant one, (b) the quantity ρT
governing the choice of λ and the rate of convergence of the prediction risk is, in general, easier
to compute than the entropy, and (c) the compatibility factor is replaced by the weighted
compatibility factor that is strictly positive in several important cases where the compatibility
factor vanishes (e.g., for total variation penalization). Moreover (d), the benefits of our results
do not necessarily rely on a high overall correlation: If, for example, the covariates can be
clustered into (a reasonably small number of) sets of highly correlated covariates, one can find
a small set T such that the measure ρT is small. In contrast, the entropy measure in [vdGL13]
is not necessarily small for this example, because it measures the symmetric convex hull of
all variables, which is still a large set if the clusters are not highly correlated with each other
(we expect, however, that the approach in [vdGL13] can be refined in this respect). On the
other hand, risk bound (21) may potentially offer more flexibility due to the presence of the
parameter α. Besides, it is very likely that the proof technique used in this work allow for
removing the factor 7 in front of the inf at the right hand-side of (21).

There is another direction of research, explored in the recent paper [BRvdGZ13] and in dis-
cussions [BW13, SS13], that replaces the original design matrix by a new one with weaker
correlations between the covariates. This is achieved by clustering the columns of X and re-
placing the groups of strongly correlated covariates by one representer (CRL), or by gathering
strongly correlated covariates in disjoint groups for prediction with the group-Lasso procedure
(CGL). While the theoretical results developed in [BRvdGZ13] demonstrate advantages with
respect to those available for the Lasso, the experimental results reported in Tables 2-5 show
that the Lasso remains perfectly competitive with the new procedures CRL and CGL. The
results of this work explain, at least partially, these empirical results, in that we proved that
the prediction loss of the standard Lasso is small even if the design matrix contains strongly
correlated columns.

Furthermore, we believe that the clustering strategy developed in [BRvdGZ13] may be benefi-



16 DALALYAN, HEBIRI, AND LEDERER

cial in conjunction with the Lasso, without any modification. In fact, the result of the cluster-
ing can be used for tuning the penalty level λ. More precisely, let G1, . . . , GM be the clusters
we get, forming a partition of [p]. Theoretical results developed in previous sections suggest
to choose one representer per cluster by setting jm = arg mini∈Gm maxj∈Gm ‖(In − Πi)x

j‖2
and to define T = {j1, . . . , jM} together with λ = 2σ∗ρT

√
2 log(p/δ)/n. If the clusters

are tight—the vectors within each cluster are very close to one another—then ρT will be
small, since ρT = n−1/2 maxj ‖(In − ΠT )xj‖2 ≤ n−1/2 maxm maxj∈Gm ‖(In − ΠT )xj‖2 ≤
n−1/2 maxm maxj∈Gm ‖(In − Πjm)xj‖2. Note that once the clusters are found, the aforemen-
tioned computation of jm’s and of λ is not time consuming. Another compelling alternative
is to replace the clustering step by sparse PCA. Indeed, our theoretical findings advocate for
choosing as T a subset of [p] which is simultaneously of small cardinality and such that all
xj ’s are close to the linear space spanned by {xj : j ∈ T}. It is precisely the task of the sparse
PCA to find such a subset T (cf. [BJNP13] and the references therein).

5.3. Computation of the compatibility factors by sequential convex programming. It may be
of practical interest to evaluate the risk bounds presented in our main results in order to
understand how accurate the Lasso prediction is. To this end, one may often need to com-
pute, at least approximately, the compatibility factor κT,c̄ or its weighted counterpart κ̄T,γ,ω.
In general, this task is difficult to accomplish since the computation of the aforementioned
factors amounts to minimizing a nonconvex function over a nonconvex subset of Rp with large
dimensionality p. (For a different procedure, efficiently verifiable conditions entailing theoret-
ical guarantees for sparse recovery are proposed in [JN11b].) There is, however, a particular
case where this task may be solved with a reasonable computational complexity. This corre-
sponds to subsets T of small or moderately large cardinalities. In fact, in the remaining of
this subsection we will show that for every T ⊂ [p] and every c̄, ε > 0, one can find an interval
[κ∗, κ

∗] of length at most ε and containing κ̄T,c̄ by solving at most 2|T | log2(|T |/ε) convex pro-
grams. Furthermore, each of these convex programs is a second-order cone program (SOCP)
and the global computation can be split into 2|T | parallel programs, each program involving
log2(|T |/ε) SOCPs.

The procedure we propose relies on the well-known bisection algorithm. Since we know that
κ̄T,c̄ always belong to the interval [0, |T |], we start by setting κ∗ = 0 and κ∗ = |T |. Then, at
each step of iteration, we set κ = (κ∗ + κ∗)/2 and µ = (nκ/|T |)1/2c̄−1 and solve the problem

minimize ‖Xδ‖2 + µ‖δT c‖1
subject to ‖δT ‖1 = 1.

(22)

If the solution δµ of this problem satisfies ‖Xδµ‖2+µ‖δµT c‖1 ≤ µc̄, then we leave κ∗ unchanged
and decrease κ∗ by setting

κ∗ =
|T | · ‖Xδµ‖22

n(1− c̄−1‖δµT c‖1)2
.

