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We propose a new goodness-of-fit test for copulas, based on empirical copula processes and nonpara-
metric bootstrap counterparts. The standard Kolmogorov-Smirnov type test for copulas that takes
the supremum of the empirical copula process indexed by orthants is extended by test statistics
based on the supremum of the empirical copula process indexed by families of L, disjoint boxes,
with L,, slowly tending to infinity. Although the underlying empirical process does not converge, the
critical values of our new test statistic can be consistently estimated by nonparametric bootstrap
techniques, under simple or composite null assumptions. Simulations confirm that the power of the
new procedure is oftentimes higher than the power of the standard Kolmogorov-Smirnov or the
Cramér-von Mises tests for copulas.
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1. Introduction

This paper introduces a new powerful goodness-of-fit (GOF) test for copulas in [0, 1]¢, d > 2, based
on the empirical copula process

Zin(u) = \/n(C, — C)(u), u = (u,...,ug) € [0,1]% (1.1)

given a sample of n independent random vectors X; = (X;1,...,Xiq) € R4, i = 1,...,n, from a
common distribution function H. Let C' be the associated copula function C, as given by Sklar’s
Theorem (Sklar, 1959). Here C,, is the usual empirical copula, as introduced by Deheuvels (1979):

*The research of Wegkamp is supported in part by NSF DMS 1007444 and NSF DMS 1310119 grants.
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2 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

denoting by H,, the joint cdf of the sample (X,...,X,), F, ; the j-th empirical cdf associated to
(X1, Xnj), j=1,...,d, and F,, ; its empirical quantile function, we have

Cn(w) = Hn (Fy, 1 (u), - FL 4 (ua))

by definition, for every u = (uy, ..., uq) € [0,1]%. The Kolmogorov-Smirnov (KS) test statistic for
testing of the null hypothesis Hy : C' = Cj is
KS, = sup |\/E(Cn - CO)(u)| (1'2)
ue(0,1]4

The Cramér-von Mises statistic (CvM) is

CM, = j (VA(Cs — Co)(u)}? AT, (). (1.3)

It is well-known, see, for instance, Fermanian et al. (2004), that Z,, and its bootstrap counterpart
Z%, defined in (2. 4) below, both converge weakly to the same tight Gaussian process in £ ([0, 1]¢)
under the null hypothesis. Therefore, we can compute the a-upper points of KS,, and CM,, via the
bootstrap. To the best of our knowledge, all the proposed GOF tests rely on simulation-based pro-
cedures to calculate their corresponding p-values, with the notable exception of the distribution-free
test statistics of Fermanian (2005). The latter idea has been further developed by Scaillet (2007)
and Fermanian and Wegkamp (2012). A parametric bootstrap has been proposed (Genest and
Rémillard, 2008) to tackle composite null hypotheses, while Rémillard and Scaillet (2009) advocate
the use of the multiplier central limit theorem to build an alternative bootstrap empirical copula
process. Biicher and Dette (2010) give a survey and a comparison of various bootstrap methods.

The goal of this paper is to develop a more powerful test than the KS test (1.2) and CvM test
(1.3) for simple and composite null hypotheses. In the case of a null simple hypothesis Hy : C = Cy,
we propose the following test that rejects Hy for large values of the test statistic

T, := 5, 5P Z |Z,(By)|. (1.4)
Brn =1
The supremum is taken over all disjoint boxes By, ..., By, < [0,1]¢ of the form H?zl(aj, b;], using
the convention
Zn((a’17 bl] X X (ad? bd]) = Aal blAag b2 Agd,bdzn(u)7 (1'5)
for any arbitrary point u € [0,1]¢ and for all 0 < a; <b;<1,j=1,...,d. Here, we have used the

usual operators AJ defined for every function f by
(A;bf) (ll) = f(ulv oo 7uj71,b7 Ujtly--ny ud) - f(ulv ceeyUj—1,A, UG 41, - - »ud)a
for all u € [0,1]¢, and all real numbers a and b.

In the empirical part, we will also consider the statistics ﬁ‘n defined in a similar way as T:

'%2

= max Z |Zn ( (1.6)

Bi,..,BL, =
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ATV Test for Copulas 3

but here the maximum is taken over all disjoint rectangles B, ..., By, of the form B = H;”:l(aj, b;]

n / . ~ . .
with a;, b; belonging to a grid {ﬁ, ﬁ, e lni—/jj} Asymptotically, T,, and T,, behave identically

(since |T,, — Tp| = op(1)), but T, is computationally more tractable.

Now, if L,, = L for all n, the collection of boxes is sufficiently small that we can still appeal to
the weak convergence of Z,, and Z¥ in conjunction with the continuous mapping theorem, to obtain
a-upper points of the test statistic T,, via the bootstrap. Taking L,, = +0o0 for all n, or equivalently,
if we consider all families of disjoint boxes in [0, 1]¢ (possibly partitions), the statistic T,, is equal
to the total variation distance TV (Z,,) of Z,,. The resulting test is not statistically meaningful as
TV (Z,) is maximal, to wit, TV (Z,) = n'/> — 400. The problem is to find a rich collection that
quickly detects departure from the null, but still yields a consistent test. The main novelty of our
approach is the fact that we let L,,, the number of boxes, slowly tend to co in that L, ~ (logn)?,
0 < v < 1. While in this case the process Z,, no longer converges, Theorem 1 in Section 2 states
that we can still consistently estimate the distribution of the process Z,, by the bootstrap. We refer
to our procedure as the Asymptotic Total Variation (ATV) test. The considered families of boxes
are finer and finer, presumably improving the power of the test, while for each n large enough, we
still have a consistent test in that we control the type 1 error. A key observation is that under the
null hypothesis Hy : C' = Cy, we have T,, < L,, supg |Z,(B)| = Op(Ly), while under the alternative
Hy : C = Cy for some fixed Cy # Cy, T, is much larger since the bias is at least of order O(n1/2).

Theorem 1 extends the surprising result obtained by Radulovié¢ (2012) for empirical processes
indexed by sums of indicator functions of VC-graph classes (see Theorem 13 in the appendix). We
require very mild conditions on the copula function C'. This is one of the few notable exceptions
known to us in the literature where the bootstrap “works”, that is, the conditional bootstrap
distribution consistently estimates the distribution of the test statistic, while the distribution of the
statistic itself does not converge. For other instances of this phenomenon, we refer to Bickel and
Freedman (1983) or Radulovié¢ (1998, 2012, 2013), more recently.

Section 3 considers the more general hypothesis that the underlying copula C' belongs to some
parametric copula family {Cy, # € © < RP}. Given a sufficiently regular estimator ¢ and its boot-
strap counterpart 5*, we adjust our statistic (1.4) and its non-parametric bootstrap counterpart
to obtain a consistent level « test (Theorem 4). Again, the result is established under very mild
regularity conditions on the copula Cy and the estimators 9 and 0. Incidentally, we introduce a
new bootstrap procedure under composite null hypotheses, an alternative to the usual parametric
bootstrap or the multiplier CLT.

Section 4 then reports a small numerical study where we show that, in complex but realistic sit-
uations, our test (1.4) is superior to the Kolmogorov-Smirnov and the Cramér-von Mises tests. We
also comment on a possible inadequacy in the way the copula GOF tests are commonly evaluated.
Finally, the proofs are collected in Section 5. The appendix contains some technical results from
Segers (2012) and Radulovié (2012) and a description of the implementation of the proposed tests.

2. The Asymptotic Total Variation Test

NOTATIONS. Let H be the distribution function of the random vector X with marginals Fy, ..., Fy.
We will assume throughout the paper that H is continuous. Let (Xi,...,X,) be independent
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4 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

copies of X. We denote the generalized inverse of a distribution function F' by F~. For instance,

F; (u) = inf{x | Fj() > u}. The empirical counterparts of H and any F} are, respectively,

n

1
H,(x) = ﬁZI{Xigx},xeRd
1=1
1 n
F,;(z) = ﬁZI{X,;J-Sx},xeR, j=1,....d.

i=1

The copula function of X is C(u) = H(F; (w1),...,F; (ua)), u = (u1,...,uq) € [0,1]¢, and its
empirical estimate is Cn(u) = H,(F, 1(u1),...,F, ;(uq)). The empirical copula process Z,(u) =
\/n(C,, — C)(u) is already defined in (1.1). We define F,, as the class of functions

Ly
f(x) = D] ali{x e B}, (2.1)
k=1

with ¢ € {—1,+1} and disjoint boxes By, of the form ]_[?Zl(aj,bj] in the unit cube [0,1]¢, for all
1<k<L, Welet

Ly
Zn(f) = ) erZn(Bg),
k=1

and observe that

Ly
Tn = Sup |Zn(f)| = sup Z |Z7L(Bk)|7
feFn Bi,....Br, j—3
where the supremum is taken over all disjoint boxes By, ..., Bz, of the unit square [0, 1]%.

