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Abstract

This paper deals with nonparametric estimation of conditional den-
sities in mixture models. The proposed approach consists to perform
a preliminary clustering algorithm to guess the mixture component
of each observation. Conditional densities of the mixture model are
then estimated using kernel density estimates applied separately to
each cluster. We investigate the expected L1-error of the resulting es-
timates with regards to the performance of the clustering algorithm.
In particular, we prove that these estimates achieve optimal rates over
classical nonparametric density classes under mild assumptions on the
clustering method used. Finally, we offer examples of clustering algo-
rithms verifying the required assumptions.
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1 Introduction
Finite mixture models are widely used to account for population hetero-
geneities. In many fields such as biology, econometrics as well as social
sciences, experiments are based on the analysis of a variable characterized by
a different behavior depending on the group of individuals. A natural way
to modeling heterogeneity for a real random variable Y is to use a mixture
model. In this case, the density f of Y can be written as

f(t) =
M∑
i=1

αifi(t), t ∈ R. (1.1)

Here M is the number of subpopulation, αi and fi are respectively the mix-
ture proportion and the probability density function of the ith subpopulation.
We refer the reader to Everit and Hand (1981), McLachlan and Basford
(1988), McLachlan and Peel (2000) for a broader picture of mixture density
models as well as for practical applications.

When dealing with mixture density models such as (1.1), some issues arise.
In some cases, the number of componentsM is unknown and therefore, needs
to be estimated. To this end, some algorithms have been developed to pro-
vide consistent estimates of this parameter. For instance, Biau et al. (2007)
and Cuevas et al. (2000) propose an estimator based on the level sets of f
whenM corresponds to the number of modes of f . Identifiability of the model
is an additional issue that received some attention in the literature. Actu-
ally, model (1.1) is identifiable only with imposing restrictions on the vector
(α1, . . . , αM , f1, . . . , fM). In order to supply the minimal assumptions such
that (1.1) becomes identifiable, Celeux and Govaert (1995), Bordes et al.
(2006) (see also the references therein) assume that the density functions fi’s
belong to some parametric or semi-parametric density families. However, in
a nonparametric setting, it turns out that identifiability conditions are more
difficult to provide. Hall and Zhou (2003) define mild regularity conditions
to achieve identifiability in a multivariate nonparametric setting while Ki-
tamura (2004) consider the case where appropriate covariates are available.

When the model (1.1) is identifiable, the statistical problem consists to find
efficient estimates of the mixture proportions αi and the density functions fi.
In the parametric case, some algorithms have been proposed such as maxi-
mum likelihood techniques (Redner and Walker (1984), Lindsay (1983a,b))
as well as Bayesian approaches (Diebolt and Robert (1994), Biernacki et al.
(2000)). When the fi’s belong to some nonparametric families, it is often
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assumed that training data are observed, i.e., the component of the mixture
from which Y is distributed is available. In that case, the model is identifiable
and some algorithms allow to estimate both the αi’s and the fi’s (see Cerrito
(1992), Titterington (1983), Hall and Titterington (1984, 1985)). However,
as pointed out by Hall and Zhou (2003), inference in mixture nonparametric
density models becomes more difficult without training data. These authors
introduce consistent nonparametric estimators of the marginal distribution
in a multivariate setting. We also refer to Bordes et al. (2006) who provide
efficient estimators under the assumption that the unknown mixed distribu-
tion is symmetric. These estimates are extended by Benaglia et al. (2009,
2011) for multivariate mixture models.

The framework we consider lies between the two above situations. More
precisely, training data are not observed but we assume to have at hand
some covariates that may provide information on the components of the
mixture frow which Y is distributed. Our approach consists to perform a
preliminary clustering algorithm on these covariates to guess the mixture
component of each observation. Density functions fi are then estimated using
a nonparametric density estimate based on the prediction of the clustering
method.

Many authors have already proposed to perform a preliminary clustering step
to improve density estimates. Ruzgas et al. (2006) conduct a comprehensive
simulation study to conclude that a preliminary clustering using the EM
algorithm allows to some extend to improve performances of some density
estimates (see also Jeon and Landgrebe (1994)). However, to our knowledge,
no work has been devoted so far to measure the effects of the clustering
algorithm on the resulting estimates of the distribution functions fi. This
article proposes to fill this gap, studying the L1-error of these estimates in
terms of the performances of the clustering method used. In particular, we
prove that these estimates achieve optimal rates over classical nonparametric
density classes under mild assumptions on the clustering method used.

The paper is organized as follows. In Section 2, we present the two-step
estimator and give the main results. Examples of clustering algorithms are
worked out in Section 3. Simulations are performed in Section 4 to illustrate
our theoretical results. Finally, proofs are gathered in Section 5.
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2 A two-step nonparametric estimator

2.1 The statistical problem
Our focus is on the estimation of conditional densities in a univariate mixture
density model. Formally we let (Y, I) be a random vector taking values in
R×J1,MK whereM ≥ 2 is a known integer. We assume that the distribution
of Y is characterized by a density f defined, for all t ∈ R, by

f(t) =
M∑
i=1

αifi(t),

where, for all i ∈ J1,MK, αi = P(I = i) are the prior probabilities (or the
weights of the mixture) and fi are the densities of the conditional distribu-
tions L(Y |I = i) (or the components of the mixture).

