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Abstract

We provide a rigorous proof of granularity adjustment (GA) formulas to evaluate loss distribu-

tions and risk measures (value-at-risk) in the case of heterogenous portfolios, multiple systematic

factors and random recoveries. As a significant improvement with respect to the literature, we

detail all the technical conditions of validity and provide an upper bound of the remainder term

at a finite distance. Moreover, we deal explicitly with the case of general loss distributions,

possibly with masses. For some simple portfolio models, we prove empirically that the gran-

ularity adjustments do not always improve the infinitely granular first-order approximations.

This stresses the importance of checking some conditions of regularity before relying on such

techniques. Smoothing the underlying loss distributions through random recoveries or exposures

improves the GA performances in general.

Keywords: Credit portfolio model; Granularity adjustment; Value-at-risk; Fourier Transform.

JEL Classification: G32; G17

1. Introduction

Value-at-risk (VaR) remains the cornerstone of banking regulatory capital calculations, de-

spite its well-known drawbacks (see the critics in Danielsson et al., 2001, for instance). Its use

has spread throughout the fields of risk measurement and portfolio management: trading lim-

its calculations, risk-return analysis, etc. Precise estimations of VaRs require computationally

intensive processes, even for moderate-size portfolios, and particularly for high levels. Unfortu-

1Tel.: +33 141176538; Fax: +33 141173852. Email address: jean-david.fermanian@ensae.fr

Preprint submitted to Elsevier November 7, 2013



nately, every user is not able to launch such a full evaluation process, or is not ready to wait

several hours (or even days) every time a VaR is required. Therefore, there has been a need

for approximated methods. These methods should be able to calculate quickly and efficiently

VaRs, Expected Shortfalls, or other risk measures, for large portfolios and possibly complex

instruments.

For a long time, it has been observed that the computation of VaRs is dramatically simplified

under the assumption that bank portfolios are perfectly fine-grained (or infinitely granular,

equivalently). In such situations, diversification fully eliminates idiosyncratic risk, so that the

portfolio loss depends on systematic risk only. Since real-world portfolios are not perfectly fine-

grained, it remains a residual of undiversified idiosyncratic risk. The impact of undiversified

idiosyncratic risk on VaRs can be approximated analytically through the so-called ”granularity

adjustments” (GA) techniques. In mathematical terms, they are based on some asymptotic

expansions of the portfolio loss distributions, when the number of exposures is ”large”.

The Basel 2 proposals for credit risk measurement has fueled research in this area since the

beginning of this century: see Wilde (2001a), Gordy (2003). In particular, GAs allow closed-form

calculations of approximated VaRs or expected shortfalls for some well-known industry models

of credit portfolios. For instance, Wilde (2001b) provided GA formulas for CreditRisk+ (CSFP,

1997). Emmer and Tasche (2005) developed the same analysis for CreditMetrics (Gupton et

al., 1997). These results have been reworked and/or amended in several papers, notably Gordy

and Lütkebohmert (2012) in the case of CreditMetrics. In the increasing GA literature, seminal

papers include Gouriéroux, Laurent and Scaillet (2000), Gordy (2003), Martin and Wilde (2002),

etc. More recently, Antonov et al. (2007) applied such techniques to price CDOs. Gordy and

Juneja (2010) showed that such techniques apply even with portfolio of options, for which

nested simulations are required. Gagliardini and Gouriéroux (2011) provided a framework for

asset pricing with factor models. Gordy and Marrone (2012) developed the GA theory under a

mark-to-market credit risk perspective.

To the best of our knowledge, the specific orders of magnitude of GA approximations have

never been studied in the literature. In other words, no paper has evaluated the error terms

of such approximations. Moreover, the underlying conditions of regularity are often imprecise

or too strong. Our goal will be to revisit the theory, by pushing the GA mathematics forward.

2



Contrary to the current practice, we will not assume a priori that ”the asymptotics work”, i.e.

that we can rely on the infinitely granular assumption. At the opposite, we will revisit the

theory by stating clear-cut granularity expansion results by keeping fixed the portfolio size n.

Therefore, we do not state asymptotic results, but rather exact results at a finite distance. In

Section 2, we establish two slightly different GA expansions. Under some sufficient conditions

of regularity, we evaluate the errors induced by these approximations for general heterogenous

credit portfolios. These results can be applied to any heterogenous and multi-factor credit risk

model. In passing, we detail GAs of several multi-factor models, notably for an two-factor exten-

sion of the CreditMetrics-type model of Amraoui and Hitier (2008). This model is the current

market benchmark to price synthetic CDOs with random recoveries (see Section Appendix C.3).

Finally, we measure the quality of GA approximations by simulation, for some simple credit

risk models. These specifications are a bit unusual but not unrealistic. They will play the role

of ”toy models” because they allow closed-form calculations of GA terms. Theoretically and

empirically, we show that the performances of granularity adjustments may be explained in the

light of the regularity conditions we have exhibited previously. Particularly, they depend on the

tail behavior of the characteristic functions of the underlying loss distributions: see Section 3.

Proofs are gathered in the appendix.

2. A general formula for granularity adjustments

2.1. The framework

To fix the notations, consider a n-size credit portfolio. The exposure Ej of any counterparty

j will be assumed constant in time. Typically, such a quantity is positive because exposures are

comparable to replacement costs of some risky positions in a portfolio 2 We will be interested

in the credit risk associated with this portfolio, between today and a given time horizon T . The

associated ”loss rate” of a given name j will be modeled as a random variable Zj , j = 1, . . . , n.

If no default occurs before the time horizon T , Zj = 0. Otherwise, Zj > 0 is the stochastic loss

rate associated with j’s default. Then, the normalized portfolio loss (between today and the

2Nonetheless, nothing precludes the likelihood of negative or even random exposures in this article, if they are
independent of the underlying default risks. In the latter case, simply replace the quantities Ajn below by their
expectations.
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given time horizon T ) is the random quantity

Ln :=
n∑
j=1

AjnZj , (1)

where Ajn := Ej/
∑n

j=1Ej denotes the j-th share of exposure. Therefore, Ajn is the j-th

percentage of the total risky exposure in the portfolio, and
∑n

j=1Ajn = 1.

Actually, in a classical default risk mode, Zj can be seen as the product of an indicator

function Dj ∈ {0, 1} and a loss-given-default (LGD) percentage of the face value of loan j.

Here, Dj = 1 means ”default of j before T”. LGDs (also one minus recovery rates) are random

percentages of the exposure shares Ajn, without modeling the exact time when these cash-flows

are repaid. Equivalently, it means all repayments occur at the same time horizon T . Note that

1−Zj can be interpreted as the T -market value of j’s exposure, for a nominal of one, as usually

under a market risk point-of-view. We assume that every variable Zj is bounded from above by

a constant Z̄j . This level will be one most of the time, but we do not exclude the possibility of

negative recovery rates (i.e. losses larger than 100%).

We work under the static factor model framework, that is usual in credit risk portfolio

modeling (see Koyluoglu and Hickman, 1998, Gordy, 2000, Gregory and Laurent, 2005, etc):

conditionally on a given random vector X ∈ Rm, the random variables Zj , j = 1, 2, . . ., are

mutually independent. In other words, the dependence between the individual losses is generated

by some ”systematic” random factors only, gathered into a vector X.

The GA methodology works well when the number of underlyings n is ”large”, but the

total portfolio notional is kept as a constant. In the literature, a portfolio is called ”infinitely

granular” when its size goes to the infinity (n→∞) and when every individual exposure share

is infinitesimal with respect to the total portfolio size: limn→∞ supj=1,...,n |Ajn| = 0. It is well-

known that, under this infinitely granular assumption, the law of Ln is similar to the law of

E[Ln|X]. Since the latter law is a lot more simpler than the former, most of the time, it is

tempting to approximate the cdf or the quantiles of Ln by those of E[Ln|X]. This provides a

first-order approximation of risk measures like VaRs, that we call ”EV aR”.

Instead of dealing with more or less ad-hoc arguments, we will lead a mathematically rig-

orous Fourier analysis of the random loss Ln. First, we will calculate the relation between the
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characteristic functions of Ln and E[Ln|X], by some Taylor expansions. Second, some inversions

of Fourier transforms will provide their corresponding relations in terms of cumulative distri-

bution functions. Finally, we will deduce the link between their quantiles, and therefore their

granularity adjustment terms 3.

2.2. The classical proof of granularity adjustments

Let us recall the usual way of deriving a granularity adjustment. The standard method

relies on the sensitivity of Value-at-Risk w.r.t. individual exposures, by invoking the results

of Gouriéroux, Laurent and Scaillet (2000). To be short, they consider a continuum of losses

between the true random loss Ln and its infinitely granular approximation:

Ln(ε) = E[Ln|X] + ε. (Ln − E[Ln|X]) ,

where ε ∈ [0, 1]. For a given level α ∈ (0, 1), denote by V aRα(ε) the Value-at-Risk associated

with the loss Ln(ε). The case ε = 1 corresponds to the true portfolio loss, and the case ε = 0

corresponds to the loss of the infinitely granular portfolio. A limited expansion between ε = 0

and ε = 1 links together V aRα(Ln) (the VaR of Ln) and its approximation V aRα(E[Ln|X])

(the VaR of E[Ln|X] that we called ”EVaR”):

V aRα(Ln) = V aRα(1) = V aRα(E[Ln|X]) +
∂V aRα(ε)

∂ε |ε=0
+

1

2

∂2V aRα(ε)

∂2ε |ε=0
+ · · ·

To lighten notations, we will denote V aRα(E[Ln|X]) by EV aRn,α, and E[Ln|X] by µn(X).

By simple calculations, it can be proved that

∂V aRα(ε)

∂ε |ε=0
= E [Ln − µn(X) | µn(X) = EV aRn,α] = 0.

This property is always true. It does not depend on the fact that X may be of dimension one

and/or the function µn may be monotonic. Indeed, the event {µn(X) = EV aRn,α} can be

rewritten {X ∈ A} for some measurable subset A in Rm. Since E[Ln|X ∈ A] is an average of

expected losses E[Ln|X = x] when x ∈ A, then

E [Ln|µn(X) = EV aRn,α] = E[Ln | X ∈ A] = EV aRn,α.

3Note that Martin and Wilde (2002) have used the inversion of the Laplace transform to calculate derivatives of
Value-at-Risk in a simplified framework, and they deduced the main ”granularity adjustment” term. Nonetheless,
they have not paid attention to the precision of this approximation.
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Therefore, the granularity adjustment terms will come from the second order derivative of

V aRα(ε) w.r.t. ε. In the case of a univariate systematic factor X, Gouriéroux, Laurent and

Scaillet (2000) provide the corresponding formulas, but under some strong regularity conditions.

In particular, they assume that the joint density of (Ln, µn(X)) exists w.r.t. the Lebesgue mea-

sure. Unfortunately, portfolio loss distributions often discrete, at least partly. Since empirical

quantiles (and then VaR measures) can still be defined by generalized inverse functions, it is

important to adapt the theoretical results in this case. This will be done below.

2.3. A refined proof of granularity adjustments

Now, we set some additional notations. Since we rely on some Fourier transform techniques,

let χL and χµ(X) be the characteristic functions of Ln and µn(X) respectively, i.e.

χL(t) := E [exp (itLn)] , and χµ(X)(t) := E [exp (itµn(X))] ,

for any t. Since every random loss Zj is upper bounded by a constant Z̄j then, conditionally on

the value of the systematic factor, the variance of the j-th loss exists and is defined by

Vj(X) := E[Z2
j |X]− E[Zj |X]2.

Note that the laws of the individual losses Zj may differ, for different indices j, what is

the case in practice. For any vector x ∈ Rm, x−(k) denotes the m − 1 dimensional vector

(x1, . . . , xk−1, xk+1, . . . , xm).

Assumption A1. µn(X) has a density fµ(X) wrt the Lebesgue measure on Rm.

Assumption A2. X1, the first component of X, is an argument of µn(X) and x1 7→

µn(x1,x−(1)) is strictly increasing and differentiable for every vector x−(1). Moreover, we assume

that the factor X has a density fX w.r.t. the Lebesgue measure on Rm.

The latter technical conditions are satisfied easily in most of the factor models that have

been considered in the literature. For convenience, A2 highlights the role of the first component

of X. Obviously, this index can be changed and the condition A2 modified.

