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Pivotal Estimation in High-dimensional
Regression via Linear Programming

Eric Gautier and Alexandre B. Tsybakov

Abstract We propose a new method of estimation in high-dimensional linear re-
gression model. It allows for very weak distributional assumptions including het-
eroscedasticity, and does not require the knowledge of the variance of random errors.
The method is based on linear programming only, so that its numerical implemen-
tation is faster than for previously known techniques using conic programs, and it
allows one to deal with higher dimensional models. We provide upper bounds for
estimation and prediction errors of the proposed estimator showing that it achieves
the same rate as in the more restrictive situation of fixed design and i.i.d. Gaussian
errors with known variance. Following Gautier and Tsybakov (2011), we obtain
the results under weaker sensitivity assumptions than the restricted eigenvalue or
assimilated conditions.

1 Introduction

In this paper, we consider the linear regression model

yi = xT
i β
∗+ui, i = 1, . . . ,n, (1)

where xi are random vectors of explanatory variables in Rp, and ui ∈ R is a random
error. The aim is to estimate the vector β ∗ ∈Rp from n independent, not necessarily
identically distributed realizations (yi,xT

i ), i = 1, . . . ,n. We are mainly interested

E. Gautier
CREST-ENSAE, 3, avenue Pierre Larousse, 92245 MALAKOFF Cedex, FRANCE, e-mail:
eric.gautier@ensae.fr

A.B. Tsybakov,
CREST-ENSAE, 3, avenue Pierre Larousse, 92245 MALAKOFF Cedex, FRANCE, e-mail:
alexandre.tsybakov@ensae.fr

1



2 Eric Gautier and Alexandre B. Tsybakov

in high-dimensional models where p can be much larger than n under the sparsity
scenario where only few components β ∗k of β ∗ are non-zero (β ∗ is sparse).

The most studied techniques for high-dimensional regression under the spar-
sity scenario are the Lasso, the Dantzig selector, see, e.g., Candès and Tao (2007),
Bickel, Ritov and Tsybakov (2009) (more references can be found in Bühlmann and
van de Geer (2011) and Koltchinskii (2011)), and agregation by exponential weight-
ing (see Dalalyan and Tsybakov (2008), Rigollet and Tsybakov (2011, 2012) and the
references cited therein). Most of the literature on high-dimensional regression as-
sumes that the random errors are Gaussian or subgaussian with known variance (or
noise level). However, quite recently several methods have been proposed which are
independent of the noise level (see, e.g., Städler, Bühlmann and van de Geer (2010),
Antoniadis (2010), Belloni, Chernozhukov and Wang (2011a, 2011b), Gautier and
Tsybakov (2011), Sun and Zhang (2011), Belloni, Chen, Chernozhukov, and Hansen
(2012) and Dalalyan (2012)). Among these, the methods of Belloni, Chernozhukov
and Wang (2011b), Belloni, Chen, Chernozhukov, and Hansen (2012), Gautier and
Tsybakov (2011) allow to handle non-identically distributed errors ui and are piv-
otal, i.e., rely on very weak distributional assumptions. In Gautier and Tsybakov
(2011), the regressors xi can be correlated with the errors ui, and an estimator is
suggested that makes use of instrumental variables, called the STIV (Self-Tuned In-
strumental Variables) estimator. In a particular instance, the STIV estimator can be
applied in classical linear regression model where all regressors are uncorrelated
with the errors. This yields a pivotal extension of the Dantzig selector based on
conic programming. Gautier and Tsybakov (2011) also present a method to obtain
finite sample confidence sets that are robust to non-Gaussian and heteroscedastic
errors.

Another important issue is to relax the assumptions on the model under which
the validity of the Lasso type methods is proved, such as the restricted eigenvalue
condition of Bickel, Ritov and Tsybakov (2009) and its various analogs. Belloni,
Chernozhukov and Wang (2011b) obtain fast rates for prediction for the Square-
root Lasso under a relaxed version of the restricted eigenvalue condition. In the
context of known noise variance, Ye and Zhang (2011) introduce cone invertibility
factors instead of restricted eigenvalues. For pivotal estimation, an approach based
on the sensitivities and sparsity certificates is introduced in Gautier and Tsybakov
(2011), see more details below. Finally, note that aggregation by exponential weight-
ing (Dalalyan and Tsybakov (2008), Rigollet and Tsybakov (2011, 2012)) does not
require any condition on the model but its numerical realization is based on MCMC
algorithms in high dimension whose convergence rate is hard to assess theoretically.

