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Abstract

A density deconvolution problem with unknown distribution of the errors is considered. To make the
target density identifiable, one has to assume that some additional information on the noise is available.
We consider two different models: the framework where some additional sample of the pure noise is
available, as well as the repeated observation model, where the contaminated random variable of interest
can be observed repeatedly. We introduce kernel estimators and present upper risk bounds. The focus
of this work lies on the optimal data driven choice of the smoothing parameter using a penalization
strategy.

Keywords. Adaptive estimation. Deconvolution. Density estimation. Mean square risk. Nonparametric
methods. Replicate observations.

1 Introduction

We consider a density deconvolution model. We are given independent copies of X, perturbed by an
additional noise:

Yj = Xj + εj , j = 1, . . . , n. (1)

It is assumed that X has a square integrable density f with respect to the Lebesgue measure. Our target
is to recover f from the data (Yj)1≤j≤n.

This setting is classical in nonparametric statistics and there exists a large amount of literature on the
subject. Rates of convergence and their optimality have been studied, for example, in Carroll and Hall
(1988), Stefanski (1990), Stefanski and Carroll (1990), Fan (1991), Efromovich (1997) and Delaigle and
Gijbels (2004) for kernel estimators, Butucea (2004), Butucea and Tsybakov (2008a) and Butucea and
Tsybakov (2008b) for studies of rate optimality in the minimax sense. However, those authors have worked
under the assumption that the distribution of the noise is known, which is often not realistic in applications.

In the present paper, we assume that the distribution of the noise is unknown. To make the target density
identifiable, one has to assume that some additional information on the errors is available. We discuss two
different models. The setting which is more frequently studied in the literature is that, in addition to (1), a
preliminary sample ε−M , . . . , ε−1 of the pure noise, independent of the Yj is available. In applications, this
model plays a role if the (ε−j)1≤j≤M are measurement errors due to the measuring device. The distribution
of the noise can then be recovered, in a first calibration step, from repeated measurements in absence of the
signal X. Typical domains of application are optics, astrophysics or spectrometry. Another important case
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is the model of repeated observations, where a variable Xj can be observed repeatedly, with independent
errors. In this case, we have in addition to (1)

Yn+j,k = Xn+j + εn+j,k, j = 1, . . . , 2M and k = 1, 2. (2)

Considering this model can be motivated from applications in medicine. Comte et al. (2013) discuss a
repeated measurement model in the estimation of onset of pregnancies. Applications in the field of economics
are discussed in Bonhomme and Robin (2010).

Rates of convergence have been presented in Neumann (1997) and, more recently, in Johannes (2009),
or Meister (2009) under the assumption that observations of the pure noise are feasible. For rate results in
a repeated observations model, see Li and Vuong (1998), Neumann (2007), Delaigle et al. (2008) and Comte
et al. (2013).

In the present paper, our main interest lies in the adaptive choice of the smoothing parameter. So
far, the adaptive bandwidth selection has mostly been studied in a deconvolution model with known error
distribution, see for example, Pensky and Vidakovic (1999) for wavelet strategy, Comte et al. (2006), Butucea
and Comte (2009) for projection strategies, or Meister (2009). Delaigle et al. (2008) propose an adaptive
bandwidth selector in the repeated observation model, but do not study its theoretical properties. The
rigorous study of adaptive procedures in a deconvolution model with unknown errors has only recently been
addressed. We are aware of the work by Comte and Lacour (2011), Johannes and Schwarz (2012), Kappus
(2014) and Dattner et al. (2013).

Contrarily to the last mentioned authors, who consider adaptive quantile estimation in the spirit of
Lepski’s method, we propose, in the present paper, a model selection approach. The essential difference
lies in the fact that the problem is considered from a non-asymptotic perspective. We refer to Massart
(2003) for a systematic comparison of both methods. Moreover, we allow, in the present paper, for a much
broader class of error distributions, since we do not assume that the tails of the characteristic function decay
polynomially.

In comparison with Comte and Lacour (2011) or Johannes and Schwarz (2012), we do not impose
any a priori semi parametric assumptions on the shape of the characteristic function of the noise, such
as polynomial or exponential decay or boundedness from above and below by some monotone function.
Compared to Comte and Lacour (2011), we also relax the hypothesis that M ≥ n1+η, η > 0. Our strategy
hence allows a fully general treatment under minimal assumptions. The approach presented in this paper
compares to the results achieved in Kappus (2014) for an estimation problem for discretely observed Lévy
processes.

This paper is organized as follows: in Section 2, we give the notations, specify the statistical model
and estimation procedure and present upper risk bounds. In Section 3, we introduce alternative estimators
which enables us to propose a new adaptive procedure by penalization in the context of deconvolution under
weak assumptions. Besides the theoretical properties of the adaptive estimators (one for each model) are
studied. In Section 4, we lead a study of the alternative estimators through simulation experiments. We
try out the influence of the sample size of the noise. Numerical results are then presented. The procedure
shows good performances even when there is a small number of replications. Section 5 gives final remarks
on the proposed adaptive procedure and other foreseeable field of application. All proofs are postponed to
Section 6.

2 Statistical model, estimation procedure and risk bounds

In the present section, we fix the statistical model and assumptions, introduce the estimator and recall, for
the readers convenience, the non asymptotic risk bounds which have been presented in earlier publications
on the subject. But first let us fix some notations.

Notations. For two real numbers a and b, we denote a ∨ b = max(a, b) and a ∧ b = min(a, b). For
two functions ϕ, ψ : R → C belonging to L1(R) ∩ L2(R), we denote ‖ϕ‖ the L2 norm of ϕ defined by
‖ϕ‖2 =

∫
R |ϕ(x)|2 dx, 〈ϕ,ψ〉 the scalar product between ϕ and ψ defined by 〈ϕ,ψ〉 =

∫
R ϕ(x)ψ(x) dx. The

Fourier transform ϕ∗ is defined by

ϕ∗(x) =

∫
eixuϕ(u) du.

Besides, if ϕ∗ belongs to L1(R) ∩ L2(R), then the function ϕ is the inverse Fourier transform of ϕ∗ and
can be written ϕ(x) = 1/(2π)

∫
e−ixuϕ∗(u) du. Lastly the convolution product ∗ is defined as (ϕ ∗ ψ)(x) =∫

ϕ(x− u)ψ(u) du.
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2.1 Statistical model

Under Model (1) and independence assumptions, it is clear that fY = f ∗ fε which implies f∗Y = f∗f∗ε .
Moreover, we make the following assumptions:

(A1) ∀x ∈ R, f∗ε (x) 6= 0 and fε ∈ L2(R).

(A2) ε is symmetric.

Under (A1), we have the equality f∗ = f∗Y /f
∗
ε . If f∗ε is known, we can estimate f∗ with f̂∗Y /f

∗
ε

where f̂∗Y is an estimator obtained directly from the data with a simple plug-in estimator. We should
only apply the inverse Fourier transform to get an estimate of f . Nevertheless, it happens that 1/f∗ε is
not integrable so we cannot compute the inverse Fourier transform. It is necessary to apply some reg-
ularization, for example, a spectral cutoff estimator. In this particular case, the estimator of f would
be 1/(2π)

∫
|u|≤πm e

−iuxf∗Y (u)/f∗ε (u) du. We can notice that this estimator corresponds both to a kernel es-

timator built with a sinc kernel (Butucea (2004)) or to a projection type estimator as in Comte et al. (2006).

In the present case the error distribution is assumed to be unknown. To make the problem identifiable,
some additional information on the noise is required. We consider two different models. The case which is
more commonly studied in the literature is when there exists a preliminary sample of the noise (ε−j)1≤j≤M ,
independent of the (Yj). Then we can compute a plug-in estimator of f∗ε

∀x ∈ R, f̂∗ε,ns(x) =
1

M

M∑
j=1

eixε−j (3)

and the following estimator of f∗Y

∀x ∈ R, f̂∗Y,ns(x) =
1

n

n∑
j=1

eixYj . (4)

Thereafter, we denote this model: (ns) model where (ns) is set for noise sample.

