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Abstract

We consider joint estimation of conditional Value-at-Risk (VaR) at

several levels, in the framework of general conditional heteroskedas-

tic models. The volatility is estimated by Quasi-Maximum Likelihood

(QML) in a first step, and the residuals are used to estimate the in-

novations quantiles in a second step. The joint limiting distribution of

the volatility parameter and a vector of residual quantiles is derived.

We deduce confidence intervals for general Distortion Risk Measures

(DRM) which can be approximated by a finite number of VaR’s. We

also propose an alternative approach based on non Gaussian QML

which, although numerically more cumbersome, has interest when the

innovations distribution is fat tailed. An empirical study based on

stock indices illustrates the theoretical findings.
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1 Introduction

Under the regulations introduced in Finance since Basel 2, bank capital is

risk-sensitive. Financial institutions are required to measure the riskiness

of their assets and, for instance, to hold more capital to compensate more

risk. While the Value-at-Risk (VaR), defined as a quantile of some loss

distribution, continues to play a prominent role in the mainstream financial

risk management, a variety of alternative risk measures have been introduced

and studied in recent years. The Expected Shortfall (ES), and more generally

the Distortion Risk Measures (DRM), are quantile-based measures which, by

comparison with the VaR at a given level, give further insight on the shape

of the loss distribution
1
.

Whatever the choice of a risk measure, it depends on unknown character-

istics of the loss distribution which, for practical use, have to be estimated.

In the so-called standard approach, the quantity of interest is a parameter,

defined as a characteristic of the marginal loss distribution. In the so-called

advanced approaches, the focus is on conditional characteristics of the loss

distributions, that is, characteristics which, at the current date, take into

account the available past information. The conditional VaR, and more

generally conditional risk measures, are stochastic processes, which are not

directly observable just like volatility. This complicates the statistical infer-

ence of risk measures. The problem is not only to get consistent estimators

of conditional risks but also to evaluate the accuracy of such estimators
2
.

1
These measures are also advocated because, contrary to the VaR, they satisfy a set

of "coherence requirements" for a large family of distributions.
2
In July 2009, the Basel Committee issued a directive requiring that financial insti-

tutions quantify "model risk". The Committee states that "Banks must explicitly assess

the need for valuation adjustments to reflect two forms of model risk: the model risk asso-
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Confidence intervals for conditional VaR’s were derived, in the recent

econometric literature, using different approaches. Chan, Deng, Peng, Xia

(2007) constructed confidence intervals under the assumption that the errors

have heavy tails, using the Extreme-Value Theory, while Spierdijk (2013)

proposed a residual subsample bootstrap approach. Francq and Zakoïan

(2012) used a QML approach. They showed that the problem of estimating

a conditional risk measure, for instance a VaR at a given level, in GARCH-

type models reduced to the estimation of a parameter, called risk parameter.

In the present article we extend those results to the joint estimation of

several conditional risks. In practice, it is often important to handle several

risk levels, in order to have a better view on the tail properties of the con-

ditional distribution. We will provide statistical tools for jointly estimating

conditional VaR’s corresponding to different levels, in a general GARCH-

type framework which does not impose a specific form for the volatility, and

for estimating the accuracy of such VaR estimates. Our approach is aimed

at, not only providing VaR estimates, but also confidence intervals based on

asymptotic results. A tractable risk measure based on a vector of risk levels

can be defined by weighting the corresponding VaR’s, that is, by defining a

portfolio of VaR’s. This approach can be connected with DRMs through an

appropriate choice of the weights. For a given DRM, our asymptotic results

allow us to construct upper and lower bounds based on a finite number of

VaR’s.

This paper is organized as follows. In Section 2, we start by introduc-

ciated with using a possibly incorrect valuation methodology; and the risk associated with

using unobservable (and possibly incorrect) calibration parameters in the valuation model."

For instance, an important issue in determining the reserves of a financial institution is

whether VaR estimates remain reliable in very hectic periods.
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ing a general class of GARCH-type models. Then we derive the asymptotic

joint distribution of the Quasi-Maximum Likelihood Estimator (QMLE) and

a vector of empirical quantiles of the residuals. We deduce asymptotic con-

fidence intervals for the VaR’s and for VaR portfolios. Section 3 proposes

another approach for conditional VaR estimation based on non Gaussian

QMLEs. An empirical illustration based on major stock indices is proposed

in Section 4. Section 5 concludes.

