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Importance sampling schemes for evidence

approximation in mixture models

Jeong Eun Lee ∗ and Christian, P. Robert †

Abstract.

The marginal likelihood is a central tool for drawing Bayesian inference about
the number of components in mixture models. It is often approximated since the
exact form is unavailable. A bias in the approximation may be due to an incom-
plete exploration by a simulated Markov chain (e.g., a Gibbs sequence) of the
collection of posterior modes, a phenomenon also known as lack of label switching,
as all possible label permutations must be simulated by a chain in order to converge
and hence overcome the bias. In an importance sampling approach, imposing label
switching to the importance function results in an exponential increase of the com-
putational cost with the number of components. In this paper, two importance
sampling schemes are proposed through choices for the importance function; a
MLE proposal and a Rao-Blackwellised importance function. The second scheme
is called dual importance sampling. We demonstrate that this dual importance
sampling is a valid estimator of the evidence and moreover show that the sta-
tistical efficiency of estimates increases. To reduce the induced high demand in
computation, the original importance function is approximated but a suitable ap-
proximation can produce an estimate with the same precision and with reduced
computational workload.

Keywords: Model evidence, Importance sampling, Mixture models, Marginal like-
lihood

1 Introduction

We consider x = (x1, · · · , xn), a sample of (univariate or multivariate) observations
from a finite mixture of k distributions,

x ∼ fk(x|θ) =
k∑

i=1

λif(x|ξi) ,
k∑

i=1

λi = 1 .

The number of components, k, is often a (or even the) quantity of interest. Following the
perspective on mixtures adopted in Richardson and Green (1997), our inference about
k is based on the evidence or marginal likelihood E(k),

E(k) =

∫

S

fk(x|θ)πk(θ) dθ
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where S is the state space for θ. The ratio of evidences is a Bayes factor and is properly
scaled to be readily compared to 1 (Jeffreys 1939). The difficulty with this approach
is that the quantities E(k) are usually unavailable and cannot be directly and reliably
(Newton and Raftery 1994) derived from simulations from the posterior distribution on
θ. In such cases, the marginal likelihood is approximated using a dedicated method and
this approximation is used for a model comparison with respect to k.

Taking advantage of the traditional missing data structure of mixture models, we
introduce missing (or dummy) variables z = (z1, . . . , zn) such that (j = 1, . . . , n)

xj |zj ∼ f(xj |ξzj ) ,

and

zj |xj ∼ M
(

λ1f(xj |ξ1)∑k

i=1 λif(xj |ξi)
, . . . ,

λkf(xj |ξk)∑k

i=1 λif(xj |ξi)

)
.

This representation of the mixture distribution allows the data being clustered and
each cluster brings information about a parameter ξj for the corresponding component
j. In particular, when the full conditional distribution f(xj |ξzj ) is available in closed
form, conditional simulation from π(ζ1, . . . , ζk|x, z) becomes easier, as demonstrated in
Diebolt and Robert (1994), in connection (Dempster et al. 1997) with the expectation
maximisation (EM) algorithm.

The drawback of this scheme (which leads to the Gibbs sampler) is that it consid-
erably slows down the exploration abilities of the algorithm, most usually causing the
resulting Markov chain to get stuck in a certain region of the highly multimodal poste-
rior distribution. When this Markov chain gets trapped around one mode, it obviously
suffers from a certain type of lack of convergence. On the other hand, point estimates of
the component-wise parameters are harder to construct when the Markov chain moves
freely between modes. This phenomenon is known under the name of label switching
(Celeux et al. 2000; Frühwirth-Schnatter 2001; Jasra et al. 2005) or lack thereof. For
the issue of numerically approximating the evidence, a lack of exploration over all sig-
nificant modes has a clear impact on the numerical accuracy of the approximation, as
exhibited most forcibly by Neal (1999).

In this paper, we focus on numerical marginal likelihood approximations using im-
portance sampling (IS) and investigate suitable choices for importance functions, taking
into consideration the label-switching requirement of exploring all k! replicas of the pos-
terior modes. Two approaches are proposed; (i) Chib’s version of importance sampling
and (ii) a novel representation called dual importance sampling. For computational rea-
sons, an approximate version of the dual importance sampling algorithm is investigated
towards an increase in computational efficiency, which is obtained by avoiding negligible
function evaluations for the proposal density q. Those approaches are compared with
standard estimators using Chib’s approach and bridge sampling. The performances are
evaluated on simulated and benchmark datasets, namely the galaxy and fishery datasets



J. Lee and C. P. Robert 3

used in Richardson and Green (1997).

The paper starts with a brief summary of the approximations in Chib’s method and
bridge sampling in Section 1. In Section 2, importance sampling is studied and the
choices considered for the importance function are described. Our importance function
approximate approach is introduced in Section 3. Simulation studies using simulated
and real datasets are reported in Section 4, and the paper concludes with a short
discussion in Section 5.