Secondly the identification of f is also possible in the so called repeated observation model, where the
contaminated random variable can be measured repeatedly. In this case, we observe, in addition to the
original sample

Yn+j,k = Xn+j + εn+j,k, j = 1, . . . , 2M and k = 1, 2,

where the (Xn+j)1≤j≤2M are i.i.d. copies of X1 and the (εn+j,k)1≤j≤2M are i.i.d. copies of ε1. The se-
quences of (Xn+j)1≤j≤2M and (εn+j,k)1≤j≤2M are mutually independent and independent of (Xj)1≤j≤n
and (εn+j,k)1≤j≤n. Under assumption (A2), we have the following equalities

∀x ∈ R, E
[
eix(Yn+j,1−Yn+j,2)

]
= E

[
eix(εn+j,1−εn+j,2)

]
=
∣∣E [eixεn+j,1

]∣∣2 =
(
E
[
eixεn+j,1

])2
= (f∗ε (x))

2
.

Without assumption (A2), the model is much more complicated and requires a completely different approach
since f∗ε is not a real positive function anymore. We can now define the following estimator of (f∗ε )2

∀x ∈ R, f̂∗2ε (x) =

 1

M

M∑
j=1

cos (x(Yn+j,1 − Yn+j,2))


+

, (5)

and the following estimator of f∗Y

∀x ∈ R, f̂∗Y,rd(x) =
1

n+M

 n∑
j=1

eixYj +

2M∑
j=M+1

eixYn+j,2

 . (6)

We have split (Yn+j,k)1≤j≤2M,k=1,2 into two independent samples of sizeM . The observations (Yj)1≤j≤n and
(Yn+j,2)M+1≤j≤2M are used to build an estimator f∗Y , see formula (6). From the observations (Yn+j,k)1≤j≤M,k=1,2,
we build an estimator of f∗ε , see formula (5). Thereafter, we denote this model: (rd) model where (rd) is
set for replicate or repeated data. In this model, the estimator of f∗Y is slightly different from the previous
model since we take into account the information brought by the replicate data.
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2.2 Estimation procedure and upper bound

Here the noise is unknown and has to be estimated as aforesaid in this section. Nonetheless it is needed
to prevent the denominator from becoming too small with a regularization of the characteristic function in
the denominator following ideas presented in Neumann (1997), see also Comte and Lacour (2011) or Comte
et al. (2013). Delaigle et al. (2008) propose a different regularization procedure with a ridge parameter ρ
added to the denominator. However, this requires a careful discussion of the choice of the ridge-parameter,
while our regularized version of the empirical characteristic function is completely data driven.

So to prevent the denominator from becoming too small, we regularize the characteristic function in the
denominator as in Comte and Lacour (2011) for the (ns) model and Comte et al. (2013) for the (rd) model
as follows

1

ϕ̃(x)
=
1
{
|f̂∗ε,ns(x)| ≥M−1/2

}
f̂∗ε,ns(x)

(ns) or
1

ϕ̃(x)
:=

1
{
|f̂∗2ε (x)| ≥M−1/2

}
√
f̂∗2ε (x)

(rd). (7)

Given a kernel function f and smoothing parameter m, the corresponding spectral cutoff estimator is

f̂m,M,n(x) =
1

2π

∫ πm

−πm
e−iux

f̂∗Y (u)

ϕ̃(u)
du, (8)

where f̂∗Y is an estimator of f∗Y either in the (ns) model as defined by (4) or in the (rd) model as defined
by (6). Thus the following bounds can be given on the mean squared error:

Proposition 2.1. here is comes
• In presence of a noise sample, under (A1), for f̂m,M,n defined by (8) there exists an universal positive
constant C such as

E
∥∥∥f − f̂m,M,n

∥∥∥2 ≤ ‖f − fm‖2 + C

(
1

n

∫ πm

−πm
|f∗ε (u)|−2 du+

1

M

∫ πm

−πm

|f∗(u)|2

|f∗ε (u)|2
du

)
. (9)

• In the repeated measurement model, under (A1) and (A2), for f̂m,M,n defined by (8) there exists an
universal positive constant C ′ such as

E
∥∥∥f − f̂m,M,n

∥∥∥2 ≤ ‖f − fm‖2+C ′
(

1

n+M

∫ πm

−πm
|f∗ε (u)|−2 du+

1

M

∫ πm

−πm

|f∗(u)|2

|f∗ε (u)|2(|f∗ε (u)|2 ∨M−1/2)
du

)
.

(10)

The first two terms of right-hand side of Equations (9) and (10) correspond to the usual terms when
the distribution of the errors is known (see Comte et al. (2006)): a squared bias term and a bound on a
variance. The last term is due to the estimation of f∗ε which here depends on the considered model. For
the proofs we refer to Comte and Lacour (2011) and Comte et al. (2013).

For the rates of convergence, we refer to Lacour (2006) for a complete study of the known-error case,
Comte and Lacour (2011) for the (ns) model. For the (rd) model, we refer to Delaigle et al. (2008) who
show that in statistical deconvolution problems there is no first-order loss of performance when estimating
the error density with repeated data when compared to the known-error case under the assumption that ”f
is smoother than half a derivative of fε”. Finally, in that model, we also refer to Comte et al. (2013) who
complete the theoretical study of Delaigle et al. (2008) by studying this time the integrated risk.

The idea now for the adaptive estimation is to find a penalty term which would have the same order as
the bound on a variance. The following section will show that we can obtain an adaptive procedure for the
(ns) and (rd) model under weak assumptions.

3 Adaptive estimation procedure

For the adaptive estimation procedure, we follow the steps of Kappus (2014) by introducing alternative
estimators (one for each case aforementioned) of f∗ε which can be controlled uniformly on the real line which
brings a model selection procedure with very weak assumptions.
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For δ > 0, let us introduce the weight function w defined as

∀x ∈ R, w(x) = (log(e+ |x|))−
1
2−δ

which has originally been proposed in Neumann and Reiß (2009). Their results play an important role for
the arguments developed in Kappus (2014). Introducing the logarithmic factor allows to apply concentration
inequalities of Talagrand type. For a positive constant κ to be specified, we set the following threshold

kM (x) = κ (logM)
1/2

w(x)−1M−1/2 (11)

which will prevent the estimator of characteristic function f∗ε from being too small. We use exactly here the
same idea as Neumann (1997). This being said, we can introduce the estimators considered in this work: in
the (ns) case, we define an alternative estimator of f∗ε

f̃∗ε,ns(x) =

{
f̂∗ε,ns(x) if |f̂∗ε,ns(x)| ≥ kM (x),

kM (x) otherwise.
(12)

Similarly, in the (rd) case, we propose an alternative estimator of f∗ε

f̃∗ε,rd(x) =

{
f̂∗ε,rd(x) =

√
f̂∗2ε (x) if (̂f∗ε )2(x) ≥ kM (x),√

kM (x) otherwise.
(13)

So using Fourier transform, we can estimate fm respectively for the (ns) and (rd) model as follows

f̂m,ns(x) =
1

2π

∫ πm

−πm
e−ixu

f̂∗Y,ns(u)

f̃∗ε,ns(u)
du, (14)

f̂m,rd(x) =
1

2π

∫ πm

−πm
e−ixu

f̂∗Y,rd(u)

f̃∗ε,rd(u)
du. (15)

Given a finite collection Mn = {1, . . . , n} of cutoff parameters our target is to realize the optimal data
driven choice of the smoothing parameter m̂. Ideally, m̂ should outbalance the bias and variance term
displayed in Equations (9) and (10). In a deconvolution problem with perfectly known error distribution,
this would mean that m̂ should mimic the oracle choice

m∗ = argmin
m∈Mn

{
−‖fm‖2 +

1

n

1

2π

∫ πm

−πm

(1− |f∗Y (u)|2)

|f∗ε (u)|2
du

}
.