2 Two-step VaR estimation in volatility models

2.1 Conditional VaR in a general model

Consider a GARCH-type model of the form




ǫt = σtηt

σt = σ(ǫt−1, ǫt−2, . . . ;θ0)
(2.1)

where (ηt) is a sequence of iid random variables, ηt is independent of {ǫu, u <

t}, θ0 ∈ Rd is a parameter belonging to a parameter space Θ, and σ :

R∞ × Θ → (0,∞). The most widely used specifications of volatility belong

to this class, in particular the GARCH(p, q) model of Engle (1982) and

Bollerslev (1986),




ǫt = σtηt,

σ2
t = ω0 +

∑q
i=1 a0iǫ

2
t−i +

∑p
j=1 b0jσ

2
t−j ,

(2.2)

where θ0 = (ω0, a01, . . . , b0p)
′ satisfies ω0 > 0, a0i ≥ 0, b0j ≥ 0. For this

model, if the lag polynomial β(L) = 1 −∑p
j=1 L

j has its roots outside the

unit disk, we have a representation of the form (2.1) given by

σ2
t = β(1)−1ω0 +

∞∑

i=1

γiǫ
2
t−i,
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where β(L)−1
∑q

i=1 aiL
i =

∑∞
i=1 γiL

i. Other classical examples of models

belonging to the class (2.1) are the EGARCH, GJR-GARCH, TGARCH,

QGARCH, APARCH, Log-GARCH, models introduced, respectively, by Nel-

son (1991), Glosten, Jagannathan and Runkle (1993), Zakoïan (1994), Sen-

tana (1995), Ding, Granger and Engle (1993), and for the log-GARCH, under

slightly different forms, by Geweke (1986), Pantula (1986) and Milhøj (1987).

See Francq and Zakoïan (2010) for an overview on GARCH models.

The conditional VaR of a process (ǫt) at risk level α ∈ (0, 1), denoted by

VaRt(α), is defined by

Pt−1[ǫt < −VaRt(α)] = α,

where Pt−1 denotes the historical distribution conditional on {ǫu, u < t}.
When (ǫt) satisfies (2.1), the theoretical VaR is then given by

VaRt(α) = −σ(ǫt−1, ǫt−2, . . . ;θ0)ξα (2.3)

where ξα is the α-quantile of ηt.

Remark 2.1 It can be noted that in the standard GARCH(p, q) model, the

conditional VaR at level α automatically satisfies the stochastic recurrence

equation

VaR2
t (α) = ω0ξ

2
α +

q∑

i=1

a0iξ
2
αǫ

2
t−i +

p∑

j=1

b0jVaR2
t−j(α).

Direct modelling of the conditional VaR has been proposed in several pa-

pers, for instance Engle and Manganelli (2004), Koenker and Xiao (2006),

Gouriéroux and Jasiak (2008). A difficulty in this approach is to constrain

the model so as to guarantee the monotonicity of the conditional VaR as

a function of the risk level. Monotonicity is automatically satisfied in our

approach.
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2.2 Asymptotic properties of the multi-level two-step VaR

estimator

A two-step standard method for evaluating the VaR at different levels

αi ∈ (0, 1), for i = 1, . . . ,m consists in estimating the volatility parameter θ0

by Gaussian QMLE, and then estimating the ξαi
by the corresponding em-

pirical quantiles of the residuals; see, for instance, Chapter 2 in McNeil, Frey

and Embrechts (2005). For a comparison of alternative strategies based on

residuals following a preliminary volatility estimation, see Kuester, Mittnik

and Paolella (2006).

Given observations ǫ1, . . . , ǫn, and arbitrary initial values ǫ̃i for i ≤ 0, we

define, under assumptions given below,

σ̃t(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ;θ),

which is used to approximate σt(θ) = σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ0, ǫ−1, . . . ;θ). A

QMLE of θ0 in Model (2.1) is defined as any measurable solution θ̂n of

θ̂n = arg min
θ∈Θ

Q̃n(θ), (2.4)

with

Q̃n(θ) = n−1
n∑

t=1

ℓ̃t(θ), ℓ̃t(θ) =
ǫ2t

σ̃2
t (θ)

+ log σ̃2
t (θ).

The following assumptions are required to derive the asymptotic properties

of the QMLE θ̂n.

A1: (ǫt) is a strictly stationary and ergodic solution of Model (2.1). More-

over, E|ǫ0|s < ∞ for some s > 0.