In this paper, we introduce a new pivotal estimator, called the Self-tuned Dantzig
estimator. It is defined as a linear program, so from the numerical point of view it is
simpler than the previously known pivotal estimators based on conic programming.
We obtain upper bounds on its estimation and prediction errors under weak assump-
tions on the model and on the distribution of the errors showing that it achieves
the same rate as in the more restrictive situation of fixed design and i.i.d. Gaussian
errors with known variance. The model assumptions are based on the sensitivity
analysis from Gautier and Tsybakov (2011). Distributional assumptions allow for
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dependence between xi and ui. When xi’s are independent from ui’s, it is enough
to assume, for example, that the errors ui are symmetric and have a finite second
moment.

2 Notation

We set Y = (y1, . . . ,yn)T , U = (u1, . . . ,un)T , and we denote by X the matrix of
dimension n× p with rows xT

i , i = 1, . . . ,n. We denote by D the p× p diagonal
normalizing matrix with diagonal entries dkk > 0, k = 1, . . . , p. Typical examples
are: dkk ≡ 1 or

dkk =

(
1
n

n

∑
i=1

x2
ki

)−1/2

, and dkk =
(

max
i=1,...,n

|xki|
)−1

where xki is the kth component of xi. For a vector β ∈Rp, let J(β ) = {k∈{1, . . . , p} :
βk 6= 0} be its support, i.e., the set of indices corresponding to its non-zero compo-
nents βk. We denote by |J| the cardinality of a set J ⊆ {1, . . . , p} and by Jc its
complement: Jc = {1, . . . , p} \ J. The `p norm of a vector ∆ is denoted by |∆ |p,
1 ≤ p ≤ ∞. For ∆ = (∆1, . . .∆p)T ∈ Rp and a set of indices J ⊆ {1, . . . , p}, we
consider ∆J , (∆11l{1∈J}, . . . ,∆p1l{p∈J})T , where 1l{·} is the indicator function. For
a ∈ R, we set a+ ,max(0,a), a−1

+ , (a+)−1.

3 The Estimator

We say that a pair (β ,σ) ∈ Rp×R+ satisfies the Self-tuned Dantzig-constraint if it
belongs to the set

D̂ ,

{
(β ,σ) β ∈ Rp, σ > 0,

∣∣∣∣1nDXT (Y−Xβ )
∣∣∣∣
∞

≤ σr
}

(2)

for some r > 0 (specified below).

Definition 1. We call the Self-Tuned Dantzig estimator any solution (β̂ , σ̂) of the
following minimization problem

min
(β ,σ)∈D̂

(∣∣D−1
β
∣∣
1 + cσ

)
, (3)

for some positive constant c.

Finding the Self-Tuned Dantzig estimator is a linear program. The term cσ is
included in the criterion to prevent from choosing σ arbitrarily large. The choice of
the constant c will be discussed later.
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4 Sensitivity Characteristics

The sensitivity characteristics are defined by the action of the matrix

Ψn ,
1
n

DXT XD

on the so-called cone of dominant coordinates

C(γ)
J , {∆ ∈ Rp : |∆Jc |1 ≤ (1+ γ)|∆J |1} ,

for some γ > 0. It is straightforward that for δ ∈C(γ)
J ,

|∆ |1 ≤ (2+ γ)|∆J |1 ≤ (2+ γ)|J|1−1/q|∆J |q, ∀1≤ q≤ ∞. (4)

We now recall some definitions from Gautier and Tsybakov (2011). For q ∈ [1,∞],
we define the `q sensitivity as the following random variable

κ
(γ)
q,J , inf

∆∈C(γ)
J : |∆ |q=1

|Ψn∆ |
∞

.