In the present framework, considerations are even more involved since the characteristic function in
the denominator is unknown and the variance is hence not feasible to actually compute. Following the
model selection paradigm, see Birgé (1999), Birgé and Massart (1997) or Massart (2003), we select m̂ as
the minimizer of a penalized criterion,

m̂ = argmin
m∈Mn

{
−‖f̂m‖2 + p̂en(m)

}
.

The penalty term should be chosen large enough to annihilate the fluctuation of f̂m around its target, but
on the other hand, should ideally not be much larger than the variance. In a model selection problem with
known variance, the penalty term is deterministic, which is no longer the case in the present situation. For
the (ns) model, Comte and Lacour (2011) propose an adaptive procedure with the following random penalty

p̃en(m) = 128

 log
(∫ πm
−πm |ϕ̃(u)|−2 du

)
log(1 +m)

2 ∫ πm
−πm |ϕ̃(u)|−2 du

n
(16)

but their procedure is only valid when the sample size of the noise ε is greater than that of the observations.
We will present an adaptive procedure released of that assumption. Moreover it does not take into account
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the second term on the bound of the variance
∫ πm
−πm

|f∗(u)|2
|f∗

ε (u)|2
du since it cannot be computed directly. For

the (rd) model, Comte et al. (2013) investigate the theoretical deterministic penalty

pen(m) = K0

 log
(∫ πm
−πm |f

∗
ε (u)|−2 du

)
log(1 +m)

2 ∫ πm
−πm |f

∗
ε (u)|−2 du

n+M

but results for the true stochastic penalty are not presented in that paper.

Now let us define the deterministic and stochastic terms respectively for the (ns) and (rd) model
appearing in the bounds on the variance with the alternate estimators introduced in the current section.
We first define the classical bound appearing in the known-error case. The only difference is the introduction
of the function w essential for the adaptive procedure we propose.

∆(m) =
1

2π

∫ πm

−πm

w(u)−2

|f∗ε (u)|2
du, ∆̂ns(m) =

1

2π

∫ πm

−πm

w(u)−2

|f̃∗ε,ns(u)|2
du, ∆̂rd(m) =

1

2π

∫ πm

−πm

w(u)−2

|f̃∗ε,rd(u)|2
du.

We now define terms due to the estimation of f∗ε which differ according to the model

∆f
ns(m) =

1

2π

∫ πm

−πm

w(u)−2|f∗(u)|2

|f∗ε (u)|2
du and ∆f

rd(m) =
1

2π

∫ πm

−πm

w(u)−2|f∗(u)|2

|f∗ε (u)|2(|f∗ε (u)|2 ∨ kM (u))
du,

∆̂f
ns(m) =

1

2π

∫ πm

−πm

w(u)−2|f̂∗Y,ns(u)|2

|f̃∗ε,ns(u)|4
du and ∆̂f

rd(m) =
1

2π

∫ πm

−πm

w(u)−2|f̂∗Y,rd(u)|2

|f̃∗ε,rd(u)|6
du.

Thus, for both models, we define empirical penalties as

p̂enns(m) = p̂en1,ns(m) + p̂en2,ns(m)

= 12λ21(m, ∆̂ns(m))
∆̂ns(m)

n
+ 16κ2 log(Mm)

∆̂f
ns(m)

M
(17)

p̂enrd(m) = p̂en1,rd(m) + p̂en2,rd(m)

= 12λ22(m, ∆̂rd(m))
∆̂rd(m)

n+M
+ 16κ2 log(Mm)

∆̂f
rd(m)

M
(18)

where κ is defined in Equation (11) and deterministic penalties

penns(m) = pen1,ns(m) + pen2,ns(m)

= 12λ21(m,∆ns(m))
∆(m)

n
+ 16κ2 log(Mm)

∆f
ns(m)

M
, (19)

penrd(m) = pen1,rd(m) + pen2,rd(m)

= 12λ22(m,∆rd(m))
∆(m)

n+M
+ 16κ2 log(Mm)

∆f
rd(m)

M
(20)

with

λ1(m,D) = max

{√
8 log (1 +Dm2),

16
√

2

3
√
n

log
(
1 +Dm2

)}
,

λ2(m,D) = max

{√
8 log (1 +Dm2),

16
√

2

3
√
n+M

log
(
1 +Dm2

)}
.

We can notice that both penalties are split between a part coming from the estimation of f∗Y and another
from the estimation of f∗ε which is consistent with the upper bound given in Proposition 2.1.
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We can also see that for both models in the terms ∆̂(m) and ∆̂f (m) we do not lose track of the inverse

Fourier transform of the target density f by estimating it by f̂∗Y /f̃
∗
ε which is a difficulty as showed in

Section 6. Whereas in the penalty (16) of Comte and Lacour (2011) only the equivalent of ∆̂(m) is kept.
The term ∆̂f (m) is in fact included in ∆̂(m) since in their model they suppose that M ≥ n1+η, η > 0 which
allows them them to bound ∆̂f (m)/M by ∆̂(m)/n. Besides their considered model collection only includes
the m′s such as the stochastic term ∆̂(m)/n do not blow up. As a consequence, their collection of models
is random. This is a drawback we can get rid of with our method. In this paper we consider a deterministic
model collection.

Our procedure enables us to overcome the difficulty of keeping ∆̂f (m) in the penalty and we also do not
need to assume a particular model collection.

Then, we select the cutoff parameters m̂ns and m̂rd as minimizers of the following penalized criteria

m̂ns = argmin
m∈Mn

{
−
∥∥∥f̂m,ns∥∥∥2 + p̂enns(m)

}
, (21)

m̂rd = argmin
m∈Mn

{
−
∥∥∥f̂m,rd∥∥∥2 + p̂enrd(m)

}
. (22)

Finally we can derive, for the corresponding estimator f̂m̂ the following non-asymptotic risk bound for
a collection model Mn = {1, . . . , n} and hence the main result of this section:

Theorem 3.1. here is comes
• In the (ns) model, consider under (A1), f̂m̂ns,ns defined by (14) and (21). Then there are positive constants
Cad and C such that

E‖f − f̂m̂ns,ns‖2 ≤ Cad inf
m∈Mn

{
‖f − fm‖2 + penns(m)

}
+ C

(
1

n
+

1

M

)
. (23)

• In the (rd) model, consider under (A1) and (A2), f̂m̂rd,rd defined by (15) and (22). Then there are
positive constants Cad and C such that

E‖f − f̂m̂rd,rd‖2 ≤ Cad inf
m∈Mn

{
‖f − fm‖2 + penrd(m)

}
+ C

(
1

n+M
+

1

M

)
(24)

The rates of convergence in deconvolution problems are classically intricate and depend on the regularity
types of the function f under estimation and the noise density f∗ε . To compute them, one has to study
the orders of the bias and variance terms in inequalities (9) or (10) and to look for an optimal value of m
in function of n. Even in the known-error case, to show the optimality of a kernel-type estimator Butucea
and Tsybakov (2008a) work with an implicit equation satisfied by the optimal bandwidth. But once this
is done, it is clear that the choices of an optimal m depend on unknown quantities and thus cannot be
implemented. That is why inequalities (23) or (24) are of high interest: the compromise is automatically
made and completely data driven in an almost non-asymptotic setting. Rates of convergence are reached
by themselves without being specified in the framework. Yet we may wonder if there is a cost due to
adaptation here. To answer that question, right-hand sides of Equations (9) and (23) have to be compared.
More precisely, since the bias term ‖f − fm‖2 is unchanged and n−1 +M−1 are negligible terms, it comes
down to compare penns(m) with

∆(m)

n
+

logM

M
∆f

ns(m).

