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1 Introduction

1.1 The problem

In multivariate extensions of GARCH models, modelers are faced with the prob-

lem of correlations (between asset returns, in most applications). The simplest

idea is to assume that these correlations are constant in time, and constitute

only an additional matrix of parameters. This has provided the class of Constant

Conditional Correlations models (CCC), first introduced by Bollerslev (1990).

Since CCC models can be written as first-order Markov processes, it is relatively

easy to prove the existence of strictly stationary and explicit solutions, even if

the latter ones are analytically complex: see classical textbooks, for instance

Francq and Zaköıan (2010).

It appeared rapidly that the assumption of constant correlations is too

strong. It does not correspond to economic intuition and to many empirical

features: see the recent paper of Otranto and Bauwens (2013) and the nu-

merous references therein, for instance. Therefore, Engle (2002) and Tse and

Tsui (2002) have proposed to extend CCC specifications by adding a particu-

lar dynamics on the (conditional) correlation matrices of returns, denoted here

by (Rt). To insure modelers are dealing with true correlation matrices, these

authors introduced a nonlinear transform: there exists a sequence of variance-

covariance matrices (Qt) such that Rt = diag(Qt)
−1/2.Qt.diag(Qt)

−1/2, and

(Qt)-dynamics are specified instead of (Rt) dynamics directly. This nonlinear

transform insures that Rt is always a correlation matrix, i.e. definite positive

with ones on its main diagonal. Nonetheless, it complicates a lot the work of

stating stationarity conditions of DCC models. Indeed, analytically tractable

solutions of such processes do not exist anymore. This explains why the exis-

tence of stationarity solutions of DCC models and their unicity have not been

established in the literature yet, nor the finiteness of their moments. Particu-

larly, this implies that theoretically sound statistical inference procedures do not

exist yet, as noticed in Caporin and McAleer (2013). Nonetheless, despite their
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theoretical insufficiencies, DCC models have been used intensively among aca-

demics and practitioners. Beside numerous applied works, several extensions of

the baseline DCC representation have been proposed in the literature: inclusion

of asymmetries (Cappiello, Engle, and Sheppard, 2006), of volatility thresholds

(Kasch and Caporin, 2013), of macro-variables (Otranto and Bauwens, 2013),

of univariate switching regime probabilities (Fermanian and Malongo, 2013),

among others. Other authors have revisited the DCC parameterization itself:

Billio, Caporin, and Gobbo (2006), Franses and Hafner (2009), etc. Therefore,

there is an urgent need for new theoretical results concerning the seminal DCC

model itself.

The goal of this paper is to fill this gap, focusing on the stationarity problem.

After having introduced some notations, we define DCC models at the beginning

of Section 2. They will be rewritten as ”almost linear” Markov chains in Sub-

section 2.2. The existence of strong and weak stationary solutions is stated in

Subsection 3.1. Subsection 3.2 exhibits sufficient conditions to get their unicity.

The proofs are gathered in the appendices.

1.2 Notations

Consider an (n,m) matrix M = [mij ]1≤i≤n,1≤j≤m.

• M ≥ 0 (resp. M > 0) means that all elements of M are positive (resp.

strictly positive).

• |M | = [|mij |]1≤i≤n,1≤j≤m.

• For any vector x ∈ Rm, ‖x‖2 denotes the usual euclidian norm of x.

• If n = m, let the diagonal matrix diag(M) = [mij1(i = j)]1≤i≤m,1≤j≤m

and the vector V ecd(M) = [mii]1≤i≤m in Rm.

• If n = m and M is symmetrical, V ech(M) denotes the m(m+ 1)/2 := m∗

column vector whose components are read from M column-wise and with-

out redundancy. To formalize, denote V ech(M) = [m̃k]1≤k≤m∗ . Actually,
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m̃k = mij for the unique couple of indices (i, j) in {1, . . . ,m}2, i ≥ j such

that [m + (m − 1) + . . . + (m − j + 2)]+ + (i − j + 1) = k. Thus, this

defines a one-to-one mapping φ between the indices k ∈ {1, . . . ,m∗} and

the couples (i, j), i ≥ j, 1 ≤ i, j ≤ m, i.e. (i, j) = (φ1(k), φ2(k)) = φ(k).

• ρ(M) denotes the spectral radius of the squared matrix M , i.e. the largest

of the modulus of M ’s eigenvalues. If M is definite and nonnegative, then

its smallest eigenvalue is denoted by λ1(M).

• ⊗ denotes the usual Kronecker product, and M⊗p = M ⊗ . . . ⊗ M (p

times);

• � denotes the element-by-element product: if v is a vector in Rn, then

v�M = [vimij ]1≤i≤n,1≤j≤m. If M and N are conformable, then M�N =

[mijnij ]1≤i≤n,1≤j≤m.

• An arbitrary matrix norm will be denoted by ‖ · ‖. Sometimes, we con-

sider particular norms like ‖M‖∞ = max1≤i≤n,1≤j≤m |mij |, ‖M‖1 :=∑
i,j |mij |, or the spectral norm defined by

‖M‖s = max{
√
λ | λ is an eigenvalue of M ′M} = max

x

‖Mx‖2
‖x‖2

,

for any squared matrix M . When M is positive, ‖M‖s = ρ(M).

• For any column vector z ∈ Rm, ~z := (z21 , . . . , z
2
m)′.

• e denotes a vector of ones, whose dimension will be implicit and be given

by the context.

• 0m denotes the m ×m matrix of zeros. Im denotes the m ×m identity

matrix.

• If the coefficients of M depend on a vector x, than supx∈AM(x) is the

matrix [supx∈Amij(x)].
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2 Dynamic Conditional Correlation models

2.1 The classical DCC specification

Let us recall the standard DCC model, as introduced in Engle (2002) or Tse and

Tsui (2002). Consider a stochastic process (yt)t∈Z in Rm, typically a vector of m

asset returns. The sigma field generated by the past information of this process

until (but including) time t−1 is denoted by It−1. Following current practice, we

can filter out the mean values of this series. Let µt(θ) = E[yt|It−1] ≡ Et−1[yt]

be the conditional mean vector of yt. It depends on a vector of parameters

θ ∈ Θ. We define a “detrended” series (zt)t∈Z by

yt = µt(θ) + zt, Et−1[zt] = 0.

Assume we can write zt = H
1/2
t et, where

• (et)t∈Z is a standard white noise in Rm: E[et] = 0, V ar(et) = Idm and

the vectors et are mutually independent.

• Ht = [hij,t]1≤i,j≤m is the ”instantaneous” variance-covariance matrix of

the t-observations, conditionally on It−1:

V ar(yt|It−1) = V ar(zt|It−1) = Ht.