(Note that the right hand-side is always less than or equal to κ). If, in contrast, the solution
δµ of problem (22) satisfies ‖Xδµ‖2 +µ‖δµT c‖1 > µc̄, then we leave κ∗ unchanged and increase
κ∗ by setting κ∗ = κ. We iterate this process until we get κ∗ − κ∗ ≤ ε. Since at the first step
the gap κ∗−κ∗ equals |T | and at each step this gap is divided by at least a factor 2, the total
number of iterations to get precision ε is not larger than log2(|T |/ε).
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Let us now analyze the complexity of the optimization problem (22). The objective function
of this problem is convex but the set of feasible solutions is not. Interestingly, for every
s ∈ {±1}|T |, if we restrict the optimization to the orthant {δ : sjδj ≥ 0, ∀j ∈ T}, the
constraints become convex as well. Thus, our proposal consists in replacing (22) by 2|T |

optimization problems

minimize ‖Xδ‖2 + µ‖δT c‖1
subject to s>δT = 1, and sjδj ≥ 0, ∀j ∈ T.

(23)

For every s ∈ {±1}|T |, (23) can be rewritten as a SOCP using standard arguments. Denoting
by δµ,s any solution of (23), we determine a solution of (22) by minimizing the common
objective function of the above optimization problems over the finite set {δµ,s : s ∈ {±1}|T |},
that is

δµ = arg min
δ∈{δµ,s:s∈{±1}|T |}

(
‖Xδ‖2 + µ‖δT c‖1

)
.

These consideration lead to the procedure summarized in Algorithm 1.

Algorithm 1 Pseudo-code for computing the compatibility factor
Require: n× p matrix X, set T ⊂ [p], constant c̄ > 0, precision ε > 0
Ensure: interval [κ∗, κ

∗] containing the compatibility factor κT,c̄
1: κ∗ ← 0 and κ∗ ← |T |
2: while κ∗ − κ∗ < ε do
3: κ← (κ∗ + κ∗)/2
4: µ← (nκ/|T |)1/2c̄−1

5: for s ∈ {±1}|T | do
6: vs ← min{‖Xδ‖2 + µ‖δTc‖1} subject to s>δT = 1 and sjδj ≥ 0, ∀j ∈ T
7: δs ← arg min{‖Xδ‖2 + µ‖δTc‖1} subject to s>δT = 1 and sjδj ≥ 0, ∀j ∈ T
8: end for
9: if mins v

s > µc̄ then
10: κ∗ ← κ
11: else
12: δµ ← arg minδ∈{δs:s∈{±1}|T |}

(
‖Xδ‖2 + µ‖δTc‖1

)
13: κ∗ ← |T | · ‖Xδµ‖22/(n{1− c̄−1‖δµTc‖1}2)
14: end if
15: end while

6. Conclusions. Our results lead to a better understanding of the prediction performance
of the Lasso, as they demonstrate that correlations are not necessarily obstructive but even
helpful in some cases. This permits more accurate comparisons of the Lasso with its many
competitors. Our results are based on the introduction of ρT , a new, simple measure of the
correlations of the covariates. If this measure is incorporated in the choice of the tuning
parameter, the Lasso prediction risk decays at a fast rate for a broad variety of settings
including settings with strongly correlated covariates. To derive this, we did not invoke the
usual assumptions such as restricted isometry, restricted eigenvalues, etc., but rather relied
on the slow rate bounds that hold for arbitrary designs. Consequences of our results are
then substantially improved risk bounds for the least squares estimator with total variation
penalty.
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We also introduce compatibility factors that are not only abstract concepts but can be both
evaluated numerically and bounded theoretically and, therefore, implicate many applications.
We introduce in particular a new, weighted compatibility factor κ̄, which—in contrast to its
original version—may be bounded away from zero even for strongly correlated covariates. This
allows us to apply the corresponding results to the least squares estimator with total variation
penalty, for example, where the correlations between the covariates are up to 1− (1/n).

Our results finally indicate that the prediction performance of the Lasso can not be charac-
terized by only the maximal correlation between covariates: On the one hand, as described
above, the Lasso can provide accurate prediction even if the covariates are highly correlated.
On the other hand, as indicated by Example 1, the Lasso can perform poorly in prediction
even for moderately correlated covariates.

Future research directions include developing our approach in the case of the group Lasso
[YL06, LPvdGT11] in order to understand how to optimally exploit the (correlation) structure
of the Gram matrix for defining the groups. This problem is also interesting for applications
to the total-variation penalization as discussed in [VB10]. Another relevant question is how
the refinements proposed in the present work may be adapted to scale invariant versions of
the Lasso, such as the square-root Lasso [BCW13], scaled Lasso [SBvdG10] or scaled Dantzig
selector [DC12]. We also believe that the geometry of the design, measured by the quantities
ρT , may lead to better recommendations for the tuning parameter in the transductive setting
[AH12]. Finally, we would like to explore the consequences of our results when applied to
the nonparametric estimation of a regression function f by penalized least squares with a
penalty proportional to the discrete counterpart of the L1-norm of the kth derivative of f .
This problem has been studied in [MvdG87], but we believe that the results of the present
work may lead to improved risk bounds.

7. Proofs. We gather in this sections the proofs of all the theorems and propositions stated
in previous sections. To ease notation, throughout these proofs we write β̂ instead of β̂Lasso

λ .
In the sequel, we denote by sgn(x) the sub-differential of the function x 7→ |x|, that is

sgn(x) =


{1}, x > 0,

[−1, 1], x = 0,

{−1}, x < 0.

Proof of Theorem 1. We first use the Karush-Kuhn-Tucker conditions to infer that

1

n
X>(y −Xβ̂) ∈ λ sgn(β̂).

This implies that for every vector β̄ ∈ Rp

1

n
β̂
>
TX>T (y −Xβ̂) = λ‖β̂T ‖1,

1

n
β̄
>
TX>T (y −Xβ̂) ≤ λ‖β̄T ‖1.