A2: For any real sequence (xi), the function θ 7→ σ(x1, x2, . . . ;θ) is contin-

uous. Almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ and for some ω > 0.
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A3: The function θ 7→ σ(x1, x2, . . . ;θ) has continuous second-order deriva-

tives, and

sup
θ∈Θ

{
|σt(θ)− σ̃t(θ)|+

∥∥∥∥
∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥+
∥∥∥∥
∂2σt(θ)

∂θ∂θ′ − ∂2σ̃t(θ)

∂θ∂θ′

∥∥∥∥
}

≤ C1ρ
t,

where C1 is a random variable which is measurable with respect to {ǫu, u < 0}
and ρ ∈ (0, 1) is a constant.

A4(θ∗
0): θ∗

0 belongs to the interior of Θ and σt(θ
∗
0)/σt(θ) = 1 a.s. iff θ = θ∗

0.

A5(θ∗
0): There exist no non-zero x ∈ Rd such that x′

∂σt(θ∗
0
)

∂θ = 0, a.s.

A6(θ∗
0): There exists a neighborhood V (θ∗

0) of θ∗
0 such that the following

variables have finite expectation:

sup
θ∈V (θ∗

0
)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥
4

, sup
θ∈V (θ∗

0
)

∥∥∥∥
1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥
2

, sup
θ∈V (θ∗

0
)

∣∣∣∣
σt(θ

∗
0)

σt(θ)

∣∣∣∣
2δ

.

Note that Assumptions A2, A3, A5 and A6 can be simplified for specific

forms of σt: for instance if the model is the GARCH (p, q) Model (2.2),

A2 reduces to standard assumptions on the lag polynomials of the volatility

and A3, A5, A6 can be directly verified. Note also that the only moment

assumption on the observed process is the existence of a small moment in

A1, which is automatically satisfied for standard models such as the classical

GARCH(p, q).

Now let the residuals of the QML estimation

η̂t =
ǫt

σ̃t(θ̂n)
, t = 1, . . . , n,

and let ξn,αi
denote the empirical αi-quantile of η̂1, . . . , η̂n. Let α =

(α1, . . . , αm)′, ξn,α = (ξn,α1
, . . . , ξn,αm)

′ and let ξα = (ξα1
, . . . , ξαm)′ denote

the vector of population quantiles.
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Remark 2.2 The derivation of the joint asymptotic properties of sample

quantiles goes back to Cramér (1946) in the iid case. Different articles have

extended these results for the marginal quantiles of stationary processes,

under different dependence assumptions. See Dominicy, Hörmann, Ogata

and Veredas (2013) and the references therein. We cannot apply their results

because (η̂t) is not a stationary process.

The next result gives the joint asymptotic distributions of (θ̂
′

n, ξ
′
n,α). Let

Dt(θ) = σ−1
t (θ)∂σt(θ)/∂θ.

Theorem 2.1 Assume ξαi
< 0, for i = 1, . . . ,m, Eη2t = 1 and κ4 :=

Eη4t < ∞. Suppose that η1 admits a density f which is continuous and

strictly positive in a neighborhood of ξαi
, for i = 1, . . . ,m. Let A1-A3 and

A4(θ0)-A6(θ0) hold. Then




√
n
(
θ̂n − θ0

)

√
n(ξn,α − ξα)


 L→ N (0,Σα), Σα =




κ4−1
4 J−1 λ′

α ⊗ J−1
Ω

λα ⊗Ω
′J−1 ζα


 ,

where Ω = E(Dt), J = E(DtD
′
t) with Dt = Dt(θ0), λα = (λα1

, . . . , λαm)′,

ζα = (ζij)1≤i,j≤m and

λαi
= ξαi

κ4 − 1

4
+

pαi

2f(ξαi
)
,

ζij = ξαi
ξαj

κ4 − 1

4
+

ξαi
pαj

2f(ξαj
)
+

ξαj
pαi

2f(ξαi
)
+

(αi ∧ αj)(1− αi ∨ αj)

f(ξαi
)f(ξαj

)
,

with pα = E
(
η211{η1<ξα}

)
− α.

Proof. In view of Francq and Zakoïan (Proof of Theorem 4, 2012), we have,

for i = 1, . . . ,m,

√
n(ξαi

− ξn,αi
) = ξαi

Ω
′√n(θ̂n − θ0) +

1

f(ξαi
)

1√
n

n∑

t=1

(1{ηt<ξαi
} − αi) + oP (1),

7



and

√
n(θ̂n − θ0) =

−J−1

2
√
n

n∑

t=1

(1− η2t )Dt + oP (1).

Hence

Covas

(
√
n(θ̂n − θ0),

1√
n

n∑

t=1

(1{ηt<ξαi
} − αi)

)
=

1

2
pαi

J−1
Ω.

