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Regime Switching and Bond Pricing
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1 INTRODUCTION

Regime switching models have been widely used in Financial Econometrics. The domains of ap-

plications include the analysis of stock returns [see e.g. Hamilton, Susmel (1994), Billio, Pelizzon

(2000), Ang, Chen (2002)], exchange rates [see e.g. Engel, Hamilton (1990), Bekaert, Hodrick

(1993)], asset allocations [see Ang, Bekaert (2002a, 2004), Guidolin, Timmerman (2008), Tu

(2010)], electricity prices [Huisman, Mahieu (2003), Mount, Ning, Cai (2005), Monfort, Feron

(2012)], or systemic risk [Billio, Getmansky, Lo, Pelizzon (2012)]. See also the survey paper by

Ang, Timmerman (2011). However, it is in the modeling of default-free interest rates that the

regime switching approach is the most frequent. A first stream of literature does not consider the

pricing problem, but shows how the introduction of switching regimes can improve the properties

of dynamic models of interest rates in terms of persistence, of fitting and forecasting of the yields or

of their unconditional and conditional moments [see e.g. Hamilton (1988), Garcia, Perron (1996),

Ang, Beckaert (2002b, 2002c)]. A second stream of literature focuses on the pricing problem and

incorporates switching regimes in a simultaneous modeling of the historical dynamics, the risk-

neutral dynamics and the stochastic discount factor, in order to evaluate market prices of risks,

risk premia or term premia [see e.g. Bansal, Zhou (2002), Dai, Singleton, Yang (2007), Monfort,

Pegoraro (2007), Ang, Bekaert, Wei (2008), Chib, Kang (2013)]. In both kinds of literature the

switching regimes are latent, that is not observed by the econometrician.

More recently, regime-switching features have been introduced in the modeling of defaultable

bond prices [see Monfort, Renne (2011, 2013)] and credit ratings. In the latter case the latent

regimes are introduced to account for non-linear changes in the probabilities of credit-rating tran-

sition, extending the approach proposed for instance by Jarrow, Lando, Turnbull (1997).

The present paper focuses also on the applications to interest rate models. More precisely, we

propose an overview of the usefulness of the regime switching approach for building various bond

pricing models and of the roles of the regimes in these models. The objective of the pricing models

can be to price default-free or defaultable bonds, or to analyse simultaneously credit ratings and
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defaultable bonds prices. The regimes can be used to capture stochastic drifts and/or volatilities,

to represent discrete values of a target rate, to incorporate business cycle or crises effects, to

introduce contagion effects, to reproduce zero lower bound spells, or to evaluate the impact of

standard or non-standard monetary policies. From a technical point of view, we stress the key

role of Markov chains, Compound Autoregressive (Car) processes, Regime Switching Car processes

and multi-horizon Laplace transforms.

In Section 2 we show that a key tool for pricing both default-free and defaultable bonds in

discrete time is the multi-horizon Laplace transform of the underlying risk factors. These Laplace

transforms can be computed in closed form for Markov chains and recursively for Regime Switching

Compound Autoregressive (Car) processes. In order to justify the non-linear models chosen for

the historical dynamics of interest rates, we conclude this section with an empirical exercise on

the U.S. bond market. This shows the relevance of Regime-Switching Gaussian VAR(p) models

in capturing linear and non-linear serial dependence in interest rates as well as their lack of

Gaussianity.

Then we develop regime switching term structure models in various directions. We first consider

in Section 3 the pricing of default-free bonds. We carefully distinguish the Regime Switching Term

Structure Models (RSTSM), which provide affine formulas for the yields as functions of underlying

risk factors, and the RSTSM for which the affine formulas are satisfied by the bond prices. In

the latter case, we discuss the respective properties of models with exogenous and endogenous

switching regimes and their ability to generate short rate paths staying at a lower bound. We also

discuss the practical implementation of these models, where the bond prices can be easily computed

recursively, and sometimes in closed form. We also propose numerical illustrations showing the

potentialities of these models for reproducing zero lower bound spells, or for evaluating monetary

policies.

In Section 4 we consider pricing models for defaultable bonds. In this framework there exist

individual (specific) risk factors as well as common (systematic) risk factors including a global

regime indicator. When the stochastic discount factor (s.d.f.) depends on the common factors only,
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the causality features between individual and common factors are the same under the historical and

risk-neutral distributions. Defaultable-bond pricing is illustrated by an application to sovereign

bonds of the Euro-zone countries. A common regime variable is introduced to capture the crisis

periods. The approach disentangles credit and liquidity risks incorporated in spreads. Historical

and risk-neutral default probabilities are compared.

Section 5 concludes. Proofs and Tables are gathered in Appendices.

2 A TOOLBOX FOR REGIME SWITCHING TERM

STRUCTURE MODELS

This section gathers the tools which are useful for the analysis of RSTSM. We first recall the

pricing formulas for default-free and defaultable bond pricing and highlight the key role of the

multi-horizon Laplace transform of the risk factors. Then, we compute Laplace transforms for

Markov chains and for regime switching compound autoregressive processes.

2.1 Bond pricing

Let us adopt a discrete time setting in which the new information of the investors5 at date

t, t = 1, 2, . . . , is a n-dimensional factor wt. The whole information of the investors at date t

is therefore wt = (w′

t, w
′

t−1, . . . , w
′

1)
′. The historical dynamics of the factor process {wt} is char-

acterized either by the sequence of conditional probability density functions (p.d.f.) fP(wt|wt−1)

(with respect to a dominating measure µ), or by the sequence of conditional Laplace transforms

ϕ
(w)
t−1(u) = E[exp(u′wt)|wt−1] , defined on a convex set containing 0. Let us denote by pt[g(wt+h)]

the (spot) price at t of an asset providing at t + h the payoff g(wt+h). Under standard assump-

tions, including the absence of arbitrage opportunity [see Harrison, Kreps (1979), Hansen, Richard

(1987), Bertholon, Monfort, Pegoraro (2008)], there exists a sequence of positive random variables

5We focus more on bond pricing than on the estimation of the dynamic term structure models, which depends
on the information available to the econometrician. This information can be different from the information of the
investor.
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Mt−1,t =Mt−1,t(wt), called stochastic discount factors (s.d.f.), such that :

pt[g(wt+h)] = E[Mt,t+1(wt+1) . . .Mt+h−1,t+h(wt+h)g(wt+h)|wt]. (2.1)

In particular the price at date t of a default-free zero-coupon bond with residual maturity h,

delivering the unitary payoff at t+ h, is :

B(t, h) = Et(Mt,t+1 . . .Mt+h−1,h).

The default-free yield to maturity h is :

R(t, h) = −
1

h
log[B(t, h)].

For h = 1, we get the short rate rt = R(t, 1), defined by :

rt = − log[Et(Mt,t+1)] ⇐⇒ Et(Mt,t+1) = exp(−rt). (2.2)

The risk-neutral (R.N.) dynamics of {wt} is defined by the sequence of conditional distribu-

tions of wt given wt−1, whose p.d.f. with respect to the corresponding historical distribution

is Mt−1,t exp(rt−1). In other words, the conditional R.N. p.d.f. of wt given wt−1 with respect to a

dominating measure µ is :

fQ(wt|wt−1) = fP(wt |wt−1)Mt−1,t exp(rt−1), (2.3)

This equality is equivalent to :

Mt−1,t =
fQ(wt |wt−1)

fP(wt |wt−1)
exp(−rt−1), (2.4)
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and implies :

EQ
t−1(M

−1
t−1,t) = exp(rt−1), (2.5)

which is the R.N. analogue of equation (2.2) at date t− 1.

Thus, the pricing formula (2.1) can be also written as :

pt[g(wt+h)] = EQ
t [exp(−rt − . . .− rt+h−1) g(wt+h)] , (2.6)

and therefore the spot price is the conditional expectation under the R.N. distribution of the

discounted cash-flow g(wt+h).

Formula (2.6) can be used to derive an alternative expression of the (spot) price of the zero-coupon

bond :

B(t, h) = EQ
t [exp(−rt − . . .− rt+h−1)]. (2.7)

When the short rate is an affine function of risk factors wt :

rt = β0 + β ′

1wt,

the zero-coupon price B(t, h) becomes :

B(t, h) = exp(−β0h− β ′

1wt)E
Q
t [exp(−β

′

1wt+1 − . . .− β ′

1wt+h−1)]. (2.8)

For a defaultable zero-coupon bond, with residual maturity h, the payoff at t + h is 1, if the

issuing entity n has not defaulted, and 0, otherwise, when the recovery rate is zero. The price of

the defaultable bond is (see Section 4) :

Bn(t, h) = EQ
t [exp(−rt . . .− rt+h−1 − λQn,t+1 . . .− λQn,t+h)]

= exp[−h(β0 + α0n)− β ′

1wt]

×EQ
t {exp[−(β1 + α1,n)

′wt+1 − . . .− (β1 + α′

1,n)wt+h−1 − α′

1,nwt+h]} ,

(2.9)
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where λQn,t = α0,n + α′

1,nwt denotes the R.N. default intensity.

These bond pricing formulas highlight the role of the conditional Laplace transforms of the

risk-factors. More precisely, throughout the paper, we will have to compute for any date t, and

given sequences (γ
(h)
1 , . . . , γ

(h)
h ), h ∈ {1, . . . , H}, the multi-horizon conditional Laplace transforms :

ϕ
(w)
t,h

(
γ
(h)
1 , . . . , γ

(h)
h

)
:= Et[exp(γ

(h)′

1 wt+1 + . . .+ γ
(h)′

h wt+h)]

in an efficient way. Note that, in formulas (2.8) and (2.9) the sequences (γ
(h)
1 , . . . , γ

(h)
h ), h ∈

{1, . . . , H}, have a reverse order structure in which, for any h ∈ {1, . . . , H}, we have :

γ
(h)
h = δ1, γ

(h)
h−1 = δ2, . . . , γ

(h)
1 = δh ,

for a given sequence δ1, . . . , δH . In formula (2.8) we have δh = −β1, ∀h, whereas in formula (2.9)

we have δ1 = −α1,n and δh = −β1 − α1,n, ∀h ≥ 2.

2.2 Markov chains

Switching regimes are usually represented by Markov chains. When there are J regimes, we can

define a Markov chain process {zt} whose component zj,t, for any j ∈ {1, . . . , J}, is the indicator

function of regime j. In other words, zt is valued in {e1, . . . , eJ}, where ej is the J-dimensional

vector, whose components are all equal to zero except the jth one which is equal to one. The

dynamics of {zt} is characterized by its transition matrices Πt, whose entries πi,j,t are defined by :

πi,j,t = P(zt = ej |zt−1 = ei).

These probabilities may depend on time in a deterministic way, in order to incorporate exoge-

nous variables or seasonal dummies. The conditional distribution of zt given zt−1 can also be
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characterized by its conditional Laplace transform :

ϕ
(z)
t−1(u) = E[exp(u′zt)|zt−1].

=

[
J∑

j=1

π1,j,t exp(uj), . . . ,
J∑

j=1

πJ,j,t exp(uj)

]
zt−1

= e′P ′

t (u)zt−1

where Pt(u) = Πt diag [exp(u)], diag [exp(u)] being the diagonal matrix with components the

exponential of the components of u and e′ = (1, . . . , 1). The conditional Laplace transform can

alternatively be written as an exponential function of zt−1 :

ϕ
(z)
t−1(u) = exp

{[
log

J∑

j=1

π1,j,t exp(uj), . . . , log

J∑

j=1

πJ,j,t exp(uj)
]
zt−1

}
. (2.10)

Moreover, this multi-horizon conditional Laplace transform has a closed from:

ϕ
(z)
t,h(γ

(h)
1 , . . . , γ

(h)
h ) = Et

[
exp

(
γ
(h)′

1 zt+1 + . . .+ γ
(h)′

h zt+h

)]
.