More generally when m ≥ 2, for any v ∈ R and j = 1, . . . , n, we can define

κj(v) := E[Vj(X)|µn(X) = v]fµ(X)(v), under Assumption A1, and
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κj(v) :=

∫
{x|µn(x)=v}

Vj(x)fX(x)
dx−(1)

∂(1)µn(x)
under Assumption A2,

where ∂(k)µn denotes the partial derivative of µn w.r.t. its k-th argument, k = 1, . . . ,m. These

functions κj will provide the main terms of GAs hereafter.

Note that, in the case of a univariate factor model, i.e. X ∈ R, these formulas are respectively

κj(v) := Vj(µ
−1
n (v)fµ(X)(v), and κj(v) :=

Vj(µ
−1
n (v))fX(µ−1

n (v))

µ′n(µ−1
n (v))

· (2)

Even if multi-factor models are commonly used in practice, their GAs have been calculated

very seldom in the literature, until now. Indeed, most of the time, the analytical difficulty is far

higher than in the univariate case. Pykhtin (2004) has proposed to solve this problem by finding

a comparable one-factor portfolio whose loss distribution is ”similar to” the original multi-factor

loss distribution. This technique has been extended and refined by Voropaev (2011). In the case

of homogenous portfolios, Gagliardini and Gouriéroux (2013) have provided exact GA under a

simple stochastic volatility model.

In this paper, for the sake of illustration, a few functions κj and their corresponding GAs

are provided in Appendix C, in the case of models that involve several systematic factors.

In particular, in Appendix C.3, we have tackled a two-factor extension of the Amraoui and

Hitier (2008) model, that constitutes the standard model in the market to price synthetic CDO

tranches. This model is an extension of the Gaussian copula model of Li (2000) but with random

recoveries.

Theorem 1. Under Assumption A1 or A2, and if the following conditions are fulfilled:

(i) For every j = 1, . . . , n, the function x 7→ Gj(x) :=
∫ x
−∞ κj is bounded.

(ii) Every function Ĝj : t 7→
∫

exp(itu)κj(u) du is integrable, j = 1, . . . , n.

(iii) There exist some constants ε ∈ (0, 1) and M = Mn > 0 such that maxj=1,...,nMnAjnZ̄j ≤
1− ε.

Then, for any x ∈ R,

1

2
[P (Ln < x+ 0) + P (Ln < x− 0)] =

1

2
[P (µn(X) < x+ 0) + P (µn(X) < x− 0)]

+ Tn,∞(x) + rn,M (x),

where the granularity adjustment (of loss distributions) is

Tn,∞(x) :=
1

2

n∑
j=1

A2
jnκ
′
j(x),
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and the remainder term rn,M (x) satisfies

|rn,M (x)| ≤ 1

π
|
∫ +∞

M
Im (χL(t) exp(−itx)/t) dt|+ 1

π
|
∫ +∞

M
Im
(
χµ(X)(t) exp(−itx)/t

)
dt|

+
1

2π

n∑
j=1

A2
jn|
∫ +∞

M
Im
(
Ĝj(t)t exp(−itx)

)
dt|+ [

19

18
+ kε].

|M |3

3π

n∑
j=1

A3
jnZ̄

3
j

+
M4

2
[
14

9
+ kε]

2


n∑
j=1

A2
jnZ̄

2
j


2

exp([
14

9
+ kε]M

2
n∑
j=1

A2
jnZ̄

2
j ), (3)

where

kε :=

[
ln(1/ε)

(1− ε)3
− 1

2(1− ε)
− 1

(1− ε)2

]
.

See the proof in the appendix. The main objective of Theorem 1 is to evaluate whether GAs

can improve the first order approximation (of the law of Ln by the law of µn(X)). This will

be the case when Tn,∞(x) >> rn,M (x) for some relevant values x (close to the targeted VaR,

typically).

Note that the choice of a convenient value M depends on n, but our main result above is

fundamentally ”at a finite distance”. Intuitively, the larger is the size n, the larger will be Mn,

under the constraint supjMnAjnZ̄j < 1− ε. This constraint precludes some situations where a

small subset of exposures concentrates a significant part of the whole portfolio exposure. In other

words, when the number of names n tends to the infinity, Ajn should tend to zero sufficiently

quickly, so that the remaining terms in (3) are negligible w.r.t. the granularity adjustment

Tn,∞(x) itself.

A similar constraint appeared in the seminal paper of Gordy (2003): to prove the first-order

approximation of Ln by µn(X) almost surely, his Assumption (A-2) says that En/
∑n

k=1Ek =

O(n−1/2−ζ) for some ζ > 0. Note that this implies Ajn = O(j−1/2−ζ) but not necessarily

Ajn = O(n−1/2−ζ). In our paper, such conditions have to be revisited because, compared to

Gordy (2003), we are dealing with higher order terms on one side (more demanding) but we prove

only convergence in law on the other side (less demanding). Therefore, following Theorem 1,

our required conditions on (Ajn) and (Mn) are written in terms of sums, like Mp
n
∑n

j=1A
q
jn

for some couples of integers (p, q) (see (3)). Heuristically, we can see that our analysis will be

globally more demanding than Condition (A-2) in Gordy (2003) (except in some pathological
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situations). Indeed, due to Theorem 1, we need to satisfy

M4
n{

n∑
j=1

A2
jn}2 <<

n∑
j=1

A2
jnκ
′
j(x)

for some x. If the risk of every individual follows the same law (homogeneity), then κj does not

depend on j and the latter inequality implies that M4
n

∑n
j=1A

2
jn << 1. Then,

∑n
j=1A

2
jn has to

tend to zero because Mn →∞. But Gordy’s condition (A-2) implies only
∑n

j=1A
2
jn converges.

Even if our theoretical results cover arbitrary individual exposure shares, consider the typical

case of a balanced portfolio below: Ajn = 1/n, j = 1, . . . , n. Then, Tn,∞ and GAs are of order

n−1, and we would like to check that rn,M (x) = o(n−1). A necessary condition, that will be

discussed in Section 3, is M4
n = o(n).

Note that the third-order VaR adjustments (see Equation (11) in Voropaev, 2011, e.g.)

involve the third moment of the individual losses Zi. Interestingly, such quantities appear in

Theorem 1, but indirectly, through their upper bounds Z̄3
j in Equation (3). This is logical since

our goal was only to upper bound the error terms of GA expansions.

It is well-known that the Fourier transform maps the space of rapidly decreasing functions

onto itself (Yosida, Th. 1, p. 147). Therefore, when the law of losses follows such a behavior, in

particular when it exhibits thin tails, it is likely the associated GA will provide ”good” results.

This intuition will be illustrated empirically in Section 3.

2.4. Granularity adjustments and Value-at-Risk approximations

Now, let us link the Value-at-Risk of the true loss Ln and of its “infinitely granular” approxi-

mation µn(X). For any non-decreasing function F and any u ∈ [0, 1], let F−(u) := inf{x|F (x) ≥

u} be a quantile function that is associated with F . This is the standard generalized inverse

function, as defined in the literature. The cdf of any random variable Z will be denoted by FZ .

To simplify, we suppose in this subsection that:

Assumption B. The laws of Ln and µn(X) are continuous.

Then, Theorem 1 implies that, under some technical assumptions and for every x,

FLn(x) = Fµn(X)(x) + Tn,∞(x) + rn,M (x).
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We hope that the last term rn,M (x) can be seen as negligible, when M is well chosen and when

the underlying distributions satisfy some regularity conditions.

Now, for a given α ∈ (0, 1), the value-at-risk of Ln at level α is defined as the generalized

inverse of FLn , i.e.

V aRα(Ln) = F−Ln(α).

Most of the time, there exists a single possible value-at-risk for a given level α, except when

FLn takes the value α on a non-empty interval Iα: FLn(x) = α for every x ∈ Iα. In this case,

every number in the interior of Iα is a V aRα candidate. Note that this situation is very unlikely

in practice when different exposures per name are considered. In every case, under B, we satisfy

the nice property

FLn(V aRα(Ln)) = α, and Fµn(X)(EV aRn,α) = α.

Theorem 2. Under Assumption B and the assumptions of Theorem 1, if fµ(X), the density of
µn(X), exists and is not zero in the neighborhood of EV aRn,α then

V aRα(Ln) = EV aRn,α −
Tn,∞(V aRα(Ln)) + rn,M (V aRα(Ln))

fµ(X)(vα)
,

for some real number M , chosen as in Theorem 2, and some number vα such that

|vα − EV aRn,α| ≤ |EV aRn,α − V aRα(Ln)|.

Proof. It is a simple consequence of a limited expansion. Indeed,

Fµn(X)(EV aRn,α) = α = FLn(V aRα(Ln))

= Fµn(X)(V aRα(Ln)) + Tn,∞(V aRα(Ln)) + rM (V aRα(Ln)),

and then

fµ(X)(vα). (EV aRn,α − V aRα(Ln)) = Tn,∞(V aRα(Ln)) + rn,M (V aRα(Ln)),

for such a number vα. 2

The size of the error term rn,M (V aRα(Ln)) is related to the choice of M , to the tails of the

characteristic functions of losses and to the behavior of the exposure shares Ajn, j = 1, . . . , n

for large n. Invoking Equation (2) and assuming the remainder term rn,M is negligible w.r.t.

Tn,∞, we deduce the usual granularity adjustment of VaR easily.
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Corollary 3. Under the assumptions of Theorem 2,

V aRα(Ln) ' EV aRα −
1

2fµ(X)(EV aRα)

n∑
j=1

A2
jnκ
′
j(EV aRα), (4)

If the systematic factor X := X is univariate, if A1 and A2 are fulfilled, then

κ′j(v) :=
d

dv

[
Vj(µ

−1
n (v))fX(µ−1

n (v))

µ′n(µ−1
n (v))

]
=

d

dv

[
Vj(µ

−1
n (v))fµ(X)(v)

]
· (5)

Equivalently, we have

V aRα(Ln) ' EV aRα −
1

2

n∑
j=1

A2
jn

[
V ′j (V aRX,α)

µ′n(V aRX,α)
+ Vj(V aRX,α)

f ′Ln|X(EV aRα)

fµ(X)(EV aRα)

]
(6)

or even

V aRα(Ln) ' EV aRα −
1

2fX(V aRX,α)

n∑
j=1

A2
jn

d

dt

[
Vj(t)fX(t)

µ′n(t)

]
|t=V aRX,α

. (7)

Proof. Equation (4) is just a consequence of Theorem 2. Due to the monotonicity of µn,

note that P (E[Ln|X] ≤ t) = P (X ≤ µ−1
n (t)), and then

fµ(X)(t) =
fX(µ−1

n (t))

µ′n(µ−1
n (t))

·

This proves Equation (5). Since µ−1
n (V aRE[Ln|X],α) = V aRX,α, we deduce Equation (6). We

get Equation (7) by setting v = µn(t) and writing derivatives w.r.t. t instead of v. 2

Therefore, we recover the granularity adjustment formulas, as they appeared in Wilde

(2001a,b), Gordy (2003) or Martin and Wilde (2002), among others. Nonetheless, these for-

mulas consider that EV aRα and V aRα(Ln) are sufficiently close so that we can use one of the

other as arguments of κj and/or fµ(X), in the granularity adjustment formula. Actually, in

practice, this choice could matter, even if it should be negligible asymptotically. Moreover, the

calculation that of EV aRα and V aRα(X) is far more simpler than the evaluation of V aRα(Ln).

The latter quantity is often estimated by simulation (i.e. with a statistical noise), when the

former ones are obtained in closed form most of the time, i.e. with a very high level of accuracy.

An analysis of the biaises and the uncertainties induced by the use of simulation-based VaRs

can be found in Gordy and Juneja (2010).
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Therefore, we propose a new GA: set

V̄ aRn,α :=
1

2
(V aRα(Ln) + EV aRn,α). (8)

Corollary 4. Under the assumptions of Theorem 2,

V aRα(Ln) ' EV aRα −
1

2fµ(X)(V̄ aRn,α)

n∑
j=1

A2
jnκ
′
j(V aRα(Ln)). (9)

When the systematic factor X := X is univariate, and when A1 and A2 are fulfilled, we have

V aRα(Ln) ' EV aRα

− 1

2fX(µ−1
n (V̄ aRn,α))

· µ′n(µ−1
n (V̄ aRn,α))

µ′n(µ−1
n (V aRα(Ln)))

n∑
j=1

A2
jn

d

dt

[
Vj(t)fX(t)

µ′n(t)

]
|t=µ−1

n (V aRα(Ln))

.(10)

The latter formulas are slightly more complex than the traditional GA formulas in Corol-

lary 3. Nonetheless, for theoretical reasons (see the proof of Corollary 3), there are some hopes

their relevance is slightly higher. We will discuss this point in the empirical Section 3.