If L, = L for all n, then F,, = F and Z,, converges in {*(F) to a Gaussian process under
regularity conditions on C, see, for instance, Fermanian et al. (2004) and Segers (2012). As a con-
sequence of the continuous mapping theorem, T, trivially converges weakly as well. However, if
L,, — o0, as n — 00, this is no longer true as the process Z,, does not converge weakly.

The main point of this paper is to show that, provided L, = (logn)” for some 0 < v < 1, the
distribution of T,, can be estimated by the bootstrap. The bootstrap counterparts of the above

processes are defined as follows. Let the bootstrap sample (X¥,---,X*) be obtained by sampling
with replacement from X, -+, X,,. We write
1 n
HA(x) = = > 1{X} <x}, xe R, (2.2)
s

for the empirical cdf based on the bootstrap, with marginals

1 n
F* (x):EZuXi’jjsx},xeR,j:L...,d. (2.3)

n,J
i=1

We denote its associated empirical copula function by C¥*. The bootstrap empirical copula process
is

Z} = VA(Ch = Cp) = Vi {HE(FLT, . Fig) — Ho(Fry, . Fr ) (2.4)
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ATV Test for Copulas 5

AssuMPTIONS. We will assume the following set of assumptions:

(C1) For any j = 1,...,d, for all u € [0,1]¢ with 0 < u; < 1, the first-order partial derivative
Cj(u) = 0C(u)/0u; exists and is of bounded variation (Hildebrandt, 1963, e.g.). Moreover, it
satisfies, for some r > 0, 8 = 0 and K < o0,

() = )] < K (w7 (1= )™ + 077 (1 ) )2 g — il

for all u,v € [0,1]4, 0 < uj,v; < 1. As in Segers (2013), we extend the domain of each C; to
the whole [0,1]¢ by setting

C(u) = hmsuphio % ifue [O, l]d,Uj — O;
J limsupyp CH=GE=EL i ue [0,1]uy = 1

Here e; is the jth coordinate vector in R,

(C2) The number L, is of order (logn)” for some 0 < v < 1.

REMARK. We know that continuity of the partial derivatives of C' on (0,1)? is required for
weak convergence, see Fermanian et al. (2004) and Segers (2012). The requirement that the par-
tial derivatives are of bounded variation is natural since we compute the supremum of Z, over
increasingly finer families of boxes in [0,1]%. The process Z,(u) is asymptotically equivalent to
an (1) = 39 Cj(w)an ;(u;) with oy, (w) = /(H, — H)(u) and o j(u;) = /i(F, ; — F)(u;) (see
Proposition 10).

REMARK. The additional requirement (C1) is weaker than imposing a Hélder condition on the
derivatives. Segers (2012) imposes a slightly stronger condition on the second-order partial deriva-
tives of C' (corresponding to r = 1) to obtain an almost sure representation of the empirical copula
process.

Indeed, consider the bivariate Archimedean copula C' whose generator is given by ¢ : (0,1] — R*,
P(t) := exp(t~?) — e for some # > 0. This copula, numbered (4.2.20) in Nelsen (2006), is
_ _ -1/6
Clur,uz) = [In (exp(uy?) + exp(uz?) — )| 7",
for any u € [0, 1]%. It can be checked easily that, when u — 0, the copula density

92

Cra(u,u) ~ Zu_e_l.

Therefore, C' cannot fulfill Condition 4.1 in Segers (2012). Nonetheless, by the mean value theorem
and simple calculations, we can prove that

|C1(u) — C1(v)| < K(min(ug,v1)) 27 2|uy — vy | + K (min(ug,v1)) " Hug — val.

Since the same reasoning can be done with Cy, our condition (C1) is fulfilled.
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6 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

The second assumption (C2) allows for sub-logarithmic rate in the sample size for the number of
boxes considered. In practice, even this fairly slow rate yields much better tests, see our simulations
in Section 4. And we have not observed any significant differences empirically between choosing
v =1 and ~y closed to one.

Our first result states that the processes Z,, and Z} are close in the bounded Lipschitz distance
that characterizes weak convergence. Formally, we show that

B [sup [E[A(Z,)] - B[z (2.
is asymptotically negligible. Here E* is the conditional expectation with respect to the bootstrap

sample and the supremum in (2.5) is taken over BLy = BLi({*(F,)), the class of all uniformly
bounded, Lipschitz functionals h : £*(F,) — R with Lipschitz constant 1, that is,

swp_ [h@)| <1 (26)
xeé“f“‘(]:n)
and, for all x,y € £*(F,),
|h(z) — h(y)| < sup [z(f) —y(f)l- (2.7)
JeFn

THEOREM 1. Let Zy, = {Zn(f), f € Fn} and Z% = {Z%(f), f € Fn} with F,, as defined in (2.1)
above. Under conditions (C1) and (C2), we have

lim E [ sup [E[A(Z,)] — E* [h(ZZ)“] = 0. (2.8)

n—x heBL,

COROLLARY 2. Under conditions (C1) and (C2) and for any Lipschitz functional ¢ : £*(F,) - R,
we have

lim E [sup Elg(6(Z.))] — E*[g(¢(z:>)]] —0.

—>L
n g

The supremum is taken over all uniformly bounded Lipschitz functions g : R — R with sup,, |g(z)| <
1 and [g(x) — g(y)| < |z —yl.

Corollary 2 follows directly from Theorem 1 since the composition g(¢(-)) is bounded Lipschitz
as long as ¢ is Lipschitz. In particular, since the mapping ¢(X) = SUp . F |o(f)| is Lipschitz,
Corollary 2 implies that we can approximate the distribution of the statistic T,, by the conditional
(bootstrap) distribution of

Ln
T = sup |Zi(f)| = sup > [ZE(By)l: (2.9)
feFn BiyeBry p=1

COROLLARY 3. Under conditions (C1) and (C2), we have

lim E | sup [E[g (T.)] - E* [g (sz] 0. (2.10)

n g

The supremum is taken over all uniformly bounded Lipschitz functions g : R — R with sup,, |g(z)| <
1 and |g(x) — g(y)| < |z —y| for all z,y € R.
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ATV Test for Copulas 7

Actually, T,, is just one of many potentially useful asymptotic variation type statistics. We
mention two other possible statistics:

e Generalized x? statistics. Form an equidistant grid i/p, i = 0,...,p = lLrl/dJ + 1 on each

axis of [0,1]¢, and use the (p+1)¢ points of the resulting equidistant grid on [0, 1]¢ as the cor-
ners of p? disjoint boxes B;. We define the statistic >}, |Z,,(B;)|?, which, for fixed L,,, reduces
to a non-normalized x? statistics, in the same spirit as in Dobrié¢ and Schmid (2005). Here,
since the statistic as a function of Z, is Lipschitz on £*(F,), L, — oo is allowed. However,
we suspect that the full power of Theorem 1 is not needed, since Radulovié¢ (2013) proved a
result similar to Theorem 1 via a more direct approach, in the non-copula, i.i.d. setting under
a weaker restriction on the partition size.

e Generalized Kuiper statistics. We start with the usual Kuiper statistics

Ky =7Z,(B1) = Slép |Zn(B)|,

where supremum is taken over all boxes B < [0,1]¢, and achieved at B;. Then we define
recursively, given boxes By, ..., B,, with m < L,

K41 = Zn(Bps1) = sup |Zn(B)]-
BnBj=,j=1,....,m

The supremum is taken over all boxes B that are disjoint with By, ..., B,,, and we denote by
By, +1 for the box at which supremum is achieved. The resulting sum Zf;l K; of statistics
K, based on disjoint boxes Bj, is a Lipschitz functional of Z,, and Corollary 2 applies to this
statistics (in lieu of T,,) as well.

The performance and the actual implementation of these additional statistics will not be dis-
cussed here, but we will report on them elsewhere. This paper offers a numerical study only as a
proof of principle and for this purpose we used the straightforward statistic T,, and optimization
scheme (pure random search) to demonstrate the applicability of Theorem 1. Nevertheless, even
this conservative approach resulted in a superior performance.

REMARK. While exact computation of T,, is impossible, we found that a simple random search
algorithm performed very well in our simulation studies: see Appendix C.

JDF : I think we should remove the latter remark.