2 Standard evidence estimators

2.1 Chib’s estimator

The reference estimator for evidence approximation is Chib’s (1995) representation of
the marginal likelihood

mk(x) =
πk(θ

o)fk(x|θo)
πk(θo|x)

which holds for any choice of the plug-in value θo. (It was also called the candidate’s
formula by the late Julian Besag.) While πk(θ

o|x) is not available in closed form for
mixtures, the Gibbs sampling decomposition allows for a Rao–Blackwellised approxima-
tion (Robert and Casella 2004) that converges at a parametric speed, as already noticed
in Gelfand and Smith (1990):

π̂k(θ
o|x) = 1

T

T∑

t=1

πk(θ
o|x, zt) .

However, convergence of this estimate is guaranteed only when label switching has
occurred within the simulated Markov chain. When (zt1, . . . , z

t
n) remains instead con-

centrated around a single mode, the approximation of log mk(x1, . . . , xn) using Chib’s
representation is usually off by a factor of order O(log k!), even though this later term
cannot be used as a reliable correction as noted by Neal (1999).

To deal with the resulting bias, thus induced by the limited exploration provided by
a non-label-switching Markov chain, Berkhof et al. (2003) suggested a straightforward
correction in which another Rao-Blackwellisation is undertaken, namely the replacement
of the above by an average over all possible permutations of the labels, forcing the label
switching and the exchangeability of the labels to occur in a “perfect” manner: the
resulting approximation can be expressed as

π̃k(θ
o|x) = 1

Tk!

∑

σ∈S(k)

T∑

t=1

πk(θ
ok|x, σ(zt)) ,

where S(k) denotes the set of the k! permutations of {1, . . . , k} and where σ is one of
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those permutations. Note that the above correction can also be rewritten as

π̃k(θ
o|x) = 1

Tk!

∑

σ∈S(k)

T∑

t=1

πk(σ(θ
o)|x, zt) , (1)

which may induce some computational savings.

While Chib’s representation has often been advocated as a reference solution for
computing the evidence, other solutions abound within the literature, from nested sam-
pling (Skilling 2007; Chopin and Robert 2010) to reversible jump MCMC (Green 1995;
Richardson and Green 1997), to particle filtering (Chopin 2002).

2.2 Bridge Sampling

Bridge sampling is a technique for computing ratios of normalising constants based on iid
or MCMC simulations from posterior distributions (Meng and Wong 1996). Mira and Nicholls
(2004) used it as a point posterior estimate for Chib’s method and it is well-suited to es-
timate the marginal likelihood (Frühwirth-Schnatter 2001, 2004). The generic equality
at the core of bridge sampling is given by

Ê(k) =
Eq(α(θ)π

∗(θ|x))
Eπ(α(θ)q(θ))

(2)

where π∗(θ|X) is the unnormalised posterior distribution obtained as the product of the
prior density and the likelihood function and where α is an arbitrary function such that
the expectations are well-defined over the joint support of q and π∗ (Chen et al. 2000).

The (formally) optimal choice for the function α by Meng and Wong (1996) leads
to the following iterative approximate of the evidence

Ê
(t)(k) = Ê

(t−1)(k)

L−1
∑L

l=1

π̂(θ̃l|x)
Lq(θ̃l) +Mπ̂(θ̃l|x)

M−1
∑M

m=1

q(θm)

Lq(θm) +Mπ̂(θm|x)

, (3)

where θ̃1, . . . , θ̃L ∼ q and θ1, . . . , θM ∼ π(·|x), possibly by an MCMC algorithm. Here,

π̂(θ|x) = π∗(θ)/Ê(t−1)(k).

This optimal α and the resulting bridge sampling are trivial to implement and to
check for convergence when π∗ and q have overlapping support. If the intersection of
the supports is too small, the resulting bridge sampling estimate may turn out to be
too variable (Voter 1985; Servidea 2002). For such cases, methods such as path sam-
pling (Gelman and Meng 1998), a simple location shift of a distribution to the other
distribution (Voter 1985), and a warp bridge sampling (Meng and Schilling 2002) have
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been proposed to reduce a difference between supports of two distributions in terms of
shape and dimensions.

For the choice of q, Frühwirth-Schnatter (2001) proposed a Rao-Blackwellised im-
portance function of the form

q(θ) =
1

J

J∑

j=1

πk(θ|θ(j), z(j), x) (4)

where {θ(j), z(j)}Jj=1 are well-mixed simulations from the posterior, thus imposing the
label switching. This form is such that its support properly overlaps with the support of
π∗ and the bridge sampling (3) is applicable. Frühwirth-Schnatter (2004) demonstrated
that this iterative estimate converges relatively quickly, in about T = 10 iterations, even
with different starting values.

3 Further importance sampling estimators

3.1 A plug-in proposal

Recall that the importance weight ω(θ) in the importance sampling algorithm with
proposal q is given by

ω(θ) = πk(θ)fk(x|θ)
/
q(θ) , (5)

and that it leads to an evidence approximation of the form

Ê(k) =
1

T

∑

t=1

ω(θt) . (6)

Using a Rao-Blackwell argument inspired from Chib’s representation, a natural im-
portance function is q(θ) = πk(θ|x, zo), which generates samples from the posterior
conditional on a completion vector zo, for instance the MAP or the marginal MAP
estimate of z derived from an MCMC run.