Clearly the difference lies in the logarithmic terms, and thus, the loss is negligible. Moreover we cannot
emphasize enough that our procedure is very general and the assumptions very weak. Obviously, the same
kind of remarks holds for Equation (24) compared to Equation (10) for the (rd) model. In this case, we
must also point out that no other adaptive procedure exists for this problem. This is another quality of our
general methodology.

4 Simulation study

The whole implementation is conducted using R software. The integrated squared error ‖f−f̂m̂‖2 (generally
speaking) is computed via a standard approximation and discretization (over 300 points) of the integral on
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an interval of R denoted by I. Then the mean integrated squared error (MISE) E‖f − f̂m̂‖2 is computed as
the empirical mean of the approximated ISE over 100 simulation samples.

Practical estimation procedure. The adaptive procedure is implemented as follows for both cases with
their respective estimators :

. For m ∈Mn = {m1, . . . ,mn}, compute −‖f̂m‖2 + p̂en(m).

. Choose m̂ such as m̂ = argmin
m∈Mn

{
−‖f̂m‖2 + p̂en(m)

}
.

. And compute f̂m̂(x) =

∫ πm̂

−πm̂
e−ixu

f̂∗Y (u)

f̃∗ε (u)
du.

We remind the reader once again that Riemann’s sums are used to approximate all the integrals. The
penalties are chosen according to Theorem 3.1 and as in Comte et al. (2007) we consider that m can be
fractional by takingthe following collection model

Mn =

{
m =

k

10
, 1 ≤ k ≤ 25

}
,

p̂enns(m) = κ1,ns
log
(

1 + ∆̂ns(m)m2
)

∆̂ns(m)

n
+ κ2,ns

log(Mm)∆̂f
ns(m)

M
,

p̂enrd(m) = κ1,rd
log
(

1 + ∆̂rd(m)m2
)

∆̂rd(m)

n+M
+ κ2,rd

log(Mm)∆̂f
rd(m)

M

Influence of M on the estimation. We compute different estimators of the signal for different values
of M and consider different signal densities and two noises. Following Comte et al. (2006), we study the
following densities on the interval I:

. Standard Gaussian distribution, I = [−4, 4].

. Laplace distribution, f(x) = e−
√
2|x|/
√

2, I = [−5, 5].

. Mixed Gamma distribution : X = W/
√

5.48, with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1), I = [−1.5, 26].

. Cauchy distribution : f(x) =
(
π(1 + x2)

)−1
, I = [−10, 10].

We consider the two following noise densities with same variance 1/10. The first one is a supersmooth
density which means that its Fourier transform has an exponential decay. The second one is an ordinary
smooth density which means that its Fourier transform has a polynomial decay.

Gaussian noise : fε(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
, f∗ε (x) = exp

(
− x2

2σ2

)
, with σ = 1/

√
10.

The gaussian noise is a supersmooth noise with γ = 0, δ = 2 and µ = σ2/2.

Laplace noise : fε(x) =
1

2σ
exp

(
−|x|
σ

)
, f∗ε (x) =

1

1 + σ2x2
, with σ = 1/2

√
5.

The Laplace noise is an ordinary smooth noise with δ = µ = 0, γ = 2 .

All the densities are normalized with unit variance except the Cauchy density. We want to study the
influence of the relationship of n and M on the estimation of f∗ε in the (ns) and (rd) cases. For both cases,
we consider different values of n and values of M =

√
n and M = n.

It is worth mentioning that the calibration of the four constants were done with intensive simulations.
We have κ1,ns = κ1,rd = 1 and κ2,ns = κ2,rd = 1.5.
Results. The results of the simulations are given in Tables 1 and 2. For both tables, the values of the
MISE are multiplied by 100 for each case and computed from 100 simulated data sets. We also give the
medians. Table 1 illustrates the case where we can recover a preliminary sample of the noise ε named in this
paper (ns) model. The results are very close to those of Comte and Lacour (2011) except when the signal
is a Laplace one. Nevertheless our procedure is equivalent or better for other cases. The main improvement
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n = 100 n = 250 n = 500
Lap. Gaus. Lap. Gaus. Lap. Gaus.

Laplace fε known 2.508 2.480 1.634 1.700 1.204 1.279
(2.257) (2.348) (1.484) (1.584) (1.156) (1.217)

M = b
√
nc 4.182 4.229 2.774 2.795 1.842 1.927

(4.582) (4.731) (2.716) (2.685) (1.791) (1.749)
M = n 2.510 2.508 1.631 1.690 1.205 1.277

(2.257) (2.352) (1.489) (1.567) (1.156) (1.217)
Mixed Gamma fε known 0.842 0.967 0.419 0.417 0.243 0.244

(0.699) (0.809) (0.375) (0.377) (0.243) (0.221)
M = b

√
nc 1.038 1.004 0.612 0.631 0.289 0.306

(1.085) (1.074) (0.448) (0.533) (0.268) (0.265)
M = n 0.842 0.956 0.419 0.417 0.243 0.244

(0.699) (0.809) (0.375) (0.377) (0.223) (0.221)
Cauchy fε known 0.970 1.060 0.420 0.480 0.261 0.267

(0.887) (0.903) (0.373) (0.371) (0.227) (0.228)
M = b

√
nc 1.169 1.105 0.715 0.696 0.341 0.359

(1.262) (1.119) (0.468) (0.464) (0.225) (0.236)
M = n 0.971 1.053 0.420 0.481 0.262 0.273

(0.887) (0.880) (0.373) (0.371) (0.227) (0.228)
Gaussian fε known 0.613 0.606 0.297 0.272 0.178 0.192

(0.398) (0.395) (0.241) (0.223) (0.147) (0.157)
M = b

√
nc 1.140 1.128 0.665 0.646 0.302 0.305

(0.962) (0.961) (0.530) (0.471) (0.287) (0.277)
M = n 0.610 0.592 0.301 0.274 0.178 0.189

(0.398) (0.373) (0.241) (0.214) (0.147) (0.153)

Table 1: Results of simulation as MISE E
(
‖f − f̂m̂ns,ns

‖2
)
× 100 averaged over 100 samples. In brackets we

give the median of the MISE also averaged over 100 samples.

of this procedure is the fact that we reach the same performances as Comte and Lacour (2011) for M = n
when they need to take M = n2. That is why we did not consider that case. Besides the risk decreases
more rapidly when M and n increase. In many cases estimating the Fourier transform of the noise f∗ε
reduces the risk compared to knowing the density of the noise, a fact already pointed in Comte and Lacour
(2011). This can be explained by the fact that an additional regularization of the characteristic function of
the noise comes in. Concerning the medians of the MISE, they are always lower than the means of the MISE.

In Table 2 when f∗ε is known, it is noticeable that the estimation of the signal density is better than in
Table 1. This can be explained by the improvement of the estimation fY using one of the two samples of
replicate data. This fact is well illustrated when the signal is a gaussian. The values of the MISE do not
decrease as fast as in the (ns) case with n. But they decrease faster with M . They are pretty much split
by two except for the Laplace noise. When M = n the estimation is better in the (rd) case. Nevertheless
when M =

√
n, the procedure of the (ns) case is more effective.

Figures 1 and 2 illustrate the estimation of a mixed Gamma using both penalized estimators for
n = M = 250 and n = M = 500. The estimation is made with additional Gaussian and Laplace
noises. The bimodal specificity of the density is well described. Moreover the precision increases with the
sample size. Also the Laplace noise is closer to the target distribution than with the Gaussian noise. Indeed
the degree of ill-posedness depends on the decay of f∗ε . The faster f∗ε decays, the more complicated it is to
recover fY from the data. As aforesaid, the Fourier transform of a Laplace density has a polynomial decay
whereas a Gaussian density has an exponential decay. So Figures 1 and 2 describe that phenomenon.
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n = 100 n = 250 n = 500
Lap. Gaus. Lap. Gaus. Lap. Gaus.