It follows that, for i ≤ j,

Covas{
√
n(ξαi

− ξn,αi
),
√
n(ξαj

− ξn,αj
)}

=

{
ξαi

ξαj

κ4 − 1

4
+

ξαi
pαj

2f(ξαj
)
+

ξαj
pαi

2f(ξαi
)

}
Ω

′J−1
Ω+

αi(1− αj)

f(ξαi
)f(ξαj

)
,

Covas

(√
n(θ̂n − θ0),

√
n(ξαi

− ξn,αi
)
)

= λαi
J−1

Ω.

We have Ω
′J−1

Ω = 1 (see Remark 3.1 in Francq and Zakoian, 2013) and

thus we obtain

Covas{
√
n(ξαi

− ξn,αi
),
√
n(ξαj

− ξn,αj
)} = ζij.

By the CLT for martingale differences, we get the announced result. 2

Let VaRt(α) = (VaRt(α1), . . . ,VaRt(αm))′, the vector of VaR’s at levels

αi. We have

VaRt(α) = −σ(ǫt−1, ǫt−2, . . . ;θ0)ξα. (2.5)

A natural estimator of VaRt(α) is thus

V̂aRt(α) = −σ̃t(θ̂n)ξn,α.

Remark 2.3 A classical problem, called quantile crossing, in quantile re-

gression is that two or more estimated conditional quantile functions can

8



cross or overlap. This drawback occurs because each conditional quantile

function is independently estimated (see Koenker (2005)). It is thus worth

noting that our estimation procedure does not face this problem. By con-

struction, the estimated conditional VaR are monotonous functions of the

α’s.

Remark 2.4 For the standard GARCH(p, q) model, we have J−1
Ω = 2θ0,

where

θ0 =


 θ

[1:q+1]
0

0p


 , θ

[1:q+1]
0 = (ω0, a01, . . . , a0q)

′,

(see Francq and Zakoian (2013)), and the asymptotic variance in Theorem

2.1 takes the more explicit form

Σα =




κ4−1
4 J−1 2λ′

α ⊗ θ0

2λα ⊗ θ
′
0 ζα


 .

2.3 Constructing confidence intervals for the VaR’s

Let Σ̂α denote a consistent estimator of the asymptotic variance Σα.

Such an estimator can be constructed by i) replacing J by Ĵ =

n−1
∑n

t=1 Dt(θ̂n)Dt(θ̂n)
′; ii) using the residuals η̂t to construct an estimator

f̂ of the density function f of the innovation, and to replace the theoretical

moments of the process (ηt) by their empirical counterpart.

The delta method thus suggests a (1−α0)% confidence interval (CI) for

the VaRt(αi) whose bounds are

−σ̃t(θ̂n,αi
)ξn,αi

±
Φ−1
1−α0/2√

n

{(
∆̂αΣ̂α∆̂

′

α

)
ii

}1/2
, (2.6)

where

∆̂α =

(
ξn,α

∂σ̃t(θ̂n,α)

∂θ′ , σ̃t(θ̂n)Im

)
,

9



Φ−1
α0

denotes the α0-quantile of the standard Gaussian distribution, and Im

denotes the m × m identity matrix. Note that the choice of α0 (the risk

estimation level) is independent from that of the αi’s (the financial risk

levels). Drawing such CI allows to underline the importance of the estimation

risk for VaR evaluation.

2.4 A portfolio of VaR’s

Focusing only on VaR at a given level for measuring risk can be misleading

since it gives a limited view of the distribution, which may result in lack of

robustness for risk management and risk control. To circumvent this prob-

lem, several risk measures have to be jointly considered in practice. To this

aim, Distortion Risk Measures (DRM) have been introduced in the insurance

literature, in a series of papers by Wang and coauthors [see Wang (2000) and

the references therein]. A particular case is the conditional expected shortfall

(ES) which, at level α ∈ (0, 1), can be written as

ESt(α) = −Et−1[ǫt | ǫt < −VaRt(α)] =
1

α

∫ α

0
VaRt(u)du.

More general DRM take the form

DRMt =

∫ 1

0
VaRt(u)dG(u), (2.7)

where the distortion function, G, is a given cumulative distribution function

(cdf) on [0, 1]
3
. It follows from (2.3) that, for Model (2.1),

DRMt = −σ(ǫt−1, ǫt−2, . . . ;θ0)

∫ 1

0
ξudG(u). (2.8)

3
Examples of DRM are the Proportional Hazard DRM, defined with G(u) = ur, and

the Exponential DRM defined with G(u) = (1 − eru)/(1 − er), both of them defined for

r > 0. These distortion functions are concave for 0 < r < 1 and r > 0, respectively, which

corresponds to coherent risk measure in the sense of Artzner, Delbaen, Eber and Heath