While this estimator is theoretically valid, providing an unbiased estimator of Ê(k),
it may face difficulties in practice by missing wide regions of the parameter space when
simulating from πk(θ|x, zo). This is indeed the practical version of simulating from an
importance function with a support that is smaller than the support of the integrand,
a setting that leads to an erroneous approximation of the corresponding integral. In
the current situation, since πk(θ|x, zo) is everywhere positive, this is not a theoretical
issue. However, in practice, the conditional density is numerically equal to zero around
the alternative modes.

Inspired by Berkhof et al. (2003), we thus propose to replace the MAP proposal by
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its symmetrised version

q(θ) =
1

k!

∑

σ∈S(k)

πk(σ(θ)|x, zo) . (7)

with a natural notational shortcut using σ as the permutation applying to the indices
of different components of θ. This new proposal is equivalent to generating θ from the
original conditional distribution and then operating a random permutation on the com-
ponents of θ. The computational cost of producing ω(θ), hence Ê(k), is then multiplied
by k! but the support of the proposal hopefully gets wide enough to include all the
modes of the target distribution.

If the tails of this proposal are deemed to be too narrow (as signalled by the effective
sample size), additional values of zt = (zt1, . . . , z

t
n) can be extracted from the Gibbs chain

to robustify the proposal, provided the symmetry is recovered by means of the same
averaging over all permutations.

3.2 Dual importance sampling

A dual exploitation of the Rao-Blackwellisation argument produces an alternative im-
portance sampling proposal, based onMCMC draws of (θ, z) conditional on x = (x1, . . . , xn)
and the “current values” (θ(j), z(j)) (j = 1, . . . , J),

q(θ) =
1

Jk!

J∑

j=1

∑

σ∈S(k)

πk(σ(θ)|θ(j) , z(j), x)

=
1

Jk!

J∑

j=1

∑

σ∈S(k)

πk(θ|σ(θ(j) , z(j)), x) . (8)

Here, πk(θ|σ(θ(j) , z(j)), x) denotes a product of conditional densities on each (or
subset) of unknown parameters θ = (λ1, . . . , λk, ξ1, . . . , ξk) in a Gibbs sampler represen-
tation. The label switching is imposed upon those conditional densities in all k! ways
and an average of J conditional densities approximates any one of k! symmetric terms
of a marginal posterior with the same weight.

Both formulas (4) by Frühwirth-Schnatter (2001) and (8) have the same underly-
ing motivation of approximating a multimodal marginal posterior. For (4), the label
switching is already occurred in selected conditional densities for a Monte Carlo ap-
proximation. For the later one, a marginal posterior is approximated in two ways, a
Monte Carlo approximation for one of k! symmetric density terms and k! permutations
of {σ(θ(j), z(j))}Jj=1 for the multimodality. As k increases, a number of conditional den-
sities for (4) increases exponentially to approximate all k! terms while it is not necessary
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for (8). Those two forms induce different efficiency properties for marginal likelihood
estimates.

It is well-known that the posterior distribution contains k! symmetric terms. With-
out loss of generality, a posterior sample θ is represented by two components, ν and κ
such that θ = σκ(ν). Here, κ denotes a term allocation or index, κ ∈ {1, . . . , k!}, and
ν is a random variable generated from any term of the posterior density. Using a com-
mon prior for all components, the posterior densities for ν in all possible permutation
transforms are equal:

π(σ1(ν))fk(x|σ1(ν)) = · · · = π(σk!(ν))fk(x|σk!(ν)) .

A marginal likelihood estimate using q(ν, κ|x) is based upon the traditional importance
sampling identity

E(k) =

k!∑

κ=1

∫
π(ν, κ)fk(x|ν, κ)

q(ν, κ|x) q(ν, κ|x)dν = Eq(ν,κ|x)[ω(ν, κ)]

leading to

Ê(k) =
1

T

T∑

t=1

ω(ν(t), κ(t)) (9)

where ω(ν, κ) = π(ν, κ)fk(x|ν, κ)/q(ν, κ|x). Rewriting q(ν, κ|x) = p(ν|x)p(κ|x) and
marginalizing q(ν, κ|x) over κ, the estimate of

E(k) =

∫ ( k!∑

κ=1

π(ν, κ)fk(x|ν, κ)
q(ν, κ|x) p(κ|x)

)
p(ν|x) dν = Ep(ν|x)[ω(ν)]

becomes

Ê(k) =
1

T

T∑

t=1

ω(ν(t)) , ν(t) ∼ p(ν|x) (10)

where ω(ν) = Ep(ν|x)[π(ν, κ)fk(x|ν, κ)/q(ν, κ|x)].