Laplace fε known 2.229 2.268 1.454 1.515 1.064 1.156
(2.105) (2.178) (1.431) (1.463) (1.100) (1.128)

M = b
√
nc 3.994 3.927 2.978 3.024 2.258 2.307

(3.894) (4.143) (2.951) (2.926) (2.137) (2.195)
M = n 2.520 2.615 1.777 1.845 1.354 1.481

(2.494) (2.711) (1.745) (1.825) (1.366) (1.500)
Mixed Gamma fε known 0.508 0.551 0.265 0.274 0.159 0.165

(0.475) (0.523) (0.249) (0.245) 0.158 0.154
M = b

√
nc 1.067 1.076 0.906 0.905 0.701 0.692

(1.065) (1.065) (0.931) (0.918) (0.892) (0.889)
M = n 0.459 0.471 0.263 0.268 0.211 0.212

(0.417) (0.404) (0.237) (0.244) (0.208) (0.206)
Cauchy fε known 0.564 0.584 0.369 0.341 0.190 0.203

(0.517) (0.525) (0.360) (0.302) (0.185) (0.207)
M = b

√
nc 1.079 1.035 0.746 0.738 0.579 0.615

(0.947) (0.964) (0.736) (0.728) (0.517) (0.544)
M = n 0.576 0.569 0.352 0.364 0.281 0.294

(0.527) (0.517) (0.311) (0.320) (0.261) (0.290)
Gaussian fε known 0.349 0.360 0.164 0.147 0.079 0.084

(0.252) (0.270) (0.118) (0.106) (0.072) (0.067)
M = b

√
nc 1.067 1.100 0.709 0.707 0.415 0.403

(0.969) (0.960) (0.749) (0.741) (0.290) (0.269)
M = n 0.537 0.537 0.264 0.255 0.143 0.149

(0.494) (0.461) (0.222) (0.225) (0.139) (0.141)

Table 2: Results of simulation as MISE E
(
‖f − f̂m̂rd,rd

‖2
)
× 100 averaged over 100 samples. In brackets we

give the median of the MISE also averaged over 100 samples.
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(a) Laplace noise

(b) Gaussian noise

Figure 1: Estimations for n = M = 250 of a mixed Gamma (bold black line), in blue dashed line for the ns
estimator and in red longdashed for the rd estimator.

(a) Laplace noise

(b) Gaussian noise

Figure 2: Estimations for n = M = 500 of a mixed Gamma (bold black line), in blue dashed line for the ns
estimator and in red longdashed for the rd estimator.

5 Concluding remarks

This paper deals with adaptive deconvolution estimation of a density when the noise density is unknown.
We have considered two cases: one where a preliminary sample of the noise can be observed and another
one where the variable of interest X can be observed repeatedly with independent errors. For both models,
we have proposed a theoretical adaptive procedure which automatically makes a data driven bias-variance
compromise. Moreover, it allows us to not specify rates of convergence since they are mechanically reached.
This procedure enables us to treat the problem of adaptive estimation in repeated observation model which
is completely new. Its advantage is to be very general under weak assumptions. Indeed, that procedure takes
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into account cases where there can be small number of replications which matches realistic applications as in
medicine or economics. Besides of its theoretical properties, our procedure has showed good performances
in simulation.

At last, we think that our procedure can be extended to the density estimation of a random effect in
linear mixed-effects model. Indeed we are aware of the work of Comte and Samson (2012) who proposed
an adaptive procedure based on deconvolution methods in the unknown-error case which is not optimal
and Dion (2013) who used a Lepski’s method in the known-error case. In that model, the noise can also
be recovered by successive difference similarly to the repeated model but the characteristic function of the
noise would be raised to a greater power. We may then propose in the same spirit an adaptive procedure
for the random effect in linear mixed-effects model.

6 Proofs

In this section, we mainly present simultaneously the proofs for the (ns) and (rd) since the arguments are
completely analogous.

6.1 Proof of Theorem 3.1

Before proving any result, let us introduce some notations: for k > m,

∆̂(m, k) = ∆̂(k)− ∆̂(m),

∆̂f
ns(m, k) = ∆̂f

ns(k)− ∆̂f
ns(m),

∆̂f
rd(m, k) = ∆̂f

rd(k)− ∆̂f
rd(m).

Moreover,

p̂enns(m, k) := 12λ̂21(m, k)
∆̂ns(m, k)

n
+ 16κ2 log(M(k −m))

∆̂f
ns(m, k)

M
,

p̂enrd(m, k) := 12λ̂22(m, k)
∆̂rd(m, k)

M + n
+ 16κ2 log(M(k −m))

∆̂f
rd(m, k)

M

with

λ̂1(m, k) = max

{√
8 log

(
1 + ∆̂ns(m, k)(k −m)2

)
,

16
√

2

3
√
n

log
(

1 + ∆̂ns(m, k)(k −m)2
)}

λ̂2(m, k) = max

{√
8 log

(
1 + ∆̂rd(m, k)(k −m)2

)
,

16
√

2

3
√
n+M

log
(

1 + ∆̂rd(m, k)(k −m)2
)}

.

Now we can start the proof of Theorem 3.1. The proof is here formulated simultaneously for both mod-
els. Thus thereafter for the sake of clarity all subscripts relative to one particular model are dropped.

We denote by m? the oracle cutoff defined by

m? = argmin
m∈Mn

{
−‖fm‖2 + pen(m)

}
.

We have ∥∥∥f − f̂m̂∥∥∥2 ≤ 2
∥∥∥f − f̂m?

∥∥∥2 + 2
∥∥∥f̂m? − f̂m̂

∥∥∥2
• Let us notice on the set G = {m̂ ≤ m?} :∥∥∥f̂m? − f̂m̂

∥∥∥2 1G =

(∥∥∥f̂m?

∥∥∥2 − ∥∥∥f̂m̂∥∥∥2)1G.

12



Besides according to the definition of m̂, one has the following inequality:

−
∥∥∥f̂m̂∥∥∥2 + p̂en(m̂) ≤ −

∥∥∥f̂m?

∥∥∥2 + p̂en(m?), (25)

which implies

−
∥∥∥f̂m̂∥∥∥2 ≤ −∥∥∥f̂m?

∥∥∥2 + p̂en(m?).

Thus ∥∥∥f̂m? − f̂m̂
∥∥∥2 1G =

(∥∥∥f̂m?

∥∥∥2 − ∥∥∥f̂m̂∥∥∥2)1G ≤ p̂en(m?).

Taking expectation, we apply the following Lemma

Lemma 6.1. For a random penalty noted p̂en defined by (17) or (18) and a deterministic penalty noted
pen defined by (19) or (20), there is a positive constant C such that for any arbitrary m ∈Mn

E [p̂en(m)] ≤ Cpen(m). (26)

It yields for some positive constant C

E
[∥∥∥f − f̂m̂∥∥∥2 1G] ≤ 2E

[∥∥∥f − f̂m?

∥∥∥2]+ 2E [p̂en(m?)]

≤ 2 ‖f − fm?‖2 + 2Cpen(m?).

We just proved the desired result on G

E
[
‖f − f̂m̂‖21G

]
≤ C inf

m∈Mn

{
‖f − fm‖2 + pen(m)

}
. (27)

• We now consider the set Gc = {m̂ > m?}.∥∥∥f̂m̂ − f̂m?

∥∥∥2 1Gc =

(∥∥∥f̂m̂ − f̂∗m?