(1999) [see e.g. Wirch and Hardy (1999)].
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In the spirit of DRM, a risque measure which can be interpreted as a portfolio

of VaR’s at different levels is defined by

p′VaRt(α) =

m∑

i=1

piVaRt(αi)

where p = (p1, . . . , pm) with pi ≥ 0 for i = 1, . . . ,m and
∑m

i=1 pi = 1. This

risk measure can be interpreted as a special DRM with associated distortion

function corresponding to Dirac masses at the points αi. In view of (2.6),

an asymptotic CI at level α0 for this risk measure is

−σ̃t(θ̂n,αi
)p′ξn,α ±

Φ−1
1−α0/2√

n

{
p′
∆̂αΣ̂α∆̂

′

αp
}1/2

. (2.9)

2.5 Choosing the weights to approximate DRMs

An estimator of the DRM in (2.8) can be constructed as follows:

D̂RMt = −σ(ǫt−1, ǫt−2, . . . ; θ̂n)

n∑

i=1

{
G

(
i

n

)
−G

(
i− 1

n

)}
η̂n,i, (2.10)

where (η̂n,n−i) denotes the order statistics, obtained by ranking the η̂t in

ascending order: η̂n,1 < · · · < η̂n,n.

However, deriving the asymptotic distribution of this estimator, might

be a formidable task. To our knowledge such results do not exist in the

literature. In this section, we use VaR portfolios to obtain lower and upper

bounds for a class of DRM, leading to (approximate) asymptotic CI’s for

such DRM.

It is not restrictive to assume α1 < α2 < . . . < αm. Suppose that the

support of the distortion cdf G is [α1, αm], that is

DRMt =

∫ αm

α1

VaRt(u)dG(u). (2.11)

11



In other words, we focus on "moderate risks": we do not consider extreme

risks, corresponding to values of α approaching 0. An example of class of

such DRM, parameterized by the coefficient r > 0 and adapted from the

so-called "proportional hazard" DRM, is defined by

G(u) =

(
u− α1

αm − α1

)r

1u∈(α1,αm) + 1u∈(αm,1), (2.12)

where 1A denotes the indicator function of any set A.

Lower and upper bounds for the DRM in (2.11), can be constructed as

follows. Because u 7→ VaRt(u) is decreasing we have, noting that G(α1) = 0

and G(αm) = 1,

p′
LVaRt(α) ≤ DRMt(α) ≤ p′

UVaRt(α)

where

pL = (0, G(α2), G(α3)−G(α2), . . . , 1−G(αm−1)) ,

pU = (G(α2), G(α3)−G(α2), . . . , 1−G(αm−1), 0) .

It follows that a CI at significance level α∗
0 ≤ α0 for this risk measure is

[
−σ̃t(θ̂n,αi

)p′
Lξn,α −

Φ−1
1−α0/2√

n

{
p′
L∆̂αΣ̂α∆̂

′

αpL

}1/2
,

−σ̃t(θ̂n,αi
)p′

Uξn,α +
Φ−1
1−α0/2√

n

{
p′
U∆̂αΣ̂α∆̂

′

αpU

}1/2
]
.(2.13)

3 NonGaussian QML estimation of VaR’s

In this section we develop an alternative method for estimating the con-

ditional VaR’s. This method is based on a reparameterization of model

(2.1). QML inferences based on similar reparameterizations were proposed

by Francq, Lepage and Zakoian (2011), Fan, Qi and Xiu (2012), Francq and

Zakoian (2013).
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3.1 Reparameterization and VaR parameter

The approach of this section requires the following assumption

A7: There exists a function H such that for any θ ∈ Θ, for any K > 0,

and any sequence (xi)i

Kσ(x1, x2, . . . ;θ) = σ(x1, x2, . . . ;θ
∗), where θ∗ = H(θ,K).

This assumption is not very restrictive as it is satisfied by all commonly

used GARCH-type formulations, in particular those mentioned in Section

2. It means that scaling the volatility is equivalent to a change of pa-

rameter. In general, the new parameter satisfies θ∗ ≥ θ, componentwise,

when K ≥ 1. For instance, in the GARCH(p, q) model (2.2) we have

θ∗ = (K2ω,K2a1, . . . ,K
2aq, b1, . . . , bp)

′.