Given a subset J0 ⊂ {1, . . . , p} and q ∈ [1,∞], we define the `q-J0-block sensitivity
as

κ
(γ)
q,J0,J , inf

∆∈C(γ)
J : |∆J0 |q=1

|Ψn∆ |
∞

. (5)

By convention, we set κ
(γ)
q,∅,J = ∞. Also, recall that the restricted eigenvalue of

Bickel, Ritov and Tsybakov (2009) is defined by

κ
(γ)
RE,J , inf

∆∈Rp\{0}: ∆∈C(γ)
J

|∆ TΨn∆ |
|∆J |22

and a closely related quantity is

κ
′(γ)
RE,J , inf

∆∈Rp\{0}: ∆∈C(γ)
J

|J| |∆ TΨn∆ |
|∆J |21

.

The next result establishes a relation between restricted eigenvalues and sensitivi-
ties. It follows directly from the Cauchy-Schwarz inequality and (4).

Lemma 1.
κ

(γ)
RE,J ≤ κ

′(γ)
RE,J ≤ (2+ γ)|J|κ(γ)

1,J,J ≤ (2+ γ)2|J|κ(γ)
1,J . (6)

The following proposition gives a useful lower bound on the sensitivity.

Proposition 1. If |J| ≤ s,
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κ
(γ)
1,J,J ≥

1
s

min
k=1,...,p

{
min

∆k=1, |∆ |1≤(2+γ)s
|Ψn∆ |

∞

}
, κ

(γ)
1,0 (s). (7)

Proof. We have

κ
(γ)
1,J,J = inf

∆ : |∆J |1=1, |∆Jc |1≤1+γ

|Ψn∆ |
∞

≥ inf
∆ : |∆ |∞≥ 1

s , |∆ |1≤2+γ

|Ψn∆ |
∞

=
1
s

inf
∆ : |∆ |∞≥1, |∆ |1≤(2+γ)s

|Ψn∆ |
∞

(by homogeneity)

=
1
s

inf
∆ : |∆ |∞≥1, |∆ |1≤(2+γ)s

|∆ |∞
|Ψn∆ |

∞

|∆ |∞

≥ 1
s

inf
∆ : |∆ |∞=1, |∆ |1≤(2+γ)s|∆ |∞

|Ψn∆ |
∞

(by homogeneity)

=
1
s

inf
∆ : |∆ |∞=1, |∆ |1≤(2+γ)s

|Ψn∆ |
∞

=
1
s

min
k=1,...,p

{
inf

∆ : ∆k=1, |∆ |1≤(2+γ)s
|Ψn∆ |

∞

}
. �

Note that the random variable κ
(γ)
1,0 (s) depends only on the observed data. It is not

difficult to see that it can be obtained by solving p linear programs. For more de-
tails and further results on the sensitivity characteristics, see Gautier and Tsybakov
(2011).

5 Bounds on the estimation and prediction errors

In this section, we use the notation ∆ , D−1(β̂ − β ). Let 0 < α < 1 be a given
constant. We choose the tuning parameter r in the definition of D̂ as follows:

r =

√
2log(4p/α)

n
. (8)

Theorem 1. Let for all i = 1, . . . ,n, and k = 1, . . . , p, the random variables xkiui be
symmetric. Let Q∗ > 0 be a constant such that

P

(
max

k=1,...,p

d2
kk
n

n

∑
i=1

x2
kiu

2
i > Q∗

)
≤ α/2. (9)

Assume that |J(β ∗)| ≤ s, and set in (3)
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c =
(2γ +1)r

κ
(γ)
1,0 (s)

, (10)

where γ is a positive number. Then, with probability at least 1−α , for any γ > 0 and
any β̂ such that (β̂ , σ̂) is a solution of the minimization problem (3) with c defined in
(10) we have the following bounds on the `1 estimation error and on the prediction
error:

|∆ |1 ≤

 (γ +2)(2γ +1)
√

Q∗

γκ
(γ)
1,0 (s)

r , (11)

∆
T
Ψn∆ ≤

 (γ +2)(2γ +1)2Q∗

γ2κ
(γ)
1,0 (s)

r2. (12)

Proof. Set

Q̂(β ), max
k=1,...,p

d2
kk
n

n

∑
i=1

x2
ki(yi− xT

i β )2,

and define the event

G =
{∣∣∣∣1nDXT U

∣∣∣∣
∞

≤ r
√

Q̂(β ∗)
}

=

{∣∣∣∣∣dkk

n

n

∑
i=1

xkiui

∣∣∣∣∣≤ r
√

Q̂(β ∗), k = 1, . . . , p

}
.