∥∥∥2 − 6 ‖fm̂ − fm?‖2 − 1

2
p̂en(m?, m̂)

)
1Gc

+

(
6 ‖fm̂ − fm?‖2 +

1

2
p̂en(m?, m̂)

)
1Gc

≤ sup
k≥m?

k∈Mn

{∥∥∥f̂k − f̂m?

∥∥∥2 − 6 ‖fk − fm?‖2 − 1

2
p̂en(m?, k)

}
+

+ 6‖f − fm?‖2 +
1

2

∑
k≥m?

k∈Mn

p̂en(m?, k)1 {m̂ = k} (28)

Let us first notice the following inequality

∀k > m, p̂en(m, k) ≤ p̂en(k). (29)

Besides by definition of m̂ (see Equation (21) or (22)), on the set {m̂ = k}∩Gc and applying Equation (25),
one has

1

2
(p̂en(k)− p̂en(m?)) ≤

∥∥∥f̂m̂ − f̂m?

∥∥∥2 − 1

2
(p̂en(k)− p̂en(m?))

1

2
p̂en(k) ≤

∥∥∥f̂m̂ − f̂m?

∥∥∥2 − 1

2
p̂en(m?, k) +

1

2
p̂en(m?)

1

2
p̂en(k) ≤

(∥∥∥f̂m̂ − f̂m?

∥∥∥2 − 6 ‖fm̂ − fm?‖2 − 1

2
p̂en(m?, k)

)
+ 6 ‖fm̂ − fm?‖2 +

1

2
p̂en(m?)

1

2
p̂en(k) ≤

(∥∥∥f̂m̂ − f̂m?

∥∥∥2 − 6 ‖fm̂ − fm?‖2 − 1

2
p̂en(m?, k)

)
+ 6 ‖f∗ − f∗m?‖2 +

1

2
p̂en(m?) (30)
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Now using Inequalities (29) and (30)

1

2

∑
k≥m?

k∈Mn

p̂en(m?, k) ≤ sup
k≥m?

k∈Mn

{∥∥∥f̂k − f̂m?

∥∥∥2 − 6 ‖f∗m̂ − fm?‖2 − 1

2
p̂en(m?, k)

}
+

+ 6 ‖f − fm?‖2 +
1

2
p̂en(m?).

From Inequality (28), we now have∥∥∥f̂m̂ − f̂m?

∥∥∥2 1Gc ≤ 2 sup
k≥m?

k∈Mn

{∥∥∥f̂k − f̂m?

∥∥∥2 − 6 ‖fk − fm?‖2 − 1

2
p̂en(m?, k)

}
+

+ 12‖f − fm?‖2 +
1

2
p̂en(m?).

(31)
Taking expectation the first summand is negligible by applying the following Proposition.

Proposition 6.2. Under (A1) and (A2), there is a positive constant C such that for any arbitrary m ∈Mn

E

 sup
k≥m
k∈Mn

{∥∥∥f̂k,ns − f̂m,ns∥∥∥2 − 6 ‖fk − fm‖2 −
1

2
p̂enns(m, k)

}
+

 ≤ C

n
+
C

M
(32)

E

 sup
k≥m
k∈Mn

{∥∥∥f̂k,rd − f̂m,rd∥∥∥2 − 6 ‖fk − fm‖2 −
1

2
p̂enrd(m, k)

}
+

 ≤ C

n+M
+
C

M
(33)

here is comes

Finally we have

E
[∥∥∥f − f̂m̂∥∥∥2 1Gc

]
≤ C

(
‖f − fm?‖2 + pen(m?)

)
+ C ′

(
1

n
+

1

M

)
(34)

E
[∥∥∥f − f̂m̂∥∥∥2 1Gc

]
≤ C

(
‖f − fm?‖2 + pen(m?)

)
+ C ′

(
1

n+M
+

1

M

)
. (35)

This combining with (27) complete the proof.

�

6.2 Proof of Lemma 6.1

Before proving Lemma 6.1, we first need to prove two auxiliary lemmas. In the sequel, C will always denote
some universal positive constant, but the value may vary from line to line.

Lemma 6.3. For an estimator of f∗ε defined by (12) or (13), assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1.

Then for some positive constant C

P
[
∃u ∈ R : |f̃∗ε,ns(u)− f∗ε (u)| > τ (log(Mx))

1/2
w(u)−1M−1/2

]
≤ Cx−pM−p

P
[
∃u ∈ R : |f̃∗ε,rd(u)2 − f∗ε (u)2| > τ (log(Mx))

1/2
w(u)−1M−1/2

]
≤ Cx−pM−p

Proof. We give the proof for a f̃∗ε which can be equal to f̃∗ε,ns or f̃∗2ε,rd. In consequence for the second case
we need to consider f∗2ε instead of f∗ε as follows∣∣∣f̃∗ε (u)− f∗ε (u)

∣∣∣ ≤ ∣∣∣f̃∗ε (u)− f̂∗ε (u)
∣∣∣+
∣∣∣f̂∗ε (u)− f∗ε (u)

∣∣∣ ≤ 2kM (u) +
∣∣∣f̂∗ε (u)− f∗ε (u)

∣∣∣ .
Using the previous inequality and applying Lemma A.3, we have

P
[
∃u ∈ R : |f̃∗ε (u)− f∗ε (u)| > τ (log(Mx))

1/2
w(u)−1M−1/2

]
≤ P

[
∃u ∈ R : |f̂∗ε (u)− f∗ε (u)|+ 2kM (u) > τ (log(Mx))

1/2
w(u)−1M−1/2

]
≤ P

[
∃u ∈ R : |f̂∗ε (u)− f∗ε (u)| > (τ − 2κ) (log(Mx))

1/2
w(u)−1M−1/2

]
≤ Cx−pM−p.
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Lemma 6.4. In the situation of the preceding Lemma

P

[
∃u ∈ R :

∣∣∣f̃∗ε,rd(u)− f∗ε (u)
∣∣∣1{f̃∗ε,rd(u) < f∗ε (u)

}
>
τ(log(Mx))1/2w(u)−1M−1/2

f̃∗ε,rd(u)

]
≤ Cx−pM−p

Proof. This is a direct consequence of Lemma 6.3 using the fact that for x, y ≥ 0, |
√
x − √y| ≤ |x−y|

2
√
x∧y

holds.

Proof of Lemma 6.1. Here all subscripts relative to one of the two considered models are dropped since
the argument for both models are totally alike.

For q = 1/2 or 1, using Cauchy-Schwarz’s inequality, we have

E
[
logq

(
1 + ∆̂(m)m2

)
∆̂(m)

]
≤
√

E
[
log2q

(
1 + ∆̂(m)m2

)]
E
[
∆̂2(m)

]
Let Ap(u) be defined as in Lemma A.4

∆̂(m) =
1

2π

∫ πm

−πm

w(u)−2

|f̃∗ε (u)|2
du

=
1

2π

∫ πm

−πm
w(u)−2

∣∣∣∣ 1

f̃∗ε (u)
− 1

f∗ε (u)
+

1

f∗ε (u)

∣∣∣∣2 du

≤ 2∆(m) +
1

π

∫ πm

−πm
w(u)−2

∣∣∣∣ 1

f̃∗ε (u)
− 1

f∗ε (u)

∣∣∣∣2 du

≤ 2∆(m) + 2∆(m) sup
u∈R

A1(u)

≤ 2∆(m)(1 + sup
u∈R

A1(u))

and applying Lemma A.4

E
[
∆̂2(m)

]
≤ 4C∆2(m).