Proposition 1. The multi-horizon conditional Laplace transform of a Markov chain is:

ϕ
(z)
t,h = e′P ′

t+h(γ
(h)
h ) . . . P ′

t+1(γ
(h)
1 )zt,

where Pt(γ) = Πtdiag[exp(γ)], e
′ = (1, . . . , 1) and diag[exp(γ)] denotes the diagonal matrix with

diagonal terms the exponential of the components of γ.

Proof : see Appendix 1.

According to Proposition 1, the multi-horizon conditional Laplace transform is of the form α′zt

(the component αj of α being positive), i.e. linear in zt; it can also be considered as an exponential

linear function of zt, since α
′zt = exp(β ′zt), where the components of β are βj = log(αj). This

remark will be useful for combining Markov chains with the Car processes considered in Section

2.3.
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2.3 Regime Switching Car process

The usefulness of Car processes, or discrete-time affine processes, introduced by Darolles, Gourier-

oux, Jasiak (2006) is now well documented [see for instance, Gourieroux, Monfort (2007), Gourier-

oux, Monfort, Polimenis (2006), Monfort, Pegoraro (2007), Le, Singleton, Dai (2010), Monfort,

Renne (2011, 2013)]. A Car process of order one, Car (1), is defined as follows:

Definition 1. A n-dimensional process {wt} is Car(1) if its conditional log-Laplace transform

given the past wt−1 = (w′

t−1, . . . , w
′

1), is affine in wt−1, that is, of the form :

ψ
(w)
t−1(u) = logE[exp(u′wt)|wt−1]

= at−1(u)
′wt−1 + bt−1(u),

where at−1 and bt−1 may depend on time in a deterministic way.

It is known that we can also define Car processes of order p [Car(p)] and that, by extending

the dimension of the process, a Car(p) process is also a Car(1) process. Therefore we only con-

sider Car(1) processes in the next sections. It is also known that the family of Car(1) processes

contains many important processes like autoregressive Gaussian processes, autoregressive Gamma

processes, compound Poisson processes and autoregressive Wishart processes. Equation (2.11)

shows that a Markov chain is Car(1). Let us now introduce new stochastic processes, namely the

Regime Switching Car(1) processes [RSCar(1)] defined in the following way:

Definition 2. Let us consider :

i) a baseline family of Car(1) conditional log-Laplace transforms of the form :

at−1(u)
′w̃t−1 + b

(0)
t−1(u)

′δ,

where δ is a K-dimensional vector and b
(0)
t−1 a K-dimensional vector of functions;

ii) a J-regime exogenous Markov chain {zt} with transition matrices Πt;
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iii) a set of independent random K-dimensional vectors ∆j
i,t, i ∈ {1, . . . , J}, j ∈ {1, . . . , J},

identically distributed over time.

The stochastic process {yt} such that the conditional log-Laplace transform of yt given yt−1, zt =

ej , zt−1 = ei, ∆
j
i,t = δji,t is given by :

at−1(u)
′yt−1 + b

(0)
t−1(u)

′δji,t,

is called a RSCar(1).

Regime Switching Car(1) processes are similar to diffusion models with jumps encountered in

continuous time models. The baseline dynamics corresponds to the baseline diffusion equation

and this diffusion equation involves several parameters which can switch. The underlying Markov

chain defines the times of the jumps on the different parameters and the components of ∆j
i,t define

the stochastic sizes of the jumps.

Example: Gaussian autoregressive process with switching drift and volatility.

Let us consider a baseline Gaussian VAR(1) dynamics:

w̃t = µ+ Φ w̃t−1 + εt,where εt ∼ IIN(0,Ω).

We have:

at−1(u) = Φ′u , bt−1(u) = u′µ+
1

2
u′Ωu = b

(0)
t−1(u)

′δ,

with:

b
(0)
t−1(u) =

[
u,

1

2
vec(uu′)

]′
, δ = [µ, vec(Ω)]′ .

Therefore we can introduce regime switching drift and volatility parameters.

A RSCar(1) process {yt} is not Car(1), but the extended process wt = {y′t, z
′

t}
′ is Car(1). Indeed,

we have the following property :

9



Proposition 2. The process wt = (y′t, z
′

t)
′, where {zt} is a Markov chain and {yt} an associated

RSCar(1), is a Car(1) process; its conditional log-Laplace transform is given by :

logEt−1[exp(u
′yt + v′zt)] = a′t−1(u)yt−1 + [A1(u, v), . . . , AJ(u, v)]zt−1,

with :

Ai(u, v) = log
J∑

j=1

{πi,j,t exp[ψi,j(b
(0)
t−1(u)) + vj ]},

ψi,j(.) being the log-Laplace transform of ∆j
i,t.

If the size of the jumps ∆j
i,t is non random we have ψi,j(b

(0)
t−1(u)) = b

(0)
t−1(u)

′∆j
i,t.

Proof: see Appendix 2.

As stressed in subsection 2.1, an important issue is the computation of multi-horizon conditional

Laplace transforms of factor process {wt}. The importance of Laplace transforms has also been

stressed in continuous time models (see, for instance, Duffie, Pan and Singleton (2000)). The

following result shows that if {wt} is Car(1) or, according to Proposition 2, RSCar(1), these

computations are easily done recursively.

Proposition 3. If the conditional log-Laplace transform of {wt} is ψ
(w)
t−1(u) = at−1(u)

′wt−1 +

bt−1(u), the multi-horizon conditional Laplace transform (MLT) :

ϕ
(w)
t,h = Et[exp(γ

(h)′

1 wt+1 + . . .+ γ
(h)′

h wt+h)],

is equal to :

ϕ
(w)
t,h = exp(A′

t,hwt +Bt,h),
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where At,h = A
(h)
t,h , Bt,h = B

(h)
t,h , the A

(h)
t,i , B

(h)
t,i , i = 1, . . . , h are defined recursively by :





A
(h)
t,i = at+h−i(γ

(h)
h+1−i + A

(h)
t,i−1),

B
(h)
t,i = bt+h−i(γ

(h)
h+1−i + A

(h)
t,i−1) +B

(h)
t,i−1,

A
(h)
t,0 = 0, B

(h)
t,0 = 0.

Proof: see Appendix 3.

This proposition shows that the MLT is an exponential-affine function of wt. To compute

ϕ
(w)
t,h , for t ∈ {1, . . . , T} and for given sequences of parameters (γ

(h)
1 , . . . , γ

(h)
h ), h ∈ {1, . . . , H}, we

have, in general, to apply the above algorithm TH times. However, if functions at and bt do not

depend on t, we have to use it H times only. More importantly if the parameters (γ
(h)
1 , . . . , γ

(h)
h ),

h = 1, . . . , H, have a reverse order structure γ
(h)
h+1−i = δi for i = 1, . . . , h and h = 1, . . . , H, that

is, if we want to compute :

Et [exp(δ
′

hwt+1 + . . .+ δ′1wt+h)] , h ∈ {1, . . . , H}, t ∈ {1, . . . , T},

the algorithm has to be used only once for each date t. If, moreover, at and bt do not depend on

t, the algorithm has to be used only once.

2.4 Matching Interest Rates Statistical Properties

Before moving to the pricing of defaultable and non-defaultable bonds when the factor is regime

switching Car, it is important to show that this class of non-linear models is appropriate to describe

interest rates historical dynamics. More precisely, in this section we show that Regime-Switching

Gaussian VAR(p) models can represent the observed strong interest rates linear and nonlinear

serial dependence, as well as their non-Gaussianity. The proposed empirical analysis considers

single-regime, 2-state (homogeneous and non-homogeneous) and 3-state (homogeneous) Regime-

Switching Gaussian VAR(1) and VAR(2) models where the factor yt (say) consists in a short rate

(rt, say), a long-term spread (St, say) and a butterfly spread (S
(b)
t , say), i.e. classical level, slope
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and curvature factors, respectively. The family of Gaussian Regime-Switching VAR(p) processes

(RS-VAR(p), say) is denoted by:

yt+1 = ν + Φ1 yt + . . . + Φp yt+1−p + Ω(zt+1) εt+1 , (2.11)

where εt+1 is a 3-dimensional Gaussian white noise with N (0, I3) distribution [I3 denotes the

(3 × 3) identity matrix], Φℓ, for each ℓ ∈ {1, . . . , p}, are (3 × 3) autoregressive matrices, while

ν is a 3-dimensional vector; Ω(zt+1) is a (3 × 3) lower triangular matrix and (zt) is the regime-

indicator function following a J-state Markov chain (see Section 2.2). If the latter is homogeneous,

the transition probabilities will be denoted by P(zt+1 = ej | zt = ei) = πij while, in the non-

homogeneous case, they will be denoted by P(zt+1 = ej |zt = ei, rt) = π(ej , ei; rt). The single-

regime case assumes a constant Ω. In our empirical analysis we consider p ∈ {1, 2} and we assume

J = 2 and 3 in the homogeneous case6, while in the non-homogenous case only the two-state case

is analyzed7 and the transition probabilities are specified by the following logistic function:

P(zt+1 = ej |zt = ej , rt) = π(ej, ej ; rt) =
eaj+bj rt

1 + eaj+bj rt
, j ∈ {1, 2} . (2.12)

We use 408 monthly observations on U.S. Treasury 1-month, 5-year and 10-year interest rates,

taken from the unsmoothed Fama and Bliss (1987) data set, covering the period from Jan-

uary 1970 to December 2003. The short rate is the 1-month yield, the long-term spread is

the difference between the 10-year and 1-month yields, while the butterfly spread is given by

S
(b)
t = −rt + 2Rt(5y)− Rt(10y), where Rt(5y) and Rt(10y) denote the 5-year and 10-year yields,

respectively. Relevant factors’ summary statistics (see Table 1) highlight the lack of Gaussianity

and the presence of linear and non-linear serial dependence in the data (see Appendix 4). In the

single-regime case, parameters are estimated by OLS, while in the regime switching one they are

6In the 3-state case, we assume π13 = π31 = 0 given that a preliminary estimation of the entire transition matrix
has clearly indicated their lack of significance.

7We have also estimated alternative specifications in which the constant term in the VAR was regime-dependent
or there was a lack of contemporaneous causality from the Markov chain to the factor. The associated empirical
performances are outperformed by the those of above mentioned specifications. Thus, for expository purpose, they
are not given in the paper but are available upon request from the authors.
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estimated by maximizing the log-likelihood function calculated with the Kitagawa-Hamilton filter.

Tables 2 and 3 present parameter estimates, likelihood-based selection criteria and residual tests of

the above mentioned models (see Appendix 4). In particular, the performances of the models are

studied running the Ljung-Box test on any single-equation model residuals and squared residuals,

in order to check if both linear and nonlinear serial dependence have been entirely captured, while

the Jarque-Bera (JB, say) test is adopted to check the Gaussianity of the error terms εt.

The results from this exercise are the following. First, the single-regime Gaussian VAR(2)

model, even if able to explain factors’ linear dependence better that the VAR(1) case, is clearly

not able to match the non-linear one and it is far from providing Gaussian residuals. Second, an

important improvement is obtained by adopting a 2-state RS-VAR(2) model able to explain also

the non-linear serial dependence, but still unable to provide Jarque-Bera test statistics smaller

than critical values. Ljung-Box test on squared model residuals is satisfied if we introduce a

second lag instead of moving from an homogeneous to a non-homogeneous Markov chain. Third,

the regime-switching specification with 3 regimes and two lags completely satisfies the proposed

tests.