Subtracting the first relation from the second one, we get

1

n
(β̄ − β̂)>TX>T (y −Xβ̂) ≤ λ(‖β̄T ‖1 − ‖β̂T ‖1). (24)
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We define now the vector β̄ by the relations

β̄T = β∗,TT + (X>TXT )†X>TXT c(β
∗,T − β̂)T c and β̄T c = 0.

This choice of β̄ may appear somewhat strange and complicated, but is made in order that
the relation XT (β̄− β̂)T = ΠTX(β∗,T − β̂) be satisfied. On the other hand, one easily checks
that y = XTβ

∗
T + XT cβ

∗
T c + ξ = Xβ∗,T + (In − ΠT )ξ. Replacing these expressions of β̄ and

y in (24), we find that for every T ⊂ [p],

1

n
(β∗,T − β̂)>X>ΠTX(β∗,T − β̂) ≤ λ(‖β̄T ‖1 − ‖β̂T ‖1) ≤ λ‖(β̄ − β̂)T ‖1.

Equivalently, this relation may be written as

1

n
‖ΠTX(β∗,T − β̂)‖22 =

1

n
‖XT (β̄ − β̂)T ‖22 ≤ λ‖(β̄ − β̂)T ‖1.

In view of the fact that
√
|T |/n ‖XTu‖2 ≥ νT ‖u‖1 for every u ∈ R|T |, we get

‖(β̄ − β̂)T ‖1 ≤
√
|T |‖XT (β̄ − β̂)T ‖2√

n νT
.

Combining the last two displays, we obtain

1

n
‖ΠTX(β∗,T − β̂)‖22 =

1

n
‖XT (β̄ − β̂)T ‖22 ≤ λ

√
|T |‖XT (β̄ − β̂)T ‖2√

n νT
.

Dividing the both sides of the last inequality by ‖XT (β̄− β̂)T ‖22 the desired result follows.

Proof of Theorem 3. Recall that according to (24), for every J ⊂ [p] and β̄ ∈ Rp,

1

n
(β̄ − β̂)>J X>J (y −Xβ̂) ≤ λ(‖β̄J‖1 − ‖β̂J‖1).

Replacing the expression of y in this inequality, we find that

1

n
(β̄ − β̂)>J X>J (Xβ∗ + ξ −Xβ̂) ≤ λ(‖β̄J‖1 − ‖β̂J‖1).

Let us introduce the two difference vectors δ = β̂ − β∗ and δ̄ = β̂ − β̄. The last display
combined with the decomposition ξ = ΠT ξ + (In −ΠT )ξ, for every T ⊂ [p], yields

1

n
δ̄
>
J X>J Xδ ≤ 1

n
δ̄
>
J X>J ΠT ξ +

1

n
δ̄
>
J X>J (In −ΠT )ξ + λ(‖β̄J‖1 − ‖β̂J‖1).

Using the identity u>u′ = 1
2(‖u‖22 + ‖u′‖22 − ‖u− u′‖22) we get for every J ⊂ [p],

‖XJ δ̄J‖22 + ‖Xδ‖22
n

≤ 1

n
‖XJ δ̄J −Xδ‖22 +

2

n
δ̄
>
J X>J (In −ΠT )ξ +

2

n
δ̄
>
J X>J ΠT ξ

+ 2λ(‖β̄J‖1 − ‖β̂J‖1). (25)
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To prove (14) we choose J = [p], for which (25) becomes

1

n
‖Xδ̄‖22 +

1

n
‖Xδ‖22 ≤

1

n
‖Xδ̄ −Xδ‖22 +

2

n
δ̄
>

X>ξ + 2λ(‖β̄‖1 − ‖β̂‖1) (26)

≤ 1

n
‖Xδ̄ −Xδ‖22 +

2

n
δ̄
>
T cX

>
T c(In −ΠT )ξ +

2

n
δ̄
>

X>ΠT ξ

+ 2λ(‖δ̄T ‖1 − ‖δ̄T c‖1) + 4λ‖β̄T c‖1, ∀T ⊂ [p]. (27)

Notice that δ̄
>
T cX

>
T c(In−ΠT )ξ ≤

∑
j∈T c |xj>(In−ΠT )ξ|·|δ̄j | and |δ̄>X>ΠT ξ| ≤ ‖Xδ̄‖2‖ΠT ξ‖2.

Replacing λ by its value γσ∗
(

2
n log(p/δ)

)1/2
and restricting our attention to the event BT ={

maxj∈T c |ξ>(In − ΠT )xj |/‖(In − ΠT )xj‖2 ≤ σ∗
(
2 log(p/δ)

)1/2} ∩ {‖ΠT ξ‖2 ≤ σ∗
(√
|T | +√

2 log(1/δ)
)}

we obtain

1

n
‖Xδ̄‖22 +

1

n
‖Xδ‖22 ≤

1

n
‖Xδ̄ −Xδ‖22 + 4λ‖β̄T c‖1 +

2

n
‖Xδ̄‖2‖ΠT ξ‖2

+ 2λ
(
‖δ̄T ‖1 − ‖δ̄T c‖1 + γ−1‖(δ̄ � ω)T c‖1

)
. (28)

The definition of κ̄T,γ,ω implies that ‖δ̄T ‖1 − ‖δ̄T c‖1 + γ−1‖(δ̄ � ω)T c‖1 ≤ |T |
1/2·‖Xδ̄‖2

(nκ̄T,γ,ω)1/2 (note

that this inequality is trivial when the left hand-side is negative), therefore

2

n
‖Xδ̄‖2‖ΠT ξ‖2 + 2λ

(
‖δ̄T ‖1 − ‖δ̄T c‖1 + γ−1‖(δ̄ � ω)T c‖1

)
≤ 2
‖Xδ̄‖2√

n

( 1√
n
‖ΠT ξ‖2 + λ(|T |/κ̄T,γ,ω)1/2

)
≤ ‖Xδ̄‖

2
2

n
+
( 1√

n
‖ΠT ξ‖2 + λ(|T |/κ̄T,γ,ω)1/2

)2

≤ ‖Xδ̄‖
2
2

n
+

4σ∗2(|T |+ 2 log(1/δ))

n
+

4γ2σ∗2|T | log(p/δ)

nκ̄T,γ,ω
. (29)

After replacing (29) in (28), we remark that the terms 1
n‖Xδ̄‖

2
2 cancel out and we get inequality

(14). Classical results on the tails of Gaussian and χ2 distributions imply that BT is at least
of probability 1− 2δ, for every T . The assertion of (14) follows by choosing T to be a subset
of [p] minimizing the right hand-side of (14).