REMARK. We may approximate the a-upper point of the statistic T,, by that of the bootstrap
counterpart T}. Unlike the classical bootstrap situation that assumes a continuous limiting dis-
tribution function®, the bootstrap quantile approximation can be used as follows. Let ¢ > 0 be

n order to formally transition from weak convergence results to uniform distribution approximations, the stan-
dard approach follows the steps described above and yields

1
sup [P{T,, <t} — PH{T¥ <t}| < — + min(An, A¥ )
t € ’

for Ap e =sup, P(t —e < Tp < t+e¢) and A _ = sup, P*(t —e < T} < t+¢). The weak limit result implies 6, — 0,
and the classical approach, in order to argue A, . — 0, assumes that (a) pointwise limit of ®,(t) := P(T, < t) exists
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8 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

arbitrary (independent of n) and define the Lipschitz function

t+e—
ge(z) = Uz <t} + gl{t <z <t+e}
9

We have, for §,, := sup;, [E[A(T,)] — E*[h(T?)]| with the supremum taken over all h € BLy, uni-
formly in t € R,

P{T, <t}

E* [91,e(T})] + E[gt,e(Tn)] — E* [g¢,(T})]
< PH{T} <t+e}+0n/e,

since ¢; has Lipschitz constant 1/e. A similar computation shows that P* {T* <t —e} — J,/e <
P{T, <t}, so that, uniformly in ¢, and each € > 0

P*{T: <t—e} — /e SP{T, <t} <P*{TE <t+e}+d,/c (2.11)
and in the same way we may prove

P{T, <t—c}—8,/e KP*{T} <t} <P{T, <t+e}+d,/e, (2.12)

uniformly in ¢, and each € > 0. For instance, if ¢* is the bootstrap 95% critical value of T, it is

prudent to reject the null for values of T,, larger than t* + e.

REMARK. The test for Hy : C = Cj based on the critical regions {T,, > ¢} is consistent.
Indeed, under the null, since T,, < L, supg |Z,(B)|, we have LT, is bounded in probabil-
ity, while under the alternative hypothesis, Hy : C = C; for a fixed C; # Cy, we have that
T, = \/n|Co(B) — C1(B)| - |Zn(B)|, so that n=/2T,, > |Co(B) — C1(B)|, with probability tending
to one, for any box B where Cy and C; differ. Such a box exists under the alternative and the
increasing sequence JF,, likely contains at least one such box for relatively small n. The improved
power of our test statistic is confirmed in our simulation study.

3. Parametric hypothesis

In this section we consider the problem of testing if the underlying copula C' belongs to a parametric
family C := {Cy, 0 € ©}. That is, the null hypothesis states that C = Cy, for some 6, € ©. Here
O c R?, equipped with the Euclidean norm | - ||2. Suppose that we have a consistent estimator

6 = 6(H.,,) of 6.
Replacing Cy by Cj in the definition of the test statistic T,,, we consider the process
Yo = VAlCa — Cp) = Zn = V(Cy — O), (3.1)
and its bootstrap version

Y5 = Zy — Vn(Cgs — Cp), (3-2)

and (b) the limiting distribution function is continuous. While assumption (a) does not hold in our case, we only
need that E[min(Ap e, A} )] — 0. The quantity A¥ _ is computable, which allows for numerical verification (Le.,

n,e
for a fixed € and n1 < na..., compute A:k and verify if it decreases towards zero).

yE
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ATV Test for Copulas 9

~

based on the non-parametric bootstrap estimate 0% = O(HZ*), obtained after resampling with re-
placement from the original sample. Note that

Y = Vn(CE = Cye) — V/n(Cp — Cp) # N/n(CE = Cpy). (3.3)

Indeed, the process \/n(C;; — Cj, ), while perhaps a natural candidate, does not yield a consistent
estimate of the distribution of Y,,. Indeed, the “distance” between Y,, and the latter process will
be of the order of Z}, thus asymptotically tight. On the other hand, the distance between Y,, and
Y will be of the same order of magnitude as the distance between Z,, and Z}, that tends to Z€ro
(See the proof of Theorem 1).

We stress that our approach does not involve the parametric bootstrap, as studied by Genest
and Rémillard (2008), to estimate the limiting law of copula-based statistics. In other words, we

calculate 6% after resampling from the empirical distribution H,,, and not from the law given by
the parametric copula Cj.

We impose some regularity on our parameter estimate 6.

(C3) There exists a ¢ : R — RP with {||¢||3 dH < oo such that
o — eo_de H) + £, and 9*—§=de(H;’;—Hn)+s7’;,
under the null hypothesis, with ||e,|l2 = 0,(n"%2/L,,) and |e¥|2 = opx(n~Y/2/L,) in proba-
bility.

Note that the estimators satisfying (C3) are closely related to the estimators in the class R of
regular estimators, as defined by Genest and Rémillard (2008).

ExaMPLE (Estimators based on the inversion of Kendall’s tau). As an example, we verify con-
dition (C3) for estimators based on the inversion of Kendall’s tau in the bivariate case (d = 2). Let
0 = g(7) for some twice differentiable function g and Kendall’s 7 := 4E[Cy(U, V)] — 1, with the
expectation taken over (U, V) ~ Cy. Kendall’s 7 is estimated empirically by

~ 4

Tn ::mZ Z 1{(Y; —Yi)(X; — X;) > 0} — 1.
i=1j=i+1

Then U, := 7,, + 1 is a U-statistic of order 2 for the kernel

h((z1,91); (22,92)) = 2 - H{(y2 — y1)(z2 — 1) > O}

The projection of U,, —E[U,] onto the space of all statistics of the form Y\, ¢;(X;,Y;), for arbitrary

measurable functions g; with E[¢?(X,Y)] < oo, is
= 2 E[U, - E[U,]] X,,Yi] = Z{w X, Yi) — E[ (X, Y))]}
i=1
with

P(x,y) =P(X <z,Y <y)+ P(X >2,Y >y).
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10 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

By Héjek’s projection principle,
Var(U,, — U,) = Var(U,) — Var(U,,).
From the proof of Theorem 12.3 in Van der Vaart (1998), due to Hoeffding (1948),

4n—2) 2 2, — 4
n(n—l)Cl—i_n(n—l)C Cl_ n(n —1)
with ¢; = Cov(h(X, Y1), h(X,Y3)) for X independent of Y7 and Y2, and with the same distribution

as X1, and (o = Var(h(Xy,Y1)). Thus the difference is Var(U,,) — Var((}n) is of order O(1/n?).
Consequently, U,, — E[U,,] = U, + R,, with R,, = O,(1/n) so that

Var(U,,) — Var(U,) =

Tn—1=U,—E[U,] = Up + R, = % i{l/](XmY;) —E[¢(X;,Y:)]} + Op(1/n).

Hence, if g is twice continuously differentiable in the neighborhood of 7, a limited expansion ensures
that 0 := ¢(7,,) satisfies the first part of (C3). The second (bootstrap) part of (C3) follows from the
same reasoning: We set 7F := U — 1 with

D {(y) - Y)XF - X)) >0}

1j=i+1

Uk =_— -

n
n

n—l
7

and for
Z E*[U Unl1 X5 Y]
we can show that R R
Var*(U¥ — U¥) = Var*(U}) — Var*(U})
is of order O(1/n) almost surely, using the same arguments as above, keeping in mind that the
empirical counterparts of ¢; and (> are bounded everywhere. Moreover, for

n n

1 1
n\ty = - 1X1< ;}/i< - 1X1> a}/i> )
Yn(z,y) n; { T yHﬂ;1 { T y}
we find
Ur = ZE*[U::— U] XY
=1

2 n
= - Z XE V) = B[ YN + = 3 {(n = 0)(XF V) — E¥[(n — ) (XS Y]}
i=1
The second term on the right is of order O, (1/n) as its variance equals

LV (= )X 00) € 1 330 = 06 T0) = Ope (1),
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ATV Test for Copulas 11

by the reasoning in Bickel and Freedman (1981, p.1202). This implies

B Fa = U —EAUR] = & SG(XE V) — EX[0(XE, Y]} + Oy (1/n).

i=1
Again, for a g that is twice continuously differentiable in the neighborhood of 7, a limited expansion
ensures that 6* satisfies the second part of (C3).
Moreover, we need more regularity concerning 6 — Cy itself.

(C4) For every (s,t) € [0,1]%, the function @ — Cy(u) has continuous partial derivatives Cy(u) =
(0/00)Cp(u) that satisfy a Holder condition with Hélder exponent v > 0 locally: there exists
a constant K < oo such that

sup | Cy (u) = Cy, (w)]l2 < K0 — o5,

for every € in a neighborhood of 6,. Moreover, C’go is of bounded variation.