As usual with DCC-type models, we split the variance-covariance matrix Ht

between volatility terms on one side (in Dt), and correlation coefficients on the

other side (in Rt):

Ht = D
1/2
t RtD

1/2
t , Dt = diag(h1,t, ..., hm,t), (1)

where hk,t := hkk,t denotes the ”instantaneous variance” of zk at time t, con-

ditionally on It−1. Usually in the literature, this conditional volatility of the

asset k knowing It−1 is denoted by σkk,t instead of h
1/2
k,t . We assume GARCH-

type models on every margin, but with cross-effects between all these volatilities
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potentially:

V ecd(Dt) = V0 +

r∑
i=1

Ai.V ecd(Dt−i) +

s∑
j=1

Bj .~zt−j , (2)

for some deterministic nonnegative matrices (Ai)i=1,...,r and (Bj)j=1,...,s, and

for a positive vector V0 in Rm. We will set Ai := [a
(i)
k,l]1≤k,l≤m, i = 1, . . . , r, and

Bj := [b
(j)
k,l ]1≤k,l≤m, j = 1, . . . , s.

Let us introduce the so-called ”standardized residuals” εt ≡ D
−1/2
t zt. The

dynamics of correlations are given by the traditional Dynamic Conditional Cor-

relation specification:

Rt = diag(Qt)
− 1

2Qtdiag(Qt)
− 1

2 , (3)

where the sequence of matrices (Qt)t∈Z satisfies

Qt = W0 +

ν∑
k=1

MkQt−kM
′
k +

µ∑
l=1

Nlεt−lε
′
t−lN

′
l , (4)

for some deterministic matrices (Mk)k=1,...,ν and (Nl)l=1,...,µ, and for a positive

definite constant matrix W0. We will set Mk := [m
(k)
p,q ]1≤p,q≤m, k = 1, . . . , ν, and

Nl := [n
(l)
p,q]1≤p,q≤m, l = 1, . . . , µ. In practice, the positive matrix W0 (or the

constant vector V ech(W0) in Rm∗
equivalently) is a parameter to be estimated.

Since Et−1[εtε
′
t] = Rt, there exists a sequence of independent random vectors

(ηt)t∈Z in Rm such that

εt = R
1/2
t ηt, (5)

with Et−1[ηt] = 0 and Et−1[ηtη
′
t] = Im. It can be imposed that R

1/2
t is sym-

metrical and positive definite. In this case, the square root of Rt is uniquely

defined: see Serre (2010), Theorem 6.1. This will be our convention throughout

the article.

Note that the processes (et), (εt) or (ηt) can be considered equivalently as

the sequences of innovations of our DCC model, because Rt, Qt and Dt are
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It−1-measurable. In other words, for every t,

It = σ(ej , j ≤ t) = σ(εj , j ≤ t) = σ(ηj , j ≤ t).

Aielli (2013) has noticed that the estimation of the unknown matrixW0 is not

straightforward, because it cannot be deduced trivially from the unconditional

correlation between the standardized residuals εt. Therefore, he introduced a

new variety of DCC-GARCH models (called cDCC), where (4) is replaced by

Qt = W0 +

ν∑
k=1

MkQt−kM
′
k +

µ∑
l=1

Nldiag(Qt)
−1/2εt−lε

′
t−ldiag(Qt)

−1/2N ′l . (6)

Under this new assumption, cDCC can be seen as a particular BEKK model

(Engle and Kroner, 1995). Therefore, Aielli obtained the existence of strictly

and/or weakly stationary solutions, applying the conditions of Boussama, Fuchs,

and Stelzer (2011) on BEKK processes. Unfortunately, under the usual specifi-

cation given by (4), DCC models cannot be rewritten as BEKK models anymore

and other techniques have to be found. In this paper, we obtain the same type of

results as Aielli (2013), but by keeping the original specification of DCC models

and without relying on another encompassing family of processes.

2.2 DCC as Markov chains

Actually, it is possible to rewrite the previous DCC model as a Markov chain,

that looks like an AR(1) process. This rewriting will become a crucial tool for

the study of stationary solutions hereafter. Set

Xt := (X
(1)
t , X

(2)
t , X

(3)
t , X

(4)
t )′, (7)

where

X
(1)
t := (V ecd(Dt), . . . , V ecd(Dt−r+1))′,

X
(2)
t := (~zt, . . . , ~zt−s+1)′,
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X
(3)
t := (V ech(Qt), . . . , V ech(Qt−ν+1))′,

X
(4)
t := (V ech(εtε

′
t), . . . , V ech(εt−µ+1ε

′
t−µ+1))′.

The dimensions of the four previous random vectors are rm, sm, νm∗ and µm∗

respectively. Their sum, the dimension ofXt, is denoted by d. With simple block

matrix calculations, there exist random matrices (Tt) and a vector process (ζt)

such that the dynamics of Xt, any solution of the DCC model, may be rewritten

as

Xt = Tt.Xt−1 + ζt, (8)

for any t. We will write the block matrix Tt := [Tij,t]1≤i,j≤4 with convenient

random matrices Tij,t.

Knowing (8), the underlying process (Xt) can be seen as a vectorial autore-

gressive of order one, but with random matrix-coefficients (Tt). Actually, Tt

and ξt will be stochastic only through εt, i.e. through the t-innovation ηt and

the It−1-measurable matrix Rt. This creates a major difficulty to prove the

existence of stationary solutions. In particular, this means that Tt depends on

some components of Xt. Therefore, it will be difficult to find explicit expres-

sions like Xt = ft(ηt, ηt−1, . . .) for some deterministic function ft, because the

link between Tt and the past innovations or observations is highly nonlinear.

Let us detail the AR(1) form of (8):

• set T1k,t = 0 when k = 3, 4,

T11,t :=



A1 A2 · · · · · · Ar

Im 0m · · · · · · 0m

0m Im 0m
...

...
. . .

. . .
. . .

...

0m · · · 0m Im 0m


, and T12,t :=



B1 B2 · · · · · · Bs

0m · · · · · · · · · 0m
...

...
...

...

0m · · · · · · · · · 0m


.
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• We deduce from Equation (2) that

Dt~εt = ~εt�V ecd(Dt) = ~zt = ~εt�V0+

r∑
i=1

~εt�Ai.V ecd(Dt−i)+

s∑
j=1

~εt�Bj .~zt−j .

(9)

Let us set T23,t = T24,t = 0,

T21,t :=


~εt �A1 ~εt �A2 · · · · · · ~εt �Ar

0m · · · · · · · · · 0m
...

...

0m · · · · · · · · · 0m

 , and

T22,t :=



~εt �B1 ~εt �B2 · · · · · · ~εt �Bs
Im 0m · · · · · · 0m

0m Im 0m
...

...
. . .

. . .
. . .

...

0m · · · 0m Im 0m


• Clearly, there exist matrices M̃k, k = 1, . . . , ν, such that

V ech(MkQt−kM
′
k) = M̃k.V ech(Qt−k).

Similarly, there exists matrices Ñl, l = 1, . . . , µ, such that

V ech(Nlεt−lε
′
t−lN

′
l ) = Ñl.V ech(εt−l.ε

′
t−l).
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Then, set T31,t = T32,t = 0,

T33,t :=



M̃1 M̃2 · · · · · · M̃ν

Im∗ 0m∗ · · · · · · 0m∗

0m∗ Im∗ 0m∗
...

...
. . .

. . .
. . .

...

0m∗ · · · 0m∗ Im∗ 0m∗


, and T34,t :=


Ñ1 Ñ2 · · · · · · Ñµ

0m∗ · · · · · · · · · 0m∗

...
...