3 REGIME SWITCHING AND DEFAULT-FREE BOND

PRICING

In this section we describe two models for pricing default-free zero-coupon bonds. In the first

model (see Section 3.1) the formulas for the yields are affine with respect to the factor wt, whereas

in the second model (see Section 3.2) the affine structure is obtained for the prices. In Section 3.3

we combine both kinds of formulas.
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3.1 Regime Switching Affine Yield Term Structure Model

3.1.1 Regime switching risk-neutral dynamics and bond pricing

We assume that the new information of the investors at date t is :

wt = (z′t, y
′

t)
′,

where {zt} is a time homogeneous Markov chain and {wt} is Car (1) in the risk-neutral (R.N.)

world.

If the short rate rt is an affine function of wt :

rt = β0 + β ′

1wt = β + β ′

11zt + β ′

12yt, (3.1)

the price at t of a default-free zero-coupon bond of residual maturity h is :

B(t, h) = EQ
t exp(−rt − . . .− rt+h−1)

= exp(−β0h− β ′

1wt)E
Q
t exp[−β ′

1(wt+1 + . . .+ wt+h−1)]

According to Proposition 3, the prices B(t, h), t = 1, . . . , T, h = 1, . . . , H , are of the form :

B(t, h) = exp(c′hwt + dh),

where the ch, dh are obtained from a simple recursive scheme (sometimes called Riccati recursive

scheme). Therefore, we obtain the switching affine yield term structure :

R(t, h) = −
c′h
h
wt −

dh
h

= −
c′1,h
h
zt −

c′2,h
h
yt −

dh
h
. (3.2)

Thus the stochastic term structure is obtained as a combination of baseline deterministic term

structures, that are the components of c1,h, c2,h, dh, with stochastic coefficients. An interesting

14



property of these affine term structure models is that some components of yt can be chosen as

yields of different residual maturities, while staying compatible with pricing formula (3.2). For

instance, if the first component is y1,t = R(t, k), we have just to fix c1,k = 0, c2,k = −ke1, dk = 0,

where e1 is the vector selecting the first component of yt, in the recursive scheme of Proposition

3. This clearly constrains the R.N. dynamics.

3.1.2 Back to the historical dynamics

Once the R.N. dynamics of {wt} is specified as well as the short rate function rt(wt), the historical

conditional p.d.f. of wt given wt−1 can be specified freely. Equivalently, we can specify any

stochastic discount factor satisfying :

EQ
t−1[M

−1
t−1,t(wt)] = exp(rt−1). (3.3)

A convenient, flexible specification of the s.d.f. is the exponential-affine s.d.f. :

Mt−1,t = exp{−rt−1 + γ′(wt−1)wt + ψQ
t−1[−γ(wt−1)]}, (3.4)

where the vector of risk sensitivity coefficients γ(wt−1) is function of the past value of wt = (z′t, y
′

t)
′.

This specification satisfies condition (3.3) or, equivalently, Et−1[Mt−1,t] = exp(−rt−1). This large

choice of risk sensitivity coefficients γ(wt−1) implies a large choice of historical dynamics, which in

general are not Car. Nevertheless the conditional log-Laplace transform of {wt} in the historical

world is easily obtained, since :

ψP
t−1(u) = logEP

t−1 [exp(u
′wt)] = log EQ

t−1

[
M−1

t−1,t exp(−rt−1 + u′wt)
]

= −ψQ
t−1

[
−γ(wt−1)

]
+ logEQ

t−1

{
exp[u− γ(wt−1)]

′wt

}
,

where ψQ
t−1(u) is the R.N. conditional log-Laplace transform of wt. Therefore :

ψP
t−1(u) = ψQ

t−1

[
u− γ(wt−1)

]
− ψQ

t−1

[
−γ(wt−1)

]
, (3.5)
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where : ψQ
t−1(u) = aQt−1(u)

′wt−1 + bQt−1(u),

since the factor process {wt} is Car(1).

3.1.3 A Gaussian Switching Affine Yield Term Structure Model

Let us assume that the R.N. dynamics of wt = (z′t, y
′

t)
′ is given by :

yt = µ(zt, zt−1) + Φyt−1 + Ω(zt, zt−1)ηt, (3.6)

where {ηt} is a standard Gaussian white noise and {zt} is a time homogeneous exogenous Markov

chain valued in {e1, . . . , eJ}, independent of {ηt}, and with transition matrix Π of general term

πij . {yt} is a RSCar(1) under Q, {wt} is Car(1) and its conditional log-Laplace transform is given

by :

ψQ
t−1(u1, u2) = logEQ

t−1[exp(u
′

1zt + u′2yt)] = [A1(u1, u2), . . . , AJ(u1, u2)]zt−1 + u′2Φyt−1, (3.7)

withAi(u1, u2) = log{Σjπi,j exp[u1,j+u
′

2µ(ej, ei)+
1
2
u′2Σ(ej , ei)u2]}, and Σ(ej , ei) = Ω(ej , ei)Ω

′(ej , ei).

Let us assume that the s.d.f. has the form :

Mt−1,t = exp
[
−rt−1 +

1

2
ν ′(zt, zt−1, yt−1)ν(zt, zt−1, yt−1)

+ν ′(zt, zt−1, yt−1)ηt + δ′(zt−1, yt−1)zt

]
,

(3.8)

with ν(ej , ei, yt−1) = Ω−1(ej , ei)[Φ̃yt−1 + µ̃(ej, ei)],

δj(ei, yt−1) = log

[
πij

π̃(ej |ei, yt−1)

]
,

where the matrix Φ̃, and the functions µ̃(zt, zt−1), π̃(zt|zt−1, yt−1) can be chosen arbitrarily. In this

specification of the s.d.f., both the risks coming from the Gaussian white noise {ηt} and from the

stochastic regime {zt} are priced. The adjustment term
1

2
ν ′(zt, zt−1, yt−1)ν(zt, zt−1, yt−1) and the
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form of function δ ensures that the required constraint (3.3) on the s.d.f. EQ
t (M

−1
t−1,t) = exp(rt−1)

is satisfied. Moreover, the historical dynamics is [see Monfort, Renne (2013)] :

yt = µ(zt, zt−1)− µ̃(zt, zt−1) + (Φ− Φ̃)yt−1 + Ω(zt, zt−1)εt, (3.9)

where {εt} is a standard Gaussian white noise under P, zt is valued in {e1, . . . , eJ} and such that

P(zt = ej |zt−1 = ei, yt−1) = π̃(ej|ei, yt−1). Since µ̃ and Φ̃ are free, the same is true for µ − µ̃ and

Φ − Φ̃. The specific form of the s.d.f. provides R.N. and historical dynamics which can differ

by their switching drift and autoregressive matrix, but share the same switching volatility matrix

processes. In addition, in the historical world, the transition matrix of zt may depend on the past

values of yt. Since zt is valued in {e1, . . . , eJ}, the s.d.f. given in (3.8) can be written as :

Mt−1,t = exp
[
−rt−1 +

1

2
z′tν̃

′(zt−1, yt−1)ν̃(zt−1, yt−1)zt + z′tν̃(zt−1, yt−1)ηt + δ′(zt−1, yt−1)zt

]
,

(3.10)

where ν̃(zt−1, yt−1) is the matrix whose jth column is ν(ej , zt−1, yt−1). Therefore the s.d.f. Mt−1,t is

exponential-quadratic in (zt, ηt), and also exponential-quadratic in (zt, yt)
8 [see Monfort, Pegoraro

(2012)]. If ν(zt, zt−1, yt−1) does not depend on zt
9, ν̃(zt−1, yt−1) is equal to ν0(zt−1, yt−1)e

′, where

ν0(zt−1, yt−1) is a vector with the same dimension as yt, and e the vector of size J whose components

are all equal to one, and the s.d.f. becomes :

Mt−1,t = exp
[
−rt−1 +

1

2
ν ′0(zt−1, yt−1)ν0(zt−1, yt−1) + ν ′0(zt−1, yt−1)ηt + δ′(zt−1, yt−1)zt

]
,

(3.11)

which is exponential-affine in (zt, ηt).

8The term z′tν̃
′(zt−1, yt−1)ν̃(zt−1, yt−1)zt can also be written in the linear way

1

2
ν̃2

′

(zt−1, yt−1)zt, where ν̃2 is

understood componentwise.
9This condition is, in particular, satisfied if there is no instantaneous causality between {zt} and {yt} in both

worlds.
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3.2 Regime Switching Affine Price Term Structure Model

The models described in Section 3.1 provide term structures, where the yields are affine functions of

the factor wt = (z′t, y
′

t)
′. In this section we consider a new kind of RSTSM in which the bond prices

are affine functions of factors. Contrary to the Regime Switching Affine Yields Term Structure

Models, these new models are able to reproduce a behavior of the short term rate staying equal to

a lower bound during some spells. We distinguish two cases depending whether the Markov chain

is exogenous, or endogenous.

3.2.1 Exogenous Markov chain

Let us consider a process w̃t = (z′t, r
′

t, y
′

t)
′, where {zt} is an exogenous Markov chain, with transition

matrices Πt in the R.N. world. Thus we assume that the conditional distribution of zt given w̃t−1

depends on zt−1 only and is characterized by Πt, which implies that {rt, yt} does not cause {zt}.

We assume that the R.N. conditional distribution of rt given zt, rt−1, yt−1 depends on zt only and

has a conditional Laplace transform given by :

E[exp(urt)|zt, rt−1, yt−1] = exp[γt(u)
′zt],

where γt(u) is the vector :

[γ1t(u), . . . , γJt(u)]
′.

Finally, we assume that the R.N. conditional distribution of yt given zt, rt, yt−1 depends on

zt, rt, yt−1 only. The information of the investors is either w̃t, if zt is observed, or wt = (rt, yt), if zt

is not observed. If we assume that zt is not observed by the investors (or hidden), the zero-coupon

price B(t, h) is a linear function of the transformed factor ẑt exp(−rt), where ẑt = EQ(zt|rt, yt).

More precisely we have the following result :

Proposition 4. :

B(t, h) = e′P ′

t+h−1(γ̃t+h−1) . . . P
′

t+1(γ̃t+1)ẑt exp(−rt),
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where Pt(γ) = Πt diag[exp(γ)] and γ̃t = γt(−1); for h = 1, the product of the P matrices reduces

to the identity matrix.

Proof : see Appendix 5.

The price of the short term zero-coupon B(t, 1) reduces to e′ẑt exp(−rt) = exp(−rt) as expected.

If the Markov chain is homogeneous, i.e. Πt = Π, and the conditional distribution of rt given zt

does not depend on t, i.e. γt(u) = γ(u), we get the following result :

Corollary 1. : If Πt = Π, γt(u) = γ(u), we have B(t, h) = e′P ′(γ̃)H−1ẑt exp(−rt), where

γ̃ = γ(−1).

The zero-coupon prices are explicit linear functions of the transformed factor exp(−rt)ẑt, which

is nonlinear in rt, yt. Therefore it is important to have a simple way to compute the risk-neutral

predictions ẑt. The following proposition shows that ẑt can be computed recursively using an

algorithm similar to the Kitagawa-Hamilton’ algorithm.

Proposition 5. :

ẑt+1 =
diag(ftgt)Π

′

tẑt
e′diag(ftgt)Π

′
tẑt
,

where diag(ftgt) is the diagonal matrix, with the kth diagonal term given by :

fk,t(rt+1)gk,t(yt+1|rt+1, yt),

where gk,t is the conditional p.d.f. of yt+1 given zt+1 = ek, rt+1, yt, and fk,t(rt+1) is the p.d.f. of

rt+1 given zt+1 = ek.

Proof : see Appendix 6.