Actually, it should be noticed that the previous GA formulas belong to a more general class

of granularity adjustments: for a given θ in [0, 1], set

V̄ arn,α(θ) := θV aRα(Ln) + (1− θ)EV aRn,α.

Therefore, there exists a continuum of GA formulas

V aRα(Ln) ' EV aRα −
1

2fµ(X)(V̄ aRn,α(θ))

n∑
j=1

A2
jnκ
′
j(V̄ aRn,α(θ′)), (θ, θ′) ∈ [0, 1]2. (11)

In Corollaries 3 and 4, we have just chosen (θ, θ′) = (0, 0) and (θ, θ′) = (1/2, 1) respectively.

2.5. Granularity adjustments and Value-at-Risk approximations with discrete loss distributions

Now, we would like to remove Assumption B, to be able to deal with discontinuous Ln loss

distributions. This case appears naturally when exposures and recoveries are assumed to be

fixed (a rough but standard assumption, unfortunately). On the other side and following the

GA literature, we still assume that the distribution of E[Ln|X] is continuous, and that it owns

a density w.r.t. the Lebesgue measure. Actually, most of the previous results still apply with

slight modifications under this new framework.
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To apply Theorem 1, we define the normalized cdf F̃ by

F̃ (x) :=
1

2
[F (x− 0) + F (x+ 0)],

for every x. Theorem 1 says that, under some conditions of regularity, for every x,

F̃Ln(x) = F̃µn(X)(x) + Tn,∞(x) + rn,M (x).

Now, for a given α ∈ (0, 1), the value-at-risk of Ln at level α is a corresponding quantile of

FLn . To be consistent with Theorem 1, we decide that the VaRs are always defined as quantiles

of F̃Ln :

V aRα(Ln) := F̃−Ln(α), α ∈ (0, 1).

On one side, let us assume that the levels α we consider are ”reached” by the corresponding

cdfs. In other words, α lies in the range of these cdfs:

Assumption B*. F̃Ln(V aRα(Ln)) = α.

This assumption may be strong in practice, if α chosen independently of the range of Ln’s

values. Since we have assumed the law of µn(X) is continuous, note that we always have

F̃µn(X)(EV aRn,α) = Fµn(X)(EV aRn,α) = α.

By the same arguments as above, we get easily:

Proposition 5. If the distribution of Ln is general (possibly with discrete masses), Theorem 2,
Corollary 3 and 4 still apply, replacing Assumption B with Assumption B*.

On the other side, if α does not belong to the image set of F̃Ln then F̃Ln(V aRα(Ln)) is

different from α, except when α lies in the middle of [F̃n(V aRα(Ln) − 0), F̃n(V aRα(Ln) + 0)],

due to our definition (8). This difference can be significant, and of the order of magnitude of

granularity adjustments themselves.

For instance, consider the extreme case of perfect dependence between the r.v.s’ Zi and a

scalar systematic factor X, i.e. Zi = 1(X ≤ a) for some constant a. Then, if all exposure shares

are constant and equal to 1/n, then Ln takes the two values 0 and 1 only. Thus, F̃Ln ∈ {0, 1/2, 1}.

In this case, the quantiles that can be invoked to apply Theorem 2 are related to α ∈ {0, 1/2, 1}

13



only. The same reasoning applies when Ln takes the values {`1, . . . , `p} only, and F̃Ln(`j) = qj ,

j = 1, . . . , p. Then, with our conventions and strictly speaking, Proposition 5 can be invoked

with the levels α ∈ {q1, . . . , qp} only.

To go one step beyond, assume that we define the loss quantiles by our usual rule V aRα(Ln) =

inf{t|F̃Ln(t) ≥ α}, and that F̃Ln(V aRα(Ln)) = α∗ 6= α. Thus, since F̃µn(X)(EV aRn,α) = α, we

have

F̃µn(X)(EV aRn,α) = F̃µn(X)(V aRα(Ln)) + Tn,∞(V aRα(Ln)) + r(V aRα(Ln)) + α− α∗,

and, under the conditions of regularity of Theorem 2, we get

V aRα(Ln) = EV aRn,α −
Tn,∞(V aRα(Ln)) + r(V aRα(Ln)) + α− α∗

fµ(X)(vα)
,

for some number vα such that |vα − V aRα(Ln)| ≤ |EV aRn,α − V aRα(Ln)|. Unfortunately,

the last additional term can be significant, i.e. not negligible w.r.t. the GA adjustment. For

instance, it is at most 1/(2fµ(X)(vα)) in our example.

Therefore, in general, il will be more difficult to apply GA theoretical results when the

underlying loss distributions are discrete, a rather common situation. That is why we advise

to work under Assumption B*, i.e. to apply the granularity adjustments only at some quantile

levels α such that F̃Ln(V aRα(Ln)) = α. In practice, it may be difficult to insure such a condition,

unfortunately. Indeed, VaR-levels are often imposed by managers or regulators, whatever the loss

distribution. A convenient solution should be to introduce random recovery rates systematically

and then to get smooth loss distributions. Another way would be to introduce random exposures,

as in Gordy and Marrone (2012). Such exposures may be driven by random credit spreads or

interest rates, but any other market factor can be considered. They may be introduced by

keeping the previous Ajn unchanged and deterministic, but by multiplying Zj by a new random

variable ej , E[ej ] = 1, j = 1, . . . , n. The additional random variables (e1, . . . , en) could be

correlated too.

2.6. Granularity adjustments and Expected Shortfall approximations

It is tempting to get an equivalent of Corollary 3 but for expected shortfalls, in the sense of

Acerbi and Tasche (2002): for any α ∈ (0, 1), the α-level expected shortfall of a loss function L

14



is defined by

ESα(L) :=
1

1− α
E[L.1(L ≥ V aRα(L))]− V aRα(L)

1− α
(α− P (L < V aRα(L)) ,

when the value-at-risk is defined by V aRα(L) = inf{t|F (t) ≥ α}. With the latter definition, we

get a coherent measure of risk, that satisfies the noteworthy relation:

ESα(L) =
1

1− α

∫ 1

α
V aRu(L) du.

Then, as noticed in Martin and Tasche (2007) or Gordy (2004), the granularity adjustment of

an expected shortfall may be just deduced from the integration of granularity adjustments for

a continuum of value-at-risks.

Here, under the assumptions of Corollary 3 and by integrating Equation (4), we get

ESα(Ln) ' ESα(E[Ln|X])− 1

2(1− α)

n∑
j=1

A2
jn

∫ 1

α

1

fµ(X)(V aRµn(X),u)
κ′j(V aRµn(X),u) du.

Unfortunately, getting an upper bound of the remainder term seems to be significantly more

tedious than for V aRα(Ln), in particular because of the denominator in the latter equation.

An fruitful idea could be to note that, at least for continuous loss distributions,

ESα(L) =
(−1)

1− α

∫ ∞
V aRα(L)

u (1− FL)(du) = V aRα(L) +
1

1− α

∫ ∞
V aRα(L)

(1− FL)(u) du.

The remainder term of ES-granularity adjustments is thus related to the rest
∫∞
V aRα(L) rn,∞(x) dx,

where rn,∞ is detailed in the proof of Theorem 1. With the notations of the appendix, this implies

to upper bound ∫ ∞
V aRα(L)

∫ ∞
0

Im {E [exp (itµn(X)) r̃χ(X, t)] exp(−itx)/t} dt,

for an explicit but very complicated function r̃χ(X, t). Clearly, the result will depend strongly

on the behavior of the function

t 7→ E [exp (itµn(X)) r̃χ(X, t)] .

Due to the strength and the number of the required conditions, we stop trying to find an explicit

GA upper bound for expected shortfalls here. We keep this task for further developments.
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3. Empirical performances of Granularity Adjustments

Note that, in the literature, there are not so many empirical analysis of granularity adjust-

ments. Historically, Gordy (2003) was the first one. His framework was a simplified CreditRisk+

type model. Since the tails of the loss distributions generated by this model behave regularly and

are thin, the performances of GA approximations appeared very convincing: see Table C.1. Sim-

ilar findings have been obtained with CreditMetrics-type, KMV Portfolio Manager-type models,

or even the Basel 2 credit risk model: see Emmer and Tasche (2005), Gordy and Marrone

(2012), for instance. This is due to the formal similarities between these models, in terms of loss

distributions, as explained in Koyluoglu and Hickman (1998).

From the previous theoretical results, it appears clearly that the quality of granularity ad-

justments depends on the regularity of the underlying distributions. In other words, it is likely

such adjustments do a good job for some models, and may do a bad job for others, in the

sense that GAs do not provide improvements w.r.t. the crude approximation Ln
law
= E[Ln|X].

In this section, we introduce different credit risk models. For convenience, the portfolios will

be homogenous: Ajn = 1/n for all j = 1, . . . , n. We compare their (true or numerically ap-

proximated) VaRs with their first-order approximations in the framework of infinitely granular

portfolios, denoted by ”EV aR”. Moreover, we measure to what extent granularity adjustments

induce refined VaR measurements. The two GAs, as given by Corollaries 3 and 4, will be de-

noted by GA1 and GA2 respectively. The exact formulas of the GAs we consider in this section

are detailed in Appendix B.

Note that our theoretical results allow to state when GAs will work, but not when some

problems of accuracy will occur necessarily. In other words, we have stated sufficient conditions

of regularity, but not necessary conditions. Nonetheless, we will check empirically the empirical

relevance of the conditions of regularity induced by Theorem 1.

To be specific and with the previous notations, our granularity term Tn,∞(V aRα(Ln)) is of

order 1/n in the case of balanced portfolios. It is easy to check that the error term rn,M (x) is

o(Tn,∞(x)) (for every x) only if M4
n/n = o(1), due to the last term in the r.h.s. of (3). One task

will be to check whether the other terms on the r.h.s. of this inequality are not too large compared

to Tn,∞. For every model, we will focus on the term IM (x) :=
∫∞
M Im(χµ(X)(t) exp(−itx)/t) dt,
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where x will be (close to) a value-at-risk of the loss distribution. Most of the time, it can be

evaluated relatively easily, contrary to
∫∞
M Im(χLn(t) exp(−itx)/t) dt. Moreover, set JM (x) :=

maxnj=1

∫ +∞
M Im

(
Ĝj(t)t exp(−itx)

)
dt. It is necessary that this term tends to zero when n→∞

so that rn,M (x) << Tn,∞(x).

3.1. Granularity adjustments in a continuous loss framework: Toy model 1.

As a benchmark, we choose the most simple credit model as possible. Its main advantage

relies in its tractability and by the fact that (true) VaRs can be calculated analytically. In this

model, the random loss amount that is associated with the name i is still measured by the r.v.

Zi and the vector (Zi)i=1,...,n is Gaussian. Actually, we assume a standard underlying one-factor

model:

Zi = ai + σi(ρiX +
√

1− ρ2
iX
∗
i ), (12)

where X and the X∗i , i = 1, . . . , n, are (jointly) independent standard Gaussian variables. The

parameters ai, σi and ρi are positive constants, with ρi ∈ [0, 1].

These assumptions are rather unusual in the credit area, particularly due to the likelihood of

negative losses, and due to the unboundedness of the potential loss amounts. Even if some mark-

to-market models can generate positive and/or negative credit losses, the standard framework

avoid them, by considering only bonds or loans for instance. Nonetheless, we can say that, in

this example, we are interested in market risk only.

Under this specification, the laws of Ln and E[Ln|X] are Gaussian and their characteristic

functions decrease towards zero at an exponential rate. Particularly, in the case of an homoge-

nous pool of names, IM (x) = o(n−1) by choosing M = na, a < 1/3. Moreover, it is easy to check

that the conditions (i) and (ii) are satisfied, because every Ĝj behaves like t 7→ exp(−Ct2) for

some constants C > 0. Then JM (x) = o(n−1), obviously. Therefore, the remainder term rn,M

in Theorem 1 will be sufficiently low for a convenient choice of M , and we should get nice GAs.

This is what we observe, indeed. Tables C.2 and C.3 provide exact and approximated VaR

calculations. As expected, the granularity approximations do a perfect job, by approximating

the true VaR levels with a very high level of accuracy. Moreover, there are virtually no differences

between our two GA formulas GA1 and GA2.
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Interestingly, if we replace all the previous standard Gaussian variables by exponential ran-

dom variables, with parameter one, the picture is changed: see Table C.4. The GAs improve the

EVaR calculations only when the correlation parameter ρi is small. This was not so surprising.