The regularity condition (C4) is satisfied for most of standard copula families. Simple calculations
show that it is the case for the Gaussian-, Clayton- and the Frank-copula families in particular.
Although copula partial derivatives with respect to their arguments often exhibit discontinuities
or non-existence near their boundaries, justifying conditions such as (C1) (see Segers, 2012), the
derivatives 0Cy(z,y)/00 with respect to the copula parameter § behave a lot more regularly.

THEOREM 4. Let Y,, = {Y,(f), f € Fn} and Y% = {Y*(f), f € Fn} with F, in (2.1) as defined
above. Assume that conditions (C1), (C2), (C3) and (C4) hold. Then, under the null hypothesis
Hy: C=Cy, 006, we have

lim E| sup |[E[A(Y,)] —E* [h(YZ)“] =0. (3.4)

n—%  [heBL,
This result implies that the distribution of the test statistic
T, = sup Y. (f) Z Y, (Br)| (3.5)
reFn Bl ---- Ln k=1
can be “bootstrapped” by the distribution of
T* = sup |Y*(f)| = 2 |Y*(By)| (3.6)
fE.Fn B’ ) Lnk 1
COROLLARY 5. Assume that conditions (C1), (C2), (C3) and (C4) hold. Then, under the null
hypothesis Hy : C = Cy, 0 € O,

lim E [sgp Elo(2.)] - E*[g(fr::)]\] 0, (3.7)

n—o

with the supremum taken over all Lipschitz functions g : R — [—1, 1] with Lipschitz constant 1.
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12 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

Often, (C3) can be replaced by
(C3’) There exists a ¢ : R — RP with {[¢[3dC < oo such that

0—0y = % i {W(Fn1(Xin), - Fra(Xia)) = E[Y(FL(Xi 1), - Fa(Xia)]} + én,

1 n
0% — = - Z {O@} (X)), FE (X)) — o (Fra(Xin), - Fra(Xia))} + e
im1

under the null hypothesis, with ||e,|l2 = 0,(n"¥2/L,,) and |e¥*|2 = opx(n~*/2/L,) in proba-
bility.

This is a consequence of the following result.
PROPOSITION 6. Assume (C1) holds. Any estimator 0 satisfying (C%’), satisfies (C3).

Copula parameters are typically estimated through pseudo-observations or ranks, without any
assumption on the marginal distributions. For this reason the copula estimators that satisfy (C3’)
are relevant. They are very closely related to the estimators in the class R; of Genest and Rémillard
(2008). In particular, the maximum pseudo-likelihood estimator, that maximizes the pseudo log-
likelihood function {logcy dC,, over 6 € O, see, for instance, Genest et al. (1995) or Shih and Louis
(1995), satisfies (C3’) under suitable regularity conditions on the copula density cy.

Since the bootstrapped copula process Y¥ is new, it is noteworthy to stress that it provides
a valuable alternative to the usual parametric bootstrap. Now, assume L,, = L is a constant, to
retrieve the standard framework.

COROLLARY 7. Assume that conditions (C1), (C3) and (C4) hold. Then, the process {Y,(u), u €
[0,1]9} tends weakly towards a Gaussian process in £ ([0,1]?). Moreover, the bootstrapped process
{Y*(u), ue [0,1]%} converges weakly to the same Gaussian process in probability in £ ([0, 1]%).

4. Applications and Numerical Studies

We present a limited numerical study, serving as a proof of principle rather than the final word on
this subject. The evaluation of GOF tests in copula settings is a complex problem and only partial
answers can be found in literature: see the surveys of Berg (2009), Genest et al. (2009) and, more
recently, Fermanian (2012). Here, we restrict ourselves to the bivariate case. A full-scale numerical
analysis is beyond the scope of this paper.

As we said in the introduction, we have implemented TI‘n, a computationally simpler version of
T,.: see Equation (1.6). Obviously, in the case of a composite zero assumption, we have implemented
a simplified version of T, similarly. For convenience, it will be denoted by 'ﬁ“n too. Since the distance
(in probability) between T,, and T,, tends to zero (see Appendix C), the weak convergence results
are valid with TWI‘n instead of T,, or ']Tn And the reasoning to approximate p-values by bootstrap
still applies.
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ATV Test for Copulas 13
4.1. Heuristics

For two copula densities ¢q and c¢;, we define the difference sets AT and A~ as
AT ={(s,t) 1 co(s,t) > c1(s,t)}, and A~ = {(s,t) : co(s,t) < c1(s,1)}.

The proposed statistic T,, (or 1~I‘n) is designed to sample L, boxes in order to maximize the differ-
ence between the “true” and postulated copulas. In situations where the geometry of the difference
sets AT and A~ is complex, T, can “pick out” disjoint subregions of A" and A~, and one could
expect superior performance consequently. However, sometimes just a single well placed box can
pick essentially all the mass of sets AT or A~, while the remaining L,, — 1 boxes are just collecting
noise and consequently diminish the power of the statistic T,,.

Fic 1. Common comparisons. Copula density differences, through contour plots and 3D plots of synthetic
data: Clayton - Frank (left), Gumbel - Frank (center), Clayton - Gumbel (right). Their Kendall’s tau is 0.4.

Most common scenarios encountered in the literature compare Frank, Clayton, Gumbel, and
Gauss copulas with each other, after controlling for some dependence indicator (typically Kendall’s
tau): see, for instance, Berg (2009), Genest and Rémillard (2008) and Genest et al. (2009). However,
all these pairings produce trivial difference sets A* and A, as revealed in the contour plots and
3D plots of ¢y — c; of Figure 1. We see that nearly all the mass difference between copula densities
co and c; is concentrated in a single spot, located in either the lower left or upper right corner. Here
Kendall’s 7 = 0.4, but we observed similar plots for different values of 7. Therefore, these common
simulation scenarios are tailored towards many standard GOF tests such as KS and CvM tests.
We are not aware of any argument that justifies such specific types of pairing, except for analytical
tractability. Figures 2 and 3, however, paint a very different scenario with more elaborate difference
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14 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

sets AT and A~ that appear in real life situations. How often and to what extent this complex
situation is encountered in reality is largely an open issue.

In this study, the copula densities ¢; were estimated by kernel density estimators based on the
following data:

e The bivariate ARCH-like process (X1,Y1),...,(X,,Y,), with n = 10°, was generated as
follows: First, we created independent Z; ~ N(0,1) and W; = Z;(1 + 0.6W2 ,)%?, with
Wy = 0. Second, we set (X;,Y;) := (Wio0i, Wig0i+1), creating nearly independent couples (of
strongly dependent observations). Such models are commonly used in empirical finance, for
instance.

e The Mizture Copula data (X1,Y1),...,(Xn,Yy), with n = 105, are generated from the mix-
ture c1(s,t) = icp(s,t) + 2cp(1 — s,t) for the Frank copula cp with Kendall's 7 = 0.4.
Therefore, this copula has asymmetrical features, contrary to most copulas that are tested
in the literature. Obviously, other asymmetrical copulas could be built, following Liebscher
(2008) for instance.

e The Furo-Dollar data (X1,Y1),..., (X, Ys), with n = 1800, are quoted currency exchange
values. X is the daily percentage change of the Euro against the US dollar, while Y corresponds
to the daily change of the Canadian dollar against the US dollar.

e The Silver-Gold data (X1,Y1),...,(Xn,Y,), with n = 5000, presents the log ratio of the
average daily price of silver and gold futures respectively. For instance, X; = log(S;+1/5:)
based on the average price .S; of silver in US dollars on day i.

We compared Mizture copula and ARCH with the independence copula, for which ¢o(s,t) = 1.
In the case of real data (Euro-Dollar and Silver-Gold), we choose the Frank copula density with
parameters 7 = 2.6 and 7 = 3.4, respectively, for ¢y. The latter parameters were chosen after
minimizing the (estimated) L;-distance between ¢y and ¢;. The difference sets are easily depicted
by dark and bright sections of the contour plots, and the 3D plots clearly indicate that the mass
difference between copula densities ¢y and ¢; is not concentrated in a single spot.

4.2. GOF tests in practice

We generated the data sets ARCH and Mizture Copula as described above. For each data set, we
run two sets of simulations:

e (ARCH-S and Mixture-S) Test the simple null hypothesis Cy(s,t) = st using the methodology
of Section 2.

e (ARCH-C and Mixture-C) Test the composite null hypothesis that Cj is a Frank copula using
the procedure described in Section 3.

In both cases, the null hypothesis is wrong and should be rejected.