The proof in Appendix 6 includes the case where the conditional distribution of rt+1 given

zt+1 = e1 (say) is the point mass at a given value, for instance zero. This allows the short rate to

stay at some lower bound during some spells.
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3.2.2 Endogenous Markov chain

In the model of the previous section, the Markov chain {zt} is exogenous in the R.N. world, that

is, it is not caused by the other processes {rt, yt}. In this section we consider a situation in which

the process {zt} is endogenous, that is, caused by the process {rt, yt}.

More precisely, we assume that the risk-neutral conditional distribution of zt given (zt−1, rt−1, yt−1)

depends on (rt−1, yt−1), i.e. is characterized by a J-dimensional vector of probabilities βt−1(rt−1, yt−1).

Moreover, we assume that the R.N. conditional distribution of (rt, yt) given (zt, rt−1, yt−1) depends

on zt only. We denote by αt(rt, yt) the J-dimensional vector whose jth component αj,t is the p.d.f.

of the conditional distribution of (rt, yt) given zt = ej , with respect to a given basic (dominating)

probability. We assume that this probability has in turn a p.d.f. α0,t(rt, yt) with respect to a

given measure. In other words, for given values of (rt−1, yt−1), zt is drawn according to the vector

of probabilities βt−1 and, then, if zt = ej , (rt, yt) is drawn in the distribution whose p.d.f. with

respect to the dominating measure is α0,tαj,t. We assume that the information of the investors is

wt = (w′

t, . . . , w
′

1)
′ with wt = (r′t, y

′

t)
′ and, therefore, zt is not observed (or hidden).

The conditional p.d.f. or (rt, yt) given (rt−1, yt−1) w.r.t. µ is :

α0,t(rt, yt)α
′

t(rt, yt)βt−1(rt−1, yt−1) (3.12)

This kind of dynamics has been introduced by Gourieroux, Jasiak (2000) and called Finite Di-

mensional Dependence (FDD) dynamics. It is easily seen that the conditional distribution of zt

given its own past zt−1 depends on zt−1 only; thus, zt is marginally Markov.

Let us denote by E0,t the expectation with respect to the probability distribution with p.d.f.

α0,t and by Πt the R.N. transition matrix of zt, whose entries are πi,j,t = Qt(zt+1 = ej |zt = ei). Note

that E0,t is an unconditional expectation w.r.t. a distribution depending on time in a deterministic

way. We have the following results :
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Proposition 6. :

Πt = E0,t(αtβ
′

t),

B(t, h) = e′ P̃ ′

t+h−1 . . . P̃t+1 βt exp(−rt),

where P̃t = E0,t[exp(−rt)αt β
′

t], and the product of the P̃ matrices reduces to the identity matrix

for h = 1.

Proof : see Appendix 7.

The formulas obtained for B(t, h) in the exogenous case (Proposition 4) and in the endogenous case

(Proposition 6) are similar. The prices are linear functions of factors, the Pt matrices appearing

in Proposition 4 are replaced by the P̃t matrices in Proposition 6 and the factors exp(−rt)ẑt are

replaced by the factors exp(−rt)βt. In both cases B(t, h) is, for any h, a linear combination of

factors, but a nonlinear function of the variables (rt, yt) (in the endogenous case the factor βt are

functions of (rt, yt) only). In the stationary case where α0,t, αt and βt do not depend on t, we get

a simplified formula.

Corollary 2. : In the stationary case, that is, if α0t, αt and βt do not depend on t, we have :

B(t, h) = e′P̃
′h−1 β(rt, yt) exp(−rt),

with : P̃ = E0[exp(−rt)α(rt, yt) β ′(rt, yt)].

Two additional remarks are of interest. First, the basic probability may have a p.d.f. α0,t with

respect to a measure which is not the Lebesgue measure. For instance it could be such that

the probability of the hyperplane {rt = 0} is strictly positive and, moreover, one of the p.d.f.

αj,t, say α1,t, is non zero only in this hyperplane. Thus the short-term rate would be equal to

zero in the first regime and would remain equal to zero for some time (see the illustration in

the next subsection). Second, the FDD dynamics is rather general since it can approximate any

Markov dynamics; indeed, any conditional p.d.f. f(wt|wt−1) of wt = (rt, yt) given wt−1 can be
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approximated by the FDD dynamics :

J∑

j=1

f(wt | w̃j)

K

(
wt−1 − w̃j

d

)

J∑

j=1

K

(
wt−1 − w̃j

d

) , (3.13)

where K is a kernel, w̃j , j = 1, . . . , J a fixed grid and d a bandwidth.

Finally, let us consider the historical dynamics. Since the R.N. and historical conditional

distributions of wt given the past are equivalent, the historical conditional distribution is absolutely

continuous with respect to the probability defined by α0,t. We also have the following result:

Proposition 7. : If the R.N. dynamics is FDD, the historical dynamics is also FDD if and only

if the s.d.f. is factorized as M1,t−1,t(wt)M2,t−1,t(wt−1).

Proof : See Appendix 8.

3.2.3 The zero lower bound problem

Both kinds of Regime Switching Affine Price Term Structure Models are able to generate paths

of the short rate staying at a lower bound, zero for instance during some endogenous spells. As

an illustration, let us consider a FDD model in which {yt} is univariate and the number of states

is J = 3. The conditional risk-neutral probabilities of the regime are given by :

βj,t−1 =

ϕ

(
rt−1 + yt−1 − kj

d

)

3∑

l=1

ϕ

(
rt−1 + yt−1 − kl

d

) , (3.14)

where ϕ is the p.d.f. of the standard normal, kj, j = 1, 2, 3 are given values and d is a bandwidth.

We assume that rt and yt are independent conditionally on (zt, wt−1) and:

i) the distribution of rt is the point mass at zero, if j = 1, while it is the gamma distribution

γ(νj , µj), with mean mj and variance σ2
j , if j = 2 or 3, that is, with νj = m2

j/σ
2
j and µj = mj/σ

2
j .
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ii) the distribution of yt is the gamma distribution γ(ν2, µ2).

Since we are in a stationary case, the price at time t of a zero-coupon bond of residual maturity

h is given by the formula of Corollary 2 :

B(t, h) = e′P̃
′h−1 β(rt, yt) exp(−rt). (3.15)

The matrix P̃ ′ = E0[exp(−rt) β(rt, yt)α′(rt, yt)] is easily computed by Monte-Carlo. More precisely

its first column can be approximated by : 1
S

∑S

s=1 β(0, y
s), where the simulated ys are drawn in

γ(γ2, µ2). The columns j = 2, 3, can be approximated by : 1
S

∑S

s=1 exp(−r
s)β(rs, ys), where the

simulated ys are drawn in γ(ν2, µ2) and the simulated rates rs in γ(ν2, µ2), if j = 2, and γ(ν3, µ3),

if j = 3. For the Monte-Carlo analysis, we do not distinguish the R.N. and historical dynamics

and the numerical values of the parameters are :

k1 = .03, k2 = .05, k3 = .07, d = .005,

m2 = .03, σ2 = .01, m3 = .04, σ3 = .02.

We simulate paths of length T = 50 for the factor (rt, yt) and for the yields R(t, h) = −
1

h
logB(t, h),

for h = 5, 10, 20, 100 (and initial values r1 = y1 = .001). Figure 1 shows such paths. The short

rate rt is equal to zero in periods 2 to 8, 18 to 20 and 39 to 47. Within these periods, the rest of

the yield curve is varying (see in particular the third period).

3.3 A simultaneous use of explicit and recursive pricing formulas

In Sections 3.1, 3.2, we have obtained either explicit, or recursive formulas for the prices of zero-

coupon bonds. There are many ways to jointly use these results. In this section we consider such

an approach and an application.
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Figure 1: Interest rates paths and the lower bound: simulated paths of yields R(t, h) = − 1
h
logB(t, h), for

h = 5, 10, 20, 100. Initial values: r1 = y1 = .001.

3.3.1 A flexible framework

Let us consider two independent Markov chains in the risk-neutral world, denoted by {z(1)t }, {z(2)t },

with J1 and J2 states and transitions matrices Π
(1)
t and Π

(2)
t , respectively. Moreover, let us consider

an independent Car(1) process {yt} and a sequence of K × J2 matrices ∆t serially independent

and independent of the other processes. Finally let us assume that the short rate between t and

t+ 1 is given by :

rt = µ′

1z
(1)
t + µ′

2∆tz
(2)
t + µ′

3yt, (3.16)

If we assume that z
(1)
t , z

(2)
t and yt are observed by the investor, the price of the zero coupon
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bond B(t, h) is :

B(t, h) = exp(−rt)E
Q
t exp(−rt+1 − . . .− rt+h−1)

= exp(−rt)B1,t(h)B2,t (h)B3,t(h)

where B1,t(h) = EQ
t exp

(
−µ′

1z
(1)
t+1 − . . .− µ′

1z
(1)
t+h−1

)

B2,t(h) = EQ
t exp

(
−µ′

2∆t+1z
(2)
t+1 − . . .− µ′

2∆t+h−1z
(2)
t+h−1

)

B3,t(h) = EQ
t exp (−µ′

3yt+1 − . . .− µ′

3yt+h−1)

Using Proposition 1, B1,t(h) is an explicit linear function of z
(1)
t , or, equivalently, an explicit

exponential linear function of z
(1)
t , since z

(1)
t is valued in {e1, . . . , eJ},

B1,t(h) = exp
[
a′1,t(h)z

(1)
t

]
.

Similarly, conditioning first by z
(2)
t+1, . . . , z

(2)
t+h−1 and taking the expectation in B2,t(h) with respect

to ∆t+1, . . . ,∆t+h−1, we get a closed form expression for B2,t(h) :

B2,t(h) = exp
[
a′2,t(h)z

(2)
t

]
.

Using Proposition 3 we get :

B3,t(h) = exp[a′3,t(h)yt + a4,t(h)],

where a3,t(h) and a4,t(h) can be computed recursively. Finally we get :

B(t, h) = exp[a′1,t(h)z
(1)
t + a′2,t(h)z

(2)
t + a′3,t(h)yt + a4,t(h)]

and :

R(t, h) = −
1

h

[
a′1,t(h)z

(1)
t + a′2,t(h)z

(2)
t + a′3,t(h)yt + a4,t(h)

]
, (3.17)

where a1,t(h), a2,t(h) have closed forms and a3,t(h), a4,t(h) can be computed recursively. Therefore

25



we get a very flexible framework which is able to take into account simultaneously many features :

- switching regimes with deterministic values

- switching regimes with stochastic values

- transition matrices depending on time in a deterministic way

- quantitative factors.

An application with these features is the multi-regime model developed in the next section.

3.3.2 A multi-regime model: the euro-area yield curve with discrete policy rates

While policy rates are known to be key dirvers in the dynamics of the whole yield curve, only a

few term-structure models explicitly consider monetary-policy rates (Rudebusch (1995), Balduzzi,

Bertola and Foresi (1997), Piazzesi (2005) and Fontaine (2009), are notable exceptions). This rarity

stems from the difficulties associated with the modeling of policy rates’ dynamics. In particular,

most central banks set their policy rates in multiples of 25 basis points, implying stepwise paths.

This application illustrates how the flexibility of the short-term rate’s specification given in (3.16)

can be exploited in order to construct a term-structure model where the central-bank policy rate

plays a central role. The main features and results of the model are reported here; a complete

study can be found in Renne (2012).

A specificity of this model is the large number of states represented by the Markov chain z
(1)
t .