In view of (2.3), we have under A7, provided αi is small enough so that

−ξαi
> 0,

VaRt(αi) = σ(ǫt−1, ǫt−2, . . . ;θ0αi
) (3.1)

where θ0,αi
= H(θ0,−ξαi

). This parameter depends on both the dynamics of

the GARCH process, through the volatility parameters, and the innovations

distribution through the α-quantile. It is called VaR-parameter in Francq

and Zakoïan (2012) (hereafter FZ). Similarly, if −
∫ 1
0 ξudG(u) > 0, the DRM

in (2.8) can be written as

DRMt = σ(ǫt−1, ǫt−2, . . . ;θ
G
0 ) (3.2)

where θG
0 is a DRM-parameter defined by

θG
0 = H

(
θ0,−

∫ 1

0
ξudG(u)

)
. (3.3)
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It follows from (3.1) that, with the notation used in (2.5),

VaRt(α) =




σ(ǫt−1, ǫt−2, . . . ;θ0α1
)

...

σ(ǫt−1, ǫt−2, . . . ;θ0αm)


 .

The approach, in this section, consists in estimating by QML the θ0αi
’s

instead of θ0. The idea is to interpret, for i = 1, . . . ,m, the VaR-parameter

θ0αi
as a volatility parameter in a reparameterized model. We note that

ǫt = σ(ǫt−1, ǫt−2, . . . ;θ0αi
)ηi,t, where ηi,t =

ηt
−ξαi

.

The problem is thus to estimate by QML the model




ǫt = σi,tηi,t, P [ηi,t < −1] = αi,

σi,t = σ(ǫt−1, ǫt−2, . . . ;θ0,αi
).

(3.4)

Note that the Gaussian QML cannot be employed because it requires the

assumption that Eη2t = 1. FZ derived the asymptotic distribution of the

non-Gaussian QMLE of θ0,αi
defined by

θ̂n,αi
= argmax

θ∈Θ

n∑

t=1

log
1

σ̃t(θ)
hαi

(
ǫt

σ̃t(θ)

)
(3.5)

where hαi
is given by

hαi
(x) = λαi(1− 2αi)|x|2λαi−1{|x|−λ

1{|x|>1} + 1{|x|≤1}} (3.6)

for some (unimportant) positive constant λ.

As noted by FZ, the non-Gaussian QML estimator in (3.5) can be in-

terpreted as a nonlinear quantile regression estimator. Letting ρα(u) =

u(α− 1{u≤0}), for α ∈ (0, 1), we have

θ̂n,αi
= argmin

θ∈Θ

1

n

n∑

t=1

ρ1−2αi

{
log

( |ǫt|
σ̃t(θ)

)}
.

In the next section, we derive the joint distribution of the θ̂n,αi
’s.
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3.2 Asymptotic joint distribution of the VaR parameter es-

timators

We introduce the following additional assumption.

A8: The density f of η0 is symmetric, continuous and strictly positive at

the points ξαi
, for i = 1, . . . ,m, and satisfies M = supx∈R |x|f(x) < ∞.

Moreover E| log |η0|| < ∞.

Let θ0α = (θ′
0α1

, . . . ,θ′
0,αm

)′ and let θ̂n,α = (θ̂
′

n,α1
, . . . , θ̂

′

n,αm
)′.

Theorem 3.1 Under the assumptions A1-A3, A7, A8 and if, for i =

1, . . . ,m, αi ∈ (0, 1/2) and A4(θ0αi
)-A6(θ0αi

) hold, there exists a sequence

of local minimizers θ̂n,α of the QML criterion satisfying

√
n(θ̂n,α − θ0,α)

d→ N (0,Ξα) ,

where Ξα is a md×md matrix whose (i, j)-block of size d× d is

Ξα[i, j] =
2αi ∧ αj (1− 2αi ∨ αj)

4f(ξαi
)f(ξαj

)
J−1

αiαi
Jαiαj

J−1
αjαj

with Jαiαj
= EDt(θ0,αi

)D′
t(θ0,αj

).

Proof. Note that ν̂n,αi
:=

√
n(θ̂n,αi

− θ0,αi
) is such that

ν̂n,αi
= arg min

ν∈Λn,αi

S̃n,αi
(ν),

where Λn,αi
:=

√
n(Θ− θ0,αi

) and

S̃n,αi
(ν) =

n∑

t=1

ρ1−2αi

{
log

( |ǫt|
σ̃t(θ0,αi

+ n−1/2ν)

)}
−ρ1−2αi

{
log

( |ǫt|
σ̃t(θ0,αi

)

)}
.