The proof of the second claim of the theorem is identical to that of (14) and, therefore, is left
to the reader.

Proof of Theorem 4. According to (26), for every β̄ ∈ Rp and for δ = β̂ − β∗ and
δ̄ = β̂ − β̄, the inequality

1

n
‖Xδ̄‖22 +

1

n
‖Xδ‖22 ≤

1

n
‖Xδ̄ −Xδ‖22 +

2

n
δ̄
>

X>ξ + 2λ(‖β̄‖1 − ‖β̂‖1) (30)

holds for every λ > 0. We split the stochastic term δ̄
>

X>ξ into two terms δ̄
>

X>(In −ΠT )ξ

and δ̄
>

X>ΠT ξ. The first one can be bounded using the duality inequality δ̄
>

X>(In−ΠT )ξ =

δ̄
>
T cX

>
T c(In−ΠT )ξ ≤ ‖δ̄T c‖1‖X>T c(In−ΠT )ξ‖∞ ≤ (‖β̄T c‖1+‖β̂T c‖1)‖X>T c(In−ΠT )ξ‖∞, while
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the second one, in view of the Cauchy-Schwarz inequality, satisfies δ̄
>

X>ΠT ξ ≤ ‖Xδ̄‖2‖ΠT ξ‖2 ≤
(‖Xδ̄‖22 +‖ΠT ξ‖22)/2. As in the proof of fast rates, we restrict our attention to the event BT ={

maxj∈T c |ξ>(In − ΠT )xj |/‖(In − ΠT )xj‖2 ≤ σ∗
(
2 log(p/δ)

)1/2} ∩ {‖ΠT ξ‖2 ≤ σ∗
(√
|T | +√

2 log(1/δ)
)}

. On this event, we get

2δ̄
>

X>ξ ≤ ‖Xδ̄‖22 + 2σ∗2(|T |+ 2 log(1/δ)) + 2λγ−1n(‖β̄T c‖1 + ‖β̂T c‖1). (31)

Combining this inequality with (30), we get the desired result.

Proof of Proposition 2. The Karush-Kuhn-Tucker conditions for this example are the
following:

1√
2

(e1 + ej+1)>(
√

2e1 +
1√
n
ξ − 1√

2

2m∑
k=1

β̂ke1 −
1√
2

(β̂j − β̂m+j)ej+1) ∈ λ sgn(β̂j),

1√
2

(e1 − ej+1)>(
√

2e1 +
1√
n
ξ − 1√

2

2m∑
k=1

β̂ke1 −
1√
2

(β̂j − β̂m+j)ej+1) ∈ λ sgn(β̂m+j).

After simplification, we get

1 +
1√
2n

(ξ1 + ξj+1)− 1

2

2m∑
k=1

β̂k −
1

2
(β̂j − β̂m+j) ∈ λ sgn(β̂j), (32)

1 +
1√
2n

(ξ1 − ξj+1)− 1

2

2m∑
k=1

β̂k +
1

2
(β̂j − β̂m+j) ∈ λ sgn(β̂m+j). (33)

We will restrict our attention to the event B = {ξ1 < 0} which has a probability 1/2. First
note that if λ ≥ 1, then the vector β̂ = 0 is a solution to the system (32)-(33). Therefore,
β̂ = 0 and hence `n(β̂,β∗) = 2. Thus, in the case λ ≥ 1 the Lasso is not consistent, which is
not a surprise since the theory recommends to always choose λ of order O((log(p)/n)1/2).

In the more interesting case λ ∈ (m+1−
√

2n
m
√

2n
, 1), a Lasso solution is given by

β̂j =

{
2(1−λ)
m+1 , ξj+1 > 0,

0, ξj+1 < 0,
β̂m+j =

{
0, ξj+1 > 0,
2(1−λ)
m+1 , ξj+1 < 0.

(34)

Indeed, for instance if ξj+1 > 0, replacing these values of β̂ in (32) and (33) we get on the
event B:

1 +
ξ1 + ξj+1√

2n
− 1

2

2m∑
k=1

β̂k −
1

2
(β̂j − β̂m+j) = 1− m

2
× 2(1− λ)

m+ 1
− 1

2
× 2(1− λ)

m+ 1
= λ

1 +
ξ1 − ξj+1√

2n
− 1

2

2m∑
k=1

β̂k +
1

2
(β̂j − β̂m+j) = 1− 2√

2n
− m

2
× 2(1− λ)

m+ 1
+

1

2
× 2(1− λ)

m+ 1

= λ
(
1− 2

m+ 1

)
−
√

2√
n

+
2

m+ 1
∈ [−λ, λ],
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where the last inclusion follows from the relation m+ 1 ≥
√

2n. For the vector (34), we check
that the prediction loss

`n(β̂,β∗) =
(√

2−
√

2m(1− λ)

m+ 1

)2
+

2m(1− λ)2

(m+ 1)2

= 2
(1 +mλ

m+ 1

)2
+

2m(1− λ)2

(m+ 1)2

=
2 + 2mλ2

m+ 1
≥ 1

m
≥ 1√

2n
.