The estimate (9) is equivalent to (4) in which q is constructed using randomly per-
muted Gibbs samples. In the importance function (8) the J-size Gibbs samples are
permuted in k! ways with equal probability. When p(κ|x) = 1/k!, the estimate (10) is
equivalent to the dual importance sampling version. By the law of large numbers, both
estimates (9) and (10) converge to E(k),

1

T

T∑

t=1

ω(ν(t), κ(t))
T→∞−→

p
E(k) and

1

T

T∑

t=1

ω(ν(t))
T→∞−→

p
E(k) .
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Furthermore, a Central Limit theorem holds,

√
T

{
1

T

T∑

t=1

ω(ν(t), κ(t))− E(k)

}
−→
T→∞

N (0, V1)

and
√
T

{
1

T

T∑

t=1

ω(ν(t))− E(k)

}
−→
T→∞

N (0, V2)

where V1 = varq(ν,κ|x)(ω(ν, κ)) and V2 = varp(ν|x)(ω(ν)). By the variance decomposition

varq(ν,κ|x)(ω(ν, κ)) = varp(ν|x)(Ep(κ|x)(ω(ν, κ))) + Ep(ν|x)(varp(κ|x)(ω(ν, κ)))
= varp(ν|x)(ω(ν)) + Ep(ν|x)(varp(κ|x)(ω(ν, κ))) .

It is easy to see that V1 ≥ V2 and the asymptotic variance of Ê(k) associated with q in
(4) is thus greater than the one corresponding to (8).

It is also obvious that the computational workload associated with such q’s increases
exponentially with k. This computational challenge becomes a severe drawback in
practice as Berkhof et al. (2003) and Frühwirth-Schnatter (2004) acknowledged.

4 Importance function approximation

4.1 An alternative invariant representation

Suppose that {ϕ(j)}Jj=1 denotes a set of hyperparameters, that {θ(j), z(j)}Jj=1 is as in
(8) and that there is no label switching (or that any label switching has been removed).
The k! permutation acting on ϕ being σ1, . . . , σk!, equation (8) can be rewritten as

q(θ) =
1

Jk!

J∑

j=1

k!∑

i=1

π(θ|σi(ϕ
(j)), x) =

1

k!

k!∑

i=1

hσi
(θ) (11)

where hσi
(θ) =

1

J

J∑

j=1

π(θ|σi(ϕ
(j)), x). Each of the densities hσ1

, · · · , hσk!
has a specific

support denoted by S1, · · · , Sk! which union is the support of q, namely S =
⋃k!

i=1 Si.

From a computational perspective, an artificial label switching step is necessary in
computing q but not generating from it. Indeed, assume that the permutation rep-
resentations σ1, . . . , σk! are acting on both θ and ϕ. For an arbitrary permutation
representation σc(θ) and σi(ϕ), the following holds

π(σc(θ)|σi(ϕ), x) = π(σmσc(θ)|σmσi(ϕ), x) , ∀ σm ∈ {σ1, · · · , σk!}
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where σmσc(θ) indicates the composition of two permutations acting on θ. Since the
full permutation representation set {σ1, · · · , σk!} is equal to {σmσ1, · · · , σmσk!}, the
q-values for σc(θ) and σmσc(θ) are equal,

q(σc(θ)) =
1

Jk!

J∑

j=1

k!∑

i=1

π(σc(θ)|σi(ϕ
(j)), x) =

1

Jk!

J∑

j=1

k!∑

i=1

π(σmσc(θ)|σmσi(ϕ
(j)), x)

=
1

Jk!

J∑

j=1

k!∑

i=1

π(σmσc(θ)|σi(ϕ
(j)), x) = q(σmσc(θ)) . (12)

This allows us to state that, when particles are generated from (11), corresponding q-
values are equal whether particles are relabelled or not. This holds even when particles
are relabelled by imposing an artificial identifiability constraint and the label switching
is removed.

The marginal likelihood estimate based on q in (11) is equivalent (from a computa-
tional viewpoint) to one based on particles that are generated without imposing label
switching when the importance weights are computed according to (11). We assume
that all particles are generated from hσ1

. For each particle, a q computation consists
of evaluating all of hσ1

, . . . , hσk!
. Then, a question of interest is to determine which

ones of the hσ1
, . . . , hσk!

are likely to be insignificant (almost zero) for any θ generated
from hσ1

(·). In other words, the issue is in determining the amount of overlap in the
permuted components.

The next section explains how to approximate the q-computations for particles gener-
ated from a particular h, say hc, by using only significant functions among hσ1

, . . . , hσk!

in (11). This means finding the approximate set A(k) ⊆ S(k) which contains the
permutation representations significantly contributing to q.

4.2 Double importance sampling using an approximation

Both hσi
(θ) and q(θ) are the functions of random variable, θ ∼ hσc

(θ), and the contri-
bution in hσi

relative to q is expressed as

ησi
(θ) =

hσi
(θ)

k!q(θ)
=

hσi
(θ)

∑k!
l=1 hσl

(θ)
, i = 1, . . . , k! .