0m∗ · · · · · · · · · 0m∗

 .

• T4k,t = 0, k = 1, 2, 3, and define the µm∗ × µm∗ matrix

T44,t :=



0m∗ 0m∗ · · · · · · 0m∗

Im∗ 0m∗ · · · · · · 0m∗

0m∗ Im∗ 0m∗
...

...
. . .

. . .
. . .

...

0m∗ · · · 0m∗ Im∗ 0m∗


.

Moreover, rewrite

ζt = (ζ
(1)
t , ζ

(2)
t , ζ

(3)
t , ζ

(4)
t ),

where, with obvious sizes, there vectors are

ζ
(1)
t = (V0, 0m, . . . , 0m)′, ζ

(2)
t = (~εt � V0, 0m, . . . , 0m)′,

ζ
(3)
t = (V ech(W0), 0m∗ , . . . , 0m∗)′, ζ

(4)
t = (V ech(εtε

′
t), 0m∗ , . . . , 0m∗)′.

Intuitively, the model (Xt) is I-markovian because it is the case for the

process (ζt) and (Tt) themselves. Indeed, εt (or ~εt, or even V ech(εtε
′
t)) is a

function of the couple (Rt, ηt) only. Due to (3) and (4), Rt is a deterministic

function of Xt−1. Since ηt is independent of It−1, the law of εt knowing It−1
is just the law of εt knowing Xt−1. The same assertion applies with ζt, or with

Xt itself, instead of εt.

In other words, the non-linearity of the DCC model is coming from ~εt in Tt.
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But there exists constants matrices (of zeros and ones) F and G such that (8)

can be rewritten

Xt = (~εt ⊗ F )� ToXt−1 + (~εt ⊗G)� ζo, (10)

where To (resp. ζo) is the Tt matrix (resp. ζt vector) when ~εt = 1. Since

εt = R
1/2
t ηt and since Rt is a measurable function of Xt−1, then Xt is clearly

a function of Xt−1 and of the innovation ηt only. These arguments prove the

markovian structure of the (Xt) process.

3 Stationarity of DCC models

3.1 Existence of stationary DCC solutions

To obtain the existence of stationary solutions of the previous DCC model, we

will invoke Tweedie’s (1988) criterion. The latter result will provide the exis-

tence of an invariant probability measure for the Markov chain defined by (8).

This technique has already been used in several papers in econometrics, notably

Ling and McAleer (2003) or Ling (1999).

To get the stationarity conditions of (zt), the ”size” of the matrix Tt does

not have to explode. This matrix is random because it depends on the random

variables ε2kt, k = 1, . . . ,m. The latter variables have a variance one, but they

are not independent. This is in contrast with Ling and McAleer (2003). More-

over, unfortunately, the joint law of ~εt is a function of Rt, i.e. a function of

Xt−1. That is why we need the following condition.

Assumption E1: For some p ≥ 1, E[‖ηt‖2p] <∞ and ρ (T ∗) < 1, where

T ∗ := sup
x∈Rd

E[|T⊗pt | | Xt−1 = x].

Recall that Tt depends on ~εt, that εt = R
1/2
t ηt, and that the components of

ηt are uncorrelated. Then, the supremum above exists and is finite because all
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the coefficients of Rt are less than one (in absolute values).

Theorem. 1 Under Assumption E1, the process (zt, Dt, Rt) as defined by Equa-

tions (1), (2), (3) and (4) possesses a strictly stationary solution. This solution

is measurable w.r.t. the σ-field I induced by the white noise (ηt). Moreover,

(zt) is second-order stationary and the 2p-th moments of zt are finite.

To apply the previous theorem, it may be hard to check the condition on

the spectral radius of T ∗, due to the analytical complexity of T⊗pt . In the next

theorem, we provide simpler and more explicit conditions.

Theorem. 2 If

r∑
i=1

sup
l=1,...,m

|
m∑
k=1

a
(i)
k,l|+

s∑
j=1

sup
l=1,...,m

|
m∑
k=1

b
(i)
k,l| < 1, (11)

and
ν∑
k=1

sup
p,q

m∑
i,j=1;i≥j

|m(k)
i,pm

(k)
j,q | < 1, (12)

then the process (zt, Dt, Rt) given by Equations (1)-(5) possesses a strictly sta-

tionary solution. This solution is measurable w.r.t. the σ-field F induced by the

white noise (ηt).

Note that the previous result applies whatever the sequence of matrices (Nl),

l = 1, . . . , µ.

Obviously, when a stationary solution exists, it is nonanticipative and er-

godic, because the process Xt can be generated as f(ηt, ηt−1, . . .), for some

measurable function f from R∞ to Rd.

Example 1: Consider a diagonal-type DCC model, where all the matrices

of parameters are diagonal, assuming no ”cross-effects” in terms of volatilities

and/or correlations. Here, there exists real numbers a
(i)
u , b

(j)
u , m

(k)
u and n

(l)
u ,

u = 1, . . . ,m, such that

Ai = diag(a
(i)
1 , . . . , a(i)m ), i = 1, . . . , r, Bj = diag(b

(j)
1 , . . . , b(j)m ), j = 1, . . . , s,
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Mk = diag(m
(k)
1 , . . . ,m(k)

m ), k = 1, . . . , ν, Nl = diag(n
(l)
1 , . . . , n(l)

m ), l = 1, . . . , µ.

In this case, Condition (11) becomes

r∑
i=1

sup
l=1,...,m

|a(i)l |+
s∑
j=1

sup
l=1,...,m

|b(i)l | < 1,

and Condition (12) is
∑ν
k=1 supp=1,...,m |m

(k)
p |2 < 1. To reduce even more the

number of free parameters, scalar-DCC models are often assumed. In this case,

all the unknown matrices are simply the product of a scalar and an identity

matrix:

Ai = a(i)Im, i = 1, . . . , r, Bj = b(j)Im, j = 1, . . . , s,

Mk = m(k)Im, k = 1, . . . , ν, Nl = n(l)Im, l = 1, . . . , µ.

Such models are very popular, because they allow a dramatic reduction of the

number of free parameters. With obvious notations, we have to satisfy

r∑
i=1

|a(i)|+
s∑
j=1

|b(j)| < 1, and

ν∑
k=1

|m(k)
p |2 < 1.

Actually, to insure that the process generate positive variances, we have assumed

that the previous scalars are nonnegative. Then, we recover the usual condition

of stationarity of GARCH-type models:

0 ≤ a(i), b(j) ≤ 1,

r∑
i=1

a(i) +

s∑
j=1

b(j) < 1.

3.2 Unicity of stationary DCC solutions

Even if there exist stationary solutions of the DCC model, we are not insured

a priori that they are unique. Unfortunately, such a result is not given ”for

free” by Tweedie’s Lemma 6. Moreover, the usual arguments concerning the

unicity of stationary GARCH-type solutions do not apply here. Indeed, under
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the Markov-chain form given by Equation (8), the matrix Tt is itself a function

of the random vector Xt through the ~εt factors. It is a major difference with

the CCC case, notably. That is why we need to find another strategy. Now, we

provide some unicity results under some more or less restrictive assumptions.