Indeed, each state of z
(1)
t is defined by (a) one of the possible values of the main policy rate of the

European Central Bank (ECB) and (b) a monetary policy phase: tightening (T), status-quo (S)

and easing (E). A tightening (resp. easing) monetary policy aims at restricting (resp. weakening)

credit conditions; that is, during a tightening (easing) phase, the central bank is expected to raise

(cut) its policy rate. The component µ′

1z
(1)
t of the short rate (see 3.16) corresponds to the ECB

policy rate, which implies that the entries of µ′

1 are of the form log[1 + k × 0.25%/360] with

k = 0, . . . , 40, 25bp being the basic tick10. The probabilities of increases and cuts in the policy

rate are defined by the matrix Π
(1)
t (whose dimension is 123×123). These probabilities depend on

10Observe that 10% is assumed to be the maximum value of the (arithmetic) policy rate.
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the level of the (geometric) policy rate as well as on the monetary-policy phase. During tightening

phases (resp. easing phases), the probability of a cut (resp. a increase) in the policy rate is

zero. No policy-rate move takes place during status-quo phases. Such features make it possible to

model policy inertia, implying that policy-rate changes are often followed by additional changes

in the same direction. This phenomenon is illustrated in the first panel of Figure 2, that shows

successions of periods of increases and periods of decreases in the ECB policy rates. Monetary-

policy phases turn out to affect significantly the yield curve: one can for instance observe in panel

C of Figure 2 that the spread between the (short-term) policy rate and a longer-term rate (e.g.

the 6-month rate) tends to be positive during periods of rising policy rates and negative during

easing phases. These features are easily captured by this model.

If one wants to model the overnight-indexed swap yield curve, the shortest-term (overnight)

interest rate to consider is not the policy rate but the interbank rate, which is called EONIA

(Euro Over-Night Index Average) in the euro area and denoted by rt. Therefore, Renne (2012)

introduces in the model a specification of the so-called EONIA spread, that is the spread between

the euro-area overnight interbank rate and the policy rate. The evolution of this spread is displayed

in Panel B of Figure 2. A dramatic change in the EONIA spread dynamics took place in Fall 2008,

in the aftermath of Lehman’s failure. While it was slightly positive on average before this failure,

the EONIA spread suddenly dropped after the implementation of changes in the monetary-policy

operational framework in Fall 2008. The latter led to an excess liquidity in the banking sector

at the aggregate level. The impact of the ”excess-liquidity” regime on the short-term rate is

modeled through an additional two-state Markov chain z
(2)
t .11 Using the notations of equation

(3.16), ∆t is a bivariate row vector of independent variables whose distributions are mixtures of

beta distributions. Typically, the distribution of the entry of ∆t that corresponds to the excess-

liquidity regime has a negative mean and is positively skewed. This is consistent with the values

of the EONIA spread that are observed during most of the periods between Fall 2008 and the end

of the sample (see Panel B of Figure 2).12

11One of these two states corresponds to the excess-liquidity regime.
12During the excess-liquidity regime, the overnight interbank rate tends to be low; since it can not be below the
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Figure 2: The first panel shows the target rate together with the overnight interbank interest rate (EONIA). The
dashed lines define the monetary-policy ”corridor” whose upper bound is the Eurosystem marginal-lending-facility
rate and the lower bound is the Eurosystem deposit-facility rate. Since the Eurosystem’s banks can lend at the
former rate and borrow at the latter rate, the overnight interbank rate evolves between these two rates. The second
panel displays the EONIA spread, which is the spread between the EONIA and the rate of the main refinancing
operations (MRO) decided by the Governing council of the ECB. The third panel plots the main policy rate together
with longer-term rates: the 6-month and the 4-year OIS rates.

marginal deposit facility rate (since banks can always deposit funds with the ECB using this facility), w get the
positive skewness of the EONIA spread.

28



4 REGIME SWITCHING AND DEFAULTABLE BOND

PRICING

The RSTSM can be extended to the modelling of defaultable bonds. In this framework, we dis-

tinguish the individual default indicators and associated individual risk factors from the common

risk factors. This modeling is illustrated by an analysis of the Euro-zone sovereign bonds.

4.1 The setting

4.1.1 Risk-neutral dynamics and causality structure

The new information in the economy at date t is wt = (z′t, y
′

t, w
′

s,t, d
′

t)
′, where zt is a regime variable

valued in {e1, . . . , eJ}, yt is a vector of common factors, ws,t is a vector (w1′

s,t, . . . , w
n′

s,t, . . . , w
N ′

s,t )
′ of

specific variables, wn
s,t corresponding to debtor n(n = 1, . . . , N) and dt = (d1t , . . . , d

n
t , . . . , d

N
t )

′ is a

vector of default indicators, where dn,t = 1, if entity n is in default at date t, dnt = 0, otherwise.

Thus there are two kinds of regime variables: zt is a systematic regime variable and dt is a set of

individual binary regime variables dnt , n = 1, . . . , N.

We use below the following notations : wc,t = (z′t, y
′

t)
′ for the common variables, w̃t = (w′

c,t, w
′

s,t)
′

for all common and specific variables, w̃n
t = (w′

c,t, w
′n
s,t)

′ for common variables and specific variables

of entity n only.

We make some assumptions about the R.N. dynamics of process {wt}, in particular about

its R.N. causality structure. Since these assumptions concern the risk-neutral distribution, their

economic interpretation is in terms of pricing only, not in terms of historical prediction.

A.1. (R.N. Causality structure): (w′

s,t, d
′

t)
′ does not Granger cause {wc,t}, and, {dt} does not

cause {w̃t}.

A.2. (R.N. Conditional independence of the entity behaviors): the variables (wn′

s,t, d
n
t )

′, n =

1, . . . , N , are independent conditionally on (w′

c,t, w
′

t−1)
′, and the conditional distribution of wn

s,t
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only depends on (w′

c,t, w
n′

s,t−1).

A.3. (Car distributed processes): process {wc,t} is Car(1) and the process of individual risk factors

{wn
s,t} is conditionally Car(1), that is, the conditional Laplace transform of wn

s,t given wc,t, w
n
s,t−1

is exponential affine in wc,t, wc,t−1, ws,t−1 (which implies that w̃n
t is Car(1)).

A.4. (R.N. default intensity): Q(dnt = 0 | dnt−1 = 0, w̃t) = exp(−λQn,t), with λ
Q
n,t = α0,n + α′

1,nw̃
n
t ,

and Q(dnt = 1 | dnt−1 = 1, w̃t) = 1, that is, the state dnt = 1 is absorbing. λQn,t is called the default

intensity.

The exponential expression of the R.N. transition probability ensures its positivity, and the

affine expression of the intensity is introduced to facilitate the computation of the term structure.

Since the transition probability is also smaller than 1, the intensity has to be nonnegative, which

induces restrictions on the R.N. dynamics of {w̃n
t }.

A.5. (Risk-free rate) : The risk-free short rate between t and t+ 1 is : rt = β0 + β ′

1wc,t.

Since the individual risk factors do not appear in the expression of the risk-free rate, no

individual entity has an impact on the risk-free prices. Under Assumptions A.1 and A.5, the spot

price of any derivative written on wc,t depends on the past of the common factor only.

4.1.2 Pricing defaultable bonds

Let us consider the case where the recovery rate is zero. The price at time t of a zero-coupon bond

issued by entity n, with residual maturity h, is :

Bn(t, h) = EQ
t [exp(−rt . . .− rt+h−1)(1− dnt+h)]. (4.1)

Although (w̃′

t, d
n
t )

′ is not R.N. Car (1), the causality structure assumed above implies that

Bn(t, h) can still be expressed as a multi-horizon Laplace transform of the process {w̃n
t }, with

reverse ordered coefficients (see Subsection 2.1). More precisely we have the following Proposition,
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which justifies formula (2.10) :

Proposition 8. : Under Assumptions A.1-A.2, A.4-A.5:

Bn(t, h) = exp(−rt)E
Q
t [exp(−rt+1 − . . .− rt+h−1 − λQn,t+1 − . . .− λQn,t+h)]

= exp[−h(β0 + α0,n)− β̃ ′

1w̃
n
t ]

×EQ
t {exp[−(β̃1 + α1,n)

′w̃n
t+1 − . . .− (β̃1 + α1,n)

′w̃n
t+h−1 − α′

1,nw̃
n
t+h]},

where β̃1 = (β ′

1, 0)
′.

Proof : see Appendix 9.

If moreover Assumption A.3 is satisfied, {w̃n
t } is Car(1) and, since the Laplace transform is with

a reverse order structure :

δ1 = −α1,n, δj = −(β̃1 + α1,n), ∀j ≥ 2,

the prices Bn(t, h), t = 1, . . . , T, h = 1, . . . , H can be computed recursively by using only once the

algorithm of Proposition 3. So the yield Rn(t, h) of residual maturity h associated with entity n

is an affine function of w̃n
t :

Rn(t, h) = c′n(h)w̃
n
t + bn(h), say. (4.2)

The risk-free rate of residual maturity h is obtained by the same algorithm, with α0,n = 0, α1,n = 0,

and is an affine function of wc,t :

R∗(t, h) = c′(h)wc,t + b(h), say, (4.3)

as are the spreads :

Rn(t, h)− R∗(t, h) = [cn(h)− c∗(h)]′w̃n
t + bn(h)− b(h),
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where c∗(h) = [c′(h), 0]′.

The risk-free and defaultable term structures are all affine. They differ by the baseline term

structures and the set of factors involved in their affine expressions. Also note that a direct impact

of the regime variable appears since wc,t = (z′t, y
′

t)
′. This result can be extended to a ”market value”

recovery rate [see Duffie, Singleton (1999), Monfort, Renne (2013), and Appendix 10].

4.1.3 The historical dynamics

Once the R.N. distribution fQ and the short rate rt−1 are specified, the historical p.d.f. f
P can be

chosen arbitrarily and the s.d.f. Mt−1,t is deduced from (2.4). In this section, we assume that the

s.d.f. Mt−1,t depends on the common variables wc,t only :

Assumption A.6: Mt−1,t is a function of wc,t.

Assumption A.6 means that the individual variables ws,t and dt have no impact on the adjustment

for risk. This assumption has important consequences. Let us first show a lemma.

Lemma : If wt is partitioned into wt = (w′

1,t, w
′

2,t)
′ and if the s.d.f. Mt−1,t is a function of

(w1t, wt−1):

i) the R.N. and the historical conditional distributions of w1,t given wt−1 satisfy the relation :

fP(w1,t|wt−1) = fQ(w1,t|wt−1)M
−1
t−1,t(w1,t, wt−1) exp(−rt−1).

ii) the R.N. and the historical conditional distributions of w2,t given (w1,t, wt−1) are the same.

Proof : Equation (2.3) can be written as

fQ(w1,t|wt−1)f
Q(w2,t|w1,t, wt−1) = fP(w1,t|wt−1)f

P(w2,t|w1,t, wt−1)

× Mt−1,t(w1,t, wt−1) exp(rt−1).

Integrating both sides of this equation with respect to w2,t gives the equality i) of the Lemma,
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and ii) follows. �

The Lemma above shows the consequences of the absence of some risk factors in the s.d.f. Let

us now apply it to see the consequences of the additional Assumption A.6 on the joint R.N. and

historical analysis of default.

Proposition 9. :

Under Assumption A.6 on the s.d.f. and Assumption A.1 of non-causality from (w′

s,t, d
′

t)
′ to

wc,t :

i) {w′

s,t, d
′

t}
′ does not cause {wc,t} in the historical world.

ii) the R.N. and the historical conditional distributions of (w′

s,t, d
′

t)
′ given (wc,t, wt−1) are the

same.

Proof :

Proposition 9-i) is obtained from Lemma-i) by taking w1,t = wc,t and w2,t = (w′

s,t, d
′

t)
′, and noting

that fQ(w1t|wt−1)Mt−1,t and rt depend on wt−1 through wc,t−1 only, Proposition 9-ii) is obtained

from Lemma-ii) �.