Indeed, with this specification, the function t 7→ Im(Ĝj(t)t exp(−itx)) is not integrable, a clue

for future problems. Therefore, replacing a continuous very thin tailed distribution (the Gaus-

sian one) by another continuous cdf with less rapidly decreasing in the tails (the exponential

law) is sufficient to jeopardize our GA results. Therefore, even very smooth and regular loss

distributions can suffer from problems with GAs, depending on their tail behaviors, as can be

measured through their characteristic functions.

3.2. Granularity adjustments in an homogenous discrete one-factor Merton model: Toy model
2.

Let us consider now discrete loss functions. For the time being, we restrict ourselves on the

standard one-factor Merton-style model, as introduced in the seminal paper of Vasicek (2002),

for which

Zi = 1(
√
ρiX +

√
1− ρiXi ≤ bi), i = 1, . . . , n. (13)

Here, the individual losses can take only two values in this model: zero or one. X and Xi,

i = 1, . . . , n, are mutually independent Gaussian random variables. The default thresholds bi

are related to default probabilities by the usual relation bi = Φ−1(PDi). The coefficient ρi is

i-th asset correlation (between its asset value and the systematic risk X). Multi-factor versions

of this model have been implemented in CreditMetrics ou Moody’s-KMV, for instance. For the

sake of analytical tractability, we consider homogenous portfolios, for which

Ai = n−1, ρi = ρ, PDi = PD, ∀i = 1, . . . , n.

In this case, we can apply our theoretical results and calculate the granularity adjustment

Tn,∞(V aRE[Ln|X],α)

fµ(X)(V aRE[Ln|X],α)
=

(−1)

2n

(
2V aRE[Ln|X],α − 1

+

[√
1− ρ
ρ

Φ−1(α)− Φ−1(V aRE[Ln|X],α)

]
·
V aRE[Ln|X],α(1− V aRE[Ln|X],α)

φ ◦ Φ−1(V aRE[Ln|X],α)

)
.

This formula appeared already in the literature, notably Emmer and Tasche (2005), or

Gagliardini and Gouriéroux (2013) more recently.
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For this model, GAs work pretty well, as seen in Table C.5. We could get such an intuition

through an analysis of χµ(X). Indeed, after a change of variable, we see that

χµ(X)(t) ∝
∫ 1

0
exp(ity) exp

(
−1

2
[
Φ−1(y)
√
ρ
− b(ρ+ 1)√

1− ρ√ρ
]2
)
dy.

Therefore, by doing q successive integrations by parts, it can be shown easily that χµ(X)(t) =

O(t−q) and IM (x) = O(M−q−1) as soon as q < 1/ρ. Therefore, recalling Theorem 1, if M−q−1 +

M2n−2 << n−1, the corresponding GA should work. The latter constraint is satisfied when

q > 3, i.e. when ρ < 1/3. This is exactly what we observe in Table C.5: when ρ < 1/3, GAs

improve significantly the EV aR infinitely granular approximations. It is no more the case when

ρ is larger.

By considering non standard structural-type credit portfolio models, we are leaving the

previous ”ideal world”, and GAs may be jeopardized even more. For instance, consider a second

version of the ”Toy model 2”, defined by

Zi = 1(Xi ≤ ai + biX), (14)

where Xi, i = 1, . . . , n are n independent random variables uniform on [0, 1]. The systematic

r.v. X will be independent of the Xi variables, and will follow various distributions:

1. a uniform distribution on (0, 1);

2. a Bates distribution, that is the average of m uniform on (0, 1) and independent random

variables, m ≥ 2;

3. a Beta distribution on [0, 1], defined through its two positive parameters p and q, as usual.

In the first case, the characteristic function of E[Ln|X] is proportional to the function t 7→

sin(σt/2)/(σt), where σ =
∑n

i=1Aibi. Simple calculations show that IM (x) behaves like a

sum of quantities sin(C.M)/M2, for some constants C. Therefore, in the case of homogenous

portfolios, the upper bound obtained in Theorem 1 will be O(1/M2 + M4/n2) that cannot be

o(1/n), whatever the choice of Mn. Moreover, t 7→ tĜj(t) behaves like a sum of t 7→ exp(iCt)

for some real constants C. Then, this function is not integrable in this case and JM (x) will not

be o(1). Then, it is unlikely that GAs improve the VaR estimates in the case of a uniform X

r.v. This is exactly what we check in Table C.6: granularity adjustments look like small noises.

19



They do not improve VaR calculations, even after taking into account the statistical uncertainty

around the empirical VaR estimates.

Since the assumption of a uniform systematic random variable is not particularly realistic, we

have led the same experiment when X follows a Bates distribution with m degrees of freedom.

The case m = 1 corresponds to the uniform law. Through an integration by parts argument, we

check easily that the characteristic function of µn(X) is O(t−m). Thus, by another integration

by parts argument, we can show that IM (x) behaves as a sum of quantities sin(C(x).M)/Mm+1,

for some constants C(x) that depend on x. Therefore, a sufficient condition for the relevance

of GAs is given by m > 3 (set Mn = na with a ∈ (1/(m + 1); 1/4)). Note that the asymptotic

behavior of t 7→ tĜj(t) is the same as a sum of functions t 7→ sin(bt)r/tm−1 for some integers

r ≥ 1. We deduce JM (x) = O(M−m+1), that tends to zero when m > 1. Actually, GAs work

pretty well even when m ≥ 3: see Table C.7. Note that the strength of the GA improvements

does not increase with m when m ≥ 3 necessarily. At some stage, apparently, we can even

observe a relative loss of performance. For instance, when (ai, bi) = (0.2, 0.2) for every name,

the best job is obtained with m = 6, but not with m = 9 or m = 12 that provide worse results

than m = 3.

To complete this experiment, assume now that X follows a beta B(p, q) distribution, p, q > 0.

Then, the characteristic function of µn(X) is a confluent hypergeometric function M(p, p+q, iCt)

for some constant C: see Johnson and Kotz (1969, Equation (43) ; 1970, chap. 24). When t is

large and positive, following Morse and Feshback (1953), we have

M(p, p+ q, it) ∼ Γ(p+ q)

Γ(p)
|t|−q exp(−iqπ/2 + i|t|) +

Γ(p+ q)

Γ(q)
|t|−p exp(ipπ/2).

By an integration by parts, the asymptotic behavior of IM (x) is O(M−(q+1)/(1−x)+M−(p+1)).

Therefore, for a given level x, our previous upper bounds should tend to zero quicker than

M−min(q,p)−1. Then, it is likely that GAs work when min(p, q) > 3 (set Mn = na with a ∈

(1/(min(p, q) + 1); 1/4)). Moreover, simple calculations show that Ĝj(t) can be written as a

sum of functions t 7→ exp(Cit)/tmin(p,q), C being a constant. Then, JM (x) tends to zero when

min(p, q) > 1.

In the latter case, the results of our simulations are provided in Table C.8. Clearly, they

are significantly less convincing than those of Tables C.2 and C.3. As expected, depending
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on the parameters values p and q, the granularity adjustment can improve or deteriorate the

approximation of the true VaR level. Apparently, granularity adjustments improve significantly

the infinitely granular approximation when min(p, q) ≥ 3. When p = 1 or q = 1, they work

worse than the standard first order approximation EV aRα. Interestingly, when one of the

parameters p or q goes up, when the other is staying one, the performances of the obtained GAs

are improved. Note there is no symmetry of our results w.r.t. the parameters p and q: when

(p, q) = (1, 5), GAs do a pretty well job, but not in the case (p, q) = (5, 1).

3.3. Granularity adjustments in a realistic credit portfolio model: Toy model 3.

The previous results were rather poor, and some people could argue that our problems are

coming from the discreteness of the underlying loss distributions. That is why we test now a

third specification, an extension of the Toy model 2. It will be more realistic than previously,

by introducing individual random severities Si (also called ”losses given default”, or ”LGD”),

for every i = 1, . . . , n. The new loss model is

Zi = Si.1(Xi ≤ ai + biX), Si = ciTi + diX, (15)

where all the r.v. Xi and Ti, i = 1, . . . , n, are mutually independent and follow a uniform

distribution on (0, 1). As previously, the random factor X will follow a Bates distribution

and/or a Beta distribution, and will be independent of the other variables. To take into account

the well-known dependency between recovery rates and systematic risk (see Altman et al. 2005,

e.g.), we have set an explicit link between the systematic default risk factor X and the individual

severities Si, through the coefficients di: when X goes up, the systematic credit risk goes up,

and so the severity rates. All the coefficients ai, bi, ci and di belong to (0, 1). For convenience,

we have calculated GA1 only (usual granularity adjustments) in this model. Note that there

are a lot of different ways of introducing recovery risk in such credit risk models: see Pykhtin

(2003), Chen and Joslin (2012), Amraoui et al. (2012), among others. Our specification has

been chosen for the sake of simplicity only.

With these new specifications, it is difficult to check the order of magnitude of the remainder

term rn,M (x), or even of its components IM (x) and JM (x). Indeed, µn(X) is now a quadratic

function of X, and finding explicit evaluations of our previous Fourier transforms becomes an
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impossible task. Therefore, we will inspect the results only qualitatively, to check the robustness

of GA techniques w.r.t. to relatively natural model modifications. Therefore, we will compare

the Toy model 3 results with those obtained with the previous Toy model 2, or even in the case

of independence between default and recovery risks (when di = 0 for every i).

When the law of X is Bates, the results are shown in Table C.9. Globally, they confirm

those obtained in Table C.7: the higher m, the better are the GA results, and GAs improve

first-order approximations when m ≥ 3. Nonetheless, when there is no systematic recovery risk

(di = 0), the additional amount of smoothness induced by idiosyncratic recoveries improves GA

performances, what is good news for practitioners. At the opposite, when there is dependency

between default and recovery risks, these performances suffer slightly, even if they remain ac-

ceptable. Nonetheless, it is difficult to draw very clear-cut conclusions, due to the statistical

uncertainty around our empirical VaR estimates.

This is confirmed when X follows a Beta distribution: see Tables C.10, C.11 and C.12.

The first table corresponds to the case of random but purely idiosyncratic recoveries (di = 0,

for every i). In the latter case, the results seem to be slightly better than those obtained

in Table C.8, i.e. with smoothing individual losses: GAs improve EV aRα approximations

when min(p, q) ≥ 2. The picture is a bit changed after the introduction of systematic recovery

risk. This is mainly due to much better EV aRα approximations. It is likely that this model

doesn’t allow enough idiosyncratic recovery risk to smooth the conditional loss distribution

adequately. Then, taking account the statistical VaR uncertainty, it remains almost no space

for GA improvements 4. Therefore, most of the time, we are unable to say whether GAs improve

the first-order approximations in the latter case. In practice, this means: ”all other things being

equal”, the higher is the systematic risk, the less relevant are GAs.

To conclude this empirical section, it would be nice to understand/predict when GAs provide

good results or not. Apparently, this is not a problem of discreteness ”per se”: the continuous

Toy model 1 with exponential random variables has encountered problems, and the discrete

Toy model 2 provides convenient results for some particular specifications and some parameter

values. Nonetheless, smoothing the underlying losses and adding more idiosyncratic noise cannot

4”Estimation of the GA by simulation is difficult enough, because simulation noise tends to swamp the small
gap between VaR and asymptotic VaR.” (Gordy and Marrone, 2012)
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worsen the picture (Toy model 3).

Martin and Tasche (2007) have warned against the existence of local maxima, particularly of

µn(X), that can deteriorate GAs. After a careful inspection of the empirical loss distributions

given by our toy models, it does not seem to be the case here. Since we consider homogenous

portfolios and a very large number of random draws, the empirical loss distributions look very

smooth. Moreover, since µn(X) is a linear function of X in our examples, its law is very smooth

and does not show local maxima.

Actually, it seems to us that GA techniques suffer when the underlying loss distributions

exhibit tails that do not decrease to zero sufficiently rapidly. The tail behavior of these distribu-

tions can be measured through the regularity and the decay ate of their associated characteristic

functions, as proposed in Theorem 1. Indeed, it is known that the Fourier transform maps the

Schwartz space (the space of infinitely differentiable functions decaying rapidly at infinity) into

itself. For a given model, a preliminary analysis in terms of Fourier transforms often provides

very relevant indications concerning the relevance of GAs, as we have seen with Toy model 2

(Gaussian) for instance.

4. Conclusion

In this article, we have proved a general formula for granularity adjustments. Our framework

encompasses multi-factor models, random recoveries and discrete loss distributions. Through

some Fourier transform techniques, we have exhibited an upper bound of the error terms of

such approximations, and introduced several GA-based formulas for VaR calculations. We

have tested the performances of granularity expansions in the case of several simple credit

portfolio specifications. It appears that, outside Gaussian or Poisson-like loss distributions, it

is relatively easy to observe disappointing approximated VaR levels through these techniques.