For notational convenience, write a
c
= b when a = b + c. Showing that the

initial values are asymptotically negligible, and noting that ǫt/σt(θ0,αi
) =

15



−ηt/ξαi
, it can be proven that, uniformly in ν belonging to an arbitrary

compact set (see Lemma 2 in FZ),

S̃n,αi
(ν)

oP (1)
= Sn,αi

(ν) :=

n∑

t=1

ρ1−2αi

{
log

( |ǫt|
σt(θ0,αi

+ n−1/2ν)

)}

−ρ1−2αi

{
log

∣∣∣∣
ηt
ξi

∣∣∣∣
}
.

Doing a Taylor expansion of log σt(θ0,αi
+n−1/2ν) around ν = 0, and using

Lemma 2 in FZ, we obtain

Sn,αi
(ν)

oP (1)
= S∗

n,αi
(ν) :=

n∑

t=1

ρ1−2αi

{
log

∣∣∣∣
ηt
ξαi

∣∣∣∣−
1√
n
ν′Dt(θ0,ααi

)

}

−ρ1−2αi

{
log

∣∣∣∣
ηt
ξαi

∣∣∣∣
}
.

Note that S∗
n,αi

(·) is equal to the function Zn(·) defined by Equation (17)

in Koenker and Xiao (2006), when applied to the quantile regression of

log |ηt/ξαi
| on Dt(θ0,ααi

) at the level 1− 2αi. Even if our framework is not

that of the above-mentioned paper, similar results hold true. More precisely,

FZ show that the finite-dimensional distributions of S∗
n,αi

(ν) and

S∗∗
n,αi

(ν) := − 1√
n

n∑

t=1

ν ′Dt(θ0,αi
)
(
1− 2αi − 1{|ηt|<−ξαi

}

)
+ f(ξαi

)ν ′Jαiαi
ν

converge to those of the same Gaussian process. Noting that the trajectories

of S∗
n,αi

(·) and S∗∗
n,αi

(·) are convex, we also have uniform convergence over

every compact set in the space of the continuous function on Rd. By Lemma

2.2 in Davis, Knight and Liu (1992) the minima of S∗
n,αi

(·) and S∗∗
n,αi

(·) are

asymptotically the same. By Remark 1 of the above-mentioned paper, we

finally obtain

ν̂n,αi

oP (1)
=

1

2f(ξαi
)
J−1

αiαi

1√
n

n∑

t=1

Dt(θ0,αi
)
(
1− 2αi − 1{|ηt|<−ξαi

}

)
.

The conclusion follows easily. 2
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Remark 3.1 Theorems 2.1 and 3.1 provide the asymptotic distributions of

two estimators for VaR portfolios. At first sight, the method of this section

is not attractive because it is more cumbersome, from a numerical point of

view, than that of the previous section. Indeed, it requires the optimization

of m QML criteria, whereas the first method requires one. However, it is

important to note that the assumptions required for the asymptotic results

are different. In particular, the fourth moment assumption Eη4t < ∞ of the

first method, is not required in Theorem 3.1. On the other hand, the latter

theorem is valid under a symmetry assumption on the noise distribution. To

conclude, the method of this section can only be recommended in presence

of very heavy-tailed errors distribution.

4 Empirical illustration

In this section we present empirical results using returns of nine major stock

indices: CAC (Paris), DAX (Frankfurt), FTSE (London), Nikkei (Tokyo),

NSE (Bombay), SMI (Switzerland), SP500 (New York), SPTSX (Toronto),

and SSE (Shanghai). Our sample spans the period from January, 2 1991 to

August, 26 2011 (but all series are not available for the whole period, see

Table 1 for the sample sizes). For each series of log-returns, ǫt = log(pt/pt−1)

where pt denotes the value of the index, we used a GARCH(1,1) model for the

volatility dynamics. We estimated the DRM parameter θG
0 = (ωG, aG, bG),

defined in (3.3), with r = 1/2, α1 = 0.01 and αm = 0.1 for the DRM

function G defined in (2.12). In view of (2.10) and (3.3), the DRM-parameter

estimator is given by

θ̂
G

n = H

(
θ̂n,−

n∑

i=1

{
G

(
i

n

)
−G

(
i− 1

n

)}
η̂n,i

)
,
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where H(ω,α, β;K) = (K2ω,K2α, β). The CI’s are obtained using (2.13)

with m = 20 and α0 = 5%.