In our simulations, the statistics T,, and ']ATn are approximated (by ']~Tn in the case of T,,: see
Equation (1.6)). The number of boxes is L,, = |In’*’(n)| — 2. We approximated the p-values of
our statistics via the bootstrap procedures introduced in sections 2 and 3. For each approximation,
we used 1,000 bootstrap samples. For the second set of simulations (ARCH-C and Mixture-C),
we computed the parameters 9 and §* by the usual pseudo-maximum likelihood procedure. Each
procedure is repeated 100 times. We report the percentage of times that the computed p-value is
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ATV Test for Copulas 15

Fic 2. Complex relation (synthetic data). Copula density differences, through contour plots and 3D
plots: ARCH (left) and mizture copula (right), compared to the independence copula.

type n  ARCH-S ARCH-C Mixture-S Mixture-C

ATV 400 75% 80% 41% 25%

KS 400 6% 4% 8% 12%

CvM 400 25% 50% 6% 15%

ATV 800 100% 99% 94% 98%

KS 800 32% 50% 20% 25%

CvM 800 50% 92% 31% 84%
TABLE 1

Complex pairing, related to Figure 2: relative frequencies of rejected null hypotheses under a = 0.05.

below o« = 0.05.

Our limited numerical study confirms the above assessment. Table 1 shows that the ATV test
outperforms largely the KS and CvM tests in the case of complex pairing, while Table 2 confirms
that the ATV test is inferior in case of the commonly used pairings of Figure 1. In Table 2, for each
pair of copulas, say Clayton - Frank, we generated n observations from the first copula (Clayton),
and we tested the null hypothesis that the second copula (Frank) is the true underlying copula.
Table 3 shows that the significance level of the ATV test is below 0.05. The data were simulated
from the null hypothesis. In all tables, Kendall’s 7 = 0.4.
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Fig 3. Complex relation (actual data). Copula density differences, through contour plots and 3D plots:
Euro - Dollar (left) and Silver - Gold (right), compared to Frank copulas (with Kendall’s tau equal to 2.6

and 3.4 respectively).

5. Proofs

Throughout the proofs, we assume without loss of generality that F; = I for every j = 1,...,d
(uniform marginal distributions). This implies that H = C. This is justified by the following lemma.

LEMMA 8. Let Fj;, j = 1,...,d be continuous distribution functions. Denote by H the cdf of
(F1(X1),..., Fa(Xa)) and by C its associated copula. The empirical copula associated to the sample
(F1(X1),...,Fa(Xiq)),i=1,...,n, is denoted by C,,. We have

C(u) = C(u) = H(u) for all ue [0,1]¢.

type n  Clayton - Frank Gumbel - Frank  Clayton - Gumbel

ATV 400 42% 26% 88%
KS 400 58% 25% 90%
CvM 400 84% 47% 95%
ATV 800 92% 58% 94%
KS 800 98% 53% 98%
CvM 800 100% 73% 100%
TABLE 2

Trivial pairing, related to Figure 1: relative frequencies of rejected null hypotheses under o = 0.05.
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type n  Clayton - Clayton Gumbel - Gumbel  Frank -Frank

ATV 400 3% 2% 2%

KS 400 4% 5% 4%

CvM 400 4% 5% 4%

ATV 800 2% 4% 3%

KS 800 3% 3% 5%

CvM 800 5% 3% 6%
TABLE 3

Errors of the first kind: relative frequencies of rejected null hypotheses under a = 0.05.

Moreover,
C, (“,...,Zd) =C, <Zl7...,zd> foriy,...,iqg € {0,1,...,n}.
n n n n
Proof. This is a straightforward extension of Lemma 1 in Fermanian et al. (2004). O

Since the letter C' is reserved for the copula function, we use the letters K, Ky, K1, etc. in the
sequel to denote generic constants, and we write ||s|.. = maxi<j<als;| of s = (s1,...,sq4) € [0,1].

5.1. PROOF OF PRELIMINARY RESULTS

In general, note that, for each f € F,, defined in (2.1), we can write

L, 2'L,
Zn(f) = Z crZn(Br) = 01Zn (1),
k=1 =1

and
L
Z o (s1),

for some 0; € {—1,+1} and s; € [0,1]%, using formula (1.5). Let a,(u) := /n(H, — H)(u) =
Vn(H,, (u) —u) be the ordinary uniform empirical process in [0, 1]¢, and let its oscillation modulus
be defined as

M () = sup {|n(s) — an(s))] s = &'lc < 85,8 € [0,1]°}, (5.1)

for any § > 0.

LEMMA 9. Let (0,)n=0 be a sequence of positive real numbers such that né,/logn — . Then, we

have
M., (6,) = O(5%(log n)*/?) almost surely.

Proof. We apply Proposition 14 with A, = Koé,l/z(log n)Y/? for some constant Ky > 0. Since
n~Y2\, /8, = Ko (log n/(nén))l/2 tends to zero, this inequality can be rewritten

P (M (5) > Mo} < 2t oxp (—W)=K1nexp(—K2K§w<1>1ogn),
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18 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

for some constants K7, K5 and n sufficiently large. When K is sufficiently large, we check that

P (M., (3,) > An} < 2

for some constant K3. Invoke the Borel-Cantelli Lemma to conclude the proof. O

In addition, let o, j(u) = \/n(Fp ;—Fj)(uw) = /n(F, j(u)—u) be the ordinary uniform (marginal)
empirical process in [0, 1], and we define

Zn(8) s)a, j(S;). (5.2)

H'Mg

PROPOSITION 10. Under conditions (C1) and (C2), we have

lim sup
n=% peBL,

E[h(Z0)) ~ E[h(Z,)]| = 0.

Proof. First, we observe that
sup |E[h(Z,) — h(Zn)]‘ < 0+ QP{ sup |Z,(f) — in(f)| > (5} .
heBL, feFn

The latter inequality holds for any § > 0, and uses the fact that |h| is bounded by 1 and has
Lipschitz constant 1. It remains to show that

sup |Zn(f) = Zn(f)| = 0,
feFn

in probability, as n — 00. The remainder of the proof generalizes Proposition 4.2 of Segers (2012).
Now, we note that

SUp |Zn (f) = Zn(f)| < 2Ly, sup |Zn(s) — Zn(s)| < 27L,(I + I1)

fefn SE[O,I]d
with
I = sup |an(F s1,...,F ;54) — an(s)],
se[0,1]¢ ' ’
d
1 = SEUP]d Vn [C(F;’lsl, s o y8d) — C(s)] + Z Cj(s)an,j(s5)]-
s€[0,1 j=1

The first term, I, can be bounded as follows. Set 5, ;(s) = \/ﬁ(Ffl’js —s),j =1,...,d. By the
Chung-Smirnov LIL, we have

max  sup |B,.;(s)| = O((loglogn)/?) almost surely.

1<j<dogs<1

1/2

Using Lemma 9 with § = n='/2(loglogn)%?, we get

sup |an | =0(n~'4 logn)l/Q(loglogn)1/4),

|s—s] e <6
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almost surely. This implies that I = O(n~4(logn)"/?(loglogn)'/*), almost surely.

For the second term, we get by the mean value theorem that

d
I = sup \/H[C(F:L,lsh . ,F;’dsd) — C(S)] + Z Cj(S)O&n,j(Sj)
se[0,1]¢ j=1
d d
< sup Y Ci(sn)Bai(s;) + D) Cls)ami(s5)|
SE[O,l]d j=1 j=1
where s, is a vector in [0,1]% s.t. ||s, — s < n™Y2maxi<j<a|Bn;(s;)] Since |C;] < 1 for every
j=1,...,d (because copulas are Lipschitz with Lipschitz constant 1), we deduce
II < sup Z |Bnj(s5) + an j(s;)| + sup Z [Cj(sn) = Cj(s)]wn,; (s;)]
se[o, 1] s€[o0, 1]
< Ila+ IIb.

The Bahadur-Kiefer theorem (Shorack and Wellner, 2009, p. 585) states that

max  sup |Bn.;(s) + an;(s;)] = O(n~Y*(logn)/?(loglogn)/*) almost surely.

1sj=sdogs<l
Then, ITa = O(n~"*(logn)'/?(loglogn)'/*) almost surely.

Concerning I1b, we consider a positive sequence (g,), €, — 0, that will be specified later inde-
pendently of any s = (sq,...,sq) € [0,1]%. For any index j = 1,...,d and any s € [0, 1], we will
distinguish the two cases: s; € [e,,1 — &,,] and the opposite.