We have stressed the benefit from introducing recovery risks and/or random exposures in credit

risk models, before applying granularity approximations. We advise to check the regularity of

the underlying loss distribution of the model, before using ”blindly” such approximations. We

have provided some sufficient conditions to be insured these techniques can be used in safety.

Nonetheless, our results are fragile and other empirical experiments are surely necessary.
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Note that the same GA analysis could be led with Expected Shortfalls, even if obtaining the

equivalent of Theorem 2 would be significantly more painful. But there are some hopes to get

better empirical results in the most demanding models. Indeed, as noticed in Martin and Tasche

(2007), GAs for Expected Shortfalls seem to behave better than for VaRs, especially when there

are local modes in the distribution tails (even if this was not the case with the toy models we

have considered, apparently).

Finally, note that other expansion techniques exist in the literature. For instance, Voropaev

(2011) approximated VaR or Expected Shortfall levels recently through infinite expansions based

on Hermite polynomial. There, the successive terms decrease like ρp/p!, p = 1, 2, . . ., for some

correlation level ρ, the portfolio size being fixed. Alternatively, usual GA successive terms

decrease as n−r for ”large” portfolio sizes n and successive powers r > 0. Therefore, the nature

of these asymptotic expansions are very different and need further investigation.

Appendix A. Proof of Theorem 1.

Denote by pj(X) the default probability of j before T , conditionally on the factor X. There-

fore, by setting

ψj(X, t) := pj(X) (E[exp(itAjnZj)|Dj = 1,X]− 1) = E[exp(itAjnZj)|X]− 1,

and due to the conditional independence assumption, we can write

χL(t) = E [E[exp(itLn)|X]] = E

 n∏
j=1

E[exp(itAjnZj)|X]


= E

exp

 n∑
j=1

ln {1 + ψj(X, t)}


= E

exp

 n∑
j=1

ψj(X, t)− ψ2
j (X, t)/2 + rχ,j(X, t)

 (A.1)

where

rχ,j(X, t) := ψ3
j (X, t)

∫ 1

0

u2

(1 + uψj(X, t))
du.

The latter relation is obtained by integrating the relation

1

1 + ψju
= 1− ψju+

ψ2
ju

2

1 + ψju
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between 0 and 1. A Taylor expansion with an integral form remainder provides

ψj(X, t) = E[exp(itAjnZj)|X]− 1 = itAjnE[Zj |X]− t2

2
A2
jnE[Z2

j |X] + rψ,j(X, t), (A.2)

where

rψ,j(X, t) := −
it3A3

jn

2

∫ 1

0
E
[
exp(itvAjnZj)Z

3
j |X

]
(1− v)2 dv.

By putting (A.2) into (A.1), we get

χL(t) = E

exp

 n∑
j=1

{itAjnE[Zj |X]− t2

2
A2
jnE[Z2

j |X]}+
t2

2
A2
jnE[Zj |X]2 + r̄χ,j(X, t)

 ,
where r̄χ,j(X, t) can be specified explicitly:

r̄χ,j(X, t) = rψ,j(X, t)−
1

2
{ t

2

2
A2
jnE[Z2

j |X]− rψ,j(X, t)}2

+ itAjnE[Zj |X]{ t
2

2
A2
jnE[Z2

j |X]− rψ,j(X, t)}+ rχ,j(X, t).

By another Taylor expansion, we get finally

χL(t) = E

exp

itµn(X)− t2

2

n∑
j=1

A2
jnVj(X) +

n∑
j=1

r̄χ,j(X, t)


= E

exp (itµn(X)) ·

1− t2

2

n∑
j=1

A2
jnVj(X) + r̃χ(X, t)


 ,

where

r̃χ(X, t) :=

n∑
j=1

r̄χ,j(X, t) + ξ(X, t)2

∫ 1

0
(1− u) exp(ξ(X, t)u) du,

ξ(X, t) := − t
2

2

n∑
j=1

A2
jnVj(X) +

n∑
j=1

r̄χ,j(X, t).

We deduce

χL(t) = χµ(X)(t)−
t2

2

n∑
j=1

A2
jnE [exp (itµn(X))Vj(X)]

+ E [exp (itµn(X)) r̃χ(X, t)] . (A.3)

A careful inspection of the proof of Theorem 4.4.3. in Kawata (1972) provides:

Lemma 6. Let F be a bounded non decreasing function on R. Let χF be the associated charac-
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teristic function, i.e. χF (x) :=
∫

exp(itx) dF (t). Then, for every real number x,

1

2
[F (x+ 0) + F (x− 0)] =

F (+∞)

2
− 1

π

∫ +∞

0
Im

(
χF (t)

exp(−itx)

t

)
dt.

This is the version of the Zolotarev (1957) formula, but adapted to possibly discontinuous

distributions. Note that the consider the usual average between F (x + 0) and F (x − 0), and

not any arbitrary weighted average. This is necessary to invoke powerful tools of the usual

Fourier theory, in particular Fourier’s single integral Theorem (Th. 4.3.1. in Kawata, 1972). By

applying the latter formula to the cdfs of the loss distributions Ln and µn(X), we get particularly

1

2
[P (Ln < x+ 0) + P (Ln < x− 0)] =

1

2
− 1

π

∫ +∞

0
Im

(
χL(t)

t exp(itx)

)
dt,

1

2
[P (µn(X) < x+ 0) + P (µn(X) < x− 0)] =

1

2
− 1

π

∫ +∞

0
Im

(
χµ(X)(t)

t exp(itx)

)
dt,

for every x. Set

Tn,M (x) :=
1

2π

n∑
j=1

A2
jn

∫ M

0
Im {E [exp (itµn(X))Vj(X)] t exp(−itx)} dt,

for any M ∈ R̄ = R ∪ {+∞}. Clearly, the granularity adjustment will come from the term

Tn,∞(x) (see the second term on the r.h.s. of Equation (A.3)). Note that

E [exp (itµn(X))Vj(X)] = E [exp (itµn(X))E[Vj(X)|µn(X)]]

=

∫
exp(itv)κj(v) dv under A1, and

E [exp (itµn(X))Vj(X)] =

∫
exp (itµn(x))Vj(x)fX(x) dx =

∫
exp(itv)κj(v) dv under A2.

Note that v 7→ Gj(v) :=
∫ v
−∞ κj is a continuous and monotonic function. We have as-

sumed it is bounded and non decreasing. Its associated characteristic function is Ĝj(v) =∫
exp(itv)κj(t) dt. Applying Lemma 6, we get

Gj(x) =
Gj(+∞)

2
− 1

π

∫ +∞

0
Im
(
Ĝj(t) exp(−itx)/t

)
dt.

Actually, such a function is derivable almost surely. Since Ĝj ∈ L1(R), we can apply the

dominated convergence theorem and calculate derivatives inside the integrand (see Billingsley
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(1995), Theorem 16.8 for details). We get

G′j(x) =
1

π

∫ +∞

0
Im
(
Ĝj(t)i exp(−itx)

)
dt.

Since we have assumed the function t 7→ tĜj(t) belongs to L1, we get further

G′′j (x) =
1

π

∫ +∞

0
Im
(
Ĝj(t)t exp(−itx)

)
dt

=
1

π

∫ +∞

0
Im (E [exp (itµn(X))Vj(X)] t exp(−itx)) dt.

The previous term Tn,∞(x) can be rewritten

Tn,∞(x) :=
1

2

n∑
j=1

A2
jnG

′′
j (x) =

1

2

n∑
j=1

A2
jnκ
′
j(x).

Therefore, we have got the interesting result:

1

2
[P (Ln < x+ 0) + P (Ln < x− 0)]

=
1

2
[P (µn(X) < x+ 0) + P (µn(X) < x− 0)] +

1

2π

n∑
j=1

A2
jnκ
′
j(x)

− 1

π

∫ +∞

0
Im {E [exp (itµn(X)) r̃χ(X, t)] exp(−itx)/t} dt. (A.4)

It remains to deal with the remainder term R∞(x), where we set for any M ∈ R̄

RM (x) :=
(−1)

π

∫ M

0
Im {E [exp (itµn(X)) r̃χ(X, t)] exp(−itx)/t} dt.

To evaluateR∞(x), we cannot use the same method as for Tn,∞(x). Indeed, E [exp (itµn(X)) r̃χ(X, t)]

is not the Fourier transform of a non decreasing function. Moreover, this integral cannot be cal-

culated explicitly, unfortunately. Actually, to show that the latter remainder term R∞(x) is

negligible w.r.t. the “granularity-type” term Tn,∞(x), we come back to Equation (A.3) and

restrict the domain of integration to some interval [0,M ]. To be specific, by integrating (A.3),

we get

1

π

∫ M

0
Im

(
χL(t)

exp(−itx)

t

)
dt =

1

π

∫ M

0
Im

(
χµ(X)(t)

exp(−itx)

t

)
dt− Tn,M (x)−RM (x)(A.5)
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for every M > 0. But, as we have seen before,

1

π

∫ M

0
Im

(
χL(t)

exp(−itx)

t

)
dt =

1

2
− 1

2
[P (Ln < x+ 0) + P (Ln < x− 0)]−R∗L,M (x), (A.6)

where

R∗L,M (x) :=
1

π

∫ +∞

M
Im (χL(t) exp(−itx)/t) dt.

Note that

|R∗L,M (x)| ≤ 1

πM

∫ +∞

M
|χL|.

Similarly,

1

π

∫ M

0
Im
(
χµ(X)(t) exp(−itx)/t

)
dt =

1

2
− 1

2
[P (µn(X) < x+ 0)

+ P (µn(X) < x− 0)]−R∗L|X,M (x),

where

R∗L|X,M (x) :=
1

π

∫ +∞

M
Im
(
χµ(X)(t) exp(−itx)/t

)
dt

and

|R∗L|X,M (x)| ≤ 1

πM

∫ +∞

M
|χµ(X)|.

Moreover, the same reasoning as above proves that

Tn,M (x) = Tn,∞(x)−R∗T,M (x),

R∗T,M (x) =
1

2π

n∑
j=1

A2
jn

∫ +∞

M
Im
(
Ĝj(t)t exp(−itx)

)
dt.

Note that

|R∗T,M (x)| ≤ 1

2π

n∑
j=1

A2
jn

∫ +∞

M
|tĜj(t)| dt.

To tackle RM (x), note that r̃χ(X, t) can be rewritten as a sum of terms that will be considered

as negligible w.r.t. Tn,∞. Indeed, for every 0 ≤ t ≤M and every j,X,

|ψj(X, t)| ≤ tAjn|E[Zj |X]| ≤ tAjnZ̄j ,

by the mean value theorem. Actually, since we choose M such that MAjnZ̄j ≤ 1− ε for every
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j and n, we obtain

|rχ,j(X, t)| ≤ |ψ3
j (X, t)|

∫ 1

0

u2

1− (1− ε)u
du := |ψ3

j (X, t)|.kε.

Note that

|rψ,j(X, t)| ≤
t3A3

jn

6
Z̄jE[Z2

j |X] ≤
t3A3

jnZ̄
3
j

6
·

Therefore,

|r̄χ,j(X, t)| ≤ |rψ,j(X, t)|+
1

2
{ t

2

2
A2
jnZ̄

2
j + |rψ,j(X, t)|}2

+ |t|AjnZ̄j{
t2

2
A2
jnZ̄

2
j + |rψ,j(X, t)|}+ |rχ,j(X)| ≤ [

3

2
+ kε].(tAjnZ̄j)

3.

We deduce

|r̃χ(X, t)| ≤ [
19

18
+ kε].|t|3

n∑
j=1

A3
jnZ̄

3
j + ξ2

n,t exp(ξn,t),

where

ξn,t :=
t2

2

n∑
j=1

A2
jnVj(X) + [

19

18
+ kε].|t|3

n∑
j=1

A3
jnZ̄

3
j .

Therefore, we obtain

|RM (x)| ≤ E
[

1

π

∫ M

0
|r̃χ(X, t)|/t dt

]
≤ [

19

18
+ kε].

|M |3

3π

n∑
j=1

A3
jnZ̄

3
j +

1

π

∫ M

0
E[ξ2

n,t exp(ξn,t)]
dt

t
.