By Jensen inequality (since log is concave)

E
[
log2q

(
1 + ∆̂(m)m2

)]
≤ log2q

(
E
[
1 + ∆̂(m)m2

])
≤ log2q

(
1 + E

[
∆̂(m)

]
m2
)

≤ log2q

(
1 + 2∆(m)

(
1 + E

[
sup
u∈R

A1(u)

])
m2

)
≤ log2q

(
1 + 2∆(m) (1 + C)m2

)
≤ C log2q

(
1 + ∆(m)m2

)
So

E
[
logq

(
1 + ∆̂(m)m2

)
∆̂(m)

]
≤ C logq

(
1 + ∆(m)m2

)
∆(m)

which means E[p̂en1(m)] ≤ Cpen1(m). Consider now p̂en2(m). Another application of Lemma A.4 yields

1

M
E

[
1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)|2

|f̃∗ε (u)|4
du

]

≤ 2

M
E
[

1

2π

∫ πm

−πm

w(u)−2|f∗Y (u)|2

|f̃∗ε (u)|4
du

]
+

2

M
E

[
1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|4
du

]

≤ 4

M
E
[

1

2π

∫ πm

−πm

w(u)−2|f∗(u)|2

|f∗ε (u)|2
du

]
E
[
1 + sup

u∈R
A2(u)

]
+

2

M
E

[
1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|4
du

]

≤ 4

M
∆f (m)E

[
1 + sup

u∈R
A2(u)

]
+

2

M
E

[
1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|4
du

]
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We use the fact that f̃∗ε (u) ≥M−1/2(logM)1/2w(u)−1 as well as the independence of f̂∗Y and f̃∗ε to find

E

[
1

2π

∫ πm

−πm

w(u)−2|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|4
du

]
≤ E

[
sup
u∈R
|f̂∗Y (u)− f∗Y (u)|2w(u)2

]
E
[

1

2π

∫ πm

−πm

w(u)−2

|f̃∗ε (u)|2
du

]
Thanks to Theorem 5.1 in Neumann and Reiß (2009), for some positive constant C,

E
[
sup
u∈R
|f̂∗Y (u)− f∗Y (u)|2w(u)2

]
≤ C

n
.

Applying the same arguments as for the bounding of E [p̂en1(m)], we get

E
[

1

2π

∫ πm

−πm

w(u)−2

|f̃∗ε (u)|2
du

]
≤ C∆(m).

This completes the proof.

6.3 Proof of Proposition 6.2

For k > m, let us introduce the following notation : A(m, k) := {u ∈ R, |u| ∈ [πm, πk]}. Similarly to the
previous section, we need to prove some auxilary lemmas before proving Proposition 6.2.

Lemma 6.5. There is a positive constant C such that for any arbitrary m ∈Mn

E

[
sup
k≥m

{
1

2π

∫
A(m,k)

|f̂∗Y,ns(u)− f∗Y (u)|2

|f̃∗ε,ns(u)|2
du− 1

12
p̂en1,ns(m, k)

}
+

]
≤ C

n
(36)

E

[
sup
k≥m

{
1

2π

∫
A(m,k)

|f̂∗Y,rd(u)− f∗Y (u)|2

|f̃∗ε,rd(u)|2
du− 1

12
p̂en1,rd(m, k)

}
+

]
≤ C

n+M
(37)

Proof. Once again the proof is given simultaneously for both models. Thus thereafter for the sake of clarity
all subscripts relative to the (ns) model or the (rd) model are dropped again.

E

 sup
k≥m
k∈Mn

{
1

2π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

12
p̂en1(m, k)

}
+



≤ E

 ∑
k≥m
k∈Mn

{
E

[
1

2π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

12
p̂en1(m, k)

}
+

∣∣∣f̃∗ε ]
]

≤ E

 ∑
k≥m
k∈Mn

1

2π

∫
A(m,k)

1

2π
E

[{
|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
− 1

12

λ̂2(m, k)

n|f̃∗ε (u)|2

}
+

∣∣∣f̃∗ε
]

du



Now f̂∗Y (u)/f̃∗ε (u) (conditional on f̃∗ε (u)) the sum of n independent and identically distributed random

variables with variance v2 ≤ 1/|f̃∗ε (u)|2 which are surely bounded by 2/f̃∗ε (u). Thus Lemma A.1 gives

E

[{
|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
− 1

12

λ̂2(m, k)

n|f̃∗ε (u)|2

}
+

∣∣∣f̃∗ε
]

≤ 32
n−1

|f̃∗ε (u)|2
exp

(
−λ̂2(m, k)

)
+ 128

√
2

n−2

|f̃∗ε (u)|2
exp

(
−n1/2λ̂(m, k)

)
≤ 32

n−1

|f̃∗ε (u)|2
(k −m)−2∆̂(m, k)−1 + 128

√
2

n−2

|f̃∗ε (u)|2
(k −m)−2∆̂(m, k)−1
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where we used the fact that

λ̂(m, k) ≤ max

{√
8 log

(
1 + ∆̂(m, k)(k −m)2

)
,

16
√

2

3
√
n

log
(

1 + ∆̂(m, k)(k −m)2
)}

.

We have thus shown for a universal positive constant C that for any m, k ∈Mn∫
A(m,k)

E

[{
|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
− 1

12

λ̂21(m)

n|f̃∗ε (u)|2

}
+

∣∣∣f̃∗ε
]

du

≤ C

n
(k −m)−2∆̂(m, k)−1

∫
A(m,k)

du

|f̃∗ε (u)|2

≤ C

n
(k −m)−2

Finally

E

 sup
k≥m
k∈Mn

{
1

2π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

6
p̂en1(m, k)

}
+

 ≤ C

n

or

E

 sup
k≥m
k∈Mn

{
1

2π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

6
p̂en1(m, k)

}
+

 ≤ C

n+M

Proof of Proposition 6.2. We give the proof for a f̃∗ε which can be equal to f̃∗ε,ns or f̃∗2ε,rd. In consequence,
once again all subscripts relative to one model are dropped.

Applying Plancherel’s formula we get∥∥∥f̂k − f̂m∥∥∥2 =
1

2π

∥∥∥f̂∗k − f̂∗m∥∥∥2
=

1

2π

∫
A(m,k)

|f̂∗Y (u))|2

|f̃∗ε (u)|2
du

=
1

2π

∫
A(m,k)

|f̂∗Y (u))|2

|f̃∗ε (u)|2
1
{
|f̃∗ε (u)| > |f∗ε (u)|

}
du

+
1

2π

∫
A(m,k)

|f̂∗Y (u))|2

|f̃∗ε (u)|2
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du (38)

Let us consider the first term of Equation (38)

1

2π

∫
A(m,k)

|f̂∗Y (u))|2

|f̃∗ε (u)|2
1
{
|f̃∗ε (u)| > |f∗ε (u)|

}
du ≤ 1

π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du+

1

π

∫
A(m,k)

|f∗Y (u)|2

|f∗ε (u)|2
du︸ ︷︷ ︸

2‖fk−fm‖2

,

now the second one

1

2π

∫
A(m,k)

|f̂∗Y (u))|2

|f̃∗ε (u)|2
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du

=
1

2π

∫
A(m,k)

|f̂∗Y (u)|2
∣∣∣∣ 1

f̃∗ε (u)
− 1

f∗ε (u)
+

1

f∗ε (u)

∣∣∣∣2 1{|f̃∗ε (u)| > |f∗ε (u)|
}

du

≤ 1

π

∫
A(m,k)

|f̂∗Y (u)|2
∣∣∣∣ 1

f̃∗ε (u)
− 1

f∗ε (u)

∣∣∣∣2 1{|f̃∗ε (u) ≤ |f∗ε (u)|
}

du

+
1

π

∫
A(m,k)

∣∣∣∣∣ f̂∗Y (u))

f∗ε (u)

∣∣∣∣∣
2

1
{
|f̃∗ε (u) ≤ |f∗ε (u)|

}
du. (39)
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Yet for the second term of Equation (39), we can notice

1

π

∫
A(m,k)

∣∣∣∣∣ f̂∗Y (u))

f∗ε (u)

∣∣∣∣∣
2

1
{
|f̃∗ε (u) ≤ |f∗ε (u)|

}
du ≤ 2

π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du+ 4 ‖fk − fm‖2 .