If hσi
is negligible for q, the value ησi

is almost zero and on the opposite ησi
≈ 1

indicates a high contribution of hσi
. The expected relative contribution for θ ∼ hσc

(·)
is

Ehσc
[ησi

(θ)] =

∫

Sc

ησi
(θ)hσc

(θ) dθ

estimated by

Êhσc
[ησi

(θ)] =
1

M

M∑

l=1

ησi
(θ(l)) , θ(l) ∼ hσc

(·) . (13)
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After a possible permutation of the indices, we assume that Êhσc
[ησ1

] ≥ · · · ≥ Êhσc
[ησk!

],
namely that the corresponding hσ1

, · · · , hσk!
are in decreasing order of expected contri-

butions. An approximation of q using only the 1 ≤ n ≤ k! most contributing h’s is then

q̃n(θ) =
1

k!

n∑

i=1

hσi
(θ) , (14)

and the mean absolute difference from q(θ) is approximated by

φ̂n =
1

M

M∑

l=1

∣∣∣q̃n(θ(l))− q(θ(l))
∣∣∣ . (15)

As n closes to k!, q̃n approaches q and φ̂n is almost zero. If this mean absolute difference
is below a threshold, τ , q̃n is defined as an appropriate approximation for q. The approx-
imate set A(k) is then made of [σ1, · · · , σn] for the smallest n that satisfies the condition

φ̂n < τ . Using this derivation, the computation efficiency strictly improves by avoid-
ing negligible h-function computations in q. The thresholds are chosen as a compromise
between the approximation quality (n close to k!) and computation gain (n far from k!).

Note that the above approximation, A(k), is determined under the assumption
θ ∼ hσc

(·) and that the approximation quality is obviously not guaranteed for θ’s
not generated from hσc

. The approximate set A(k) is clearly determined by the choice
of hσc

even though the expected size of A(k) is fixed due to the perfect symmetry of
q over the k! permutations. This means the expected gain in computation is constant
regardless to the choice for hc (and the proof is given in the Appendix). The marginal
likelihood estimate using an approximation is given in the next page.

In our double importance sampling scheme, the total number of h-computations re-
quired to compute q for all T particles is (Mk!)+|A(k)|(T−M) using an approximation.
The computational workload reduction rate ∆(A(k)) is

∆(A(k)) =
(Mk!) + |A(k)|(T −M)

Tk!
=

M

T

(
1− |A(k)|

k!

)
+

|A(k)|
k!

. (16)

As |A(k)| → k!, ∆(A) → 1 and a smaller value indicates a greater reduction in compu-
tation. For a given A(k), ∆(A) converges to |A(k)|/k! as M/T → 0 and, in practice, M
is much smaller than T .
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Algorithm 1: Double importance sampling algorithm

1 Randomly generate a Gibbs sample of size J and construct q as in (11). Label
switching in {ϕ(j)}Jj=1 is removed by reference to a MAP approximation, following
Jasra et al. (2005).

2 Generate particles from an arbitrary hσc
, 1 ≤ c ≤ k!

θ(1), · · · , θ(T ) ∼ hσc
(·) ,

3 Construction of an approximation, q̃:

3.1 Subsample M particles from {θ(t)}Tt=1 and denote them by ϑ(1), · · · , ϑ(M).

3.2 For l = 1, . . . ,M , compute hσ1
(ϑ(l)), . . . , hσk!

(ϑ(l)) and
ησ1

(ϑ(l)), . . . , ησk!
(ϑ(l)).

3.3 Compute Êhσc
[ησ1

], · · · , Êhσc
[ησk!

] in (13).

3.4 Reorder the permutations such that Êhσc
[ησ1

(θ)] ≥ · · · ≥ Êhσc
[ησk!

(θ)].

3.5 Initially set n = 1 and compute q̃n(ϑ
(1)), · · · , q̃n(ϑ(M)) in (14) and φn in (15).

Increase n = n+ 1 and update q̃n and φ̂n until φ̂n < τ .

3.6 Construct a new approximation, q̃, using hσ1
, . . . , hσn

.

4 Compute q̃(θ(1)), . . . , q̃(θ(T )).

5 Substituting q̃ to q in (5), compute Ê in (6).

5 Simulation study

Two simulated mixture datasets and real datasets are used to examine the performance
of six marginal likelihood estimators. The simulated mixtures are;

• D1 : x1, . . . , x60 ∼ 0.3N(−1, 1) + 0.7N(5, 22)

• D2 : x1, . . . , x80 ∼ 0.15N(−5, 1) + 0.65N(1, 22) + 0.2N(6, 1)

Both real datasets, called galaxy and fishery datasets, respectively, and provided in
Figure 1, have been frequently used in mixture inference as benchmarks (see, e.g.
Chib 1995; Frühwirth-Schnatter 2006; Jasra et al. 2005; Richardson and Green 1997;
Stephens 2000).

Gaussian and Dirichlet priors are used for the mean µ and proportions λ.