We report in Table 1 our estimates of the conditional DRM parameter

and the corresponding CI’s. Caution is needed in the interpretation of this

table because the DRM parameter is not the usual volatility parameter. In

particular, the fact that aG + bG > 1 is not in contradiction with the usual

empirical finding, a+ b ≈ 1, for GARCH(1,1) models. Noticeable differences

appear between these series, particularly for the coefficients ωG and aG and

their CI’s. Replacing the number m = 20 of αi’s used for the discretization

of the DRM by m = 10 or m = 30 left almost unchanged the CI’s, so we did

not report the results. We can depict three categories of assets: i) the FTSE,

SP500 and SPTSX display similar coefficients, relatively small ωG’s, large

persistence parameter b’s, small CI’s; ii) Nikkei, NSE and SMI provide, by

comparison, larger ωG’s and aG’s, smaller persistence and much larger CI’s;

iii) the CAC, DAX and SSE display intermediate results. Examination of

the CI’s shows that the differences between parameters of series in groups i)

and ii) are statistically significant. Note also that larger CI’s are not always

due to smaller sample size.

Figure 1 displays the returns, estimated -VaR (at the 10% and 1% levels),

-DRM, and their accuracy intervals for the DAX index from April, 8, 2011

to August, 26, 2011. The (1 − α0)% confidence intervals (for α0 = 5%) are

obtained from formula (2.13). We reported the opposite of the conditional

risks (VaR and DRM), because in terms of capital reserves, only large nega-

tive returns matter. As expected, the accuracy on VaR estimation decreases

when the risk α approaches 0. Interestingly, the accuracy of the DRM is

comparable to that of the VaR’s, despite the more sophisticated construc-

tion of this measure of risk. Note also that, in turbulent periods, both the
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Table 1: Estimation of the conditional DRM parameter for 9 stock mar-

ket indices. The approximate 95% confidence intervals are displayed into

brackets.

Index n ωG aG b

CAC 5229 0.11 [0.05,0.17] 0.31[0.22,0.41] 0.90 [0.88,0.92]

DAX 5226 0.12 [0.04,0.20] 0.31[0.18,0.45] 0.90 [0.86,0.93]

FTSE 5217 0.04 [0.02,0.07] 0.32[0.24,0.41] 0.91 [0.89,0.92]

Nikkei 5078 0.20 [0.11,0.30] 0.37[0.26,0.48] 0.88 [0.85,0.91]

NSE 2265 0.25 [0.06,0.46] 0.40[0.20,0.65] 0.87 [0.82,0.92]

SMI 5209 0.17 [0.08,0.27] 0.46[0.27,0.65] 0.84 [0.79,0.89]

SP500 5206 0.03 [0.01,0.05] 0.27[0.19,0.36] 0.92 [0.90,0.94]

SPTSX 2934 0.03 [0.01,0.06] 0.27[0.17,0.38] 0.93 [0.91,0.95]

SSE 2982 0.11 [0.03,0.20] 0.25[0.15,0.37] 0.93 [0.90,0.95]

market risks, as measured by the VaR’s or the DRM, and the estimation

risks, as measured by the CI’s, increase.

5 Conclusion

In this paper, we proposed procedures for joint statistical inference on the

VaR’s at different levels, in the framework of conditionally heteroskedastic

models. We also introduced an approximation of general DRM based on a

finite number of VaR’s. Our empirical analysis showed that confidence inter-

vals based on this measure of risk have similar magnitude as those obtained

for VaR’s.

One alternative for deriving the asymptotic distribution of the DRM
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VaR and DRM accuracy intervals

R
et

ur
n,

 V
aR

 a
nd

 −
D

R
M

−
8

−
6

−
4

−
2

0
2

4

2011−08−18

Figure 1: Returns (in blue), estimated -VaR (at the 10% and 1% levels, in green),

-DRM (in red), and CI’s of the VaR’s and DRMs, for the DAX index from April, 8,

2011 to August, 26, 2011. Estimation of the volatility and risk parameters is based

on the 1000 previous values.
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estimator would be to establish a functional CLT, in function of α, for the

vector of the volatility parameter estimator and the empirical quantile of

the residuals. Deriving this asymptotic distribution could be a formidable

challenge. Moreover, the asymptotic distribution would certainly be non

explicit. The approximation proposed in this article, which provides an

explicit and easily estimable asymptotic distribution, thus has the advantage

of simplicity.

One object of this study was also to draw attention on the estimation

risk, in other words the effects of parameter estimation on the accuracy of

VaR’s evaluations. We showed that estimation risk can be explicitly taken

into account, leading to confidence bounds for portfolios, or more generally

any smooth function, of VaR’s. For risk management purposes, or from a

regulation point of view, such confidence intervals could be used to increase

the capital reserve in order to account for the underlying estimation uncer-

tainty.
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