For the first term of Equation (39) we can write

1

π

∫
A(m,k)

|f̂∗Y (u)|2
∣∣∣∣ 1

f̃∗ε (u)
− 1

f∗ε (u)

∣∣∣∣2 1{ |f̃∗ε (u) ≤ |f∗ε (u)|
}

du

=
1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|2|f∗ε (u)|2
1
{
|f̃∗ε (u) ≤ |f∗ε (u)|

}
du

≤ 1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u) ≤ |f∗ε (u)|

}
du.

Let us introduce the set C which equals to one of the following set depending on the model

Cns(m, k) =
{
∀u ∈ R : |f̃∗ε (u)− f∗ε (u)|2 ≤ 4κ2 log (M(k −m))w(u)−2M−1

}
, (40)

Crd(m, k) =

{
∀u ∈ R : |f̃∗ε (u)− f∗ε (u)|21

{
f̃∗ε (u) ≤ f∗ε (u)

}
≤ 4κ2 log (M(k −m))w(u)−2M−1

f̃∗ε (u)2

}
. (41)

On C(m, k), for example for C = Cns the following inequalities can be deduced

1

2π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u) ≤ |f∗ε (u)|

}
du

≤ 4κ2 log (M(k −m))M−1
1

2π

∫
A(m,k)

w(u)−2|f̂∗Y (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du

≤ 4κ2 log (M(k −m))M−1∆̂f (m, k)

≤ 1

4
p̂en2(m, k).

This far we have showed that Equation (38) can be bounded as follows∥∥∥f̂k − f̂m∥∥∥2 ≤ 1

π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du+ ‖fk − fm‖2

+
2

π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du+ 4 ‖fk − fm‖2

+
1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)}

+
1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)c}

≤ 3

π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du+ 6 ‖fk − fm‖2 +

1

2
p̂en2(m, k)

+
1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)c} . (42)
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Starting from Equation (42), we can now write the following inequalities∥∥∥f̂k,ns − f̂m,ns∥∥∥2 − 6‖fk − fm‖2 −
1

2
p̂en(m, k)

≤ 3

π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

2
p̂en1(m, k)

+ 6‖fk − fm‖2 − 6‖fk − fm‖2 +
1

2
p̂en2(m, k)− 1

2
p̂en2(m, k)

+
1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)c}

≤ 6

{
1

2π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

12
p̂en1(m, k)

}
+

+
1

π

∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)c} .

Taking expectation we get

E

 sup
k≥m
k∈Mn

{∥∥∥f̂k − f̂m∥∥∥2 − 6 ‖fk − fm‖2 −
1

2
p̂en(m, k)

}
+


≤
∑
k≥m
k∈Mn

E

[{∥∥∥f̂k − f̂m∥∥∥2 − 6 ‖fk − fm‖2 −
1

2
p̂en(m, k)

}
+

]

≤
∑
k≥m
k∈Mn

E

[
6

{
1

2π

∫
A(m,k)

|f̂∗Y (u)− f∗Y (u)|2

|f̃∗ε (u)|2
du− 1

12
p̂en(m, k)

}
+

]

+
2

2π

∑
k≥m
k∈Mn

E

[∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| > |f∗ε (u)|

}
du1 {C(m, k)c}

]
.

We can notice that on C(m, k)c defined by (40) following Lemma 6.3 we have

P [C(m, k)c] ≤M−3(k −m)−3

and we get ∑
k≥m
k∈Mn

E

[∫
A(m,k)

|f̂∗Y (u)|2 |f̃
∗
ε (u)− f∗ε (u)|2

|f̃∗ε (u)|4
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)c}

]

≤
∑
k≥m
k∈Mn

E

[∫
A(m,k)

|f̂∗Y (u)|2 4|f∗ε (u)|2

k4M (u)
1
{
|f̃∗ε (u)| ≤ |f∗ε (u)|

}
du1 {C(m, k)c}

]

≤
∑
k≥m
k∈Mn

E

[∫
A(m,k)

4κ−4(logM)−2w(u)4M2 du1 {C(m, k)c}

]

≤
∑
k≥m
k∈Mn

4κ−4(logM)−2M2(k −m)P [C(m, k)c]

≤
∑
k≥m
k∈Mn

4κ−4(logM)−2M2(k −m)M−3(k −m)−3

≤
∑
k≥m
k∈Mn

4κ−4M−1(k −m)−2

≤ C

M
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and applying Lemma 6.5, we have

E

 sup
k≥m
k∈Mn

{∥∥∥f̂k − f̂m∥∥∥2 − 6 ‖fk − fm‖2 −
1

2
p̂en(m, k)

}
+

 ≤ C

n
+
C

M

or

E

 sup
k≥m
k∈Mn

{∥∥∥f̂k − f̂m∥∥∥2 − 6 ‖fk − fm‖2 −
1

2
p̂en(m, k)

}
+

 ≤ C

n+M
+
C

M

This completes the proof.
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A Appendix

First we remind, for the readers convenience, some well known results.

Lemma A.1. Let X1, . . . , Xn be i.i.d. random variables with Var[X1] ≤ v2 and suppose that almost surely
‖X1‖∞ ≤ B. Let Sn = 1/n

∑n
j=1(Xj − E[X1]). Let E|Sn| ≤ H. Then

E
[{
|Sn|2 −H2

}
+

]
≤ 32

v2

n
exp

(
−nH

2

8v2

)
+ 128

√
2
B2

n2
exp

(
−n H

16
√
2

3 B

)
.

Lemma A.2. (Talagrand’s inequality). Let I be some countable index set. For each i ∈ I, let X
(i)
1 , . . . , X

(i)
n

be centered i.i.d. random variables, defined on the same probability space, with ‖X(i)
1 ‖ ≤ B for some B <∞.

Let v2 := supi∈I Var(X1). Then for arbitrary ε > 0, there are positive constants c1 and c2 = c2(ε) depending
only on ε such that for any κ > 0 :

P
[{

sup
i∈I
|S(i)
n | ≤ (1 + ε)E

[
sup
i∈I
|S(i)
n |
]

+ κ

}]
≤ 2 exp

(
−n
(
κ2

c1v2
∧ κ

c2B

))
.

A proof can be found, for example, on page 170 in Massart (2003).

Next we give some technical results which will be essential for the proofs.

Lemma A.3. In the definition of f̃∗ε,ns and f̃∗ε,rd, assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1. Then for some

positive constant C

P
[
∃u ∈ R : |f̂∗ε,ns(u)− f∗ε (u)| > τ (log(Mx))

1/2
w(u)−1M−1/2

]
≤ Cx−pM−p,

P
[
∃u ∈ R : |f̂∗ε,rd(u)2 − f∗ε (u)2| > τ (log(Mx))

1/2
w(u)−1M−1/2

]
≤ Cx−pM−p.

See Lemma 5.5 in Kappus (2014) for the proof.
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Lemma A.4. In the definition of f̃∗ε,ns and f̃∗ε,rd, assume κ > 2
√

2c1p. Let

Ap(u) :=

∣∣∣∣∣ 1

f̃∗ε,ns(u)
− 1

f∗ε (u)

∣∣∣∣∣
2p/

min

(
1

f∗ε (u)2p
,
kM (u)2p

f∗ε (u)4p

)
,

Bp(u) :=

∣∣∣∣∣ 1

f̃∗ε,rd(u)2
− 1

f∗ε (u)2

∣∣∣∣∣
2p/

min

(
1

f∗ε (u)4p
,
kM (u)2p

f∗ε (u)8p

)
.

Then for some C > 0

E
[
sup
u∈R

Ap(u)

]
≤ C and E

[
sup
u∈R

Bp(u)

]
≤ C.

See Lemma 4.2 in Kappus (2014) for the proof.
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