Finally, in the case λ ∈ [0, m+1−
√

2n
m
√

2n
], a Lasso solution on the event B is given by

β̂j =

{√
2n+m−1
m
√

2n
− λ, ξj+1 > 0,

√
2n−m−1
m
√

2n
+ λ, ξj+1 < 0,

β̂m+j =

{√
2n−m−1
m
√

2n
+ λ, ξj+1 > 0,

√
2n+m−1
m
√

2n
− λ, ξj+1 < 0,

(35)

for every j ∈ [m]. Indeed, for instance if ξj+1 > 0, replacing these values of β̂ in (32) and (33)
we get on the event B:

1 +
ξ1 + ξj+1√

2n
− 1

2

2m∑
k=1

β̂k −
1

2
(β̂j − β̂m+j) = 1− m

2
× 2(
√

2n− 1)

m
√

2n
− 1

2
×
( 2m

m
√

2n
− 2λ

)
= λ

1 +
ξ1 − ξj+1√

2n
− 1

2

2m∑
k=1

β̂k +
1

2
(β̂j − β̂m+j) = 1− 2√

2n
− (
√

2n− 1)√
2n

+
( 1√

2n
− λ

)
= −λ.

The prediction loss of this estimator is

`n(β̂,β∗) ≥ m
( 1√

n
−
√

2λ
)2

≥ 2m
( 1√

2n
− m+ 1−

√
2n

m
√

2n

)2

= 2m
(√2n− 1

m
√

2n

)2
≥ 1

2
√

2n
,

where for the last inequality we have used the facts that
√

2n − 1 ≥
√
n/2, ∀n ≥ 2, and

m ≤
√

2n. This completes the proof of the proposition.

Proof of Proposition 3. We will use a probabilistic argument. Set f = Xu. Denoting
sj = sgn(uj) = sgn(fj − fj−1), j ∈ T , and sj = − sgn(uj) = − sgn(fj − fj−1), j ∈ T c, with
the convention that f0 = 0, an+1 = an and sn+1 = − sgn(fn), we get

‖uT � aT ‖1 − ‖uT c � aT c‖1 =
∑
j∈T

aj |fj − fj−1| −
∑
j∈T c

aj |fj − fj−1|

≤
∑
j∈T

aj |fj − fj−1| −
∑
j∈T c

aj |fj − fj−1|+ an|fn|

=
∑
j∈[n]

sjaj(fj − fj−1)− ansn+1fn =
∑
j∈[n]

fj(sjaj − sj+1aj+1).
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More interestingly, since |x| = maxt∈{±1} tx for every x ∈ R, one easily checks that8

‖uT � aT ‖1 − ‖uT c � aT c‖1 = min
t∈{±1}n+1

tT=sT

∑
j∈[n]

fj(tjaj − tj+1aj+1).

Let us set j0 = 1, js+1 = n+ 1 and consider the partition {B` = Jj`−1, j`J, ` ∈ [s+ 1]} of [n].
Let ∆` = |B`| for every ` ∈ [s+ 1]. Permuting the minimum and the summation, we get

‖uT � aT ‖1 − ‖uT c � aT c‖1 =
s+1∑
`=1

Ψ`

where

Ψ` = min
t∈{±1}n+1

(tj`−1
,tj` )=(sj`−1

,sj` )

j`−1∑
j=j`−1

fj(tjaj − tj+1aj+1)

= min
t̄∈{±1}∆`+1

(t1,t∆`+1)=(sj`−1
,sj` )

∆∑̀
j=1

fj`−1+j−1(t̄jaj`−1+j−1 − t̄j+1aj`−1+j).

In what follows, we propose a bound on Ψ1. The other Ψ`’s can be evaluated similarly. Let
ε1, . . . , εn be independent random variables with values in ±1 such that p := P(εj = 1) =
(1− (2∆1)−1) and P(εj = −1) = (2∆1)−1. Further, we define ε̄1 = s1 and ε̄j+1 = ε1× . . .× εj ,
for every j ∈ B1. Since εj ’s are independent, {ε̄j}j∈[j1] is a Markov chain with values in {±1}.
For this Markov chain, we first check that P(ε̄j1 = sj1) ≥ 1/4. Indeed, by symmetry, it suffices
to consider the two cases (s1, sj1) = (1, 1) and (s1, sj1) = (1,−1). In the first case, we use the
inclusion {εB1 = 1B1} ⊂ {ε̄j1 = sj1} to infer that

P(ε̄j1 = sj1) ≥ P(εB1 = 1B1) =

j1−1∏
j=1

P(εj = 1) = (1− (2∆1)−1)∆1 .

For ∆1 ≥ 1, one checks that (1 − (2∆1)−1)∆1 ≥ 1/2, which yields P(ε̄j1 = sj1) ≥ 1
2 . In the

second case, s1 = −sj1 , we use the inclusion ∪j∈B1{ε−j = 1, εj = −1} ⊂ {ε̄j1 = sj1 = −s1},
where ε−j is the vector obtained from εB1 by removing the jth entry. This inclusion yields

P(ε̄j1 = sj1) ≥
∆1∑
j=1

P(ε−j = 1, εj = −1) =

∆1∑
j=1

(1− (2∆1)−1)∆1−1 × (2∆1)−1 ≥ 1

4
. (36)

On the other hand, for every A > 0, we have

P

( ∆1∑
j=1

fj(ε̄jaj − ε̄j+1aj+1) > A

)
≤ 1

A
E
[∣∣∣ ∆1∑

j=1

fj(ε̄jaj − ε̄j+1aj+1)
∣∣∣].