Then

G c ⊂
⋃

k=1,...,p

{∣∣∣∣∣ ∑
n
i=1 xkiui√

∑
n
i=1(xkiui)2

∣∣∣∣∣≥√nr

}
and the union bound yields

P(G c)≤
p

∑
k=1

P

(∣∣∣∣∣ ∑
n
i=1 xkiui√

∑
n
i=1(xkiui)2

∣∣∣∣∣≥√nr

)
. (13)

We now use the following result on deviations of self-normalized sums due to
Efron (1969).

Lemma 2. If η1, . . . ,ηn are independent symmetric random variables, then

P

 ∣∣ 1
n ∑

n
i=1 ηi

∣∣√
1
n ∑

n
i=1 η2

i

≥ t

≤ 2exp
(
−nt2

2

)
, ∀ t > 0.

For each of the probabilities on the right-hand side of (13), we apply Lemma 2 with
ηi = xkiui. This and the definition of r yield P(G c)≤ α/2. Thus, the event G holds
with probability at least 1−α/2. On the event G we have
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|Ψn∆ |
∞
≤
∣∣∣∣1nDXT (Y−Xβ̂ )

∣∣∣∣
∞

+
∣∣∣∣1nDXT (Y−Xβ

∗)
∣∣∣∣
∞

(14)

≤ rσ̂ +
∣∣∣∣1nDXT U

∣∣∣∣
∞

(15)

≤ r
(

σ̂ +
√

Q̂(β ∗)
)

≤ r
[

2
√

Q̂(β ∗)+
(

σ̂ −
√

Q̂(β ∗)
)]

(16)

Inequality (15) holds because (β̂ , σ̂) belongs to the set D̂ by definition. Notice that,

on the event G ,
(

β ∗,
√

Q̂(β ∗)
)

belongs to the set D̂ . On the other hand, (β̂ , σ̂)

minimizes the criterion
∣∣D−1β

∣∣
1 + cσ on the same set D̂ . Thus, on the event G ,∣∣∣D−1

β̂

∣∣∣
1
+ cσ̂ ≤ |D−1

β
∗|1 + c

√
Q̂(β ∗). (17)

This implies, again on the event G ,

|Ψn∆ |
∞
≤ r

[
2
√

Q̂(β ∗)+
1
c ∑

k∈J(β ∗)

(∣∣d−1
kk β

∗
k

∣∣− ∣∣∣d−1
kk β̂k

∣∣∣)− 1
c ∑

k∈J(β ∗)c

∣∣∣d−1
kk β̂k

∣∣∣]

≤ r
(

2
√

Q̂(β ∗)+
1
c

∣∣∆J(β ∗)
∣∣
1

)
(18)

where β ∗k , β̂k are the kth components of β ∗, β̂ . Similarly, (17) implies that, on the
event G , ∣∣∆J(β ∗)c

∣∣
1 = ∑

k∈J(β ∗)c

∣∣∣d−1
kk β̂k

∣∣∣
≤ ∑

k∈J(β ∗)

(∣∣d−1
kk β

∗
k

∣∣− ∣∣∣d−1
kk β̂k

∣∣∣)+ c
(√

Q̂(β ∗)− σ̂

)
≤
∣∣∆J(β ∗)

∣∣
1 + c

√
Q̂(β ∗). (19)

We now distinguish between the following two cases.

Case 1: c
√

Q̂(β ∗)≤ γ
∣∣∆J(β ∗)

∣∣
1. In this case (19) implies∣∣∆J(β ∗)c
∣∣
1 ≤ (1+ γ)

∣∣∆J(β ∗)
∣∣
1 . (20)

Thus, ∆ ∈C(γ)
J(β ∗) on the event G . By definition of κ

(γ)
1,J(β ∗),J(β ∗) and (7),
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∣∣
1 ≤

|Ψn∆ |
∞

κ
(γ)
1,J(β ∗),J(β ∗)

≤ |Ψn∆ |
∞

κ
(γ)
1,0 (s)

.