If sj € [en, 1 —€,] then

Sni — Sj Sni — Sj S;
Snj = 8; <1+nJ J) ;SJ (1—| J J|> = Ej;
S5 S
J n

P 1_ s,
1—5nJ>(1—83) <1_|STLJE S]|>> 25]7
n

almost surely and for n sufficiently large, for all €,, — 0 and ne2/logn — oo. Corollary 2 in Mason
(1981) implies that

and

max  sup |Sj_1/2(1—$j) 2q,, i(s;)] < K(logn)*?loglogn,

Isjsdogs; <1

almost surely, for some constant K > 0.
In this case, using condition (C1), we deduce,

Cilsn) = Ci®) [ani(s)] < Kollsw = sl {5,771 = )% 4 5, 2(1 = 505) 7} lown(55)]
< Kilsn — s||’“s;/2_5(1 — 5;)Y27P(logn)?loglog n
< Kyn "?(loglogn)"/? max(eY%78 1)(log n)*? loglog n,
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20 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp
almost surely, for some constants Kg, K1, Ko > 0 and every j.
If sj ¢ [en, 1 —€,] then

|C(sn) — Cj(s)] aun,;(s5)] 2a,;(s))]

<
—1/2 _
< 2625721 - 55) " (s5)]
<

KE}P (logn) 1210glogn almost surely,
see Corollary 2 in Mason (1981).
Combining all these bounds entails then
I1Ib < K3 [nfr/z(log logn)™? max(el/?7% 1) + 6711/2] (logn)*/?loglogn,

with K5 > 0. We now specify the choice of £,, = n~P, with p depending on § and r only. If 25 > 2r+1,
we take 0 < p < r/(28 —1). If 8 < 1/2, set p = 1/4. Otherwise, take p = min(1/4,r/(48 — 2)), for
instance. In each case, these choices ensure that ITb = O(n~9) almost surely, for some g > 0.

Since L,, = O(logn) by assumption (C2), we obtain L, (I + II) — 0 almost surely, as n — oo,
and the proof is complete. O

Next, we turn our attention to the bootstrap counterparts. We define o (s) = /n(H* — H,,)(s)
as the ordinary bootstrap empirical process in [0, 1]¢. We prove the following exponential inequality
for the oscillation modulus

M7(0) =  sup |ap(s) —an(s')].

Is—s’|<d

LEMMA 11. For all bounded sequences d,, such that nd,/log(n) — o0 as n — oo,
M*(8,) = O(6Y%(logn)*?)  almost surely. (5.3)
Note that the sequence (6,) may be constant.

Proof. Since «f is a step function, we find that

sup  agp(s) — an(s')] = max|ag (X, 1, Xig.d) — an(Xi 1, -+, Xir a)l,
[s—s']|n<dn
with the maximum taken over all | X;, ; — Xi3_7j| <Op,j=1,...,d,01,4},... 44,85 € {1,...,n}. For
any i:= (i1,...,iq) and i’ = (i,...,4,) in {1,...,n}¢, we rewrite

|0 (X, 10 Xiga) — 0 (Xig 1, X )l =072 Y {Visw — E* [Viaw ]},
k=1

as a sum of bounded independent random variables with

Vk,i,i’ = l{X;:’j < Xij,j> j = 1,. .. ,d} - l{X;:’j < X j = 1, .. .,d},

o
5,00
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conditionally on the sample (Xy,...,X,,). Moreover, a simple calculation and Lemma 9 yield

d
*
Var (Vk7i,i’) < Z P* {Xij7j < X;:,j < Xz’],g}
j=1
d

< Z sup[Fy, (55 + 6n) — Frj(s5)]
j=1 %

< db, + dn~Y?ML, (5,)

< dmax(d,, M, (6,)/v/n)

< K max(d,,4/0, logn/y/n) = Kb,

for n large enough, for almost all realizations (X;,Y;) and for some constant K > 0. Hence, by the
union bound and Bernstein’s exponential inequality for bounded random variables, we have, for
some constant Ky,

* * *
P max lon (X1, Xiga) —an (X 1,0, X g)| >
i,i'e{1,...n}¢ ! d
‘Xij,j_X-;’. j|<5nv vj
.

< 20 exp (—Ko(v/nz A 226, 1)),

for all samples (X;,...,X,). By integrating the previous inequality over P, we get the same in-
equality, but replacing P* by P. Set x = K 1(5,1/ 2(log n)Y/? and take a constant K sufficiently large

to obtain
+xc

Z P{M:((Sn) > Klé,l/g(logn)l/g} < 4-00.
n=1

Apply the Borel-Cantelli lemma to conclude the proof. O

_ Analogous to the approximation of the process Z,, by Zn before, we introduce a simpler process
Z¥ to approximate Z. Set

d
LZi(s) = Nn(H; — Ha)(s) = )] Ci()Nn(Fy ;= Fuj)(s))- (5-4)
j=1

PROPOSITION 12. Under conditions (C1) and (C2), we have

lim E [ sup
no>% | heBL;

Bz~ h@] | - o

Proof. First, we notice that, for any n > 0,

E [ sup
heBL4

E*[h(Z:‘l)—h(Z:)]” < n+2E l[@*{ sup Z:(f)-i:(f)‘ 277}]

feFn

< n+2E [IP’* {sudeLn Zk(s) — Z:(s)‘ = 77}] .
S
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Some straightforward adding and subtracting yields Z*(s) = Z*(s) + R*(s) with

Z%(s) = /n{HE(s) — H,(s)} — \/H{C(IE‘Z’lsl, . ,F;k,’dsd) —C(Fna51,-.-,Frasa)}
and R*(s) = R;‘;l(s) + R:,Q(s) + R;g(s) + R:A(S) with

Ryi(s) = ap(Fpisi,...,Fpgsa) —apn(F, 51,0, F sa)
n2(s) = oy st Fy gsq) — ag(s)
na(s) = an(Frist,... ,Fz:isd) —an(Fy 81,0, F 48q)
Rf,(s) = ~n {C(F:;jlsl, o FYsg) — C(F,y s, ,]F;dsd)}

+\/E{C(F:7131, . ,F:,dsd) —C(Fp,181,- .. 7Fn7d5d)} .

Let oy ;(s) = /n(Fy: ; =T, ;)(s) and B ;(s) = /n(F, 5 =T, ;)(s) be the bootstrap versions of the

n,j
empirical processes a,, ;(s) and 5, ;(s), respectively. Both converge to the same weak limit as

sup |8y i(s5) +ap i(s5)] = O(n~"*(logn)"/?(loglogn)"/*)  almost surely,

0<s;<1

see displays (2.10°) and (2.12’) in Theorem 2.1 of Csérgé and Mason (1989). It remains to show
that P*{L,, supg |R¥(s)| > n} — 0 for all n > 0, conditionally given all sequences (Xy,...,X,) € £,
for some sequence of events €2, ¢ R?*™ with lim,, ., P(Q,) = 1.

Let 6, = n~'/%. (Other choices are possible as well.) We have

limsup P*{L,|R}; | = n} < limsup P*{L,M}(5,) = n} + limsup P* {max |3} ,||l.. = /nd,} =0,
n—oo J

n—xL n—xL

by Lemma 11. Next, on the event max; |3, ;] < v/nd, (that holds almost surely by the law of
iterated logarithm),

> n} < limsup P*{L,M}(5,) =n} =0,

n—o

limsup P*{L,, | R}; 5
n—o
by Lemma 11. On the event L, M,,(d,,) < n (that holds almost surely by Lemma 9), we have

n—o

limsup P*{L,, | R}; 3]l = n} < limsup P*{max |3} ;|.c > /ndn} =0
n—ow J ’

by the weak convergence of 3 . Finally, for some s¥ between I, (s;) and F,, ;(s;), and s¥* between
Fy i(s5) and Fy 5(s;), we have.

[Rrals)l = sj) + Cj(s7%)an ;(s;)

d

d d
Z n,J SJ +an](sj |+ Z |05nj 33)”0 ( ) CJ(S;:*”
j=1 jt

<

The first term is of order O(n=*(logn)?(loglog n)'/*), uniformly in s;. For the second term, we
argue as in the proof of Proposition 10. First, we observe that |s¥* —s¥| < s} — s;] + [s¥* — ;] is of
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order O« (n"/2). Second, since the class 1{z < ¢}t*(1 —¢)~" is a P-Donsker class for the uniform
probability measure P on [0, 1], for all 0 < b < 1/2, see Van der Vaart and Wellner (1996), Example
2.11.15 (page 214), the weak convergence of the bootstrap empirical process [Van der Vaart and

Wellner (1996, Theorem 3.6.1, page 347)] implies that

S ok 5(5)1/(s"(1 = 5)%) = Oy (1).