If we have at hand n observations (Y1, I1), . . . , (Yn, In) drawn from the dis-
tribution of (Y, I) one can easily find efficient estimates for both the αi’s
and the fi’s. For example, if we denote Ni = # {k ∈ J1, nK : Ik = i}, we can
estimate αi using the empirical proportion ᾱi = Ni/n and fi using the kernel
density estimate f̄i defined for all t ∈ R by

f̄i(t) = 1
Ni

n∑
k=1

Kh(t, Yk)Ii(Ik) (2.1)

if Ni > 0. For the definiteness of f̄i we conventionally set f̄i(t) = 0 if Ni = 0.
Here K : R→ R is a kernel such that

∫
K = 1, h > 0 is a bandwidth and

Kh(t, y) = 1
h
K
(
t− y
h

)
(2.2)

is the classical convolution kernel located at point t (see Parzen (1962)
and Rosenblatt (1956) for instance). Observe that f̄i is just the classical
kernel density estimate defined from observations in the ith subpopulation.
It follows that, under classical assumptions regarding the smoothing param-
eter h and the kernel K, f̄i has similar properties as those of the well-known
kernel density estimate. In particular, its expected L1-error

E‖f̄i − fi‖1 = E
∫
R
|f̄i(t)− fi(t)|dt

achieves optimal rates when fi belongs to regular classes of densities such as
Hölder or Lipschitz classes (see Devroye and Györfi (1985)).
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Things turn out to be more complicated when the random variable I is not
observed. This is typically the case in mixture density model estimation.
In this situation, ᾱi and f̄i are not computable and one has to find another
way to define efficient estimates for both αi and fi. In this work, we assume
that one can obtain information on I through an other covariate X which
takes values in Rd where d ≥ 1. This random variable is observed and its
conditional distribution L(X|I = i) is characterized by a density gi = gi,n :
Rd → R which could depend on n. The statistical problem with which we
are faced is now to estimate both the components and the weights of the
mixture based on the observations (Y1, X1), . . . , (Yn, Xn) extracted from a
n-sample (Y1, X1, I1), . . . , (Yn, Xn, In) randomly drawn from the distribution
of (Y,X, I). Our strategy consists to first guess the label I from the random
variable X using a clustering algorithm. We then perform the kernel density
estimate (2.1) where the true labels Ik are substituted by the predicted labels.
It is described in the following section.

Remark 2.1 Note that the distribution of (Y,X, I) is not entirely character-
ized. In particular, the dependence between Y and X is not specified. They
could be either dependent (Y = X for example) or independent. Moreover,
we emphasize that only the conditional densities gi,n are allowed to depend
on n (see Section 3 for some examples). It is not the case for αi and fi.

Remark 2.2 Observe that the clustering method is performed on the random
variable X only. The underlying assumption is that one can find accurate
estimates of the group Ik of Yk using only the sample X1, . . . , Xn. Therefore,
we do not need to suppose different behavior (in term of location of the dis-
tribution for instance) for the densities fi. These kind of assumptions will
be translated on the densities gi,n (see section 3).

2.2 A kernel density estimate based on a clustering
approach

To summarize the model so far, we observe a sample (Y1, X1), . . . , (Yn, Xn)
of random pairs extracted from (Y1, X1, I1), . . . , (Yn, Xn, In) and our goal is
to estimate densities fi of the conditional distribution L(Y |I = i) for all
i ∈ J1,MK. We propose the following two-step algorithm.

• First, we perform a clustering algorithm on the sample X1, . . . , Xn to
predict the label Ik of each observation Xk;

• Last, the conditional densities fi’s are estimated using kernel density
estimates in each cluster.
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Formally, we first split the sampleX1, . . . , Xn intoM+1 clusters X0,X1, . . . ,XM
such that Xi 6= ∅ for all i ∈ J1,MK according to a given clustering method.
The clusters X0,X1, . . . ,XM satisfy

M⋃
i=0
Xi = {X1, . . . , Xn} and ∀i 6= j, Xi ∩ Xj = ∅.

We do not specify the clustering method here but some examples are dis-
cussed in section 3. Observe that we define M + 1 clusters instead of M .
The cluster X0 (which could be empty) contains the observations for which
the clustering procedure is not able to predict the label. For example, if the
clustering procedure reveals some outliers, they are collected in X0 and we
do not use these outliers to estimate the fi’s.

Once the clustering step is performed, we define the predicted labels Îk, k ∈
J1, nK as

Îk =
{
i if Xk ∈ Xi
0 otherwise.

Remark that if Ik = i then Xk is not correctly affected to its group with
probability

P(Xk /∈ Xi|Ik = i) = P(Îk 6= i|Ik = i).
So the maximal misclassification error

ϕn = max
1≤k≤n

max
1≤i≤M

P(Îk 6= i|Ik = i) (2.3)

measures the performance of the clustering procedure. This misclassification
error ϕn will be evaluated in the examples discussed in section 3.

We are now in position to define the estimates of both the αi’s and the fi’s.
The prior probabilities αi are estimated by

α̂i = N̂i

n
where N̂i = #{k ∈ J1, nK : Îk = i}.

For the conditional densities fi, we consider the kernel density estimator with
kernel K : R→ R and bandwidth h > 0 defined by

f̂i(t) = 1
N̂i

∑
k:Xk∈Xi

Kh(t, Yk) = 1
N̂i

n∑
k=1

Kh(t, Yk)I{i}(Îk),

where Kh is defined in (2.2). Observe that since for all i ∈ J1,MK the clusters
Xi are nonempty, the estimates f̂i are well defined.
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The kernel estimates f̂i are defined from observations in cluster Xi. The
underlying assumption is that, for all i ∈ J1,MK, each cluster Xi collects
almost all of the observations Xk such that Yk is drawn from fi. Under this
assumption, ϕn is expected to be small and f̂i to be closed to the “ideal”
estimates f̄i defined by equation (2.1). The following Theorem compares the
expected L1-error of f̂i and f̄i. In other words, it allows to measure the effects
of the clustering method with regards to the performances of f̂i.