Proposition 9-ii) implies that Assumptions A.2 and A.4 are also valid in the historical world. In

particular the historical and R.N. default intensities are the same :

λPn,t = λQn,t = α0,n + α′

1,nw̃
n
t . (4.4)

However, equality (4.4) does not imply that the historical intensity λPn,t (or the R.N. intensity λ
Q
n,t)

has the same dynamic behavior in both worlds since the R.N. and historical dynamics of common

risk factor wc,t are different and such that :

fP
c (wc,t |wc,t−1) = fQ

c (wc,t |wc,t−1)M
−1
t−1,t(wc,t) exp[−rt−1(wc,t−1)]. (4.5)

Once fQ
c and rt−1 have been specified, fP

c can be chosen arbitrarily and the s.d.f. is deduced from
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(4.5). However, we can specify Mt−1,t in a way which makes it easily interpretable, while giving a

tractable historical dynamics for wt = (z′t, y
′

t)
′. The general method based on an exponential-affine

s.d.f. presented in Section 3.1.2. remains valid, as well as the case of a switching VAR model

described in Section 3.1.3.

4.2 Credit vs liquidity risks in euro-area sovereign yield curves

The following application is detailed in Monfort, Renne (2011). Its objective is to model the

sovereign yield curves of ten euro-area countries in order to disentangle the impacts of the credit

and liquidity risks, and to evaluate the historical and risk-neutral evolutions of the probabilities

of default. We introduce a hidden Markov chain {zt} with two regimes in order to capture crisis

periods.

Estimation data include monthly yields with residual maturities 1,2,5 and 10 years, for the

period between July 1999 and March 2011. The sovereign issuers are Austria, Belgium, Fin-

land, France, Germany, Ireland, Italy, the Netherlands, Portugal and Spain. The German bonds,

known as Bunds, are considered as risk-free. The identification of liquidity-pricing effects relies

on the spreads between the German sovereign bonds and those issued by KfW (Kreditanstalt für

Wiederaufbau), a German agency whose bonds are fully and explicitly guaranteed by the Federal

Republic of Germany. The credit qualities of German sovereign and KfW bonds are the same,

implying that the KfW-Bund spread is essentially liquidity-driven [see Monfort and Renne (2011)

for a detailed treatment of this point].

We use a Regime-Switching VAR (1) model with a five dimensional factor yt. The observable

entries of yt are: the 10-year German yield, the slope of the German yield curve (10 year − 1

month), the convexity of the German yield curve (2 × 3 year − 10 year − 1 month), the first

and second principal components of the spreads of four countries (France, Italy, Spain and the

Netherlands) versus Germany of 10-year maturity.
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Both the risk-neutral and historical models for the factor yt are RSCar(1):

yt = µ′zt + Φyt−1 + Ω(zt)εt,

where {zt} is a two-regime exogenous time homogenous Markov chain. The default-free yields are

given by:

R(t, h) = −
1

h
logEQ

t [exp(−rt . . .− rt+h−1)], (4.6)

where rt is the one-month risk-free yield. The risky yields are given by:

Rn(t, h) = −
1

h
logEQ

t [exp(−rt . . .− rt+h−1 − λn,t+1 − . . .− λn,t+h)], (4.7)

where the intensity λn,t is decomposed into λn,t = λcn,t + λln,t, λ
c
n,t and λln,t being the credit (or

default) intensity and the illiquidity intensity, respectively [see Liu, Longstaff, Mandell (2006),

Feldhütter, Lando (2008), Fontaine, Garcia (2012)].

The disentangling of the credit and illiquidity effects is based on the above-mentioned inter-

pretation of the KfW-Bund spread and on the assumption according to which the λln,t are affine

functions of the illiquidity intensity obtained for KfW bonds. The intensities are assumed to be

affine functions in zt and yt, and, since yt is RSCar (1), formulas (4.6) and (4.7) provide affine

functions in zt and yt for R(t, h) and Rn(t, h).

The Kitagawa-Hamilton algorithm is used to compute the probabilities of being in the crisis

regime. Figure 3 illustrates that the crisis periods are associated with increasing and highly-volatile

sovereign spreads. The approach provides a good data fit (see Figure 4). The standard deviation

of the yield pricing errors is of 18 bp and the model accounts for 98% of the yields’ variances.

This framework allows us to compute historical probabilities of default. Figure 5 displays the

estimated term structures of probabilities of default (PDs), at two dates of our sample. Note that

most of the methods implemented by practitioners to extract market-perceived PDs implicitly

assume that historical and risk-neutral probabilities are equal. However, based on the present

methodology, Monfort, Renne (2011) show that the historical probabilities of default tend to be
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significantly lower than their risk-neutral counterparts.

Figure 3: The crisis regime. The grey-shaded areas correspond to crisis periods (estimated as those periods for
which the smoothed probabilities of the crisis regime are higher than 50%. The smoothed probabilities are based
on the Kitagawa-Hamilton algorithm). The plot also displays the Spanish-German and the Irish-German 10-year
sovereign spreads.
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Figure 4: Model-implied vs. actual spreads. The black dotted lines (grey solid lines) correspond to model-implied
(actual) spreads.

Figure 5: Term structures of (historical-world) probabilities of default. These plots show the term structures
of default probabilities at two different dates for the different countries. For instance, for country n and for the
five-year maturity (60 months on the x-axis), the plot reports the model-implied probability that country n defaults
in the next five years. Note that these probabilities are historical ones, that is, they are based on the historical
dynamics of the factor. 95% confidence intervals are reported.
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5 CONCLUDING REMARKS

In this paper we have stressed the role of the regime switching approach in various kinds of

bond pricing models. We have seen that the regimes can capture a wide variety of underlying

phenomena, and that the Regime Switching model are able to combine flexibility and tractability.

There are many related topics which have not been treated in this paper, in particular the

inference methods adapted to these kinds of models, the treatment of contagion and the modeling of

rating dynamics [see Monfort, Renne (2013)], the simultaneous modeling of nominal and real yield

curves [see Ang, Bekaert, Wei (2008)], the joint modeling of yield curves of several countries and

the associated exchange rates [see, among the others, Backus, Foresi and Telmer (2001), Brennan

and Xia (2006), Leippold and Wu (2007), Gourieroux, Monfort, Sufana (2010) and Graveline,

Joslin (2011) for an approach without switching regimes] or the ability of regime switching models

to solve the bias problems appearing in the estimation of highly persistent models [see Jardet,

Monfort and Pegoraro (2013)].
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APPENDIX 1 - Proof of Proposition 1

For expository purpose we omit the exponent h in γ
(h)
i . The formula is true for h = 1 since :

Et exp(γ
′

1zt+1) = e′diag[exp(γ1)]Et(zt+1) = e′diag[exp(γ1)]Π
′

t+1zt = e′P ′

t+1(γ1)zt,

since Et(zt+1) = (πi,1,t+1, . . . , πi,J,t+1)
′ = Π′

t+1ei, if zt = ei. Assuming that the formula of Proposi-

tion 1 is true for h− 1, we get :

ϕ
(z)
t,h = Et[exp(γ

′

1zt+1 + . . .+ γ′hzt+h)] = Et[exp(γ
′

1zt+1)Et+1 exp(γ
′

2zt+2 + . . .+ γ′hzt+h)]

= Et[exp(γ
′

1zt+1)e
′P ′

t+h(γh) . . . P
′

t+2(γ2)zt+1]

= Et[e
′P ′

t+h(γh) . . . P
′

t+2(γ2)diag[exp(γ1)]zt+1],

where diag[exp(γ)] is the diagonal matrix whose diagonal terms are the exponential of the com-

ponents of γ. Therefore we have :

ϕ
(z)
t,h = e′P ′

t+h(γh) . . . P
′

t+2(γ2)diag[exp(γ1)]Π
′

tzt = e′P ′

t+h(γh) . . . P
′

t+1(γ1)zt.

APPENDIX 2 - Proof of Proposition 2

Et−1[exp(u
′w2,t + v′zt)] = Et−1{exp(v′zt)E[exp(u′w2,t)|w2,t−1, zt,∆t]}

= Et−1{exp[v′zt + a′t−1(u)w2,t−1 + b
(0)′

t−1(u)∆tzt]}

= exp{a′t−1(u)w2,t−1 + [A1(u, v), . . . , AJ(u, v)]zt−1},

with :

Ai(u, v) = log
J∑

j=1

πi,j,t exp[ψj(b
(0)
t−1(u))],

ψj(.) being the log-Laplace transform of ∆j
t . Therefore (w′

2,t, z
′

t)
′ is Car (1). If ∆j

t is non random

we have ψj(b
(0)
t−1(u)) = b

(0)
t−1(u)

′∆j
t .
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APPENDIX 3 - Proof of Proposition 3

Let us still omit the exponent h in the γ
(h)
j . For any j = 1, . . . , h we have :

(i) ϕ
(w)
t,h = Et

[
exp(γ′1wt+1 + . . . γ′jwt+j + A

(h)′

t,h−jwt+j +B
(h)
t,h−j)

]
,

where :

(ii)






A
(h)
t,h−j+1 = at+j

(
γj + A

(h)
t,h−j

)
,

B
(h)
t,h−j+1 = bt+j

(
γj + A

(h)
t,h−j

)
+B

(h)
t,h−j,

A
(h)
t,0 = 0, B

(h)
t,0 = 0.

Indeed, we can prove formula (i) by recursion. Formula (i) is true for j = h, and, if this is true

for j, we get :

ϕ
(w)
t,h = Et

[
exp

(
γ′1wt+1 + . . .+ γ′j−1 + a′t+j(γj + A

(h)
t,h−j)wt+j−1 + bt+j(γj + A

(h)
t,h−j) +B

(h)
t,h−j

)]
.

Therefore formula (i) is true with j− 1, A
(h)
t,h−j+1, B

(h)
t,h−j+1 being given by formulas (ii) above. For

j = 1 we get :

ϕ
(w)
t,h = Et exp(γ

′

1wt+1 + A
(h)′

t,h−1wt+1 +B
(h)
t,h−1) = exp(A′

t,hwt +Bt,h).

Finally, if we put h− j + 1 = i, formula (i) becomes the formula of Proposition 3.

APPENDIX 4 - Section 2.4 - Tables

Mean Std. Dev. Max. Min. Skewness Kurtosis ρ(1) ρ(2) ρ(3) ρ(5) ρ∗(1) ρ∗(2) ρ∗(3) ρ∗(5)
rt 0.060 0.028 0.162 0.008 0.913 4.337 0.968 0.933 0.902 0.850 0.950 0.899 0.858 0.795
St 0.017 0.014 0.050 -0.033 -0.559 3.065 0.909 0.828 0.756 0.640 0.861 0.742 0.665 0.572

S
(b)
t 0.012 0.011 0.052 -0.028 -0.296 4.007 0.856 0.750 0.652 0.496 0.769 0.558 0.412 0.326

Table 1: Summary Statistics for the short rate rt, long-term spread St and the butterfly spread S
(b)
t . ρ(k) and

ρ∗(k) denote the empirical autocorrelation at lag k of any given variable and its square, respectively. Yields are in
annual basis and observed at monthly frequency from January 1970 to December 2003.
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VAR(1) Model
ν Φ1 (Ω′Ω) × 1000

0.00005 0.97735 -0.04220 0.11687 0.00029
(0.41178) (61.74365) (-0.78166) (1.92042) (14.26534)
0.00004 0.01578 1.03261 -0.16021 -0.00022 0.00024

(0.38346) (1.10184) (21.14217) (-2.90967) (-12.92216) (14.26534)
-0.00014 0.03854 0.19231 0.67026 -0.00016 0.00018 0.00021

(-1.50857) (2.84944) (4.16864) (12.88779) (-10.97944) (12.70913) (14.26534)
JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)
skewness kurtosis joint 4.76∗ 0.01∗∗ 10.27 26.59 0.02∗∗ 26.10