Consequently, as in the proof of Proposition 10, we find that, for some constant K < oo,

b— _
sup ok (s5)[1C(s3) = Ci(si)| < Klsi™ —s¥]"s] (1= ;)" suplagh (s;)]/(s"(1 = )")
8j

En,SSjﬁl—En
which is of order Oy« (1) - max(n~"/? max(1,%~%). On the other side,

sup |ag ;(s;)|1C5(s7) = Ci(s75)] < 2 sup  |ag ;(s;)]
s;¢le,1—en] s;¢le,1—en]
< 2epsup fag; (s5)]/(s°(1 = 8)°),
Sj
which is of order O, (%). Combining both bounds yields supg [ Ry, 4(s)| = Opx (€4 +n~"/2 max(1,£57)).
Taking e, = n~? with p depending on b, 8 and r, we get that lim,, o, P*{L,, supg |R}; 4(s)| = n} =0
for all > 0, conditionally on all sequences (Xy,...,X,) € Q, for some sequence of events (2,, with
lim,, P(£2,,) = 1. This completes our proof. O

5.2. PROOF OF THEOREM 1
By triangle inequality, we have,

E[p |h<zn>]—E*[h<Z:>]|] < sw
heBL4 heBL4

E[h(Zn) — h(Z)]|

v | sup [B[8(E.)] - 50|
v | sup [E4DH(ED -z

In view of Proposition 10 and Proposition 12, it remains to show that the second term on the right
is asymptotically negligible. We recall that

2¢L,

~ 2dLn ~
Zu(f) = Y, () = Y, o | fulx) daun (),
k=1 k=1

for

d
fex) = 1{x < s} — Y, Ci(si){a; < si )
j=1
Now, let hy(x) = Ziiﬁ" ok fr(x) so that

Zo($) = | by da, (5.5)
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24 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp
and we can derive in the same way
Z2(£) = | s da. (5.6)

We now apply Theorem 3 in Radulovié¢ (2012), stated as Theorem 13 in the appendix for conve-
nience. We need to verify that

e the d + 1 classes

Qz = {]—{X < Sk}a Sk € [07 1]d} ’
67 = {CieIUr <seh sce (0.7, 5 =1,....d,

have VC-indices V¢ and Vk(j ). respectively, with Zidzﬁ" (Ve + Z?=1 Vk(j )) < K(logn)? for
some finite constant K and some 0 < v < 1.
e the class H,, = {hs : f € F,} has an envelope H(x) with E[H*(X)] < o

First we verify the VC property. The class G¢ is VC with VC-dimension V% = d + 1 (Van der

Vaart and Wellner, 2000, page 135), while the class g,(j ) is a subclass of the class of functions
cl{a < x < b} with a,b € R and ¢ > 0. This class has a VC index 3 : see van der Vaart and Wellner
(2000), Problem 20, page 153. Consequently

2L, d )
S vE+ DTV < (4d +1)2°Ly, < K(logn)?
k=1 j=1

for some K < o0.

It remains to verify the envelope condition. We will show that hy(x) has envelope 1 + d +
ZJ L TV (C;). Writing

d
6(s) = Lx<sh= Y Gyl <55,

we see that ;
h(x) = " crgx(Br)
k=1
for ¢, = 41 and the operation ¢(By) defined in (1.5) for any function ¢ : R? — R. Furthermore,

writing

T(s) = 1{x <s}, (VW(s)=C;(s)1{x <55}, j=1,...,d,
we have

LTL

Ly d
|hs(x Z |+ZZ J) (By)|
k=1 j=1k=1

IC()I

~
3

N
~
'M&

bl
H

1

J
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since the boxes By, ..., By, are disjoint. Since each By is of the form H?:l(slle7j7 sﬁ_j]7 there is a

(fine enough) lattice partition II of [0, 1]¢ with the property that each B, can be written as a union
of (disjoint) elements Ay, with Ay, € II. A little reflexion shows that, for each 1 < j < d,

Ly,
DB < DI
k=1 AeTl
and, moreover, for A,, = H?=1(5}n,ja5%@,j] €M, Ap—j = 11,4, (50,1550, ,] and

Cj(S,j|t) = Cj(Sh“~;5j717t,5j+17'~';3d)7

for every s_; € [0,1]97! and every ¢ € [0, 1], a little algebra gives the identity

(D(Ap) = Ua; <8500 (Am) +1{s), ; <2 < 55 1Ci(Am,jlsh, ;)-
Since
Ci(s—jlsj) =P{X_; <s_;| X; = s;},
we obtain
L’Il . .
DB < D KV (A)]
k=1 A €ell
< DL IGADI+ D) sk <z < s, JPX_ e Ay 5| Xj =51, )
A'mEH AnLGH
< TV(C)+ D) Ushj <a; <sp WPIX_j €Ay | X; = s, ).

A ell

Let Ay € II with x € Ay and s} <z< s? with (sjl, sf] be the projection of Ay on the j-th axis of
the lattice. Then, the last term on the right of the previous display can be bounded as follows:

D1 Ush < ay < sh WPIXj € Ay | X = s, )

A €ell
_ 0
< > P{X_j € Am | Xj =55}
Ap€ll, s}n’j=s;, sfn,j=s§
<1

since the boxes A, € II and therefore A,, _; are disjoint. We have shown that the class #,, has
envelope 1 +d + Z;l:l TV(C;).
We can now apply Theorem 13 to conclude that

lim E [ sup

n—w heBL,

LA, - B | = o,

and the proof is complete. O
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5.3. PROOF OF THEOREM 4

We proceed as in the proof of Theorem 1. We write C= Cy and O = Cpx - Recall that
Y, = Zy — /n(C = C).

We may replace Z,, by Zn with impunity since

sup [E[R(Y,) = h(Zn — V(€ - )]
heBLy
< 5+2P{ sup [F(1) = Za(r) + N(E - O 26}
fes n
= 5+21P’{sup Zn(f)—zn(f)‘>5}
feFn

— dasn — w,

for every > 0, as in the proof of Proposition 10. Next, by the mean value theorem and assumptions
(C3) and (C4), we have

Vn(C = C)(s)

V(0 = 00)' Coy (s) + ~/n(0 — 00)'{C;(s) — Coy ()}

for some @ between  and 0o

([wions n/) Gy (5) + N/l — 00 (C(s) — Gy ()

!
(f ) dan) Ceo (s) + Rn(s)
for some remainder term R,, that satisfies

| Rn(s)]

N

! e 2] Co, (5)ll2 + Kn'/?]0 — 6013
Op(n'|enla +n="7?)
= 0,(1/Ly).

This bound holds uniformly in s. Consequently, for

Yo(f) = Z ok Y (k)
k=1

based on
e = Lo ([ wdan)'c‘%(s),
we have
S [BIZ, = Vi€ = O =BT = sup [B[AT, — Ra)] ~ B[A(T)]
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Since
sup | R, (f)] < 2°Ly, sup |Ru(s)| — 0
f S

in probability, we get sup;, |E[h(Z, — \/ﬁ(@ - O))]—E[R(Y,)]| — 0, as n — 0. We conclude that

limsup sup E[h(yn)]—E[h(\i?n)]‘ = 0.

n—0 heBL,

For the bootstrap counterpart, we can argue in the same way. Using the expansion

!
Vi@ =06 = ([waar) culo)+ mi)
for some remainder term R} that satisfies

sup [RE(s)] < Kon'?|lekllo + Kin'2[6 — o5+ + Kon'/6* — 63+,
S

for some finite constants K, K7 and K. We check that the processes Y* and §Z are close with Y}':
based on

w6 = 21— ([vdat) o)
Note that Y,,(f) = 3 o Yo (si) = § (3, orgr) da, with
d
gk(x) = {x<spf— Z Ci(sk) Mz < s} — (1(x)) Coy (sk).-

As in the proof of Theorem 1, it remains to verify the two conditions of Theorem 13. Since the only
difference with the proof of Theorem 1 is the addition of the term (¥ (x))’ Cp, (sy), we concentrate on
the class of functions (¥(x))" Cy, (sk). Since it is a subclass of ¢t(x) with ¢ € R, its VC dimension
trivially is equal to p. Moreover, it is not hard to see from the proof of Theorem 1 that

241, d .
D okgr(X)| < 14d+ D TV(C) + [W(x)|TV(Co,)-
k=1 j=1

Since E[||y)(X)[3] < o, the conditions of Theorem 13 are met, and we conclude that

E [ sup
heBL,

BLh(T.01 - BT D] | 0
as n — oo. O

5.4. PROOF OF PROPOSITION 6

From the proofs of Proposition 10 and Proposition 12, we see that

sup | Zy(u) = Zy(u)| = Op (n™*) and

u€(0,1]4
sup [Z8(u) — Z3(w)] = Ops (n™")
uel0,1]4
almost surely, for some g > 0. The result follows after integration by parts. O

imsart-generic ver. 2013/03/06 file: ATVTest_submission_Bernoulli_revised_11Nov.tex date: November 11, 2013



28 J.-D. Fermanian, D. Radulovi¢ and M. Wegkamp

5.5. PROOF OF COROLLARY 7

By the delta-method, {Y,(s),s € [0,1]?} converges towards a Gaussian process in £* ([0, 1]?). The
proof of Theorem 4 shows that limsup,, ., sup,cpr, [E[A(Y,) — h(Y,)]| = 0. Hence, the process

Y,, converges weakly to the same weak limit as Y,,. This proves the first claim. The second part of
the Corollary is a straightforward consequence of Theorem 4 and the triangle inequality. O

Appendix A

Let Xq,...,X, be independent random variables with probability measure P. Let P, be the em-
pirical probability measure, putting mass 1/n at each observation, and let P* be the nonparametric
bootstrap measure based on n independent observations from P,,. We index the empirical process
\/n(P,, — P) and its bootstrap counterpart «/n(P* — P,,) by functions f that belong to a sequence
of classes F,.