Since

0 ≤ ξn,t ≤
t2

2
[1 +

19

9
+ 2kε]

n∑
j=1

A2
jnZ̄

2
j := t2σ2,

then we have ∫ M

0
E[ξ2

n,t exp(ξn,t)]
dt

t
≤
∫ M

0
σ4t3 exp

(
t2σ2

)
dt

≤ exp
(
M2σ2

)
.[exp(−M2σ2)− 1 +M2σ2]/2

≤ M4σ4

2
exp

(
M2σ2

)
≤ M4

2
[
14

9
+ kε]

2


n∑
j=1

A2
jnZ̄

2
j


2

exp([
14

9
+ kε]

n∑
j=1

A2
jnZ̄

2
jM

2),
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proving the given upper bound for RM (x). Finally, we deduce

1

2
[P (Ln < x+ 0) + P (Ln < x− 0)] =

1

2
[P (µn(X) < x+ 0) + P (µn(X) < x− 0)]

+ Tn,∞(x)−R∗L,M (x) +RM (x) +R∗L|X,M (x)−R∗T,M (x),

proving the result. 2

Appendix B. Details of GA calculations for the models in Section 3

For a given level α and every particular model considered in Section 3, we detail the approx-

imated VaRs:

EV aRα := EV aRα = E[Ln|X = V aRα(X)].

The associated granularity adjustments, as given in Corollaries 3 and 4, are

V aRα(Ln) ' EV aRα −GAk, k = 1, 2,

where

GA1 :=
1

2fX(V aRX,α)

n∑
j=1

A2
jn

d

dt

[
Vj(t)fX(t)

µ′n(t)

]
|t=V aRX,α

,

and, by setting V̄n,α = (V aRα(Ln) + EV aRα) /2,

GA2 :=
1

2fX(µ−1
n (V̄ aRn,α))

· µ′n(µ−1
n (V̄ aRn,α))

µ′n(µ−1
n (V aRα(Ln)))

n∑
j=1

A2
jn

d

dt

[
Vj(t)fX(t)

µ′n(t)

]
|t=µ−1

n (V aRα(Ln))

.

Appendix B.1. Toy Model 1

EV aRα =

(
n∑
i=1

Aiai

)
+

(
n∑
i=1

Aiσiρi

)
V aRX,α := C0 + C1Φ−1(α).

Since the distribution of the losses Ln is Gaussian, we get a closed-form formula value-at-risk

V aRα(Ln) = C0 + σΦ−1(α),

σ2 = E[L2
n]− E[Ln]2 =

n∑
i=1

A2
iσ

2
i +

n∑
i,j=1

AiAjσiσjρiρj .

GA1 =
(−1)

2
·
∑n

i=1A
2
iσ

2
i (1− ρ2

i )∑n
i=1Aiσiρi

· Φ−1(α).

30



By setting

Ṽα :=
V aRα(Ln)− C0

C1
, V̌α :=

V̄n,α − C0

C1
,

we get

GA2 =
(−1)

2φ(V̌α)
·
∑n

i=1A
2
iσ

2
i (1− ρ2

i )∑n
i=1Aiσiρi

· Ṽαφ(Ṽα).

Replacing the Gaussian r.v.s by exponential laws with parameter one, we get

GA1 =
(−1)

2
·
∑n

i=1A
2
iσ

2
i (1− ρ2

i )∑n
i=1Aiσiρi

.

Appendix B.2. Toy Model 2

Here, we estimate numerically the value-at-risk V aRα(Ln) and V aRX,α (in the case of a

Bates law). Since X belongs to (0, 1), the expectation of the losses (conditionally on X) is a

linear function of X. We deduce

EV aRα =

(
n∑
i=1

Aibi

)
V aRX,α +

(
n∑
i=1

Aiai

)
:= C.V aRX,α +D. (B.1)

When X follows a Bates distribution with m degrees of freedom, its cdf and its density are

given by

FX(t) :=
1

m!

bmtc∑
k=0

(−1)kCkm(mt− k)m, and

fX(t) :=
m

(m− 1)!

bmtc∑
k=0

(−1)kCkm(mt− k)m−1, t ∈ (0, 1).

Then, we get

GA1 =
1

2CfX(V aRX,α)

n∑
i=1

A2
i [bi(1− ai − bit)fX(t)

− bi(ai + bit)fX(t) + (ai + bi)(1− ai − bit)f ′X(t)}
]
|t=V aRX,α

.

By setting

Ṽα :=
V aRα(Ln)−D

C
, V̌α :=

V̄n,α −D
C

,

we obtain

GA2 =
1

2CfX(V̌α)

n∑
i=1

A2
i [bi(1− ai − bit)fX(t)

− bi(ai + bit)fX(t) + (ai + bi)(1− ai − bit)f ′X(t)}
]
|t=Ṽα .
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Moreover, when X follows a Beta law with parameters (p, q),

GA1 =
1

2C

n∑
i=1

A2
i

[
{p− 1

t
− q − 1

1− t
}.{ai(1− ai) + bi(1− 2ai)t− b2i t2}

+ {bi(1− 2ai)− 2b2i t}
]
|t=V aRX,α

, and

GA2 =
1

2C
· Ṽ

p−1
α (1− Ṽα)q−1

V̌ p−1
α (1− V̌α)q−1

n∑
i=1

A2
i

[
{p− 1

t
− q − 1

1− t
}.{ai(1− ai)

+ bi(1− 2ai)t− b2i t2}+ {bi(1− 2ai)− 2b2i t}
]
|t=Ṽα .

Appendix B.3. Toy Model 3

As previously, we estimate numerically the value-at-risks of V aRα(Ln) and V aRX,α. Now,

the expectation of the losses, conditionally on X, is a quadratic (monotonic) function of X:

µn(x) = C0 + C1x+ C2x
2, where

C0 =

n∑
i=1

Aiaici
2

, C1 =

n∑
i=1

Ai(aidi +
bici
2

), C2 =

n∑
i=1

Aibidi.

Then, µ′n(x) = C1 + 2C2x. With our notations, we have

Vi(x) = (ai + bix).(
c2
i

3
+ cidix+ d2

ix
2)− (ai + bix).(

ci
2

+ dix)2,

and we calculate easily its derivative. Whatever the law of X, we can write

GA1 =
1

2fX(V aRX,α)

n∑
i=1

A2
i

dζi
dt

(t)|t=V aRX,α ,

with ζi(t) = Vi(t)fX(t)/µ′n(t). Therefore,

GA1 =
1

2(C1 + 2C2V aRX,α)

n∑
i=1

A2
i

{
V ar′j(t) +

Vi(t)f
′
X(t)

fX(t)
− 2

Vi(t)C2

C1 + 2C2t

}
|t=V aRX,α

.

Appendix C. Details of GA calculations for some multi-factor models

Now, we provide some details on GA calculations when the studied models involve several

systematic random factors, in other words when X belongs to Rm with m ≥ 2. Here, the
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associated GA is given by Theorem 2:

GA :=
Tn,∞(V aRα(Ln))

fµ(X)(V aRα(Ln))
=

1

2fµ(X)(V aRα(Ln))

n∑
j=1

A2
jnκ
′
j(V aRα(Ln)).

Appendix C.1. Granularity adjustments in a multi-factor Gaussian loss framework

Let us generalize our ”Toy model 1” by introducing the bivariate random X = (X1, X2)′ and

the random loss

Zi = ai + σi(ρ1iX1 + ρ2iX2 +
√

1− ρ2
1i − ρ2

2iX
∗
i ), (C.1)

where X1, X2 and the X∗i , i = 1, . . . , n, are (jointly) independent standard Gaussian variables.

The parameters ai, σi, ρ1i and ρ2i are positive constants, with ρki ∈ [0, 1], k = 1, 2. Typically,

X1 (resp. X2) can be interpreted as a systematic country (resp. industry) risk, or the opposite.

Here, Vi(x) = σ2
i (1− ρ2

1i − ρ2
2i) := νi and

E[Ln|X] =
n∑
i=1

Aiai +
n∑
i=1

Aiσiρ1iX1 +
n∑
i=1

Aiσiρ2iX2 := C0 + C1X1 + C2X2.

Thus ∂(1)µn(x) = C1, and

κi(v) =
νi
C1

∫
φ

(
v − C0 − C2t

C1

)
φ(t) dt =

νi√
C2

1 + C2
2

φ

(
v − C0√
C2

1 + C2
2

)
.

We deduce easily

GA1 =
(−1)

2
·
∑n

i=1A
2
iσ

2
i (1− ρ2

1i − ρ2
2i)√

C2
1 + C2

2

· Φ−1(α),

that extends the formula we got in Appendix B.1. Similar arguments allow explicit calculation

when X ∈ Rm, m ≥ 3.

Appendix C.2. Granularity adjustments in a multi-factor discrete loss model

Let us consider the simplest multi-factor extension of our Toy Model 2 as possible:

Zi = 1(Xi ≤ ai + biX1 + ciX2), (C.2)

where X1, X2 and Xi, i = 1, . . . , n are n + 2 independent random variables uniform on [0, 1].

All the coefficients are nonnegative, and assume 0 < ai + bi + ci < 1 for any i.

In this case,

Vi(x) = (ai + bix1 + cix2)(1− ai − bix1 − cix2), and
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E[Ln|X] =

n∑
i=1

Aiai +

n∑
i=1

AibiX1 +

n∑
i=1

AiciX2 := γ0 + γ1X1 + γ2X2.

Let assume that 0 < γ1 ≤ γ2 (otherwise, switch the roles of X1 and X2). Thus ∂(1)µn(x) = γ1.

Let

I(v, u) =

∫ u

0
1(v − γ0 − γ2t ∈ [0, γ1])(ai + bi

v − γ0 − γ2t

γ1
+ cit)(1− ai − bi

v − γ0 − γ2t

γ1
− cit) dt,

for any u ∈ [0, 1]. Due to the fixed support of the underlying distributions, it is necessary to

distinguish three cases to evaluate κi:

• If v ∈ [γ0, γ0 + γ1], then κi(v) = I(v, (v − γ0)/γ2);

• If v ∈ [γ0 + γ1, γ0 + γ2], then κi(v) = I(v, (v − γ0)/γ2)− I(v, (v − γ0 − γ1)/γ2);

• If v ∈ [γ0 + γ2, γ0 + γ1 + γ2], then κi(v) = I(v, 1)− I(v, (v − γ0 − γ1)/γ2);

• κi(v) = 0 otherwise.

Elementary calculations provide

I(v, u) = (ai + bi
v − γ0

γ1
)(1− ai − bi

v − γ0

γ1
)
u

γ1

+

[
(ai + bi

v − γ0

γ1
)(
γ2bi
γ1
− ci) + (1− ai − bi

v − γ0

γ1
)(ci −

γ2bi
γ1

)

]
u2

2γ1
+ (

γ2bi
γ1
− ci)(ci −

γ2bi
γ1

)
u3

3γ1
·

To calculate the corresponding GA, it is necessary to derive κi, or the partial derivatives of I

equivalently, a rather simple task that is left for the reader. Therefore, it remains to evaluate

the density of µn(X), a linear combination of the two independent r.v.s X1 and X2. Simple

calculations provide

fµ(X)(t) =
1

γ1γ2
{1(t ∈ [γ0, γ0 + γ1]).(t− γ0)

+ 1(t ∈ [γ0 + γ1, γ0 + γ2]) + 1(t ∈ [γ0 + γ2, γ0 + γ1 + γ2]).(γ0 + γ1 + γ2 − t)} .

Appendix C.3. Granularity adjustments of a two-factor CreditMetrics-type model with stochastic
recoveries

Now, let us consider a two-dimensional systematic factor X = (X,Y ), a bivariate Gaussian

vector with E[X] = E[Y ] = 0, E[X2] = E[Y 2] = 1 and E[XY ] = θ. Our model will be

Zi = LGDi · 1
(√

ρiX +
√

1− ρiX∗i ≤ Φ−1(pi)
)
,
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where the idiosyncratic risksX∗i are univariate independent standard Gaussian random variables,

and pi is the unconditional default probability of i. Moreover, we assume that the individual

”loss-given-default” are random:

LGDi = (1− R̄i)
Φ
(

Φ−1(p̄i)−
√
νY√

1−ν

)
Φ
(

Φ−1(pi)−
√
ρiX√

1−ρi

) ,
where R̄i, ν and p̄i are positive constants. This is a two-factor extension of the model of Amraoui

and Hitier (2008). During the recent credit crisis, the latter model has become a standard to

price CDO tranches under the Gaussian copula framework by introducing random recoveries.