The major one is the boundedness of the innovations (ηt) almost surely.

Assumption U1: there exists a constant Cη such that ‖ηt‖∞ ≤ Cη a.e. for

every t.

Even questionable, this condition of boundedness is necessary to avoid some

”pathological” trajectories of (Qt). Indeed, without any constraint on the noises

(ηt), it is always possible to generate (Qt) paths that induce correlation matrices

Rt whose determinants are arbitrarily close to zero, i.e. ”almost” non-invertible.

Such a behavior would create instabilities. Moreover, the previous upper bound

Cη will be multiplied by the norms of the parameter matrices Nl hereafter, that

are typically small in practice (less than 0.1 for asset returns, typically). Then,

we feel Assumption U1 is not dramatically strong.

Assumption U2: ‖T33‖s < 1.

The matrix T33 has been introduced in Subsection 2.2, under the name T33,t.

Since T33,t does not depend on time, we have removed the index t here.

Assumption U3: The underlying DCC model is ”partially” scalar, i.e.

there exist scalars m(k) such that Mk = m(k)Im for all k = 1, . . . , ν. Moreover,

ρ(M∗) < 1 by setting

M∗ :=



(m(1))2 (m(2))2 · · · · · · (m(ν))2

1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


.

Actually, U3 will not be mandatory to get our unicity result, even if allows a

weakening of the other technical conditions. In every case, this ”partially” scalar
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case is in line with the common practice of scalar DCC (or scalar multivariate

GARCH) models.

Thanks to the latter assumptions, we will be able to bound ‖Qt‖∞ from

above and below, and λ1(Qt) from below. There tools will be crucial to prove

the unicity of stationary DCC solutions.

Lemma. 3 Under Assumption U1 and U2, for almost every trajectory of a

solution (Qt) of the DCC model, we have

‖Qt‖∞ ≤ CQ :=
‖V ech(W0)‖s +

∑µ
l=1 ‖Ñl‖sCε

1− ‖T33‖s
,

Cε :=

√
m(m+ 1)

2
m2C2

η .

Lemma. 4 Under Assumption U1 and U2, for almost every trajectory of a

solution (Qt) of the DCC model, we have

λ1(Qt) ≥ Cλ, and min
i=1,...,m

qii,t ≥ Cq,

where Cλ = λ1(W0) and Cq := mini=1,...,m(W0)ii. In addition, if we assume

U3, then we can set

Cλ =
λ1(W0)

1−
∑ν
k=1(m(k))2

and Cq =
mini=1,...,m(W0)ii
1−

∑ν
k=1(m(k))2

·

The proofs of these lemmas are postponed to the end of the appendix.

Let κ = max(ν, µ) and, for every j = 1, . . . , κ, set

βj := 1(j ≤ ν)‖Mj‖2s + 1(j ≤ µ)‖Nj‖2s
m3/2

√
CQ

Cq
√
Cλ

[
1 +

mCQ
Cq

]
.
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Let N be the (κ, κ) squared matrix

N∗ :=



β1 β2 · · · · · · βκ

1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


.

Assumption U4: ρ(N∗) < 1.

Such conditions on spectral radius are standard in the GARCH literature

(see Francq and Zakoian, 2010, e.g.). Actually, the technical assumptions U1-

U4 above will insure the unicity of (εt), (Qt) and (Rt) only. To get the unicity

of (Dt) and then of (zt) itself, we need a last assumption: with the notations of

Subsection 2.2, set

T̄t :=

 T11,t T12,t

T21,t T22,t

 , and T̄ ∗ = E[T̄t].

Note that T̄ ∗ does not depend on any particular sequence (εt) nor t, because

E[ε2kt] = 1 for every k.

Assumption U5: the spectral norm of T̄ ∗ is strictly smaller than one.

Theorem. 5 Under the assumptions of Lemmas 3 and 4, and under U4-U5,

the strictly stationary solution of the DCC model is unique, given the sequence

(ηt).

Example 1 (Continued): In the case of scalar DCC models of order one,

it is easy to specify the conditions above. Here, r = s = ν = µ = 1,

A1 = a(1)Im, B1 = b(1)Im, M1 = m(1)Im, N1 = n(1)Im.
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Assumptions U2 and U3 are equivalent and mean |m(1)| < 1. Assumption U4

is written

β1 :=
(
m(1)

)2
+
(
n(1)

)2 m3/2
√
CQ

Cq
√
Cλ

[
1 +

mCQ
Cq

]
.

Finally,

T̄ ∗ =

 a(1) b(1)

a(1) b(1)

⊗ Im.
Through elementary algebra, it can checked that the characteristic function of

T̄ ∗ is the function x 7→ (−x)m(a(1) + b(1) − x)m. Then Assumption U5 means

a(1) + b(1) < 1.

A Technical lemmas

We recall Tweedie’s criterion, a key tool to prove the existence of an invari-

ant probability measure for a Markov chain. His noteworthy advantage w.r.t.

other techniques is to avoid any irreducibility conditions. Let (Xt)t=1,2,... be a

temporally homogeneous Markov chain with a locally compact completely sepa-

rable metric state space (S,B). The transition probability is P (x,A) = P (Xt ∈

A|Xt−1 = x), where x ∈ S and A ∈ B. Theorem 2 of Tweedie (1988) provides:

Lemma. 6 Suppose that (Xt) is a Feller chain, i.e. for each bounded continu-

ous fonction h on S, the function of x given by E[h(Xt−1) |Xt−1 = x] is also

continuous.

1. If there exists, for some compact set A ∈ B, a nonnegative function g and

ε > 0 satisfying

∫
Ac

P (x, dy)g(y) ≤ g(x)− ε, x ∈ Ac, (13)

then there exists a σ−finite invariant measure µ for P with 0 < µ(A) <∞.
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2. Furthermore, if

∫
A

µ(dx)

[∫
Ac

P (x, dy)g(y)

]
<∞, (14)

then µ is finite and hence π = µ/µ(S) is an invariant probability measure.

3. Furthermore, if

∫
Ac

P (x, dy)g(y) ≤ g(x)− f(x), x ∈ Ac, (15)

then µ admits a finite f -moment, that is
∫
S
µ(dy)f(y) <∞.

Lemma. 7 For a given squared matrix T , if ρ(|T |) < 1, then there exists a

vector M > 0 such that (Id− |T |′)M > 0.

Proof of Lemma 7: Due to the condition on the spectral radius, the

squared matrix Id− |T |′ is invertible, and its inverse is given by

(Id− |T |′)−1 = Id+

∞∑
j=1

(|T |′)j .