Theorem 2.1 There exist positive constants A1−A4 such that, for all n ≥ 1
and i ∈ J1,MK

E
∥∥∥f̂i − fi∥∥∥1

≤ E
∥∥∥f̄i − fi∥∥∥1

+ A1ϕn + A2 exp(−n) (2.4)

and
E|α̂i − αi| ≤ A3ϕn + A4√

n
. (2.5)

The constants A1−A4 are specified in the proof of the theorem. We empha-
size that inequalities (2.4) and (2.5) are non-asymptotic, that is, the bound
are valid for all n. We can first remark that if we intend to prove any consis-
tency results regarding f̂i and α̂i, the misclassification error ϕn should tend
to zero. Moreover, inequality (2.4) says that if the misclassification error ϕn
tends to zero much faster than the L1-error of f̄i, then we have asymptotically
a performance that is guaranteed to be equivalent to the performance of the
“ideal” estimate f̄i. The L1-error of f̄i, with properly chosen bandwidth h,
is known to go to zero, under standard smoothness assumptions, at the rate
n−

s
2s+1 where s > 0 is typically an index which represents the regularity of

fi. For example, when we consider Lipschitz or Hölder classes of functions, s
corresponds to the number of absolutely continuous derivatives of the func-
tions fi. In this context, when ϕn = o(n−

s
2s+1 ), the estimates f̂i achieve the

rate
E
∥∥∥f̂i − fi∥∥∥1

= O(n−
s

2s+1 ).

Remark 2.3 As usual, the choice of the bandwidth h reveals crucial for the
performance of the estimate. However, this paper does not provide any theory
to select this parameter. If automatic or adaptive procedures are needed, they
can be obtained by adjusting traditional automatic selection procedures for
classical nonparametric estimators (see for example Berlinet and Devroye
(1994) or Devroye and Lugosi (2001)).
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3 Clustering procedures
Our procedure requires a preliminary clustering algorithm performed on the
sample X1, . . . , Xn drawn from the density ∑M

i=1 αigi,n. In this section, we
study the misclassification error ϕn defined in (2.3) for two clustering meth-
ods.

3.1 A toy example
We first consider the simple case where the conditional densities gi,n are
uniform univariate densities. Formally, we assume here that M = 2 and
that, for all x ∈ R,

g1,n(x) = g1(x) = I[0,1](x) and g2,n(x) = I[1−λn,2−λn](x),

where (λn)n is a non-increasing sequence which tends to 0 as n goes to infinity.
In this parametric situation, a natural way to guess the unobserved label Ik
of the observation Xk is to find an estimator λ̂n of λn. The predicted label
Îk is then defined according to

Îk =


1 if Xk ≤ 1− λ̂n
0 if 1− λ̂n < Xk < 1
2 if Xk ≥ 1,

(3.1)

see Figure 1. Many estimators of λn can be defined. Here we propose λ̂n =
2−X(n) where X(n) = max1≤k≤nXk. Note that in this situation, we have for
i = 1, 2

Îk = i =⇒ Ik = i, a.s.

It means that all classified observations (with non-zero estimated label) are
well-classified and that misclassified observations are collected in X0 (see
Figure 1).
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Ik = 1 Ik = 1 or 2 Ik = 2

Îk = 2Îk = 0Îk = 1

2

λ̂n

λn λn

λ̂n

Figure 1: A sample of n = 11 points.
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The following theorem establishes a performance bound for the misclassifi-
cation error ϕn of this clustering procedure.

Proposition 3.1 There exists a positive constant A5 such that for all n ≥ 1

ϕn ≤ λn + A5
log n
n

.

Unsurprisingly, the misclassification error decreases as λn decreases. More-
over, since in most cases of interest, the expected L1-error of f̄i tends to
zero much slower than 1/

√
n, this property means that, asymptotically, the

expected L1-error of f̂i is of the same order as the expected L1-error of f̄i
provided λn = O(1/

√
n).

3.2 A clustering procedure for support disjoint densi-
ties

In this section, we propose an automatic clustering procedure and we study
its performances for support disjoint densities. More precisely, we assume
that supports Si,n ⊂ Rd of gi,n are disjoint connected compact sets and we
denote by

δn = min
1≤i 6=j≤M

d(Si,n, Sj,n)

the minimum Euclidean distance between these supports (see Figure 2).

δn

Figure 2: The support of the random variable X is divided into M = 3 disjoint
connected compact sets. The three connected components of the graph induced
by Ar are included in the connected components of the support of X.
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Given n i.i.d. observations X1, . . . , Xn drawn from gn(x) = ∑M
i=1 αigi,n(x),

the goal is to split {X1, . . . , Xn} into M clusters X1, . . . ,XM such that the
probability of the events {Xi ⊂ Si,n} is close to one as δn decreases to zero.
In such a situation, one can expect the misclassification error associated with
this clustering algorithm to be close to zero.