8For notational convenience, we assume hereafter that T is augmented by the elements {1, n+ 1}.
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We need now to evaluate the expectation of the random variable Υ = |
∑∆1

j=1 fj ε̄j(aj −
εj+1aj+1)|. To this end, since all the aj are nonnegative, we remark that E(|aj − εj+1aj+1|) =
|aj − aj+1|+ (aj ∧ aj+1)/∆1 and, therefore,

E[Υ] ≤
∆1∑
j=1

|fj | · (|aj − aj+1|+ aj∆
−1
1 ) ≤

( ∆1∑
j=1

f2
j

)1/2( ∆1∑
j=1

(2|aj − aj+1|2 + 2a2
j∆
−2
1 )

)1/2

.

Thus, taking A = 4
(∑∆1

j=1 f
2
j

)1/2(∑∆1
j=1(2|aj − aj+1|2 + 2a2

j∆
−2
1 )
)1/2

, we get

P

( ∆1∑
j=1

fj(ε̄jaj − ε̄j+1aj+1) > A

)
≤ 1/4.

Combined with inequality (36), this entails that

P

( ∆1∑
j=1

fj(ε̄jaj − ε̄j+1aj+1) ≤ A and (ε̄1, ε̄j1) = (s1, sj1)

)
> 0.

Consequently, Ψ1 ≤ A. Applying the same argument to arbitrary ` ∈ [s+ 1], we get

Ψ` ≤ 4

( ∑
j∈B`

f2
j

)1/2( ∑
j∈B`

(2|aj − aj+1|2 + 2a2
j∆
−2
` )

)1/2

.

In view of the Cauchy-Schwarz inequality, we get

‖uT � aT ‖1 − ‖uT c � aT c‖1 ≤ 4

( ∑
j∈[n]

f2
j

)1/2( s+1∑
`=1

∑
j∈B`

(2|aj − aj+1|2 + 2a2
j∆
−2
` )

)1/2

≤ 4‖f‖2
(

2
∑
j∈[n]

|aj − aj+1|2 + 2(s+ 1)‖a‖2∞max
`

∆−1
`

)1/2

.

This completes the proof.

Proof of Proposition 4. We apply Theorem 3 with γ = 2. This leads to (14) with

rn,n,T =
1 + 2|T |−1 log(1/δ)

log(p/δ)
+

4

κ̄T,2,ω
≤ 3 +

4

κ̄T,2,ω
.

It remains to find a lower bound for κ̄T,2,ω. To this end, we resort to Proposition 3 with
aj = 1 for every j belonging to the set T and aj = 1 − 1

2
√
n
‖(In − ΠT )xj‖2, j ∈ T c. Let

T = {j1, . . . , js} and B` = Jj`−1, j`J for ` ∈ [s + 1] with the convention that j0 = 1 and
js+1 = n + 1. Since the columns of X are given by xj = [1(i ≥ j)]i∈[n], the projector ΠT

projects onto the subspace of Rn containing all the vectors that are constant on the partition

{B`}. Therefore, one easily checks that ‖(In − ΠT )xj‖2 =
√

(j−j`−1)(j`−j)
j`−j`−1

, for every j ∈ B`.
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This implies that aT = 1T and ‖a‖∞ = 1. Furthermore, we have

∑
j∈[n]

|aj − aj+1|2 ≤
1

4n

∑
`∈[s+1]

∑
j∈B`

(√
(j − j`−1)(j` − j)−

√
(j + 1− j`−1)(j` − j − 1)

)2
j` − j`−1

≤ 1

4n

∑
`∈[s+1]

∆∑̀
j=1

(
(j − 1)(∆` − (j − 1))− j(∆` − j)

)2
∆`(

√
(j − 1)(∆` − (j − 1)) +

√
j(∆` − j))2

≤ 1

4n

∑
`∈[s+1]

∆∑̀
j=1

(
2j − 3−∆`

)2
∆`((j − 1)(∆` − (j − 1)) + j(∆` − j))

≤ 1

4n

∑
`∈[s+1]

∑
j≤∆`/2

∆2
`

∆` × j ×∆`/2
=

1

2n

∑
`∈[s+1]

∑
j≤∆`/2

j−1.

Since obviously ∆` ≤ n, we can bound the sum
∑

j≤∆`/2
j−1 by 1 + log(n/2) ≤ 2 log(n),

provided that n ≥ 3. This yields
∑

j∈[n] |aj−aj+1|2 ≤ (s+1) log(n)/n. Therefore, Proposition 3
implies that

‖uT ‖1 − ‖uT c � aT c‖1 ≤ 4‖Xu‖2
(

2(s+ 1)

[
log(n)

n
+

1

∆min

])1/2

.

Using the inequality s+1 ≤ 2s, we infer from the above inequality that κ̄T,2,ω ≥
{

64(log(n)+

(n/∆min))
}−1

.