Because every element of (|T |)j is nonnegative, for any vector L > 0, (Id− |T |′)−1 L >

0. Then, set M = (Id− |T |′)−1 L. This completes the proof. �

B Proof of Theorem 1:

First, let us check that (Xt) is a Feller chain. Let h be a bounded and continuous

function on Rd. Clearly,

E[h(Xt) |Xt−1 = x] = E[h(Ttx + ζt) |Xt−1 = x]

= E[h(ψ1(εtε
′
t)x + ψ2(εtε

′
t)) |Xt−1 = x],

for some continuous transforms ψ1 and ψ2. Note that εt = R
1/2
t ηt and that

R
1/2
t is a continuous function of Xt−1. Indeed, Rt 7→ R

1/2
t is continuous (see
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Proposition 6.3 in Serre (2010), e.g.) and invoke Xt−1 7→ Rt is continuous too

by construction. Then,

E[h(Xt) |Xt−1 = x] = E[h(ψ̃1(x)ηt.η
′
t + ψ̃2(x)) |Xt−1 = x]

= E[h(ψ̃1(x)ηt.η
′
t + ψ̃2(x))],

for some continuous transforms ψ̃1 and ψ̃2. Moreover, the values taken by R
1/2
t

belongs to some compact subset when Xt−1 describes a compact subset in Rd.

Therefore, applying the dominated convergence theorem, x 7→ E[h(Xt) |Xt−1 =

x] is continuous and (Xt) is Feller.

Second, set g(x) = 1+ |x⊗p|′M , for an arbitrary positive vector M , that will

be chosen after. Clearly,

E[g(Xt) |Xt−1 = x] = 1 + E
[
|(Ttx + ζt)

⊗p|′ |Xt−1 = x
]
M.

By expanding the Kronecker products, we can check that

(Ttx + ζt)
⊗p = (Ttx)⊗p +R(x),

with

‖R(x)‖ ≤ α0

(
‖ζt‖.‖(Ttx)⊗(p−1)‖+ . . .+ ‖ζt‖p−1.‖(Ttx)‖+ ‖ζt‖p

)
,

for some positive constant α0 and any multiplicative matrix norm ‖ · ‖.

Note that that (Ttx)⊗k = T⊗kt .x⊗k. Recall that Tt is a function of ~εt, i.e. of

εt. Then, its conditional law depends on Rt, i.e. it is a function of Xt−1. We

deduce

E[|(Ttx)⊗p| |Xt−1 = x]′M ≤ |x⊗p|′E[|T⊗pt |′ |Xt−1 = x]M

≤ |x⊗p|′
(

sup
x∈Rd

E[|T⊗pt |′ |Xt−1 = x]

)
M

≤ |x⊗p|′(T ∗)′M.
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Now, choose M as given by Lemma 7, when T is replaced by the non negative

matrix T ∗.

Moreover, εt = R
1/2
t ηt, and the (positive definite) matrix R

1/2
t can be chosen

so that all its coefficients are less than m1/2 (diagonalize this matrix in an

orthonormal basis and invoke Cauchy-Schwartz inequality). This implies there

exist constants αk such that ‖V ech(εtε
′
t)
⊗k‖ ≤ αk‖V ech(ηtη

′
t)
⊗k‖ when k ≤

p. Since E[‖η‖2p] < ∞ by assumption, there exist some constants ck,l such

that Et−1[‖ζt‖k.‖~εt‖l] < ck,l for any couple (k, l), k + l ≤ p. We deduce the

boundedness of Tt ⊗ k, k ≤ p, and

E[‖R(x)‖ |Xt−1 = x] ≤ α1

(
‖x⊗(p−1)‖+ . . .+ ‖x‖+ 1

)
,

for some positive constant α1. We have obtained

E[g(Xt) |Xt−1 = x] ≤ 1 + |x⊗p|′(T ∗)′M +O

(
p−1∑
k=0

‖x⊗k‖

)

≤ g(x)− |x⊗p|′ (Id− (T ∗)′)M +O

(
p−1∑
k=0

‖x⊗k‖

)
. (16)

By Lemma 7, (Id − (T ∗)′)M is strictly positive. Then, there exists a positive

constant c0 such that

|x⊗p|′ (Id− (T ∗)′)M ≥ c0
d∑
j=1

|xj |p,

for every d-dimensional vector x. Set N(x) :=
∑d
j=1 |xj |p. By a similar rea-

soning, there exists a positive constant c1 such that g(x) ≥ c1N(x) for every

x ∈ Rd. Moreover, by applying Hölder’s inequality,

∑
i1,...,ik

|xi1 · · ·xik | =

(
d∑
i=1

|xi|

)k
≤

(
d∑
i=1

|xi|p
)k/p

dk,

for every k ≤ p. Then there exists a positive constant c2 such that
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• g(x) ≤ 1 + ‖M‖
∑
i1,...,ip

|xi1 · · ·xip | ≤ 1 + c2N(x), and

• every “residual” term ‖x⊗k‖ is bounded above by (a scalar times)N(x)k/p,

when k < p.

Therefore, this provides

E[g(Xt) |Xt−1 = x] ≤ g(x)

[
1− c0

N(x)

g(x)
+O

(
sup

k=0,...,p−1

N(x)k/p

g(x)

)]

≤ g(x)

[
1− c0N(x)

1 + c2N(x)
+O

(
sup

k=0,...,p−1

N(x)k/p

c1N(x)

)]
.

Let us define the set A := {x ∈ Rd |N(x) ≤ ∆}, for some ∆ > 1. When ∆ is

sufficiently large and for any x 6∈ A,

0 ≤ E[g(Xt) |Xt−1 = x] ≤ g(x)

[
1− c0

2c2
+O

(
∆−1/p

c1

)]
< g(x)

[
1− c0

3c2

]
.

(17)

Since g(x) ≥ 1, it follows that E[g(Xt) |Xt−1 = x] ≤ g(x) − ε for some ε >

0. This proves Equation (13) in Lemma 6. Therefore, there exists a σ-finite

invariant measure µ for the Markov chain (Xt), and 0 < µ(A) <∞.

For any x ∈ A, Equation (16) provides

E[g(Xt) |Xt−1 = x] ≤ g(x) +O

(
p−1∑
k=0

‖x⊗k‖

)
≤ C∆p

for some constant C that does not depend on x. Then,

∫
A

µ(dx)

[∫
Ac

P (x, dy)g(y)

]
≤
∫
A

µ(dx)E[g(Xt) |Xt−1 = x] ≤ C∆pµ(A) <∞.

We deduce that µ is finite and hence π = µ/µ(Rd) is an invariant probability

measure of (Xt). This implies there exists a strictly stationary solution satisfy-

ing (8), still denoted by Xt.

Third, by invoking Equation (17), we get (15) in Lemma 6 with f(x) =
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βg(x), for some β ∈ (0, 1). Since g(x) ≥ c1N(x), we obtain

Eπ[N(Xt)] <∞. (18)

In particular and by Hölder’s inequality, this implies that Eπ[z2kit ] < ∞, for

every i = 1, . . . ,m and every k ≤ p. �

Remark. 8 Equation (18) provides a lot more than only the finiteness of z’s

moments. Globally, this means that

Eπ

[
m∑
i=1

hpit

]
<∞, Eπ

[
m∑
i=1

z2pit

]
<∞,

Eπ

 m∑
i,j=1

|Qij,t|p
 <∞, Eπ

[
m∑
i=1

|εit|2p
]
<∞.