3.2.1 The clustering procedure

Devroye and Wise (1980) proposed to estimate density supports by union of
balls centered at each observation. Biau et al. (2008) then obtained rates of
convergence for this approach. In this section, we adapt this procedure to
define a new clustering algorithm. We then study the misclassification error
of this method. The main idea is to find a data-driven procedure to choose
a radius r̂n > 0 such that the set

n⋃
k=1

B(Xk, r̂n) (3.2)

has exactlyM connected components (see Figure 2). Here B(x, r) stands for
the closed Euclidean ball with center x ∈ Rd and radius r > 0. Cluster Xi
will then be naturally composed by observations Xk which belong to the ith
connected component of the set (3.2). We need to find on optimal way to
select r̂n from the observations X1, . . . , Xn.

To this aim, we define for each positive real number r the n × n matrix
Ar = (Ark,`)1≤k,`≤n by

Ark,` =

1 if ‖Xk −X`‖2 ≤ 2r ⇐⇒ B(Xk, r) ∩B(X`, r) 6= ∅
0 otherwise.

(3.3)

This matrix induces a non-orientated graph on the set J1, nK and we say
that two different observations Xk and X` belong to the same cluster if k
and ` belong to the same connected component of the graph. We let M̂r

be the number of connected components of the graph and we denote by
X1(r), . . . ,X

M̂r
(r) the associated clusters. The radius is selected as follows

r̂n = inf{r > 0 : M̂r ≤M}.

Note that r̂n is well defined since the random setRM = inf{r > 0 : M̂r ≤M}
is lower bounded (by 0) and non-empty since r∗ = maxk,` ‖Xk −X`‖2 always
belongs to this set (M̂r∗ = 1). Moreover, thanks to Lemma 5.2 one can easily
prove that r̂n = minRM and M̂r̂n

= M almost surely when n ≥ M . We
denote by X1(r̂n), . . . ,XM(r̂n) the M clusters induced by Ar̂n and the goal is
now to study the misclassification error (2.3) of this clustering algorithm.
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Remark 3.1 For a given value r > 0, clusters X1(r), . . . ,X
M̂r

(r) are arbi-
trarily indexed. Even if the indices of the clusters are not really important in
practice, things are getting more complicated when we study the misclassifi-
cation error

ϕn = max
i=1,...,M

max
k=1,...,n

P(Îk 6= i|Ik = i)

of the predicted rule
Îk = i⇐⇒ Xk ∈ Xi(r̂n).

The way to index the clusters is clearly important in this context. To circum-
vent this problem we will study the misclassification error up to a permutation
of the indices.

Remark 3.2 Our algorithm requires to compute the connected components
of the graph induced by the n× n matrix Ar for different values of r. Some
algorithms can be performed to obtain these connected components. For
instance, we can use the Depth-First search algorithm (see Cormen et al.
(1990)) which can be performed efficiently in O(Vn + En) operations, where
Vn and En denote respectively the number of vertices and edges of the graph.

3.2.2 Basic assumptions

To study the misclassification error of the proposed clustering algorithm, we
need the following assumptions.

Assumption 1 The density gn(x) = ∑n
i=1 αigi,n(x) is bounded away from

zero on its support. We define the sequence (tn)n by

tn = inf
x∈Sn

gn(x) > 0 where Sn =
M⋃
i=1

Si,n.

Assumption 2 Let
rdn = (log n)2

ntn
.

There exists a family of N ∈ N? Euclidean balls {B`}`=1,...,N with radius rn/2
and two positive constants c1 and c2 such that

Sn ⊂
⋃N
`=1 B`

Leb(Sn) ≥ c1
∑N
`=1 Leb(Sn ∩B`)

∀` = 1, . . . , N, Leb(Sn ∩B`) ≥ c2r
d
n,

where Leb denotes the Lebesgue measure on Rd.

11



Assumption 1 implies that densities gi,n do not vanish on the interior of
the supports Si,n. This assumption ensures that, for n large enough and a
safe choice of radius r, all points Xk ∈ Si,n belong to the same connected
component of the graph induced by the n × n matrix Ar defined in (3.3).
Assumption 2 is more technical and is concerned with the diameter and
the regularity of supports Si,n. Roughly speaking, recall that our approach
identify the supports Si,n by the connected components of ⋃nk=1 B(Xk, r). It
means that when the diameter of Si,n increases, large values or radius r are
necessary to connect observations in Si,n. However for too large values of r,
the number of connected components of ⋃nk=1 B(Xk, r) becomes smaller than
M and the method fails. Consequently, we need to constraint the diameter of
Si,n. This is ensured by assumption 2 since it implies that Sn can be covered
by N Euclidean balls such that

N ≤ n

c1c2(log n)2 . (3.4)

Finally, inequality Leb(Sn ∩ B`) ≥ c2r
d
n in assumption 2 can be seen as

a regularity constraint on Sn. In particular, it allows to avoid too sharp
boundaries for the support Sn.

Remark 3.3 In dimension 1, since each Si,n is connected, it is a segment
of the real line. Thus, under assumption 1, its diameter is bounded by 1/tn
and assumption 2 is satisfied. For larger dimensions, things turn out to be
more complicated. Indeed, even if the measure of the compact set Sn is upper
bounded by 1/tn, its diameter can be as large as we want. Consider for
example the density

hn(x, y) = I[1−1/an,an](x)I[0,1/x2](y), (x, y) ∈ R+? × R+,

where an > 1. Since an could be chosen arbitrarily large, the diameter of Sn
could be arbitrarily large and assumption 2 does not hold. This assumption
constraints to some extent the shape of Sn. It is satisfied for regular supports
such that the diameter does not increase too fast as n goes to infinity. For
example, consider the two dimensional situation where Sn is a rectangle with
length un and width vn. In such a scenario, one can easily prove that if there
exist two positive constants a1 and a2 such that un ≥ a1rn and vn ≥ a2rn, then
assumption 2 holds. Note also that this assumption is verified for supports
Sn that do not depend on the sample size n with smooth boundaries (see Biau
et al. (2007)).
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3.2.3 The misclassification error

The algorithm described in section 3.2.1 gives a partition of {X1, . . . , Xn} into
M clusters X1(r̂n), . . . ,XM(r̂n). The following theorem provides an upper
bound for the misclassification error ϕn of this clustering procedure.