Proof of Proposition 5. Let us denote δ = β̂ − β∗. We consider two cases separately.
The first case is when the inequality ‖β̂‖1 ≤ γ+1

γ−1‖β
∗‖1 is satisfied. Then, using the Par-

seval identity, we have `n(β̂,β∗) = 1
n‖ΠTXδ‖22 + 1

n‖(In − ΠT )Xδ‖22. The first summand
can be bounded using inequality (4), so we focus on the second summand. Using the tri-
angle inequality, we get ‖(In − ΠT )Xδ‖2 = ‖

∑
j(In − ΠT )xjδj‖2 ≤

∑
j ‖(In − ΠT )xjδj‖2 ≤

‖δ‖1 maxj∈T c ‖(In−ΠT )xj‖2. Furthermore, we have ‖δ‖1 ≤ ‖β̂‖1+‖β∗‖1 ≤ 2γ
γ−1‖β

∗‖1. Hence,
putting these bounds together, we find

`n(β̂,β∗) ≤ 1

n
‖ΠTXδ‖22 +

4γ2‖β∗‖21
n(γ − 1)2

max
j∈T c
‖(In −ΠT )xj‖22

≤ 2λ2|T |
ν2
T

+
4σ∗2(|T |+ 2 log(1/δ))

n
+

4γ2‖β∗‖21
n(γ − 1)2

max
j∈T c
‖(In −ΠT )xj‖22,

with a probability at least 1−δ. In the second case, ‖β̂‖1 > γ+1
γ−1‖β

∗‖1, according to inequalities

(30) and (31) applied to δ̄ = δ, we have

2

n
‖Xδ‖22 ≤

2

n
δ>X>ξ + 2λ(‖β∗‖1 − ‖β̂‖1)

≤ 1

n
‖Xδ‖22 +

2σ∗2(|T |+ 2 log(1/δ))

n
+ 2λγ−1

(
(γ + 1)‖β∗‖1 − (γ−1)‖β̂‖1︸ ︷︷ ︸

≤0

)
,

with probability at least 1− 2δ. This completes the proof.
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Proof of Proposition 6. Applying Theorem 4 to λ = σ∗(log(n/δ)/(nk))1/2, in conjunc-
tion with the bound ρT ≤ (2k)−1/2, we get that the inequality

1

n
‖f̂

TV
− f∗‖22 ≤ inf

f̄∈Rn

{
1

n
‖f̄ − f∗‖22 + 4λ‖f̄‖TV

}
+

2σ∗2(k + 2 log(1/δ))

n
(37)

holds true with a probability at least 1 − 2δ. Replacing f̄ by f↑, and replacing λ by its
expression, we get

1

n
‖f̂

TV
− f∗‖22 ≤

1

n
‖f↑ − f∗‖22 +

4σ∗2 log(1/δ)

n
+ 4σ∗

( log(n/δ)

nk

)1/2
‖f↑‖TV +

2σ∗2k

n︸ ︷︷ ︸
:=Ψ(k)

,

with probability ≥ 1− 2δ. One readily checks that x 7→ Ψ(x) achieves its (global) minimum
at xmin = (‖f↑‖TV/σ

∗)2/3(n log(n/δ))1/3. Furthermore, the definition of k entails that 1/k ≤
1/xmin and k ≤ xmin + 1. This yields Ψ(k) ≤ Ψ(xmin) + 2σ∗2/n and the desired result
follows.

Proof of Proposition 7. We start by observing that Hnα,L is a closed convex subset of

Rn. Therefore, for every f̄ ∈ Hnα,L and for g∗ = arg minf∈Hnα,L ‖f − f
∗‖2, we have

‖f̄ − f∗‖22 ≤ ‖g∗ − f∗‖22 + ‖f̄ − g∗‖22. (38)

Now, let T = {a1, a2, . . . , ak} ⊂ [n] be any set satisfying a1 = 1 and 0 ≤ aj+1 − aj ≤ 2n/k,
∀j ∈ [k]. This set induces the partition T = {I1, . . . , Ik} where each Ij = Jaj , aj+1J is an
interval of length smaller or equal to 2n/k. We define f̄ as an approximation of g∗ by a

piecewise linear vector on the partition T : f̄i = g∗aj +
i−aj

aj+1−aj {g
∗
aj+1
− g∗aj}, ∀i ∈ Ij . On

the one hand, one can easily check that f̄ belongs to the set Hnα,L and, therefore, satisfies

inequality (38). In conjunction with (37), this implies that for λ = σ∗(log(n/δ)/(nk))1/2, the
inequalities

1

n
‖f̂

TV
− f∗‖22 ≤ inf

f̄∈Rn

{
1

n
‖f̄ − f∗‖22 + 4λ‖f̄‖TV

}
+

2σ∗2(k + 2 log(1/δ))

n

≤ 1

n
‖g∗ − f∗‖22 +

1

n
‖f̄ − g∗‖22 + 4λ‖f̄‖TV +

2σ∗2(k + 2 log(1/δ))

n

hold true with a probability at least 1− 2δ. Since g∗ ∈ Hnα,L, we have

‖f̄ − g∗‖22 ≤
∑
j

∑
i∈Ij

|g∗aj +
i− aj

aj+1 − aj
{g∗aj+1

− g∗aj} − g
∗
i |2

≤
∑
j

∑
i∈Ij

(
aj+1 − i
aj+1 − aj

|g∗aj − g
∗
i |2 +

i− aj
aj+1 − aj

|g∗aj+1
− g∗i |2)

≤ nL2n−2α(2n/k)2α ≤ 4nL2k−2α.

On the other hand, since f̄ is piecewise constant, we have ‖f̄‖TV =
∑

j |g∗aj+1
− g∗aj | ≤

kLn−α(2n/k)α ≤ 2Lk1−α. Combining all these bounds, we get that with probability at least
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1− 2δ,

1

n
‖f̂

TV
− f∗‖22 ≤

1

n
‖g∗ − f∗‖22 +

4σ∗2 log(1/δ)

n

+ 4L2k−2α + 8Lσ∗
( log(n/δ)

nk

)1/2
k1−α +

2σ∗2k

n
.