Taking this randomness into account was necessary to calibrate the usual CDO pricing models

to market quotes. Clearly, this model is an extension of Li’s (2000) Gaussian copula model: see

Amraoui et al. (2012) for a discussion. In particular, such a parametrization allows the equality

between the individual expected losses as given by the model and by the corresponding CDS

quotes respectively. This consistency is guaranteed by imposing that

E[Zi] = (1− R̄i)p̄i = (1−R0)pi,

where R0 is the constant recovery rate that is used by the market conventionally (40% usually).

Let us assume that p̄i = p̄ for every i = 1, . . . , n. Note that it does not mean that every

name in the basket has the same (unconditional) default probability. Therefore, even with

this restriction, the basket cannot be considered as homogenous, because individual default

probabilities and recovery rates are different across different obligors, and we can calibrate the

remaining parameters to individual expected losses. Then, the conditional expected loss is

µn(X) =

(
n∑
i=1

Ain(1− R̄i)

)
Φ

(
Φ−1(p̄)−

√
νY√

1− ν

)
.

Note that it depends only on Y , the second component of X, what simplifies our calculations

significantly. For convenience, let us set µ̄ :=
∑n

i=1Ain(1− R̄i). By simple calculations, we get

E[Vi(X)|µn(X) = µ] = (1− R̄i)2

(
µ

µ̄

)2

.[Ii(µ)− 1], where

Ii(µ) :=

∫ φ
(
x−θy√
1−θ2

)
Φ
(

Φ−1(pi)−
√
ρix√

1−ρi

) dx√
1− θ2
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for some y = y(µ) such that

Φ

(
Φ−1(p̄)−

√
νy√

1− ν

)
=
µ

µ̄
, ory(µ) =

{
Φ−1(p̄)−

√
1− νΦ−1(

µ

µ̄
)

}
/
√
ν. (C.3)

The integral Ii(µ) above is convergent when 1− θ2 < (1−ρi)/ρi, what is not a strong constraint

with usual correlation levels ρi. Moreover, the density of µn(X) is given by

fµ(X)(t) =

√
1− ν√
νµ̄

· 1

φ ◦ Φ−1(t/µ̄)
φ

(
Φ−1(p̄)−

√
1− νΦ−1(t/µ̄)√
ν

)
.

Therefore, invoking Equation (4), the granularity adjustment is given here by

GA =
1

2fµ(X)(EV aRα)

n∑
i=1

A2
inκ
′
i(EV aRα),

κi(µ) = E[Vi(X)|µn(X) = µ]fµ(X)(µ).

With the notations of Equation (C.3), we get easily

κ′i
κi

(µ) =
2

µ
+

I ′i(µ)

Ii(µ)− 1
+

√
1− νΦ−1(p̄)− (1− 2ν)Φ−1(µ/µ̄)

νµ̄φ ◦ Φ−1(µ/µ̄)
,

I ′i(µ) =
θ
√

1− ν
µ̄(1− θ2)

√
ν

∫ (
θy(µ)−x√

1−θ2

)
φ
(
θy(µ)−x√

1−θ2

)
Φ
(

Φ−1(pi)−
√
pix√

1−pi

) · dx

φ
(

Φ−1(p̄)−
√
νy(µ)√

1−ν

) ·
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(in %) 99.0% 99.5% 99.9%

True VaR 4.577 5.522 7.872

Asymptotic VaR 4.220 5.109 7.260

GA 0.357 0.435 0.627

Approximated VaR 4.578 5.544 7.886

Error 0.001 0.022 0.014

Table C.1: Direct and approximated VaR estimates. Portfolio size=600 names. True Var estimated by simulation
(300000 draws). These numbers come from Gordy (2003), Table 3.

n α VaR (VaR-EVaR)/VaR (VaR-EVaR - GA1)/VaR (VaR-EVaR - GA2)/VaR

50 0.9 0.2365 1.899 -0.1331 -0.1664

500 0.9 0.2325 0.2052 -0.0015 -0.0019

5000 0.9 0.2321 0.0207 -1.55e-005 -1.938e-005

50000 0.9 0.232 0.0021 -1.55e-007 -1.941e-007

50 0.99 0.2663 3.061 -0.2146 -0.2295

500 0.99 0.259 0.3343 -0.0025 -0.0026

5000 0.99 0.2582 0.0337 -2.53e-005 -2.688e-005

50000 0.99 0.2582 0.0034 -2.53e-007 -2.69e-007

Table C.2: Performances of the ”toy model” 1 (closed-form calculations of VaR), as a function of the portfolio
size n and the level α: ai = 0.2, σi = 0.1, ρi = 0.25. Results in %.
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ρi α VaR (VaR-EVaR)/VaR (VaR-EVaR - GA1)/VaR (VaR-EVaR - GA2)/VaR

0.05 0.9 0.2067 0.1213 -0.002374 -0.002968

0.15 0.9 0.2193 0.038 -8.236e-005 -0.0001029

0.25 0.9 0.2321 0.0206 -1.551e-005 -1.938e-005

0.35 0.9 0.2449 0.0131 -4.696e-006 -5.869e-006

0.45 0.9 0.2577 0.0088 -1.735e-006 -2.168e-006

0.55 0.9 0.2705 0.0060 -6.925e-007 -8.656e-007

0.65 0.9 0.2833 0.0040 -2.746e-007 -3.433e-007

0.75 0.9 0.2961 0.0025 -9.817e-008 -1.227e-007

0.85 0.9 0.3089 0.0013 -2.601e-008 -3.251e-008

0.95 0.9 0.3217 0.0004 -2.208e-009 -2.76e-009

0.05 0.99 0.2121 0.2146 -0.0042 -0.0044

0.15 0.99 0.235 0.0643 -0.0001395 -0.0001483

0.25 0.99 0.2582 0.0337 -2.53e-005 -2.688e-005

0.35 0.99 0.2815 0.0207 -7.416e-006 -7.881e-006

0.45 0.99 0.3047 0.0135 -2.663e-006 -2.83e-006

0.55 0.99 0.328 0.0089 -1.037e-006 -1.102e-006

0.65 0.99 0.3512 0.0058 -4.021e-007 -4.273e-007

0.75 0.99 0.3745 0.0036 -1.409e-007 -1.497e-007

0.85 0.99 0.3977 0.0019 -3.667e-008 -3.896e-008

0.95 0.99 0.421 0.0005 -3.063e-009 -3.255e-009

Table C.3: Performances of the ”toy model” 1 (closed-form calculations of VaR), as a function of the correlations
ρi and the level α: n = 5000, ai = 0.2, σi = 0.1. Results in %.
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ρi VaR EVaR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

V aR−EV aR−GA2
V aR

σ̂(V aR)
V aR

0.05 0.1234 0.1139 7.713 -0.3704 -0.332 0.1599

0.15 0.3381 0.3341 1.194 0.2301 0.2321 0.1593

0.25 0.5456 0.5439 0.3094 -0.0342 -0.0339 0.1659

0.35 0.7445 0.7427 0.2426 0.0742 0.0743 0.1895

0.45 0.9272 0.9292 -0.2159 -0.3115 -0.3116 0.1366

0.55 1.1 1.102 -0.1752 -0.2329 -0.2329 0.225

0.65 1.256 1.257 -0.0665 -0.1019 -0.1019 0.2301

0.75 1.392 1.388 0.2468 0.2258 0.2258 0.2117

0.85 1.48 1.484 -0.2933 -0.3044 -0.3044 0.2015

0.95 1.498 1.5 -0.0912 -0.0946 -0.0946 0.1634

Table C.4: Performances of the ”toy model” 1 when the random variables are exponential(1), as a function of
the dependence parameter ρi. The portfolio size is n = 1000 and the level is α = 0.9. ai = −1, σi = 1 for
all i. Calculation of VaR by simulations: 400000 draws. σ̂(V aR) is the estimated stdev of the empirical VaR
(Bootstrap, 500 replications). Results in %.
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(ρ,PD) α VaR EVaR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

σ̂(V aR)
V aR

(0.1,0.1) 0.9 0.179 0.1778 0.6571 0.0892 0.087

(0.1,0.3) 0.9 0.451 0.45 0.2148 -0.0493 0.0546

(0.2,0.1) 0.9 0.215 0.2142 0.387 0.0694 0.1465

(0.2,0.3) 0.9 0.522 0.5217 0.4346 0.2805 0.0734

(0.3,0.1) 0.9 0.245 0.2442 0.3161 0.1024 0.1310

(0.3,0.3) 0.9 0.584 0.584 -0.0037 -0.1112 0.0233

(0.4,0.1) 0.9 0.272 0.2716 0.5265 0.3722 0.145

(0.4,0.3) 0.9 0.644 0.6441 -0.0123 -0.0920 0.0816

(0.5,0.1) 0.9 0.299 0.2978 0.4126 0.2974 0.1989

(0.5,0.3) 0.9 0.706 0.7054 0.0878 0.0271 0.0794

(0.6,0.1) 0.9 0.324 0.3239 0.0216 -0.0653 0.2601

(0.6,0.3) 0.9 0.771 0.7705 0.0676 0.0209 0.0663

(0.7,0.1) 0.9 0.35 0.3512 -0.3326 -0.3972 0.228

(0.7,0.3) 0.9 0.842 0.8414 0.0725 0.0373 0.0696

(0.8,0.1) 0.9 0.382 0.3811 0.2296 0.1843 0.3375

(0.8,0.3) 0.9 0.918 0.9178 0.0204 -0.0048 0.0593

(0.9,0.1) 0.9 0.418 0.4176 0.0891 0.0615 0.346

(0.9,0.3) 0.9 0.986 0.9856 0.0400 0.0254 0.0159

Table C.5: Performances of the ”toy model” 2 with Gaussian r.v.s. (calculation of VaR by simulations): 1000
names, 100000 draws. σ̂(V aR) is the estimated stdev of the empirical VaR (Bootstrap, 500 replications). All
ratios are in percentages.
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(ai, bi) α V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

V aR−EV aR−GA2
V aR

σ̂(V aR)
V aR

(0.2,0.2) 0.9 0.381 0.2625 0.294 0.2937 0.111

(0.2,0.2) 0.99 0.412 3.398 3.423 3.419 0.1223

(0.2,0.4) 0.9 0.56 0.0001 -0.0107 -0.0107 0.0744

(0.2, 0.4) 0.99 0.605 1.488 1.472 1.47 0.0440

(0.4, 0.2) 0.9 0.581 0.1721 0.1583 0.1582 0.0379

(0.4, 0.2) 0.99 0.612 2.288 2.272 2.269 0.0258

(0.4, 0.4) 0.9 0.761 0.1314 0.0972 0.0971 0.0664

(0.4, 0.4) 0.99 0.803 0.8717 0.8349 0.834 0.0546

Table C.6: Performances of the ”toy model” 2 when X is uniform on (0, 1) (calculation of VaR by simulations):
1000 names, 100000 draws. σ̂(V aR) is the estimated stdev of the empirical VaR (Bootstrap, 500 replications).
All ratios are in percentages.
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m (ai, bi) V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

V aR−EV aR−GA2
V aR

σ̂(V aR)
V aR

2 (0.2,0.2) 0.358 0.7608 0.8012 0.7992 0.1351

2 (0.2,0.4) 0.512 0.2826 0.2806 0.2803 0.1077

2 (0.4,0.2) 0.558 0.4881 0.4782 0.478 0.0558

2 (0.4,0.4) 0.712 0.2032 0.1737 0.1737 0.0758

3 (0.2,0.2) 0.348 1.216 0.1076 0.0981 0.0439

3 (0.2,0.4) 0.489 0.2986 -0.1531 -0.1535 0.1027

3 (0.4,0.2) 0.548 0.7719 -0.0411 -0.0387 0.0523

3 (0.4,0.4) 0.69 0.3566 0.0525 0.0540 0.0675

6 (0.2,0.2) 0.336 1.617 -0.0573 -0.1159 0.0508

6 (0.2,0.4) 0.464 0.6179 -0.0750 -0.0849 0.0604

6 (0.4,0.2) 0.536 1.014 -0.209 -0.232 0.0786

6 (0.4,0.4) 0.664 0.4318 -0.0343 -0.0372 0.0557

9 (0.2,0.2) 0.331 1.856 -0.2436 -0.2802 0.0947

9 (0.2,0.4) 0.454 0.9446 0.0701 0.0537 0.0830

9 (0.4,0.2) 0.532 1.343 -0.1847 -0.1671 0.0108

9 (0.4,0.4) 0.654 0.6557 0.0675 0.0634 0.0766

12 (0.2,0.2) 0.328 1.987 -0.4698 -0.457 0.109

12 (0.2,0.4) 0.447 0.9025 -0.1269 -0.1446 0.0970

12 (0.4,0.2) 0.529 1.421 -0.3642 -0.2895 0.0607

12 (0.4,0.4) 0.647 0.6235 -0.0684 -0.0727 0.0252

Table C.7: Performances of the ”toy model” 2 when X follows a Bates distribution with m degrees of freedom
(calculation of VaR by simulations): 1000 names, 100000 draws, α = 90%. σ̂(V aR) is the estimated stdev of the
empirical VaR (Bootstrap, 500 replications). All ratios are in percentages.
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(p, q) α V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