Theorem 3.1 Assume that Assumption 1 and Assumption 2 hold. More-
over, if

δn > 2rn = 2
(

(log n)2

ntn

)1/d

(3.5)

then, after a possible rearrangement of the indices, we can define Îk = i⇐⇒
Xk ∈ Xi(r̂n) such that for all a > 0 with log n ≥ (1 + a)/c2, we have

ϕn = max
i=1,...,M

max
k=1,...,n

P(Îk 6= i|Ik = i) ≤ A6n
−a (3.6)

where A6 is positive constant.

This theorem establishes that the misclassification error of the proposed clus-
tering procedure tends to zero at a polynomial rate. In particular, using
Borel-Cantelli lemma, it implies that Îk = Ik almost surely for n large
enough, i.e., all the predictions are correct for n large enough. Inequal-
ity (3.5) gives the minimum distance between the supports Si,n to make
the clustering method efficient. Observe that this minimum distance could
tend to zero as the sample size increases. For example, when d = 1 and
gn(x) ≥ c/nγ with γ ∈]0, 1[, inequality (3.6) holds provided δn tends to zero
much slower than (log n)2/n1−γ.

Remark 3.4 Even if the rate of convergence (3.6) does not depend on the
dimension d, the curse of dimensionality appears in Theorem 3.1. Indeed, the
minimum distance δn clearly increases with the dimension d. Consequently,
even if we can obtain fast rates in large dimension, the assumption (3.5)
becomes stronger as the dimension d increases.

4 Simulation study
In this section, we illustrate the theory with simulation results enlightening
the efficiency of the proposed estimator. Theorem 2.1 says that the proposed
estimates f̂i perform well provided the misclassification error of the clustering
procedure is small with respect to the L1-error of the ideal estimates f̄i. In
practice, any clustering method could be used. In the simulation study, we
choose the clustering procedure proposed in section 3.2.
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4.1 Comparison with the ideal estimates f̄i

We first compare the performances of the two step estimates f̂i with the ideal
estimates f̄i defined by (2.1). The model is as follows. The density of Y is
given by

f(t) = 3
4f1(t) + 1

4f2(t), t ∈ R

where f1 and f2 stand for the densities of the normal distribution with mean
-1 and 1 and variance 1. The conditional densities gi,n, i = 1, 2 are uniform
densities on Rd defined as follows:

g1,n(x) = I]0,1[d(x) and g2,n(x) = 1
2I]1+δn,21/d+1+δn[d(x), x ∈ Rd, δn > 0,

where δn > 0 measures the distance between the supports of g1,n and g2,n.
We apply the clustering procedure proposed in section 3.2 and we denote by
f̂1 and f̂2 the resulting estimates of f1 and f2. To compute the nonparametric
estimates f̄i and f̂i, we use a gaussian kernel. Recall that this paper does
not conduct any theory to select the bandwidth h in an optimal way (see
remark 2.3). We propose to use the default data-driven procedure proposed
in the GNU-R library np (see Hayfield and Racine (2008)).

We compare the L1 performances of f̄i with the L1 performances of f̂i for
many values of sample sizes n, distances δn and dimensions d. In this setting,
Theorem 3.1 ensures that estimates f̂i perform well provided

δn > 2
(

8(log(n))2

n

)1/d

.

However, a deeper analysis of the proof of this Theorem shows that the term
(log(n))2 in the lower bound can be replaced by (log(n))α with α > 1. For
the simulations, we set

δn = 2
(

8(log(n))α
n

)1/d

(4.1)

for 6 values of α equally spaced between 1 and 2. For the sake of clarity, we
only present results regarding the density f1 since conclusions are the same
for f2. Tables 1, 2, 3 and 4 presents the ratio

E‖f̂1 − f1‖1

E‖f̄1 − f1‖1
(4.2)

for various dimensions d and sample sizes n. The expectations are evaluated
over 200 Monte Carlo replications.
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α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
d = 1 4.079 4.079 3.874 3.670 3.470 1.000
d = 2 5.015 4.920 5.095 5.000 1.020 1.000
d = 3 5.366 5.370 5.157 1.745 1.000 1.000
d = 4 5.273 5.206 4.502 1.353 1.000 1.000

Table 1: n = 50

α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

d = 1 3.001 2.791 2.599 1.594 1.000 1.000
d = 2 3.590 3.467 1.576 1.000 1.000 1.000
d = 3 3.693 2.791 1.255 1.000 1.000 1.000
d = 4 3.557 2.094 1.193 1.000 1.000 1.000

Table 2: n = 100

α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

d = 1 2.164 2.012 1.112 1.000 1.000 1.000
d = 2 2.508 1.192 1.000 1.000 1.000 1.000
d = 3 1.633 1.124 1.000 1.000 1.000 1.000
d = 4 1.587 1.060 1.000 1.000 1.000 1.000