C Proof of Theorem 2:

Let us use the same technique as in Theorem 1, but now with the function

g(x) := 1 + |x|′v,

where v = (v(1),v(2),v(3),v(4))′ will be a positive vector. Obviously, the di-

mensions of the constant subvectors v(k), k = 1, . . . , 4 are consistent with those

of Xt in (7). With obvious notations, let us rewrite

E[g(Xt) |Xt−1 = x] = 1 + E [|TtXt−1 + ζt|′ |Xt−1 = x]v

= 1 +

4∑
i=1

E

| 4∑
j=1

Tij,tX
(j)
t−1 + ζ

(i)
t |′ |Xt−1 = x

v(i)

≤ g(x) +

4∑
i=1

E
| 4∑

j=1

Tij,tX
(j)
t−1 + ζ

(i)
t |′ |Xt−1 = x

v(i) − |x(i)|′v(i)


:= g(x) +

4∑
i=1

ri(x).
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We will bound from above every term rk, k = 1, 2, 3, 4, and we will choose v

so that the sum of them becomes negative. Set v(1) := (α0e, α1e, . . . , αr−1e)
′,

with convenient vector sizes and positive real coefficients αi, i = 1, . . . , r − 1.

Knowing Xt−1 = x, we have

r1(x) ≤ α0|V0 +

r∑
i=1

Ai.V ecd(Dt−i) +

s∑
j=1

Bj .~zt−j |′e+ (α1 − α0)|V ecd(Dt−1)|′e

+ . . .+ (αr−1 − αr−2)|V ecd(Dt−r+1)|′e− αr−1|V ecd(Dt−r)|′e. (19)

Similarly, set the positive vectors

v(2) := (β0e, β1e, . . . , βs−1e)
′, v(3) := (γ0e, γ1e, . . . , γν−1e)

′,

v(4) := (δ0e, δ1e, . . . , δµ−1e)
′.

Since E[~εt |Xt−1 = x] = e, we get

r2(x) ≤ β0|V0 +

r∑
i=1

Ai.V ecd(Dt−i) +

s∑
j=1

Bj .~zt−j |′e+ (β1 − β0)|~zt−1|′e

+ . . .+ (βs−1 − βs−2)|~zt−s+1|′e− βs−1|~zt−s|′e. (20)

Moreover,

r3(x) ≤ γ0|V ech(W0) +

ν∑
k=1

M̃k.V ech(Qt−k) +

µ∑
l=1

Ñl.V ech(εt−l.ε
′
t−l)|′e

+ (γ1 − γ0)|V ech(Qt−1)|′e+ . . .+ (γν−1 − γν−2)|V ech(Qt−ν+1)|′e− γν−1|V ech(Qt−ν)|′e,

and

r4(x) ≤ δ0E[|V ech(εtε
′
t)| |Xt−1 = x]′e+ (δ1 − δ0)|V ech(εt−1ε

′
t−1)|′e

+ . . .+ (δµ−1 − δµ−2)|V ech(εt−µ+1ε
′
t−µ+1)|′e− δµ−1|V ech(εt−µε

′
t−µ)|′e.

Note that E[|V ech(εtε
′
t)|′ |Xt−1 = x]e ≤ m∗, because E[|εktεlt| |Xt−1 = x] ≤ 1

for every couple (k, l) (Cauchy-Schwartz inequality).
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Now, let us choose the vector v so that there exist some constants ε > 0 and

C0 such that, for every x ∈ Rd,

E[g(Xt) |Xt−1 = x] ≤ g(x)− ε|x|′e+ C0. (21)

For instance, consider the coefficient of the l-th component of Dt−i, i.e.

ht−i,l, for i = 1, . . . , r and l = 1, . . . ,m, that appeared in the r.h.s. of (19)

and (20). This coefficient is

(α0 + β0)

m∑
k=1

a
(i)
k,l + αi − αi−1

where αr = 0 by convention. Such a coefficient should be negative for every l.

Therefore, by setting

a∗i := sup
l=1,...,m

m∑
k=1

a
(i)
k,l,

we would like to satisfy

(α0 + β0)a∗i + αi − αi−1 < 0, ∀i = 1, . . . , r. (22)

Similarly, dealing with v(2), we have to satisfy the following condition:

(α0 + β0)b∗j + βj − βj−1 < 0, ∀j = 1, . . . , s, (23)

where βs = 0 and b∗j := supl=1,...,m

∑m
k=1 b

(i)
k,l. To deal with v(3), note that,

knowing Xt−1 = x,

r3(x) ≤ γ0{|V ech(W0)|′e+ |
ν∑
k=1

M̃k.V ech(Qt−k)|′e+ |
µ∑
l=1

Ñl.V ech(εt−l.ε
′
t−l)|′e}

+ (γ1 − γ0)|V ech(Qt−1)|′e+ . . .+ (γν−1 − γν−2)|V ech(Qt−ν+1)|′e

− γν−1|V ech(Qt−ν)|′e. (24)
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The coefficient of the (p, q) element of Qt−k is denoted by qp,q,k. Recall that

M̃k.V ech(Qt−k) = V ech(MkQt−kM
′
k) = V ech

[ m∑
p,q=1

m
(k)
i,pm

(k)
j,q qp,q,k

]
i,j

 .

Then, the coefficient of qp,q,k in the r.h.s. of (24) is (less than) then

γ0

m∑
i,j=1;i≥j

|m(k)
i,pm

(k)
j,q |+ (γk − γk−1).

Setting

m∗k := sup
p,q

m∑
i,j=1;i≥j

|m(k)
i,pm

(k)
j,q |, k = 1, . . . , ν,

we would like to satisfy

γ0m
∗
k + γk − γk−1 < 0, ∀k = 1, . . . , ν, (25)

with γν := 0.

Let us do the same analysis with the coefficients of V ech(εt−lε
′
r−l), l =

1, . . . , µ. For instance, the coefficient corresponding to the cell (p, q) is given by

γ0

m∑
i,j=1;i≥j

|n(l)i,pn
(l)
j,q|+ (δl − δl−1),

with δµ := 0. Let us define

n∗l := sup
p,q

m∑
i,j=1;i≥j

|n(l)i,pn
(l)
j,q|, l = 1, . . . , µ.

Then, setting δν = 0, we have to satisfy

γ0n
∗
l + δl − δl−1 < 0, ∀l = 1, . . . , µ. (26)

We argue it is possible to find v that satisfies the constraints (22), (23), (25)
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and (26) simultaneously. Define

a∗ =

r∑
i=1

a∗i , b∗ =

s∑
j=1

b∗j , m∗ =

ν∑
k=1

m∗k.

A solution of the latter problem is given by

α0 =
a∗(r + s)

1− a∗ − b∗
+ r, β0 =

b∗(r + s)

1− a∗ − b∗
+ s, γ0 =

ν

1−m∗
,

αi = (r − i) + (α0 + β0)[a∗r + a∗r−1 + . . .+ a∗i+1], i = 1, . . . , r − 1,

βj = (s− j) + (α0 + β0)[b∗s + b∗s−1 + . . .+ b∗j+1], j = 1, . . . , s− 1,

γk = (ν − k) + γ0[m∗ν +m∗ν−1 + . . .+m∗k+1], k = 1, . . . , ν − 1, and

δl = (µ− l) + γ0[n∗ν + n∗ν−1 + . . .+ n∗l+1], l = 0, . . . , µ− 1.