µ ∼ N(0, 102) , (λ1, . . . , λk) ∼ Dir(1, . . . , 1) .
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For the variance parameter σ2, inverse Gamma distributions with two sets of hyper-
parameters, IG(2, 3) and IG(2, 15), are considered. With the second calibration, label
switching tends to naturally occur within a Gibbs sequence. The first 5,000 iterations
of Gibbs sequences with the length of 104 are removed as burn-ins.

First the relative h-function contributions for q with respect to M is numerically
tested and the threshold τ is chosen. Marginal likelihoods for mixture models with
up to six components are estimated and the performances are compared to standard
estimators for all four datasets.
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0.1
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(a (b

Figure 1: Histogram of the data against estimated six and four Gaussian mixture den-
sities (solid line) for (a) the Galaxy dataset and (b) the Fishery dataset, respectively.

5.1 Determining the approximate set, A(k)

The choice of τ relates to the quality of the approximation of q and to its computational
speed gain. If τ is too small, A(k) ≈ S(k) and there will be hardly any speed gain. A
contrario, a very large value of τ will produce a very poor approximation.

The summary of expected relative contributions for D1 and D2 is given in Tables 1
and 2. Due to the rounding error, the summation of contribution ratios is not equal to
one and the significant contribution functions are easily identified. In MatLab, 10−324

is rounded down to 0 and conservatively τ = 10−324 is chosen for all the analyses made
in this paper. In Tables 1 and 2, estimates for an approximate set size |A(k)| and a

error φ̂ are relatively stable against M for a given J = 100. When no label switching
occurs naturally, q seems to be well approximated using only hσ1

as seen in Table 1.
Even a label switching occurs in a Gibbs sequence for a three Normal mixture model,
only two functions, hσ1

and hσ2
, contribute for q in Table 2. For the further analysis in

this paper, J = 102, M = 104 and τ = 10−324 are chosen.
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J M Êhσ1
[η] |A(k)| φ̂

102 103 [1, 2× 10−83] 1 0
102 104 [1, 2× 10−69] 1 0
102 105 [1, 5× 10−63] 1 0

Table 1: Estimates for {Êhσ1
[ηi]}k!i=1, |A(k)| and φ̂ with respect to M for D1. The prior

for a variance parameter is a IG(2, 3) distribution.

J M Êhσ1
[η] |A(k)| φ̂

102 103 [1, 8× 10−11, 2× 10−59, 3× 10−63, 7× 10−65, 3× 10−90] 2 0
102 104 [0.9998, 2× 1−4, 3× 10−21, 5× 10−50, 2× 10−54, 4× 10−116] 2 0
102 105 [0.9995, 5× 2−4, 1× 10−80, 9× 10−83, 2× 10−94, 1× 10−108] 2 0

Table 2: Estimates for {Êhσ1
[ηi]}k!i=1, |A(k)| and φ̂ with respect to M for D2. The prior

for a variance parameter is a IG(2, 15) distribution.

5.2 Simulation results

The following five marginal likelihood estimates are compared;

Ê∗
Ch : Chib’s method using T = 5000 samples with a permutation correction by multi-

plying k!

ÊCh : Chib’s method (1), using T = 5000 samples which are randomly permuted.

ÊIS : Importance sampling estimate (7), using the maximum likelihood estimate (MLE)
for zo1 , . . . , z

o
n and T = 105 particles.

ÊDS : Dual importance sampling using q in (8), T = 105 particles and J = 100 samples
for q(θ)

ÊA
DS : Dual importance sampling using an approximate in (14), T = 105 particles,

J = 100 and M = 104.

ÊBS : Bridge sampling (3), using L = M = 6000 samples and J = 4000 samples for
q(θ) in (4) via 10 iterations. Here, label switching is imposed in hyperparameters
{θ(j), z(j)}Jj=1.

The marginal likelihood estimates in log scales (log(Ê)) and the effective sample size
(ESS) ratios (r = ESS/T ) are summarised based on 50 replicates.
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Simulated mixture dataset

Mixture models of two and three components are fitted to D1 and D2 respectively.
With a prior IG(2, 3) on the variance parameters, label switching does not occur and

all estimates relatively coincide, except for log(ÊIS) in Figure 2. When label switching

naturally occurs in the Gibbs sequence under the prior IG(2, 15), the log(Ê∗
Ch) values

also slightly disagree with the other estimates in Figure 3. This unsurprisingly indicates
an incorrect correction for label switching through a multiplication by k! as Neal (1999);
Frühwirth-Schnatter (2006) and Marin and Robert (2008) reported.

The smallest effective sample size is observed for r(ÊIS) and this relates to a larger

variation of log(ÊIS) values when compared with estimates using dual importance sam-

pling. The estimate log(ÊIS) is an integral approximation of f(x|θ)π(θ) over the support
of π(·|x, zo) in which zo maximises the likelihood. As the number of components in-
creases, this supporting domain may not be large enough to fit f(x|θ)π(θ) and poor
estimates likely result. For k = 3, poor marginal likelihood estimates induced by this
poor importance function clearly show in both Figures.