V aR−EV aR−GA2
V aR

σ̂(V aR)
V aR

(1, 1) 0.9 0.76 0.0003 -0.0338 -0.0338 0.0679

(1, 3) 0.9 0.615 0.1088 -0.1173 -0.1172 0.1084

(1, 5) 0.9 0.55 0.4339 0.0683 0.0717 0.0575

(1, 7) 0.9 0.515 0.5583 0.0503 0.0601 0.0993

(3, 1) 0.9 0.787 0.1022 0.1212 0.1208 0.0518

(3, 3) 0.9 0.703 0.2357 0.0039 0.0014 0.0807

(3, 5) 0.9 0.64 0.239 -0.0779 -0.0788 0.1042

(3, 7) 0.9 0.599 0.4959 0.0936 0.0942 0.0595

(5, 1) 0.9 0.794 0.2949 0.3642 0.3632 0.0089

(5, 3) 0.9 0.734 0.2528 -0.0116 -0.0182 0.0724

(5, 5) 0.9 0.681 0.2039 -0.1249 -0.1273 0.0747

(5,7) 0.9 0.642 0.3444 -0.0501 -0.0521 0.0549

(1, 1) 0.99 0.803 0.8722 0.8354 0.8345 0.0601

(1, 3) 0.99 0.716 0.3047 -0.0562 -0.0541 0.0721

(1, 5) 0.99 0.643 0.3504 -0.1211 -0.1132 0.1089

(1, 7) 0.99 0.596 0.5373 -0.0647 -0.0449 0.1621

(3, 1) 0.99 0.811 1.521 1.534 1.529 0.0389

(3, 3) 0.99 0.761 0.4285 -0.1088 -0.1116 0.0415

(3, 5) 0.99 0.709 0.4981 -0.0550 -0.0404 0.0445

(3, 7) 0.99 0.667 0.671 0.0428 0.0716 0.1262

(5, 1) 0.99 0.814 1.819 1.881 1.874 0.0489

(5, 3) 0.99 0.778 0.8132 0.1006 0.0800 0.0867

(5, 5) 0.99 0.737 0.7322 0.0823 0.1113 0.0858

(5, 7) 0.99 0.7 0.6975 0.0088 0.0462 0.0927

Table C.8: Performances of the ”toy model” 2 when X is beta (calculation of VaR by simulations): 1000 names,
100000 draws. ai = bi = 0.4. σ̂(V aR) is the estimated stdev of the empirical VaR (Bootstrap, 500 replications).
All ratios are in percentages.
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m (ci, di) V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

σ̂(V aR)
V aR

2 (0.4,0) 0.1426 0.4786 0.4725 0.0632

2 (0.4,0.2) 0.2528 0.1841 0.1795 0.1256

2 (0.4,0.4) 0.3630 0.0838 0.0849 0.1377

3 (0.4,0) 0.1382 0.5799 0.0602 0.0560

3 (0.4,0.2) 0.2369 0.3125 0.1217 0.0972

3 (0.4,0.4) 0.3355 0.2396 0.1079 0.1179

4 (0.4,0) 0.1359 0.7191 0.0336 0.0498

4 (0.4,0.2) 0.2289 0.2070 -0.0246 0.0939

4 (0.4,0.4) 0.3220 0.2138 0.0537 0.1117

6 (0.4,0) 0.1333 0.8972 0.0256 0.0399

6 (0.4,0.2) 0.2192 0.3712 0.0712 0.0693

6 (0.4,0.4) 0.3053 0.2745 0.0665 0.0899

8 (0.4,0) 0.1317 0.9808 -0.0456 0.0368

8 (0.4,0.2) 0.2137 0.3440 -0.0136 0.0727

8 (0.4,0.4) 0.2960 0.4362 0.1882 0.0916

10 (0.4,0) 0.1308 1.0932 -0.0689 0.0327

10 (0.4,0.2) 0.2100 0.3899 -0.0184 0.0631

10 (0.4,0.4) 0.2900 0.3051 0.0210 0.0769

12 (0.4,0) 0.1302 1.1484 -0.1363 0.0355

12 (0.4,0.2) 0.2074 0.4460 -0.0079 0.0574

12 (0.4,0.4) 0.2858 0.3851 0.0690 0.0735

Table C.9: Performances of the ”toy model” 3 when X follows a Bates distribution with m degrees of freedom
(calculation of VaR by simulations): 1000 names, 100000 draws, α = 90%, (ai, bi) = (0.4, 0.4). σ̂(V aR) is the
estimated stdev of the empirical VaR (Bootstrap, 500 replications). All ratios are in percentages.
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(ci, di) (p, q) V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

σ̂(V aR)
V aR

(0.2,0) (1,1) 0.0760 0.0972 0.0849 0.0509

(0.2,0) (1,2) 0.0675 0.1907 -0.0705 0.0816

(0.2,0) (1,3) 0.0616 0.2730 -0.1046 0.0899

(0.2,0) (1,5) 0.0551 0.5276 -0.0700 0.0835

(0.2,0) (1,7) 0.0516 0.8675 0.0491 0.0735

(0.2,0) (2,1) 0.0781 0.2579 0.3163 0.0335

(0.2,0) (2,2) 0.0723 0.3475 0.04554 0.0537

(0.2,0) (2,3) 0.0674 0.3683 -0.0252 0.0623

(0.2,0) (2,5) 0.0608 0.4662 -0.0867 0.0634

(0.2,0) (2,7) 0.0565 0.8470 0.1351 0.0704

(0.2,0) (3,1) 0.0789 0.4956 0.6215 0.0261

(0.2,0) (3,2) 0.0745 0.2745 -0.0802 0.0431

(0.2,0) (3,3) 0.0703 0.3327 -0.1016 0.0564

(0.2,0) (3,5) 0.0641 0.5544 -0.0069 0.0612

(0.2,0) (3,7) 0.0599 0.6558 -0.0360 0.0650

(0.2,0) (5,1) 0.0798 0.8648 1.1233 0.0225

(0.2,0) (5,2) 0.0767 0.5210 0.0551 0.0284

(0.2,0) (5,3) 0.0736 0.5502 0.0203 0.0397

(0.2,0) (5,5) 0.0683 0.6440 0.0277 0.0459

(0.2,0) (5,7) 0.0644 0.6931 -0.0179 0.0537

(0.2,0) (7,1) 0.0802 1.1040 1.4942 0.0204

(0.2,0) (7,2) 0.0777 0.6953 0.1158 0.0262

(0.2,0) (7,3) 0.0752 0.6514 0.0192 0.0332

(0.2,0) (7,5) 0.0708 0.6817 -0.0057 0.0393

(0.2,0) (7,7) 0.0672 0.7331 -0.0241 0.0455

Table C.10: Performances of the ”toy model” 3 when X is beta (calculation of VaR by simulations): 1000 names,
100000 draws. ai = bi = 0.4 and α = 90%. σ̂(V aR) is the estimated stdev of the empirical VaR (Bootstrap, 500
replications). All ratios are in percentages.
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(ci, di) (p, q) V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

σ̂(V aR)
V aR

(0.2,0.4) (1,1) 0.3499 -0.1705 -0.1712 0.1282

(0.2,0.4) (1,2) 0.2509 -0.1532 -0.1920 0.2485

(0.2,0.4) (1,3) 0.1933 0.3126 0.2572 0.2758

(0.2,0.4) (1,5) 0.1355 0.1939 0.1050 0.3071

(0.2,0.4) (1,7) 0.1084 0.1662 0.0410 0.2709

(0.2,0.4) (2,1) 0.3735 0.1491 0.1580 0.0619

(0.2,0.4) (2,2) 0.3049 -0.2064 -0.2555 0.1559

(0.2,0.4) (2,3) 0.2499 -0.0427 -0.1066 0.1948

(0.2,0.4) (2,5) 0.1843 -0.1039 -0.1934 0.2228

(0.2,0.4) (2,7) 0.1478 -0.0147 -0.1303 0.2248

(0.2,0.4) (3,1) 0.3819 -0.0514 -0.0324 0.0477

(0.2,0.4) (3,2) 0.3290 0.0697 0.0111 0.1152

(0.2,0.4) (3,3) 0.2824 0.0191 -0.0534 0.1408

(0.2,0.4) ( 3,5) 0.2161 -0.1361 -0.2306 0.1768

(0.2,0.4) (3,7) 0.1771 0.0156 -0.1006 0.1879

(0.2,0.4) (5,1) 0.3892 0.0331 0.0724 0.0303

(0.2,0.4) (5,2) 0.3537 0.1532 0.0760 0.0622

(0.2,0.4) (5,3) 0.3163 0.2578 0.1682 0.0981

(0.2,0.4) (5,5) 0.2579 0.1562 0.0496 0.1338

(0.2,0.4) (5,7) 0.2179 0.0595 -0.0643 0.1475

(0.2,0.4) (7,1) 0.3923 0.0307 0.0904 0.0221

(0.2,0.4) (7,2) 0.3658 0.1359 0.0404 0.0526

(0.2,0.4) (7,3) 0.3356 0.1450 0.0383 0.0643

(0.2,0.4) (7,5) 0.2844 0.2914 0.1721 0.1002

(0.2,0.4) (7,7) 0.2458 0.2192 0.0858 0.1194

Table C.11: Performances of the ”toy model” 3 when X is beta (calculation of VaR by simulations): 1000 names,
100000 draws. ai = bi = 0.4 and α = 90%. σ̂(V aR) is the estimated stdev of the empirical VaR (Bootstrap, 500
replications). All ratios are in percentages.
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(ci, di) (p, q) V aR V aR−EV aR
V aR

V aR−EV aR−GA1
V aR

σ̂(V aR)
V aR

(0.2,0.8) (1,1) 0.6225 -0.1630 -0.1616 0.1462

(0.2,0.8) (1,2) 0.4348 0.0596 0.0304 0.2512

(0.2,0.8) (1,3) 0.3255 -0.0698 -0.1092 0.3366

(0.2,0.8) (1,5) 0.2160 0.0906 0.0332 0.3434

(0.2,0.8) (1,7) 0.1663 0.3989 0.3230 0.3169

(0.2,0.8) (2,1) 0.6696 0.0371 0.0466 0.0704

(0.2,0.8) (2,2) 0.5371 0.0619 0.0215 0.1600

(0.2,0.8) (2,3) 0.4339 -0.0859 -0.1369 0.2209

(0.2,0.8) (2,5) 0.3068 -0.0127 -0.0794 0.2295

(0.2,0.8) (2,7) 0.2393 0.0716 -0.0100 0.2611

(0.2,0.8) (3,1) 0.6856 -0.0751 -0.0567 0.0472

(0.2,0.8) (3,2) 0.5838 -0.0913 -0.1410 0.1118

(0.2,0.8) (3,3) 0.4936 -0.3069 -0.3673 0.1637

(0.2,0.8) (3,5) 0.3687 0.2097 0.1352 0.1841

(0.2,0.8) (3,7) 0.2942 0.6223 0.5347 0.2019

(0.2,0.8) (5,1) 0.6992 0.0128 0.0493 0.0303

(0.2,0.8) (5,2) 0.6311 0.0896 0.0228 0.0668

(0.2,0.8) (5,3) 0.5605 -0.0604 -0.1373 0.1148

(0.2,0.8) (5,5) 0.4478 0.1658 0.0772 0.1437

(0.2,0.8) (5,7) 0.3711 -0.2095 -0.3098 0.1660

(0.2,0.8) (7,1) 0.7055 0.0147 0.0695 0.0233

(0.2,0.8) (7,2) 0.6530 0.0860 0.0024 0.0563

(0.2,0.8) (7,3) 0.5967 0.1357 0.0432 0.0794

(0.2,0.8) (7,5) 0.4983 0.1021 0.0006 0.1081

(0.2,0.8) (7,7) 0.4247 -0.0065 -0.1177 0.1232

Table C.12: Performances of the ”toy model” 3 when X is beta (calculation of VaR by simulations): 1000 names,
100000 draws. ai = bi = 0.4 and α = 90%. σ̂(V aR) is the estimated stdev of the empirical VaR (Bootstrap, 500
replications). All ratios are in percentages.
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