Therefore, we have proved the inequality (21), with the constant

C0 = (α0 + β0)|V0|′e+ γ0|V ech(W0)|′e+ δ0m
∗.

Then, it is easy to conclude, following the same arguments as in Theorem 1.

Particularly, to apply Tweedie’s criterion (Lemma 6), define a set A := {x ∈

Rd | |x|′e ≤ ∆}, with ∆ > 1. For a sufficiently large ∆, and when x does not

belong to A, we obtain

E[g(Xt) |Xt−1 = x] ≤ g(x)− ε/2, (27)

providing Equation (13). This concludes the proof. �
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D Proof of Theorem 5:

Imagine there exist two strongly stationary solutions (Xt) and (X̃t). Since both

of them satisfy Equation (8), with obvious notations, we can write for every t

Xt = Tt.Xt−1 + ζt, and X̃t = T̃t.X̃t−1 + ζ̃t.

Note that the difference between Tt and T̃t is only due to the (a priori different)

factors εt and ε̃t. We want to prove that, for every t, we have in fact Xt = X̃t

almost surely.

The problem will be solved if we prove the unicity of the process (X
(3)
t , X

(4)
t ),

given by subvectors of (Xt). For the moment, assume it has been proved. Recall

that

X
(3)
t := (V ech(Qt), . . . , V ech(Qt−ν+1))′, and

X
(4)
t := (V ech(εtε

′
t), . . . , V ech(εt−µ+1ε

′
t−µ+1))′.

Then (Rt) is unique, due to (3). Moreover, the sequence of the random matrices

(Tt) and of the noises (ζt) are unique too, similarly to the CCC case. It remains

to prove the unicity of Yt := (X
(1)
t , X

(2)
t ), that is related to the instantaneous

volatilities (Dt) and to the returns (zt) themselves. With our notations, we have

Yt = T̄tYt−1 + ζ̄t, and Ỹt = T̄tỸt−1 + ζ̄t,

for every t, by setting ζ̄t = (ζ
(1)
t , ζ

(2)
t ). The arguments are then standard: for

instance, see Theorem 2.4’s proof in Francq and Zakoian (2010). To get the

unicity of (Yt), it is sufficient to assume that the top Lyapunov exponent γ of

the sequence of random matrices (T̄t) is strictly negative. This is the case under

Assumption U5 because, for every sequence (εt),

E[ln ‖T̄tT̄t−1 . . . T̄1‖1] ≤ lnE[‖T̄tT̄t−1 . . . T̄1‖1] ≤ ln ‖
(
T̄ ∗
)t ‖1,

by invoking the matrix norm ‖A‖1 :=
∑
i,j |aij |. The fist inequality is due
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to Jensen’s inequality. The second one is a consequence of the conditional

independence between all the r.v. εt, . . . , ε1. Indeed, every term of the random

matrix T̄t, say the (i, j)-th, is the product of a random variable ε
2αij

kij ,t
and a

deterministic term bij , where αij ∈ {0, 1} and kij is an index between 1 and m.

Denote by bij the (i, j)-th term of the matrix T̄ ∗. Actually, ‖T̄tT̄t−1 . . . T̄1‖1 is

a sum of terms like

ε
2αi1j1

ki1j1
,tε

2αi2j2

ki2j2
,t−1 . . . ε

2αitjt

kitjt ,1
|bi1j1 . . . bitjt |,

over some collection of indices i1, j1, . . . , it, jt. The expectation of this term is

simply |bi1j1 . . . bitjt |. By collecting all the latter terms, we get ‖
(
T̄ ∗
)t ‖1. We

deduce there exists a constant C s.t.

E[ln ‖T̄tT̄t−1 . . . T̄1‖1] ≤ ln
{
C‖
(
T̄ ∗
)t ‖s} ≤ ln

(
C‖T̄ ∗‖ts

)
.

Therefore, since γ = limt→∞ t−1E[ln ‖T̄tT̄t−1 . . . T̄1‖1], γ is strictly negative

under Assumption U5, providing the unicity of the processes (Dt) and (zt)

(once we assume the unicity of the processes (Qt) and (εt)).

Now, let us prove the unicity of (X
(3)
t , X

(4)
t ) or, in other terms, of (Qt, εt).

This is clearly more tricky, because we will have to deal with the nonlinear

feature of the DCC specification. Here, the convenient matrix norm will be the

spectral norm ‖ · ‖s. Consider two stationary solutions (Qt, εt) and (Q̃t, ε̃t).

Since the spectral norm is multiplicative, we deduce from (4) that

E[‖Qt − Q̃t‖s] ≤
ν∑
k=1

‖Mk‖2sE[‖Qt−k − Q̃t−k‖s]

+

µ∑
l=1

‖Nl‖2sE[‖εt−lε′t−l − ε̃t−lε̃′t−l‖s]. (28)

The key point will be to bound from above the terms E[‖εt−lε′t−l − ε̃t−lε̃′t−l‖s]

by a function of E[‖Qt−l − Q̃t−l‖s]. To lighten the indices, we assume l = 0.
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Clearly, we have

‖εtε′t − ε̃tε̃′t‖s = ‖R1/2
t ηtη

′
tR

1/2
t − R̃1/2

t ηtη
′
tR̃

1/2
t ‖s

≤ ‖(R1/2
t − R̃1/2

t )ηtη
′
tR

1/2
t ‖s + ‖R̃1/2

t ηtη
′
t(R

1/2
t − R̃1/2

t )‖s

≤ ‖R1/2
t − R̃1/2

t ‖s‖ηtη′t‖s‖R
1/2
t ‖s + ‖R̃1/2

t ‖s‖ηtη′t‖s‖R
1/2
t − R̃1/2

t ‖s.

Since the rank of ηtη
′
t is one, then ‖ηtη′t‖s = Tr(ηtη

′
t) = ‖ηt‖22 and Et−1[‖ηtη′t‖s] =

m. Moreover,

‖R1/2
t ‖s = ρ(Rt)

1/2 ≤ Tr(Rt)1/2 =
√
m.

We deduce

Et−1[‖εtε′t − ε̃tε̃′t‖s] ≤ 2m3/2‖R1/2
t − R̃1/2

t ‖s, (29)

because R
1/2
t and R̃

1/2
t are It−1-measurable. Since the spectral norm is unitarily

invariant, Theorem 6.2 in Hingham (2008) provides

‖R1/2
t − R̃1/2

t ‖s ≤
1

λ1(Rt)1/2 + λ1(R̃t)1/2
‖Rt − R̃t‖s. (30)

Note that, for any t,

λ1(Rt) = min
x

x′Rtx

x′x
= min

x

x′diag(Qt)
−1/2Qtdiag(Qt)

−1/2x

x′x

≥ min
y

y′Qty

y′y
min
x

‖diag(Qt)
−1/2x‖22

‖x‖22

≥ λ1(Qt) min
i

1

qii,t
·

Invoking Lemmas 3 and 4, we deduce

λ1(Rt) ≥ λ1(Qt)/CQ ≥ Cλ/CQ, (31)

and the same inequality applies with λ1(R̃t). Therefore, we get a.e.