In general, dual importance sampling, Chib’s method with a random permutation,
and bridge sampling appear as the most suitable estimators for this mixture model sim-
ulation study. In particular, for dual importance sampling, no significant difference in
approximations of log(E) and in effective sample sizes is observed, when using a suitable
approximate for q. Moreover, the mean sizes of A(k) in Table 3 show that log(E) can
be estimated with a lesser computational workload, with a reduction rate of 0.33.

D k k! |A1(k)| ∆(A1) |A2(k)| ∆(A2)
D1 2 2 1 0.5005 2 1.0000
D2 3 6 2 0.3340 2.14 0.3573

Table 3: Mean estimates for the approximation set size, |A(k)|, and the computation
reduction factor, ∆(A), in (16) for D1 and D2. The subscripts 1 and 2 indicate the
results using the priors σ2 ∼ IG(2, 3) and σ2 ∼ IG(2, 15), respectively.
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Figure 2: Boxplots of marginal likelihood estimates in log scale (left) and effective

sample sizes ratios (right). Note that for conciseness’ sake, log(Ê) is replaced with Ê

in the label captions. Mixture models with (top) two and (bottom) three Gaussian
components are fitted to D1 and D2, respectively. The prior on σ2 is the distribution
IG(2, 3).
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DS
)

Figure 3: Boxplots of marginal likelihood estimates in log scale (left) and effective

sample sizes ratios (right). Note that for conciseness’ sake, log(Ê) is replaced with Ê

in the label captions. Mixture models with (top) two and (bottom) three Gaussian
components are fitted to D1 and D2, respectively. The prior on σ2 is the distribution
IG(2, 15).

Galaxy and fishery dataset

The priors suggested by Richardson and Green (1997) are used for our simulation study:

µ ∼ N(x̄, R2/4)
σ2
i ∼ IG(2, β) , i = 1, · · · , k
β ∼ G(0.2, 10/R2)

λ1, . . . , λk ∼ Dirichlet(1, · · · , 1)
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Here x̄ and R are the median and the range of x, respectively.

Normal mixture models are fitted to both datasets and estimates for log(E(k)) are
summarised in Figures 4 and 5. In general, a similar phenomenon in the behaviour of
log(Ê(k)) and r(Ê) in terms of the methods is observed. Unless the components are

clearly separated, |A(k)| ≈ 1, log(Ê∗
Ch) estimate is biased due to a wrong permutation

correction. The importance sampling approach with a poor q results an integration
approximation over a limited support instead of the full support of f(x|θ)π(θ) and the
estimate gets poorer as k increases. Even in the case of an eight dimensional posterior
(when k = 3), this estimator already significantly suffers.

As k increases, the number of effective sample size is reduced exponentially and the
variation in log(Ê) estimates increases. Particularly, as k increases up to six, a variation

increase in log(ÊCh) values with k is significantly greater than log(ÊDS) and log(ÊA
DS)

values.

The reduction in computation due to the use of an approximation is observed for
all simulations and the reduction rate varies by cases as shown in Table 4. Particu-
larly, when k = 4 and k = 6, normal components for the galaxy data tend to have
long flat tails and have higher chances to overlap each other. Consequently, the com-
putation workload reduction is less than a model using a smaller number of components.
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Figure 4: Boxplots of marginal likelihood estimates in log scale (left) and effective

sample sizes ratios (right). Note that for conciseness’ sake, log(Ê) is replaced with Ê

in the label captions. Mixture models with (top) three and (bottom) four Gaussian
components are fitted to the fishery dataset.
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Ê∗
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A
DS

Ê
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in the label captions. Mixture models with (top) three and (bottom) four Gaussian
components are fitted to the galaxy dataset.

k k! |A(k)| ∆(A)
3 6 1.0000 0.1675
4 24 2.7333 0.1148

(a) Fishery data

k k! |A(k)| ∆(A)
3 6 1.000 0.1675
4 24 16.8333 0.7188
6 720 298.1200 0.4146

(b) Galaxy data

Table 4: Mean estimates of approximate set sizes, |A(k)|, and the computation reduction
ratio, ∆(A) in (16) for (a) fishery and (b) galaxy datasets.

5.3 Importance function choice

In importance sampling, the importance function q highly influences to estimates. For
mixture models, key aspects for the choice of q are (a) finding a support of q that
includes the support of the posterior density and (b) its capability of inducing label
switching. Two importance functions, (4) and (8), allow for label switching and the
corresponding estimates are (9) and (10) respectively. Theoretically we proved that the
asymptotic variance for (10) is smaller than (9) and this is numerically examined in this
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section.