The inequality between the geometric and arithmetic means yields 8Lσ∗
(

log(n/δ)
nk

)1/2
k1−α ≤

8L2k−2α + 2σ∗2 k log(n/δ)
n . Thus, with probability at least 1− 2δ, we have

1

n
‖f̂

TV
− f∗‖22 ≤

1

n
‖g∗ − f∗‖22 +

4σ∗2 log(1/δ)

n
+ 12L2k−2α +

4σ∗2k log(n/δ)

n
.

Using the inequalities k − 1 ≤ (L2n/(σ∗2 log(n/δ)))1/(2α+1) ≤ k we get

12L2k−2α ≤ 12L2

(
L2n

σ∗2 log(n/δ)

)−2α/(2α+1)

= 12L2

(
σ∗2 log(n/δ)

L2n

)2α/(2α+1)

,

and

4σ∗2k log(n/δ)

n
≤ 4σ∗2 log(n/δ)

n
×
(

L2n

σ∗2 log(n/δ)

)1/(2α+1)

+
4σ∗2 log(n/δ)

n

= 4L2

(
σ∗2 log(n/δ)

L2n

)2α/(2α+1)

+
4σ∗2 log(n/δ)

n
.

To complete, we use the fact that ‖g∗ − f∗‖22 = inff∈Hnα,L
1
n‖f − f

∗‖22.

Proof of Proposition 8. Let u∗ be any vector satisfying the cone constraint ‖u∗T c‖1 ≤
c̄‖u∗T ‖1. Clearly, the vector −u∗ satisfies the same constraint. For any J ⊂ T c, we define
ζ = σ∗−1(X>J XJ)†X>J ξ. Let v ∈ Rp be the random vector defined by vJc = 0 and vJ = αζ,
where α = (c̄‖u∗T ‖1 − ‖u∗T c‖1)/‖ζ‖1 is a positive number ensuring that the vectors ±u∗ + v
satisfy the cone constraint. Indeed, the triangle inequality implies that

‖(±u∗ + v)T c‖1 − c̄‖(±u∗ + v)T ‖1 = ‖(±u∗ + v)T c‖1 − c̄‖u∗T ‖1
≤ ‖u∗T c‖1 + ‖vJ‖1 − c̄‖u∗T ‖1 = 0.

Further, we remark that ξ>Xv = (α/σ∗)ξ>ΠJξ ≥ 0 and therefore

η̄ ≥ max
u∈{±u∗}

|ξ>X(u+ v)|
σ∗‖X(u+ v)‖2

≥ max
u∈{±u∗}

|ξ>X(u+ v)|
σ∗(‖Xu∗‖2 + ‖Xv‖2)

=
|ξ>Xu|+ ξ>Xv

σ∗(‖Xu∗‖2 + ‖Xv‖2)
≥ ξ>Xv

σ∗(‖Xu∗‖2 + ‖Xv‖2)
:= η1.

Using the definition of v, we get the relations ξ>Xv = ξ>XJvJ = (α/σ∗)‖ΠJξ‖22 and
‖Xv‖2 = ‖XJvJ‖2 = (α/σ∗)‖ΠJξ‖2 implying that

η1 =
α‖ΠJ(ξ/σ∗)‖22

‖Xu∗‖2 + α‖ΠJ(ξ/σ∗)‖2
.
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To complete the proof, it remains to find appropriate lower bounds for the terms ‖ΠJ(ξ/σ∗)‖22
and α. Since ‖ΠJ(ξ/σ∗)‖22 ∼ χ2

|J |, we have P
{
‖ΠJξ‖22 ≥ σ∗2

(
|J | − 2

√
|J | log(2/δ′)

)}
≥ 1 −

(δ′/2). Therefore, for every |J | ≥ 10 > (8/3)2 log 4, we have P
{
‖ΠJξ‖22 ≥ σ∗2|J |/4

}
≥ 1−1/4.

Let XJ = VΛU> be the singular value decomposition of XJ and ξ̃ = V>ξ/σ∗ ∈ R|J | with
Gaussian distribution N (0, I|J |). We remark that

‖(X>J XJ)†X>J ξ‖1 = σ∗‖UΛ−1ξ̃‖1
≤ σ∗|J |1/2‖UΛ−1ξ̃‖2
= σ∗|J |1/2‖Λ−1ξ̃‖2
≤ σ∗(|J |/nλ2

min,J)1/2‖ξ̃‖2

Therefore, using tail bounds for the χ2 distribution, we find

P
(
‖ζ‖1 ≤ (|J |/nλ2

min,J)1/2
(
|J |1/2 +

√
2 log(4)︸ ︷︷ ︸

≤2|J |1/2

))
≥ 1− 1

4
.

From this inequality we infer that α ≥ n1/2λmin,J(c̄‖u∗T ‖1 − ‖u∗T c‖1)/(2|J |) with probability
at least 3/4. Combining the lower bounds obtained for α and ‖ΠJξ‖22, we get

P

(
η1 ≥

|J |
4

{
2|J | · ‖Xu∗‖2

n1/2λmin,J c̄(‖u∗T ‖1 − c̄−1‖u∗T c‖1)
+
|J |1/2

2

}−1
)
≥ 1/2.

This implies that

%̄T,c̄ ≥
{

8‖Xu∗‖2
n1/2λmin,J(‖u∗T ‖1 − c̄−1‖u∗T c‖1)

+ 2|J |−1/2

}−1

.

Since this is true for every u∗ belonging to the cone, we can take the supremum of the right
hand-side to get

%̄T,c̄ ≥
1

8λ−1
min,J(κT,c̄/|T |)1/2 + 2|J |−1/2

,

and the desired result follows.
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[HLL07] Zäıd Harchaoui and Céline Lévy-Leduc. Catching change-points with lasso. In NIPS, 2007.
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