Table 3: n = 200

α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

d = 1 1.498 1.032 1.002 1.000 1.000 1.000
d = 2 1.054 1.000 1.000 1.000 1.000 1.000
d = 3 1.054 1.000 1.000 1.000 1.000 1.000
d = 4 1.086 1.030 1.000 1.000 1.000 1.000

Table 4: n = 500

The more this ratio is close to 1, the better the estimator. These tables
show that the performance of our procedure are significantly better when
the number of observations increases: for n = 500 L1-errors of f̂i and f̄i are
rouglhy similar. Moreover, for large enough separation distances (α = 2),
performances are exactly the same for all n. Even if, for fixed values of α,
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the ratio (4.2) are approximately the same, observe that the proposed pro-
cedure is affected by the curse of dimensionality since the minimum distance
between the supports of g1,n and g2,n clearly increases with the dimension
(see remark 3.4). Finally, Figure 3 displays the boxplots of the L1-error
of f̄1 and f̂1 for 200 replications of three models with the following values:
n = 100, d = 2 and α ∈ {1, 1.4, 1.8}. As expected, the performances of f̂1
come closer to those of f̄1 as α increases. They are exactly the same for
α = 1.8 since in that case the predicted labels Îk correspond with the true
labels Ik, k = 1, . . . , n.
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Figure 3: Boxplot of the L1-error for the “oracle” estimator f̄1 (OR) and the two
step estimator f̂1 (TS). The separation distance between g1 and g2 corresponds
to α = 1 (left), 1.4 (middle) and 1.8 (right)

4.2 A comparison with the EM algorithm
We finally illustrate the performance of the proposed method with a com-
parison with the well known EM-algorithm (Dempster et al. (1977)). The
density of Y is now given by

f(t) = 3
4f1(t) + 1

4f2(t), t ∈ R

where f1 and f2 stand for the densities of the normal distribution with mean
−∆ and ∆ and variance 1. Thus, the parameter ∆ measures the separation
between the components f1 and f2 (see Figure 4).
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Figure 4: Density of Y for various values of ∆.

The conditional densities gi,n, i = 1, 2 are uniform univariate densities :

g1,n(x) = I]0,1[(x) and g2,n(x) = 1
2I]1+δn,3+δn[(x), x ∈ R

where δn > 0 still measures the distance between g1,n and g2,n. Here n =
200 and δn takes the same values as in the previous section (see equation
(4.1)). We compare the performance of our method with the EM algorithm
performed on the sample Y1, . . . , Yn. Formally, we run the EM algorithm
(with equal variances) to estimate the gaussian parameters of the components
f1 and f2. We use the GNU-R library mclust and denote by f em1 and f em2
the resulting estimates. We keep the same setting as above to compute our
estimates f̂1 and f̂2: clustering procedure of section 3.2, gaussian kernel and
bandwidth selected with the library np. For the sake of clarity, we again
only present results on f̂1 and f em1 since we observe the same conclusions for
f̂2 and f em2 . Table 5 presents the ratio

E‖f̂1 − f1‖1

E‖f em1 − f1‖1
, (4.3)

where the expectations are evaluated over 200 monte carlo replications. Fig-
ure 5 displays the boxplots of the L1-error for each estimate over the 200
replications.
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α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

∆ = 0.1 0.276 0.272 0.299 0.285 0.275 0.272
∆ = 0.5 0.423 0.413 0.429 0.416 0.423 0.407
∆ = 1 0.863 0.828 0.853 0.900 0.840 0.888
∆ = 2 1.725 1.611 1.675 1.778 1.589 1.645

Table 5: Ratio (4.3) evaluated over 200 replications.
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Figure 5: Boxplot of the L1 error for the EM algorithm (EM) and the two step
estimator proposed in the paper (TS). The separation distance ∆ between f1
and f2 vary from 0.1 (left) to 2 (right) and α = 1.4.

As expected, we first observe that the performances of the EM algorithm
clearly depend on the separation distance between the target densities f1
and f2. For large values of ∆, parametric estimates resulting from the EM
algorithm overperform the nonparametric estimates proposed in this paper
(e.g. ∆ = 2 in Figure 5). This is no longer the case when f1 is closed to
f2: the results clearly show the advantages of using an auxiliary informa-
tion (represented by the covariate X) when the components f1 and f2 are
not enough separated. Indeed, the L1 performances of f̂1 over f em1 are sig-
nificantly better for ∆ = 0.1 and ∆ = 0.5 and roughly similar for ∆ = 1.
Finally, observe that Figure 5 shows that the L1-error of f̂1 does not depend
on ∆.

18



5 Proofs

5.1 Proof of Theorem 2.1
First, let us prove inequality (2.4). Inserting the “ideal” estimator f̄i and
using triangle inequality, the L1-risk of f̂i can be bounded as follows

E
∥∥∥f̂i − fi∥∥∥1

≤ E
∥∥∥f̄i − fi∥∥∥1

+ E
∥∥∥f̂i − f̄i∥∥∥1

.

To prove our result, we just have to control the second term in the right-hand
side of the previous inequality. Since f̂i = 0 when Ni = 0 and noting that
‖f̂i‖1 = 1 we obtain

E
∥∥∥f̂i − f̄i∥∥∥1

≤ E
(∥∥∥f̂i∥∥∥1

INi=0
)

+ E
∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1

≤ (1− αi)n + E
∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1
.