Mixture models using three and four Gaussian components are fitted for the simu-
lated data D2 and galaxy data, respectively. The estimates in log-scale and the effective
sample size rates are summarised in Figure 6. The estimate (9) is denoted by ÊJ and J

is the number of conditional functions used for q. When J = 100, the variations of ÊJ

values are greater than ÊDS and the effective samples sizes are smaller. For the galaxy
data, the variance and the effective samples sizes of those estimates become similar when
J = 3000 for the estimator (9). These observations obviously support our theoretical
result.
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r(ÊDS) r(ÊJ1
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Figure 6: Boxplots of marginal likelihood estimates in log scale (left) and effective

sample sizes ratios (right). Note that for conciseness’ sake, log(Ê) is replaced with Ê in
the label captions. Mixtures of three Gaussians (top) and four Gaussian components
(bottom) are fitted toD2 and the galaxy dataset, respectively. The importance sampling

approximation (4) using J Gibbs samples for q is denoted by ÊJ and J1 = 100 and
J2 = 3000.
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6 Discussion

This paper considers the evidence approximations using the importance sampling for
mixture models and some of known challenges due to a complexity of multimodal pos-
terior density arising with k. For importance sampling based estimators, it is essential
that a support of an importance function is large enough compared to the support of the
posterior density. Particularly for mixture models, an inappropriate permutation ap-
proximation for an importance function is likely to result an unsuitable support hence,
a poor estimate.

For our investigation the common priors for all mixture components are assumed
and, consequently the posterior and marginal posterior densities are made up with k!
symmetrical terms. Two marginal likelihood estimators are proposed and tested along
other existing estimators. The first approach uses the permutation representations of
π(·|x, zo) with a pointwise MLE, zo, for an importance function. Obviously due to a
poor support of an importance function, this approach performs poorly in our simula-
tion studies. Another poor estimates using the Chib’s method are observed when the
permutations are incorrectly approximated.

Secondly the importance function is constructed adapting the Rao-Blackwellised
twice to approximate a multimodal marginal posterior density and, this is called the dual
importance sampling. Theoretically and practically it is demonstrated that the dual im-
portance sampling is a compatible estimator particularly for mixture model and even
a higher efficiency gained compared to an importance function by Frühwirth-Schnatter
(2001). Moreover, using a suitable approximation for an importance function, its ex-
ponential increasing computational workload with k can be reduced. The underlying
idea is to avoid negligible function computations using the perfect symmetry k! terms
of posterior density. As posterior modes are well separated, a gain by the use of an
approximation is greater and more are overlapped, a less gain is resulted.

Borrowing a similar approach in Chib (1996), the dual importance sampling can be
extended to the cases in which conditional densities in a Gibbs sampling representation
are not in closed forms. However it is suffered from the curse of dimensionality just
like any other estimators based on importance sampling and, this is observed in our
simulation studies.

Alternative model evidence approximations are well summarised Friel and Wyse
(2012). Among them, the ensemble Monte Carlo approach is that samples from local en-
sembles are extensions or compositions of the original. For example, parallel tempering
Monte Carlo method, ensembles of states (Neal), among others. Extending this idea,
Bayes factor approximations were proposed such as annealed importance sampling by
Neal (2001) and power posteriors by Friel and Pettitt (2008). Further investigation is
needed to characterise their performances for mixture models with respect to the label
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switching and k.

Appendix

Let σc(θ) be a particle θ in a particular permutation representation, σc. Recalling the
equation (12) the followings are true for any σm,

hσi
(σc(θ)) =

1

J

J∑

j=1

π(σc(θ)|σi(ϕ
(j)), x)

=
1

J

J∑

j=1

π(σmσc(θ)|σmσi(ϕ
(j)), x) = hσmσi

(σmσc(θ))

and

ησi
(σc(θ)) =

hσi
(σc(θ))

k!q(θ)
=

hσmσi
(σmσc(θ))

k!q(θ)
= ησmσi

(σmσc(θ)) .

Suppose that hσ1
, · · · , hσk!

are in the order of Êhσc
[ησ1

] ≥ · · · ≥ Êhσc
[ησk!

]. Then, the

order of hσmσ1
, · · · , hσmσk!

corresponds to Êhσmσc
[ησmσ1

] ≥ · · · ≥ Êhσmσc
[ησmσk!

] and
h’s are in a decreasing contribution order for q assuming that particles are generated
from hσmσc

. If σmσc = σc, the order of h’s for both cases are identical. Otherwise, they
are not identical however, the expected absolute errors using the n most contributing
h-functions are equal,

q̃n(σc(θ)) =
1

k!

n∑

i=1

hσi
(σc(θ)) =

1

k!

n∑

i=1

hσmσi
(σmσc(θ)) = q̃n(σmσc(θ))

and

Ehσc
(φn) =

∫ ∣∣∣∣∣
1

k!

n∑

i=1

hσi
(θ)− q(θ)

∣∣∣∣∣ hσc
(θ)dθ =

∫ ∣∣∣∣∣
1

k!

n∑

i=1

hσmσi
(θ)− q(θ)

∣∣∣∣∣ hσmσc
(θ)dθ = Ehσmσc

(φn) .

The approximate set A(k) is chosen by

min
n

{Ehσc
[φn] < τ} = min

n
{Ehσmσc

[φn] < τ} .

Any permutation representation for θ is constructed using σmσc by the choice for σm

hence, the expected value for |A(k)| is same for any hc in Algorithm 1.
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