This and (18) yield

∣∣∆J(β ∗)
∣∣
1 ≤

2r
√

Q̂(β ∗)

κ
(γ)
1,0 (s)

1− r

cκ
(γ)
1,0 (s)

−1

+

.

Case 2: c
√

Q̂(β ∗) > γ
∣∣∆J(β ∗)

∣∣
1. Then, obviously,

∣∣∆J(β ∗)
∣∣
1 < c

γ

√
Q̂(β ∗).

Combining the two cases we obtain, on the event G ,

∣∣∆J(β ∗)
∣∣
1 ≤

√
Q̂(β ∗)max

 2r

κ
(γ)
1,0 (s)

1− r

cκ
(γ)
1,0 (s)

−1

+

,
c
γ

 . (21)

In this argument, c > 0 and γ > 0 were arbitrary. The value of c given in (10) is
the minimizer of the right-hand side of (21). Plugging it in (21) we find that, with
probability at least 1−α/2

|∆ |1 ≤
(γ +2)(2γ +1)r

γκ
(γ)
1,0 (s)

√
Q̂(β ∗)

where we have used (19). Now, by (9), Q̂(β ∗)≤Q∗ with probability at least 1−α/2.
Thus, we get that (11) holds with probability at least 1−α . Next, using (18) we
obtain that, on the same event of probability at least 1−α ,

|Ψn∆ |
∞
≤ (2γ +1)r

γ

√
Q∗.

Combining this inequality with (11) yields (12). �

Discussion of Theorem 1.

1. In view of Lemma 1, κ
(γ)
1,J(β ∗),J(β ∗) ≥ (2+ γ)−2κ

(γ)
RE,J(β ∗)/s. Also, it is easy to see

from Proposition 1 that κ
(γ)
1,0 (s) is of the order 1/s when Ψn is the identity matrix

and p� s (this is preserved for Ψn that are small perturbations of the identity).
Thus, the bounds (11) and (12) take the form

|∆ |1 ≤C

(
s

√
log p

n

)
, ∆

T
Ψn∆ ≤C

(
s log p

n

)
,

for some constant C, and we recover the usual rates for the `1 estimation and for
the prediction error respectively, cf. Bickel, Ritov and Tsybakov (2009).
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2. Theorem 1 does not assume that xki’s are independent from ui’s. The only as-
sumption is the symmetry of xkiui. However, if xki is independent from ui, then
by conditioning on xki in the bound for P(G ), it is enough to assume the sym-
metry of ui’s. Furthermore, while we have chosen the symmetry since it makes
the conditions of Theorem 1 simple and transparent, it is not essential for our
argument to be applied. The only point in the proof where we use the symmetry
is the bound for the probability of deviations of self-normaized sums P(G ). This
probability can be bounded in many other ways without the symmetry assump-
tion, cf., e.g., Gautier and Tsybakov (2011). It is enough to have E[xkiui] = 0 and
a uniform over k control of the ratio

(∑n
i=1 E[x2

kiu
2
i ])

1/2(
∑

n
i=1 E[|xkiui|2+δ ]

)1/(2+δ )

for some δ > 0, cf. [14] or [6].
3. The quantity Q∗ is not present in the definition of the estimator and is needed

only to assess the rate of convergence. It is not hard to find Q∗ in various sit-
uations. The simplest case is when dkk ≡ 1 and the random variables xki and
ui are bounded uniformly in k, i by a constant L. Then we can take Q∗ =
L4. If only xki are bounded uniformly in k by L, condition (9) holds when
P
( 1

n ∑
n
i=1 u2

i > Q∗/L2
)
≤ α/2, and then for Q∗ to be bounded it is enough to

assume that ui’s have a finite second moment. The same remark applies when
dkk = (maxi=1,...,n |xki|)−1, with an advantage that in this case we guarantee that
Q∗ is bounded under no assumption on xki.

4. The bounds in Theorem 1 depend on γ > 0 that can be optimized. Indeed, the
functions of γ on the right-hand sides of (11) and (12) are data-driven and can be
minimized on a grid of values of γ . Thus, we obtain an optimal (random) value
γ = γ̂ , for which (11) and (12) remain valid, since these results hold for any γ > 0.
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