99.81 2661.97 2761.78 5.24∗∗ 0.54∗∗ 11.27 45.76 8.60∗ 32.78
L AIC BIC HQ (6.25) (6.25) (10.64) 5.68∗∗ 0.59∗∗ 14.86 50.21 14.09 34.78

8036 -39.44 -39.35 -39.41 [7.18] [7.18] [12.59] 6.42∗∗ 0.59∗∗ 16.37 64.49 15.22 42.68
VAR(2) Model

ν Φ1 Φ2 (Ω′Ω) × 1000
0.00007 1.30676 0.08811 0.33884 -0.33239 -0.11569 -0.24873 0.00027

(0.66392) (14.96499) (0.70123) (3.51229) (-3.78647) (-0.90985) (-2.56166) (14.24781)
0.00002 -0.23831 0.90652 -0.28948 0.25702 0.11952 0.14082 -0.00020 0.00023

(0.17453) (-2.97444) (7.86349) (-3.27036) (3.19119) (1.02447) (1.58062) (-12.84512) (14.24781)
-0.00011 -0.06940 0.35757 0.42061 0.10309 -0.21264 0.30830 -0.00015 0.00017 0.00020

(-1.18896) (-0.92002) (3.29431) (5.04689) (1.35946) (-1.93589) (3.67544) (-10.90475) (12.73285) (14.24781)
JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)
skewness kurtosis joint 0.61∗∗ 0.00∗∗ 0.22∗∗ 9.48 0.17∗∗ 20.49

144.51 2922.64 3067.14 1.41∗∗ 0.39∗∗ 1.05∗∗ 21.48 8.57 31.27
L AIC BIC HQ (6.25) (6.25) (10.64) 2.68∗∗ 0.41∗∗ 1.76∗∗ 25.58 13.48 35.65

8047 -39.55 -39.37 -39.48 [7.18] [7.18] [12.59] 4.64∗∗ 0.45∗∗ 5.83∗∗ 37.80 14.89 42.35
2-state RS-VAR(1) Model with Homogeneous Markov chain

ν Φ1 Ω(e1) Ω(e2)
0.000004 0.98285 -0.06197 0.15770 0.00024 0 0 0.00100 0 0

(0.067835) (80.70039) (-1.92512) (3.86876) (18.37654) (12.38928)
0.00006 0.01195 1.04869 -0.18295 -0.00017 0.00025 0 -0.00077 0.00032 0

(0.81148) (0.97590) (29.46257) (-4.19969) (-8.31523) (23.45753) (-11.04684) (12.71541)
-0.00009 0.03222 0.16583 0.68737 -0.00009 0.00022 0.00019 -0.00059 0.00024 0.00042

(-1.25308) (2.68108) (4.60918) (15.87541) (-4.06101) (14.52050) (21.72434) (-8.74178) (5.04347) (13.00826)
a1 a2 JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)

3.37056 2.08500 skewness kurtosis joint 1.39∗∗ 0.01∗∗ 9.39 1.16∗∗ 0.42∗∗ 3.39∗∗

(8.77875) (5.56686) 19.38 31.41 50.79 3.75∗∗ 0.46∗∗ 9.51 3.54∗∗ 8.34∗ 4.79∗∗

L AIC BIC HQ (6.25) (6.25) (10.64) 3.82∗∗ 0.47∗∗ 16.00 4.69∗∗ 12.26 4.91∗∗

8617 -42.30 -42.21 -42.26 [7.18] [7.18] [12.59] 9.97∗∗ 0.64∗∗ 18.39 5.96∗∗ 12.41 6.36∗∗

2-state RS-VAR(1) Model with Non-Homogeneous Markov chain
ν Φ1 Ω(e1) Ω(e2)

-0.000004 0.98483 -0.06386 0.16418 0.00024 0 0 0.00100 0 0
(-0.056919) (79.83213) (-1.96155) (3.92406) (18.26592) (12.04753)

0.00007 0.01038 1.05026 -0.18679 -0.00016 0.00024 0 -0.00077 0.00033 0
(0.87560) (0.83867) (29.35676) (-4.19305) (-8.37592) (19.38769) (-10.72024) (11.62961)
-0.00009 0.03133 0.16686 0.68424 -0.00009 0.00022 0.00019 -0.00058 0.00024 0.00042

(-1.18068) (2.56405) (4.60318) (15.50013) (-4.17512) (13.24740) (20.58206) (-8.53821) (4.95046) (12.83731)
a1 a2 b1 b2 JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)

6.22445 -0.61214 -632.55612 361.40419 skewness kurtosis joint 1.22∗∗ 0.00∗∗ 8.82 0.68∗∗ 0.53∗∗ 3.69∗∗

(4.00059) (-0.42957) (-2.40042) (1.60104) 14.89 32.59 47.48 3.46∗∗ 0.57∗∗ 9.08∗ 3.80∗∗ 8.87∗ 4.60∗∗

L AIC BIC HQ (6.25) (6.25) (10.64) 3.65∗∗ 0.57∗∗ 15.61 4.78∗∗ 11.69 4.76∗∗

8623 -42.33 -42.24 -42.30 [7.18] [7.18] [12.59] 11.69∗ 0.92∗∗ 17.81 6.70∗∗ 11.73∗ 6.19∗∗

Table 2: Parameter estimates (t-values in parenthesis), Likelihood-based selection criteria and residual tests of
single-regime Gaussian VAR(1) and VAR(2) models and of of 2-state Gaussian RS-VAR(1) models with homo-
geneous and non-homogeneous Markov chain. L denotes the maximum value of the log-likelihood function with
associated Akaike (AIC), Bayesian (BIC) and Hannan-Quin (HQ) selection criteria. JB stands for Jarque-Bera
test for Gaussianity of model residuals (0.10 and 0.05 critical values are in parenthesis and square brackets, re-
spectively). LB(εj,t) and LB(ε2j,t) denote, respectively, the Ljung-Box test on the jth equation model residuals and
squared model residuals, for lags k ∈ {1, 2, 3, 5}; (∗∗) and (∗) denote the null hypothesis accepted at 0.05 and 0.01,
respectively. 41



2-state RS-VAR(2) Model with Homogeneous Markov chain
ν Φ1 Φ2 Ω(e1) Ω(e2)

0.00002 1.18254 0.04852 0.23170 -0.19639 -0.09760 -0.11900 0.00024 0 0 0.00097 0 0
(0.28079) (16.22693) (0.52302) (3.24316) (-2.66996) (-1.04213) (-1.63344) (18.60039) (12.17575)
0.00004 -0.14453 0.93395 -0.19680 0.15573 0.10996 0.04501 -0.00017 0.00024 0 -0.00075 0.00034 0

(0.47156) (-1.98779) (9.64940) (-2.61763) (2.11619) (1.12641) (0.59604) (-8.53996) (20.55545) (-10.64627) (12.03146)
-0.00007 0.05064 0.33891 0.54728 -0.02669 -0.19994 0.18784 -0.00010 0.00022 0.00019 -0.00057 0.00025 0.00041

(-0.84623) (0.70463) (3.51235) (7.19597) (-0.37032) (-2.06380) (2.42474) (-4.76163) (14.28459) (21.40311) (-8.46649) (5.12067) (12.58897)
a1 a2 JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)

3.32890 2.09815 skewness kurtosis joint 0.00∗∗ 0.00∗∗ 0.95∗∗ 0.21∗∗ 0.39∗∗ 2.62∗∗

(8.73863) (5.38068) 20.98 38.15 59.12 2.43∗∗ 0.28∗∗ 1.43∗∗ 1.38∗∗ 3.18∗∗ 4.46∗∗

L AIC BIC HQ (6.25) (6.25) (10.64) 2.46∗∗ 0.35∗∗ 4.07∗∗ 2.77∗∗ 7.02∗∗ 4.67∗∗

8639 -42.47 -42.29 -42.40 [7.18] [7.18] [12.59] 9.64∗∗ 0.60∗∗ 7.01∗∗ 4.28∗∗ 7.24∗∗ 8.58∗∗

2-state RS-VAR(2) Model with Non-Homogeneous Markov chain
ν Φ1 Φ2 Ω(e1) Ω(e2)

0.00002 1.19022 0.05291 0.23299 -0.20312 -0.10208 -0.11967 0.00024 0 0 0.00098 0 0
(0.23394) (16.53269) (0.59458) (3.33973) (-2.80716) (-1.14396) (-1.70635) (18.52565) (12.29823)
0.00004 -0.15025 0.92834 -0.19554 0.16059 0.11513 0.04594 -0.00016 0.00024 0 -0.00076 0.00035 0

(0.49414) (-2.10294) (9.95441) (-2.65125) (2.23388) (1.23537) (0.62634) (-8.73494) (19.96848) (-10.60078) (12.18160)
-0.00006 0.04173 0.33621 0.54450 -0.01844 -0.19772 0.19130 -0.00010 0.00021 0.00019 -0.00057 0.00025 0.00041

(-0.80678) (0.58855) (3.55339) (7.24376) (-0.26010) (-2.09319) (2.52881) (-4.80968) (13.80405) (21.10199) (-8.42305) (5.24151) (12.65863)
a1 a2 b1 b2 JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)

5.86646 -0.82837 -553.75759 412.75813 skewness kurtosis joint 0.00∗∗ 0.00∗∗ 1.06∗∗ 0.21∗∗ 0.52∗∗ 3.14∗∗

(3.80661) (-0.57001) (-2.13749) (1.72261) 19.34 31.40 50.75 2.48∗∗ 0.23∗∗ 1.51∗∗ 1.32∗∗ 1.61∗∗ 4.72∗∗

L AIC BIC HQ (6.25) (6.25) (10.64) 2.51∗∗ 0.29∗∗ 4.02∗∗ 2.85∗∗ 7.32∗∗ 4.98∗∗

8647 -42.51 -42.33 -42.44 [7.18] [7.18] [12.59] 9.42∗∗ 0.63∗∗ 6.22∗∗ 4.38∗∗ 7.75∗∗ 9.56∗∗

3-state RS-VAR(1) Model with Homogeneous Markov chain
ν Φ1 Ω(e1) Ω(e2) Ω(e3)

0.00002 0.98510 -0.05050 0.12593 0.00014 0 0 0.00036 0 0 0.00114 0 0
(0.33526) (85.39781) (-1.67324) (3.20251) (6.46570) (9.12401) (10.64022)
0.00004 0.01066 1.04387 -0.16384 -0.00007 0.00021 0 -0.00028 0.00028 0 -0.00086 0.00033 0

(0.58081) (0.89304) (30.59122) (-3.83727) (-2.13760) (11.42970) (-7.26357) (12.35689) (-9.61827) (10.66865)
-0.00009 0.03032 0.14811 0.71517 -0.00002 0.00021 0.00015 -0.00019 0.00021 0.00024 -0.00065 0.00027 0.00045

(-1.22716) (2.50378) (4.15092) (16.48013) (-0.44157) (9.76395) (11.58300) (-5.60653) (8.72646) (11.56677) (-7.27891) (4.24445) (10.98500)
π11 π21 π22 π33 JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)

0.87076 0.10273 0.86876 0.91341 skewness kurtosis joint 0.98∗∗ 0.05∗∗ 8.77 2.03∗∗ 0.43∗∗ 0.82∗∗

(17.14685) (1.02079) (10.63185) (22.78022) 2.22 8.69 10.91 1.83∗∗ 1.04∗∗ 9.41 2.37∗∗ 6.11∗ 1.21∗∗

L AIC BIC HQ (6.25) (6.25) (10.64) 1.86∗∗ 1.28∗∗ 12.40 2.63∗∗ 9.88∗ 1.93∗∗

8646 -42.44 -42.35 -42.41 [7.18] [7.18] [12.59] 8.93∗∗ 1.62∗∗ 16.46 3.79∗∗ 10.36∗∗ 4.45∗∗