THEOREM 13. Let d,, be an integer sequence and, for each 1 < i < dy, let G;, be a VC class of

functions with VC index V; ,, and
dn

Vi < K(logn)",
=1

for some K < o0 and 0 <y < 1. Set

dn
fn {fzzgi:giegi,n}7

i=1

and suppose that there exists an envelope function F > SUp ;. F |f|, independent of n, with E[F*(X)] <
. Then,

n—ux heBL4

Proof. See Theorem 3 in Radulovi¢ (2012). O

limsup E [ sup |E[h(\/ﬁ(]P’n — P))] = E*[A(/n(P}, — Pn))“] =0.

Appendix B

Set M,,(d) as in (5.1) for § = 0, and define
() = 227 2{(1 + z) log(1 + z) — z}, z € (—1,0) u (0,00)

and (—1) = 2 and 9(0) = 1. This function is continuous and decreasing.

PROPOSITION 14. There exist constants K1 and Ko such that
K, Ko)\? A
— — B.1
exp {220 (2 (B.1)
for all a € (0,1/2] and all X € [0, ).

Proof. See Proposition A.1 of Segers (2012). O

P{My(a) = A} <
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Appendix C

The computation of T, is an optimization problem in 2dL,, variables. More precisely,

T, = sup F(x)= sup F(x1,...,%24L,),
x€e[0,1]24Ln 2:€[0,1]

with

Ln . d . L

F(X) — Zizl |Zn(Bz)| if Bl = Hj:l ($2d(i—1)+2j71:372d(z‘—1)+2j] 3 1<K Ln are dlSJOlnt;
0 otherwise

That is, for each x € [0, 1]24L" | we construct L,, boxes with By = (21, 22] X+ ++ X (T24_1, T24] formed

by the first 2d coordinates, By by the next 2d coordinates, and so on. If boxes overlap the function

I is zero; otherwise it is ZiLz"l |Z,,(B;)|.

Typical situations (d = 2,3, n = 1000 and L,, = 4) yield high dimensional domain spaces ([0, 1]'¢
and [0,1]?* in this example). therefore, the optimization problem is not trivial due to the curse of
dimension. That is why we have implemented the slightly ”downgraded” test statistics 1~1’n where
the corner of the boxes B; are picked in a grid (see Equation (1.6)).

Figure 4 depicts one such an outcome with d = 2, n = 800, L,, = 4 and M = 12 x 10*. Clearly,
these boxes are sampling the relevant regions. In general we do not have the access to contour
plots such as Figure 4 and we cannot determine the shape and size of these relevant regions. But,
as Figure 4 nicely demonstrates, sampling of quite a few boxes makes sense (more than 4 would
probably do even better in this case).

A few details about numerical implementation

The computation of 'ﬁ‘n reduces to an optimization problem which needs to be done carefully.
Here we present a stochastic optimization scheme that produces T,,, which is near-optimal (i.e.
close to ’E‘n with very high probability. Moreover, the algorithm is applicable in dimensions higher
then 2 as well. In our simulation studies, we opted for this approach since it is very fast and easy
to implement, and thus it enables easy verifications of our results. More sophisticated algorithms,
with little extra computing time, could actually find the optimal value of T,, . In our experience
this extra effort did not significantly change the performance of ATV statistics.

Step 1. Pre-compute F'(iy,...,i4) := Zn(#, cey n‘lﬁ) for i; € {0, ..., [nt/4]}.

Step 2. For all B; = H?:1(%7%]7 pre-compute G(B;) = Azlzi,l,bi,lAii,z,bi,2"'Agi,d,bi,dF ,
where a; j,b;; € {0,...,[n"?|} and a;; < b; ;. Enumerate B;’s and choose m largest values (i.e.
G(B1) = ... 2 G(By,). In this experiment, we have chosen m = n.

Step 3. For a fixed i, sample randomly (without replacement) A; ; € {By,...,Bp}, j =1,..., Ly, .
Repeat this for i = 1,..., K, where K = max(10%, 10n’/(L!3%L)) and compute

T(AZ) = T(Alﬂ, ey Ai,L) = G(AZJ) + G(Ai72)1Ai)1mAiy2=® + ...+ G(ALL)IA{,JQ“_QALL:@.
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Fic 4. Typical realization of the ATV statistic, n = 800, L = 4 for the Mizture-S synthetic data. The four
rectangles capture the dark or bright regions which correspond to higher differences between the null and the
alternative.

Find A° = (A3,..., A%) such that T(A°) > T(A;) for all i < K and let
T, := T(A®) ~ T,.
JDF : T have a problem here. Among the m (=n here) boxes we choose at step 2, we could have
selected overlapping boxes (ie two arbitrarily chosen boxes among By, ..., B,, could overlap). In
this case, T(A;) = G(A;1) and T(A°) = max;=1,..m,m G(B;). Are we sure that T (A°) is close to T,,

in this situation ?

Computational cost: Step 1 requires n computation of the Z,, process. Since the function F' is

Jdpi/a_1y\ 4
pre-computed, Step 2 requires 24 (W) < n? summations. For Step 3, we need to check if L
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rectangles overlap, which requires at most L?/2 such verifications. Each of which could be performed
with 2d operations. Thus, for Step 3, we need 10dL?n’/(L!3%¢L) simple computer operations at
most. For a typical (larger) case n = 800, d = 2, and L = 4, the number of computations needed
for Step 2 and Step 3 is bounded by 10%. Since an ATV test typically requires 103 bootstrap
resamplings, the total number of summations needed is of the order 10°. Typical desktop computer
(using C++ or Fortran code) evaluates ATV in 2-5 seconds. We would like to caution that Step
1, although negligible if coded in C++ or Fortran, tends to be very slow if performed using more
elaborate programming languages like R or Mathematica.

Convergency. In Step 3, we choose K so that we could claim that A° is very close to the optimal
value A* (such that T,, = T(A*)) with very high probability. To be more precise, we define the
distance between two rectangles by d(B;, By) = max(max;<q(|a; j —ak,j|), max;<q(|b;,; —bx,;|)) and
a neighborhood of A* by

1
i for every i}.

N(A*) ={UL,B; : d(B;, AF) <
Then, the cardinality of N (A*) is 32? (for each corner of a rectangle in A/(A), we have 3 choices
bi; = ®;; + —2z where § € {—1,0,1}). Simple computation and the choice of K above now yields
that P(X° € N(X*)) > 1 — e 93 > 0.9999.

JDF : This results justifies the choice of K. Dragan, you should provide details to recover this
inequality, in my opinion. At least a reference, or a sketch of the proof...

In other words, with a very high probability, we can claim that the approximated collection of
rectangles (i.e. A°) consists of rectangles that are at most one grid unit (i.e. —7) away from the
optimal collection of rectangles A*. Since there are L such rectangles it is easy to show that

IT,, — Tn| = Op(n YCL,).

The improvement. It is possible to enhance the proposed algorithm by including an additional
Step 4, which would concentrate on local search. Implementation of more sophisticated algorithms
like Accelerated Random Search algorithm (Appel et al., 2004) would allow us to quickly search
entire N (A°) which very likely contains the actual optimum A*. We experimented with this ap-
proach, and although it produced slightly larger values for statistic i’n, the overall performance did
not significantly changed. This is most likely due to the above estimate Op(L,n~ /%), We suspect
that this additional Step 4 would be of more value for dimensions larger d than 2. For a good review
of optimization schemes relevant to this scenario we refer to the paper by Hvattuma and Gloverb
(2009), where the authors describe eight optimization schemes and contrasts their performance on
numerous test functions in higher dimensions (up to dimension 64).
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