For the sake of readability, let Ẽ denotes the conditional expectation with
respect to (I1, . . . , In) and ˜̃E the conditional expectation with respect to
(I1, . . . , In, X1, . . . , Xn). Moreover, let us define

Ai(t) =
(
f̂i(t)− f̄i(t)

)
INi>0

=
n∑
k=1

Kh(t, Yk)
(
I{i}(Îk)
N̂i

−
I{i}(Ik)
Ni

)
INi>0.

Using these notations it is easily seen that

E
∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1

= EẼ
∫
R

˜̃E|Ai(t)|dt. (5.1)

Since, for all y ∈ R we have
∫
R |Kh(t, y)|dt = ‖K‖1, we deduce that

∫
R

˜̃E|Ai(t)| dt ≤ n∑
k=1

˜̃E(∫
R
|Kh(t, Yk)| dt

) ∣∣∣∣∣I{i}(Îk)N̂i

−
I{i}(Ik)
Ni

∣∣∣∣∣
≤ ‖K‖1

n∑
k=1

∣∣∣∣∣I{i}(Îk)N̂i

−
I{i}(Ik)
Ni

∣∣∣∣∣ .
Thus

Ẽ
∫
R

˜̃E|Ai(t)| dt ≤ ‖K‖1
Ni

Ẽ
[

1
N̂i

n∑
k=1
|NiI{i}(Îk)− N̂iI{i}(Ik)|

]
. (5.2)
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Moreover, inserting N̂iI{i}(Îk) in the expectation, we obtain

Ẽ
[

1
N̂i

n∑
k=1
|NiI{i}(Îk)− N̂iI{i}(Ik)|

]

≤ Ẽ|Ni − N̂i|+ Ẽ
n∑
k=1
|I{i}(Îk)− I{i}(Ik)|

≤ 2Ẽ
n∑
k=1
|I{i}(Îk)− I{i}(Ik)|. (5.3)

Combining (5.1), (5.2) and (5.3) leads to

E
∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1
≤ 2‖K‖1

n∑
k=1

E
[
INi>0

Ni

|I{i}(Îk)− I{i}(Ik)|
]

≤ 2‖K‖1
nαi

n∑
k=1

E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|
]
. (5.4)

The expectation on the right-hand side of this inequality can be bounded in
the following way

E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|
]

≤ E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|Inαi
Ni
≤2

]

+ E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|Inαi
Ni

>2

]
. (5.5)

For the first term of this bound, we deduce from Lemma 5.1 that

E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|Inαi
Ni
≤2

]
≤ 2ϕn(1 + (M − 2)αi). (5.6)

For the second term, using Hölder inequality we obtain

E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|Inαi
Ni

>2

]

≤

√√√√E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|Inαi
Ni

>2

]2

P
(
nαi
Ni

> 2
)

≤

√√√√E
(

(nαi)2

N2
i

INi>0

)
P
(
Ni − nαi < −

nαi
2

)
. (5.7)
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Now, it is easily seen that

E
(

(nαi)2

N2
i

INi>0

)
≤ 6E

(
(nαi)2

(Ni + 1)(Ni + 2)

)
≤ 6, (5.8)

where last inequality follows from Hengartner and Matzner-Løber (2009).
Using Hoeffding’s inequality (see Hoeffding (1963)) we obtain for the second
term in (5.5)

E
[
nαiINi>0

Ni

|I{i}(Îk)− I{i}(Ik)|Inαi
Ni

>2

]
≤
√

6 exp
(
−nαi

2

4

)
. (5.9)

From (5.4) – (5.9), we deduce that

E
∥∥∥(f̂i − f̄i)INi>0

∥∥∥
1
≤4‖K‖1

αi
(1 + (M − 2)αi)ϕn

+ 2
√

6‖K‖1
αi

exp
(
−nαi

2

4

)
.

Putting all pieces together, we finally obtain

E
∥∥∥f̂i − f̄i∥∥∥1

≤ 4‖K‖1
αi

(1 + (M − 2)αi)ϕn

+ 2
√

6‖K‖1
αi

exp
(
−αi

2

4 · n
)

+ exp (−n log(1− αi)) ,
which concludes the first part of the proof.
Inequality (2.5) is a direct consequence of Lemma 5.1:

E|α̂i − αi| ≤ E
∣∣∣∣∣N̂i

n
− Ni

n

∣∣∣∣∣+ E
∣∣∣∣Ni

n
− αi

∣∣∣∣
≤ 1
n

n∑
k=1
|I{i}(Îk)− I{i}(Ik)|+

1
n

√
V(Ni)

≤ (1 + (M − 2)αi)ϕn +
√
αi(1− αi)

n
.

5.2 Proof of proposition 3.1
Let k be an arbitrary integer in J1, nK. We have to bound P(Îk 6= i|Ik = i)
for i = 1, 2. To do so, let us first consider the case i = 2. Observe that

P(Îk 6= 2|Ik = 2) = P(Îk 6= 2, 1− λn < Xk < 1|Ik = 2)
+ P(Îk 6= 2, Xk ≥ 1|Ik = 2)

= P(1− λn < Xk < 1|Ik = 2)
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because, by definition, Îk 6= 2 ⇐⇒ Xk < 1. Thus

P(Îk 6= 2|Ik = 2) =
∫ 1

1−λn
g2,n(x)dx = λn. (5.10)

Next, if i = 1 it is easy to see that P(Îk 6= 1|Ik = 1) = P(Xk ≥ 1− λ̂n|Ik = 1).
Let us consider

µn = λn + 2
α2
· log n

n
and A =

{
1− λ̂n ≥ 1− µn

}
.