1

λ1(Rt)1/2 + λ1(R̃t)1/2
≤
√
CQ

2
√
Cλ
· (32)
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Moreover,

Rt − R̃t = diag(Qt)
−1/2(Qt − Q̃t)diag(Qt)

−1/2

+ (diag(Qt)
−1/2 − diag(Q̃t)

−1/2)Q̃tdiag(Qt)
−1/2

+ diag(Q̃t)
−1/2Q̃t(diag(Qt)

−1/2 − diag(Q̃t)
−1/2) := R1 +R2 +R3.

By Lemma 4, we obtain

‖R1‖s = ‖diag(Qt)
−1/2(Qt − Q̃t)diag(Qt)

−1/2‖s ≤ ‖diag(Qt)
−1/2‖2s‖Qt − Q̃t‖s

≤ 1

mini qii,t
‖Qt − Q̃t‖s ≤

1

Cq
‖Qt − Q̃t‖s.

Since ‖A‖∞ ≤ ‖A‖s ≤ m‖A‖∞ for any matrix A, we get

‖R2‖s ≤ ‖diag(Qt)
−1/2‖s‖Q̃t‖s‖diag(Qt)

−1/2 − diag(Q̃t)
−1/2‖s

≤ m‖Qt‖∞C−1/2q ‖diag

(
qii,t − q̃ii,t

q
1/2
ii,t q̃

1/2
ii,t (q

1/2
ii,t + q̃

1/2
ii,t )

)
‖s

≤ ‖Qt − Q̃t‖s
mCQ
2C2

q

·

Similarly,

‖R3‖s ≤ ‖Qt − Q̃t‖s
mCQ
2C2

q

·

Globally, we get

‖Rt − R̃t‖s ≤
1

Cq

[
1 +

mCQ
Cq

]
‖Qt − Q̃t‖s (33)

everywhere. Recalling (29), (30) (32) and (33), we deduce

‖R1/2
t − R̃1/2

t ‖s ≤
√
CQ

2Cq
√
Cλ

[
1 +

mCQ
Cq

]
‖Qt − Q̃t‖s, and (34)

Et−1[‖εtε′t − ε̃tε̃′t‖s] ≤
m3/2

√
CQ

Cq
√
Cλ

[
1 +

mCQ
Cq

]
‖Qt − Q̃t‖s. (35)

Set vt := E[‖Qt− Q̃t‖s]. By using the previous inequality and taking successive
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conditional expectations in (28), we obtain

vt ≤
ν∑
k=1

‖Mk‖2svt−k +

µ∑
l=1

‖Nl‖2s
m3/2

√
CQ

Cq
√
Cλ

[
1 +

mCQ
Cq

]
vt−l :=

κ∑
j=1

βjvt−j ,

(36)

for all t and with our notations. Under Assumption U4, vt → 0 when t → ∞.

This implies that Qt = Q̃t a.e. because (vt) can be initialized arbitrarily far in

the past. We deduce that Rt = R̃t a.e. and that εt = ε̃t a.e., knowing (ηt).

This concludes the proof. �

Proof of Lemma 3: With the notations of Subsection 2.2, consider the dy-

namics of the random vector X
(3)
t := (V ech(Qt), . . . , V ech(Qt−ν+1))′. Clearly,

X
(3)
t = T33X

(3)
t−1 + πt,

where

πt := V ech(W0) +

µ∑
l=1

ÑlV ech(εt−lε
′
t−l) := Cπ.

Under U1, (πt) is bounded from above. Moreover, under Assumption U2, the

sum
∑+∞
k=0 T

k
33πt−k is absolutely convergent a.e., and thenX

(3)
t =

∑+∞
k=0 T

k
33πt−k.

To be specific, since ‖ · ‖s is a multiplicative norm, we have for every realization

‖πt‖s ≤ ‖V ech(W0)‖s +

µ∑
l=1

‖Ñl‖sCε.

Indeed, we check that, for any t,

‖V ech(εtε
′
t)‖s = ‖V ech(εtε

′
t)‖2 ≤

√
m(m+ 1)

2
‖εt‖2∞.

Moreover, since ‖x‖s = ‖x‖2 for any vector x and since ‖A‖∞ ≤ ‖A‖s for any

matrix A (Lütkepohl, 1996, p. 111), we get

‖εt‖∞ ≤ ‖εt‖s ≤ ‖R1/2
t ηt‖s ≤ ‖R1/2

t ‖s‖ηt‖s

≤ ‖Rt‖1/2s ‖ηt‖2 ≤ Tr(Rt)1/2
√
mCη ≤ mCη.
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This provides the inequality

‖V ech(εt−lε
′
t−l)‖s ≤

√
m(m+ 1)

2
m2C2

η := Cε,

for every t and l. We deduce

‖X(3)
t ‖s ≤

+∞∑
k=0

‖T33‖ksCπ =
Cπ

1− ‖T33‖s
:= CQ, and

‖Qt‖∞ ≤ ‖X(3)
t ‖∞ ≤ ‖X

(3)
t ‖s ≤ CQ. �

Proof of Lemma 4: Is it known that, for any two squared definite positive

matrices A and B, λ1(A+B) ≥ λ1(A)+λ1(B) (Weyl’s Theorem. See Lütkepohl,

1996, p. 75). In our case, we deduce obviously that λ1(Qt) ≥ λ1(W0) every-

where, due to Equation (4).

We can improve this lower bound in the particular case of ”partially” scalar

DCC models. Indeed, in this case, we have

λ1(Qt) ≥ λ1(W0)+

ν∑
k=1

λ1((m(k))2Qt−k) ≥ λ1(W0)+

ν∑
k=1

(m(k))2λ1(Qt−k). (37)

Introduce the random vector ~λt := (λ1(Qt), . . . , λ1(Qt−ν+1))′ and ~λW := (λ1(W0), 0, . . . , 0)′.

Because of (37), we have for every t

~λt ≥M∗~λt−1 + ~λW .

Under Assumption U3, it is easy to check that
∑+∞
k=0(M∗)k is absolutely con-

vergent and that

~λt ≥
+∞∑
k=0

(M∗)k~λW := ~λ∞,

for every t. Obviously, M∗~λ∞ + ~λW = ~λ∞. Due to the definition of M∗, this

implies that all the components of ~λ∞ are the same, i.e. there exists a real

number λ∞ such that ~λ∞ = λ∞e, e ∈ Rν . Taking the first component of the
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vectorial equation λ∞M
∗e+ ~λW = λ∞e provides λ∞

∑ν
k=1(m(k))2 + λ1(W0) =

λ∞. This proves the lower bound of λ1(Qt) under U3.

Consider a fixed index i = 1, . . . ,m. The reasoning for the sequence (qii,t)t

is exactly similar, because

qii,t ≥ (W0)ii +

ν∑
k=1

(m(k))2qii,t−k,

for all t, this inequality playing the same role as (37). So the result. �
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