3-state RS-VAR(2) Model with Homogeneous Markov chain
ν Φ1 Φ2 Ω(e1) Ω(e2) Ω(e3)

0.00004 1.15427 0.05727 0.20007 -0.17123 -0.11377 -0.07671 0.00018 0 0 0.00040 0 0 0.00121 0 0
(0.65449) (18.12211) (0.71462) (2.82210) (-2.68462) (-1.41497) (-1.11456) (9.16655) (7.89416) (8.43522)
0.00002 -0.11814 0.93051 -0.17956 0.13132 0.11870 0.01632 -0.00010 0.00022 0 -0.00033 0.00029 0 -0.00091 0.00034 0

(0.30549) (-1.76092) (10.28574) (-2.34372) (1.95909) (1.31421) (0.22003) (-3.72936) (11.86146) (-6.73151) (11.92797) (-7.87560) (9.23665)
-0.00007 0.07301 0.31790 0.57723 -0.04752 -0.18814 0.16154 -0.00006 0.00021 0.00015 -0.00022 0.00021 0.00028 -0.00070 0.00032 0.00043

(-0.85942) (1.03184) (3.43449) (7.41662) (-0.67417) (-2.02197) (2.06510) (-2.19272) (10.82625) (13.57273) (-5.03637) (5.93078) (8.42813) (-6.20111) (3.88267) (8.59047)
π11 π21 π22 π33 JB test LB(ε1,t) LB(ε2,t) LB(ε3,t) LB(ε21,t) LB(ε22,t) LB(ε23,t)

0.89203 0.10274 0.83085 0.92723 skewness kurtosis joint 0.40∗∗ 0.03∗∗ 1.07∗∗ 1.01∗∗ 0.59∗∗ 3.52∗∗

(21.31069) (0.83291) (5.76688) (21.15464) 1.95 5.98 7.93 0.42∗∗ 0.65∗∗ 1.14∗∗ 2.41∗∗ 4.90∗∗ 5.79∗∗

L AIC BIC HQ (6.25) (6.25) (10.64) 0.42∗∗ 0.88∗∗ 6.01∗∗ 3.28∗∗ 7.90∗ 8.35∗

8667 -42.60 -42.43 -42.53 [7.18] [7.18] [12.59] 10.84∗∗ 1.33∗∗ 12.28∗∗ 4.03∗∗ 8.75∗∗ 9.93∗∗

Table 3: Parameter estimates (t-values in parenthesis), Likelihood-based selection criteria and residual tests of 2-
state Gaussian RS-VAR(2) models with homogeneous and non-homogeneous Markov chain and of 3-state Gaussian
RS-VAR(1) and RS-VAR(2) models with homogeneous Markov chain. L denotes the maximum value of the log-
likelihood function with associated Akaike (AIC), Bayesian (BIC) and Hannan-Quin (HQ) selection criteria. JB
stands for Jarque-Bera test for Gaussianity of model residuals (0.10 and 0.05 critical values are in parenthesis and
square brackets, respectively). LB(εj,t) and LB(ε2j,t) denote, respectively, the Ljung-Box test on the jth equation
model residuals and squared model residuals, for lags k ∈ {1, 2, 3, 5}; (∗∗) and (∗) denote the null hypothesis
accepted at 0.05 and 0.01, respectively.

42



APPENDIX 5 - Proof of Proposition 4

B(t, h) = exp(−rt)EQ[exp(−rt+1 . . .− rt+h−1) | rt, yt]

= exp(−rt)EQ{EQ[exp(−rt+1 . . . rt+h−1) | zt+h−1, rt+h−2, yt+h−2] | rt, yt}

= exp(−rt)E
Q{exp(γ̃′t+h−1zt+h−1 − rt+1 . . .− rt+h−2|rt, zt}

= exp(−rt)EQ{exp(γ̃′t+h−1zt+h−1)E
Q[exp(−rt+1 . . .− rt+h−2)|zt+h−1, rt+h−3] | rt, yt}

Using the non causality from (rt, yt) to zt, we can replace zt+h−1 by zt+h−2 in the conditioning and

get :

B(t, h) = exp(−rt)E
Q{exp(γ̃′t+h−1zt+h−1 + γ̃′t+h−2zt+h−2 − rt+1 . . .− rt+h−3)|rt, yt},

and, by recursion :

B(t, h) = exp(−rt)E
Q{exp(γ̃′t+1zt+1 + . . .+ γ̃′t+h−1zt+h−1)|rt, yt}.

Conditioning first by zt, rt, yt and using Proposition 1, we get :

B(t, h) = exp(−rt)E
Q{e′P ′

t+h−1(γ̃t+h−1) . . . P
′

t+1(γ̃t+1)zt|rt, yt}

with Pt(γ) = Πtdiag[exp(γ)]. Finally :

B(t, h) = e′P ′

t+h−1(γ̃t+h−1) . . . P
′

t+1(γ̃t+1)ẑt exp(−rt).

APPENDIX 6 - Proof of Proposition 5

Let us consider the case where the conditional distribution of rt+1 = e1 is the point mass at zero,

and define the p.d.f. of (zt+1, zt, rt+1yt+1) given rt, zt, with respect to the measure (

J∑

j=1

δj)
⊗2⊗(δ0+
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λ1) ⊗ λK1 , J being the number of states in the Markov chain zt, K the size of yt, δj , j = 1, . . . , J

the unit point mass at ej and δ0 the unit point mass at 0. This p.d.f can be factorized as :

qt(zt+1|zt)ft(rt+1|zt+1)gt(yt+1|zt+1, rt+1, yt)pt(zt|rt, yt),

where qt(zt+1|zt), ft(rt+1|zt+1), gt(yt+1|zt+1, rt+1, yt), pt(zt|rt, yt) denote the conditional p.d.f. with

respect to the appropriate measure. In particular, we have f1,t(0) = 1 and f1,t(r) = 0, ∀r 6= 0.

Therefore, we get :

pt+1(zt+1|rt+1, yt+1) =
Σztqt(zt+1|zt)ft(rt+1|zt+1)gt(yt+1|zt+1, rt+1, yt)

Σzt+1
Σztqt(zt+1|zt)ft(rt+1|zt+1)g(yt+1|zt+1, rt+1, yt)pt(zt|rt, yt)

.

Stacking the different value of pt+1(ej |rt+1, yt+1) = ẑj,t+1 :

ẑt+1 =
diag(ftgt)Π

′

tẑt
e′diag(ftgt)Π′

tẑt
,

where diag(ftgt) is the diagonal matrix whose kth diagonal element is the product of fk,t(rt+1) =

ft(rt+1|ek) by gk,t(yt+1|rt+1, yt) = gt(yt+1|ek, rt+1, yt).

APPENDIX 7

Proof of Proposition 6

πi,j,t = Q(zt = ej|zt−1 = ei) =

∫
Q(zt = ej|rt, yt, zt−1 = ei)αi,tα0,tdµ = E0,t(αi,tβj,t)

B(t, h) = exp(−rt)E
Q
t [exp(−rt+1 − . . .− rt+h−1)].

We have to show that, for h ≥ 2 :

EQ
t [exp(−rt+1 − . . .− rt+h−1)] = e′P̃ ′

t+h−1 . . . P̃
′

t+1βt, ∀t. (a)
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The formula is true for h = 2, since :

EQ
t [exp(−rt+1)] = E0,t+1[exp(−rt+1)α

′

t+1]βt = e′E0,t+1[exp(−rt+1)βt+1, α
′

t+1]βt = e′P̃ ′

t+1βt,

(since e′βt+1 = 1).

Let us assume that formula (a) is valid for h− 1, we get :

EQ
t [exp(−rt+1 − . . .− rt+h−1)] = EQ

t [exp(−rt+1)e
′P̃ ′

t+h−1 . . . P̃
′

t+2βt+1]

= e′P̃ ′

t+h−1 . . . P̃
′

t+2E
Q
t [exp(−rt+1)βt+1]

= e′P̃ ′

t+h−1 . . . P̃
′

t+2E0,t+1[exp(−rt+1)βt+1α
′

t+1βt]

= e′P̃ ′

t+h−1 . . . P̃
′

t+1βt.

APPENDIX 8 - Proof of Proposition 7

Let us consider the FDD historical dynamics defined by the conditional p.d.f. α0,t(wt)α̃
′

t(wt)β̃t−1(wt−1).

In this case the s.d.f. is :

Mt−1,t =
α′

t(wt)βt−1(wt−1)

α̃′
t(wt)β̃t−1(wt−1)

exp(−rt−1).

Conversely, let us consider a s.d.f. of the form :

Mt−1,t(wt, wt−1) =M1,t−1,t(wt)M2,t−1,t(wt−1)

satisfying EQ
t−1(M

−1
t−1,t) = exp(rt−1). The historical conditional p.d.f. of wt given wt−1 is given by :

M−1
t−1,t α0,t α

′

t βt−1 exp(−rt−1)

Let us define the p.d.f., w.r.t. the distribution α0,t :

α̃j,t =
αj,tM

−1
1,t−1,t

E0,t(αj,tM
−1
1,t−1,t)

(4.8)
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and the probabilities :

β̃j,t−1 = βj,t−1M
−1
2,t−1,tE0,t(αj,tM

−1
1,t−1,t) exp(−rt−1) (4.9)

which are summing to one since :

J∑

j=1

β̃j,t−1 = exp(−rt−1)E0,t(α
′

tβt−1M
−1
t−1,t) = exp(−rt−1)E

Q
t−1(M

−1
t−1,t) = 1 .

We have M−1
t−1,tα0,tα

′

tβt−1 exp(−rt−1) = α0,tα̃
′

tβ̃t−1. �

APPENDIX 9 - Proof of Proposition 8

i) By definition the price of the defaultable zero-coupon bond with zero recovery rate is :Bn(t, h) =

EQ
t [exp(−rt− . . .−rt+h−1)(1−dnt+h)]. Conditioning with respect to w̃t+h and using Bayes formula,

we get :

Bn(t, h) = exp(−rt)E
Q
t {exp(−rt+1 − . . .− rt+h−1)×

h∏

j=1

Q(dnt+j = 0 | dnt+j−1 = 0, w̃t+h)}.

Since {dt} does not cause {w̃t} we can replace w̃t+h by w̃t+j in the generic term of the product.

Finally, we get:

Bn(t, h) = exp(−rt)E
Q
t [exp(−rt+1 − . . .− rt+h−1 − λQn,t+1 − . . .− λQn,t+h)].

ii) Formula i) is obtained by replacing rt and λ
Q
n,t by their expressions given in Assumptions A.4

and A.5.

APPENDIX 10 - Term structure of recovery adjusted defaultable bonds

If the recovery payoff, when issuer n defaults between t−1 and t, is equal to a fraction Fn,t (function

of w̃n
t ) of the price that would have prevailed without default, Bn(t, h) can still be computed in

46



the same way as in Proposition 8, provided that the R.N. default intensity λQnt is replaced by a

R.N. ”recovery adjusted” default intensity λ̃Qn,t defined by :

exp(−λ̃Qn,t) = exp(−λQn,t) + [1− exp(−λQn,t)]Fn,t.

The quantity exp(λ̃Qn,t) represents the short term R.N. expected gain. If there is no expected

default, the recovery rate is equal to 1, which corresponds to the first component. If there is an

expected default, with probability 1−exp(−λQn,t), the recovery rate is the contractual market value

Fn,t. If Fn,t = 0, we get the previous model λ̃Qn,t = λQn,t and, if Fn,t = 1, we get λ̃Qn,t = 0, that is,

the default-free case. If λQn,t is small, we get λ̃Qn,t ≃ λQn,t(1− Fn,t).
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