Using these notations we obtain

{Xk ≥ 1− λn} =
(
{Xk ≥ 1− λ̂n} ∩ A

)
∪
{
Xk ≥ 1− λ̂n} ∩ Ā

)
⊆ {Xk ≥ 1− µn} ∪

{
λ̂n ≥ µn

}
.

This leads to the following inequality

P(Îk 6= 1|Ik = 1) ≤ µn + P
(
X(n) ≤ 2− µn|Ik = 1

)
. (5.11)

Since X` and Ik are independent for k 6= `, we obtain the following bound
for the last probability

P
(
X(n) ≤ 2− µn|Ik = 1

)
= P (∀`,X` ≤ 2− µn|Ik = 1)

=
∏
` 6=k

P (X` ≤ 2− µn)
P (Xk ≤ 2− µn|Ik = 1) .

The independence of the X`’s and simple calculations lead to

P
(
X(n) ≤ 2− µn|Ik = 1

)
=
(
P(X1 ≤ 2− µn)

)n−1

= (1− 2n−1(log n))n−1

≤ n−1, (5.12)

where the last inequality follows, for n ≥ 2, from the fact that 1 − u ≤ e−u

for all u ≥ 0 and is still valid for n = 1.
Taking together equations (5.11) and (5.12), we finally obtain

P(Îk 6= 1|Ik = 1) ≤ λn + n−1 + 2
α2
· log n

n
. (5.13)

Proposition follows from equations (5.10) and (5.13).
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5.3 Proof of Theorem 3.1
Since δn > 2rn we have for all (i, j) ∈ J1,MK2 with i 6= j: ⋃

k:Ik=i
B(Xk, rn)

∩
 ⋃
k:Ik=j

B(Xk, rn)
 ⊆ (Si,n+rn)∩(Sj,n+rn) = ∅, (5.14)

where for S ⊂ Rd and r > 0

S + r = {x ∈ Rd : ∃y ∈ S such that ‖x− y‖2 ≤ r}.

Inclusion (5.14) implies M̂rn ≥M . Remark that if

rn ∈ RM = {r > 0 : M̂r ≥M}

then M̂rn = M̂r̂n
= M and r̂n ≤ rn. In that case, the matrices Arn and Ar̂n

defined in (3.3) induce the same clusters X1, . . . ,XM . Moreover, it is easy to
see that, up to a permutation of the indices of the clusters, we have Îk = Ik
almost surely for all k ∈ J1, nK. It follows that

max
k=1,...,n

P(Îk 6= Ik) ≤ P(rn /∈ RM).

Thus to complete the proof of the result, we have to find an upper bound of
the probability of the event {rn /∈ RM}. To this aim, observe that if

Sn ⊆
n⋃
k=1

B(Xk, rn) (5.15)

then M̂rn = M and rn ∈ RM . Moreover, inclusion (5.15) holds when for
all ` ∈ J1, NK, the balls B` defined in assumption 2 contain at least one
observation among {Xk, k = 1, . . . , n}. Therefore

P (rn /∈ RM) ≤ P (∃` ∈ J1, NK,∀k ∈ J1, nK, Xk /∈ B`)

≤
N∑
`=1

(P (X1 /∈ B`))n

≤
N∑
`=1

(1− tn Leb(Sn ∩B`))n

from assumption 1. According to assumption 2 and inequality (3.4), we
obtain

P (rn /∈ RM) ≤ N
(
1− c2tnr

d
n)
)n

≤ (c1c2)−1 n

(log n)2 exp(−c2ntnr
d
n)

≤ (c1c2)−1 n

(log n)2 exp(−c2(log n)2).
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Thus, as soon as n is such that c2 log n ≥ 1 + a we have

P (rn /∈ RM) = (c1c2)−1 1
na(log n)2 .

We finish the proof with

ϕn ≤
1

min1≤i≤M αi
max
k=1,...,n

P(Îk 6= Ik) ≤
1

min1≤i≤M αi
(c1c2)−1 1

na(log n)2 .

5.4 Technical lemmas
We have the following lemmas.

Lemma 5.1 We have for i = 1, . . . ,M

E
∣∣∣I{i}(Îk)− I{i}(Ik)

∣∣∣ ≤ ϕn(1 + (M − 2)αi).

Proof. The statement follows from the chain of inequalities

E
∣∣∣I{i}(Îk)− I{i}(Ik)

∣∣∣ ≤∑
j 6=i

E(I{i}(Îk)I{j}(Ik) + I{j}(Îk)I{i}(Ik))

≤
∑
j 6=i

[αjϕn + αiϕn]

≤ ϕn(1 + (M − 2)αi).

Lemma 5.2 Almost surely, the function r 7→ M̂r is non-increasing and
right-continuous.

Proof. We first prove that M̂ : r 7→ M̂r is right-continuous. For r > 0 let

Kr =
{

(k, `) ∈ J1, nK2 : B(Xk, r) ∩B(X`, r) = ∅
}
.

For all (k, `) in Kr, there exists hk,` such that

B(Xk, r + hk,`) ∩B(X`, r + hk,`) = ∅.

Moreover last inequality is still true when we replace hk,` by h such that h ≤
h∗r = min(k,`)∈Kr hk,`. This implies that the connected components induced
by Ar and Ar+h are the same and thus M̂r+h = M̂r. To prove that M̂ is
non-increasing it is sufficient to observe that Kr ⊆ Kr′ for r ≥ r′.
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