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Introduction

It is common practice nowadays to model macroeconomic stabilization policy by a policy-instrument

rule ensuring local equilibrium determinacy, i.e. local equilibrium existence and uniqueness, in a locally

linearizable dynamic stochastic discrete-time infinite-horizon rational-expectations model. For instance,

monetary policy is routinely modeled as an interest-rate rule ensuring local equilibrium determinacy in

a dynamic stochastic general-equilibrium (DSGE) model. By ensuring local equilibrium determinacy,

such a rule enables the policymaker to preclude the kind of macroeconomic fluctuations that, according

to Clarida, Gaĺı, and Gertler (2000), may have occurred in the U.S. before 1979.

Despite the widespread nature of this practice, very little is known about what paths for the economy the

policymaker can implement as the unique local equilibrium with such rules, given her observation set.

The goal of this paper is to address this question in a broad class of locally linearizable dynamic stochastic

discrete-time infinite-horizon rational-expectations models, which includes most existing DSGE models.

For any policymaker’s observation set, I define a feasible path as a local path that is consistent with the

structural equations and the policymaker’s observation set, and an implementable path as a feasible path

that can be implemented as the unique local equilibrium by a policy-instrument rule that is consistent,

both in and out of equilibrium, with the policymaker’s observation set. The contribution of the paper is

essentially threefold. First, I (partially) characterize the subset of implementable paths, within the set

of feasible paths, for various alternative policymaker’s observation sets. Second, for each implementable

path, I show how to design a corresponding policy-instrument rule arithmetically, i.e. with a finite

number of arithmetic operations (addition, subtraction, multiplication, and division), and thus obtain

its coefficients as rational functions of the structural and implementable-path parameters. Third, I

apply these general results to, and derive their implications for, the implementation of some specific

stabilization policies, namely optimal monetary policy, monetary policy based on constant-interest-rate

forecasts, debt-stabilizing tax policy, and optimal tax policy, in some specific models.

The observation sets that I consider for the policymaker may include four kinds of variables: her own past

actions (i.e., past policy instruments), the private sector’s past actions, its past expectations, and current

and past exogenous shocks.1 The private sector’s actions should be interpreted in a broad sense: in most

applications, they will typically include both quantities and prices. The private sector’s expectations

are its expectations of its future actions or the future policy instrument.2 I argue in the paper that

the timing assumption that is best suited to the study of stabilization-policy implementation requires

the policymaker to play before the private sector at each date. Accordingly, none of the policymaker’s

observation sets that I consider includes any private sector’s current action or expectation, and none

of the policy-instrument rules that I design involve any private sector’s current action or expectation

either. In the terminology first used by Svensson (1999), these rules are explicit.

It is well known, since Sargent and Wallace (1975), that when the policymaker only observes exogenous

shocks and her own actions, no feasible path may be implementable. I show that, in this case, adding the

1Examples of observable exogenous shocks include exogenous policy measures, foreign developments (considered as
exogenous from the point of view of a small open economy), technological inventions, weather conditions, and natural
disasters.

2Admittedly, the private sector’s expectations are thoughts and, unless she manages to monitor and correctly interpret
private agents’ brain activity, the policymaker cannot directly observe them. Instead, she may be able to infer them from
her observation of some private sector’s actions, like financial-market prices and survey responses. For simplicity and
without any loss in generality, I abstract from these financial markets and surveys, and proceed as if she could directly
observe those expectations.
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private sector’s actions to her observation set − however long the lag with which she observes them −
overturns the result and makes all feasible paths implementable.3 I also show that, under a fairly weak

condition, all feasible paths are implementable when the policymaker observes actions and expectations,

again possibly with lags, but not exogenous shocks. Finally, I show that, when the policymaker observes

only actions, again possibly with lags, there exist some feasible paths that are not implementable, even

when there is one more action in her observation set than exogenous shocks in the model. In particular,

this can be the case of the path that is Ramsey-optimal from Woodford’s (1999a) “timeless perspective”

in Svensson and Woodford’s (2005) New Keynesian model with policy transmission lags for empirically

relevant values of its structural parameters.

Most of the policy-instrument rules encountered in the literature, at least in the context of DSGE models

of the monetary transmission mechanism, manage to ensure local equilibrium determinacy by requiring

the policy instrument to react out of equilibrium to the private sector’s current actions or expectations.4

By preventing the policymaker from reacting out of equilibrium to these current actions or expectations,

my timing assumption thus puts her behind the curve. Policy implementation lags (which compel her to

choose unconditionally in advance the value of her policy instrument, as in Schmitt-Grohé and Uribe,

1997) or observation lags, when present, put her still further behind the curve by preventing her from

reacting out of equilibrium to the private sector’s recent actions or expectations. I find nonetheless

that, in many cases, neither this timing assumption nor those policy implementation or observation lags

reduce the policymaker’s ability to control the economy, in the sense that they do not prevent any feasible

path from being implementable. In essence, this result comes from the fact that, in models that raise

non-trivial local-equilibrium-indeterminacy issues, the private sector’s current actions depend directly

on its expectation of its future actions and, therefore, indirectly on its expectation of the future policy

instrument. Now, by imposing an out-of-equilibrium reaction of the current policy instrument to the

private sector’s past actions, a policy-instrument rule also imposes an out-of-equilibrium reaction of the

private sector’s expectation of the future policy instrument to its current actions. The latter reaction

can be viewed as the feedback mechanism that enables the policymaker to control the economy.

On the methodological front, for each implementable path, I show how to design a corresponding policy-

instrument rule arithmetically, i.e. with a finite number of arithmetic operations (addition, subtraction,

multiplication, and division). This method of designing policy-instrument rules does not require, in

particular, the determination of any polynomial roots, nor equivalently the determination of any matrix

eigenvalues. Therefore, it does not require the use of any existing algorithm to solve locally lineariz-

able dynamic stochastic discrete-time infinite-horizon rational-expectations models (e.g., the algorithms

developed by Klein, 2000, and Sims, 2002). Instead, it uses Bézout’s identity, the Euclidean division,

and Cramer’s rule, all of which involve a finite number of arithmetic operations, to directly transform

the polynomials characterizing the structural equations and the implementable path considered into

the polynomials characterizing the policy-instrument rule. This arithmetic-designability property im-

plies that, for each model, policy instrument, observation set, and implementable path, the coefficients

of the policy-instrument rule can be explicitly expressed as rational functions of the structural and

implementable-path parameters, i.e. as fractions of polynomial functions of these parameters. In turn,

these rational functions lend themselves easily to analytical manipulation. For instance, their derivatives

3In so doing, I extend and generalize McCallum’s (1981) original result, which is in essence that, in this case, adding some
private sector’s actions or expectations to the policymaker’s observation set may make some feasible paths implementable.

4For instance, this is typically the case of Taylor’s (1993) popular interest-rate rule, and its extensions, in DSGE models
of the monetary transmission mechanism. These rules require the policymaker to play simultaneously with the private
sector or after it at each date. In Svensson’s (1999) terminology, they are implicit.
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can be computed in order to determine how the coefficients of the policy-instrument rule respond to an

arbitrarily small change in the value of the structural or implementable-path parameters.

This method of designing policy-instrument rules can be readily applied to any model encompassed by my

general framework, any stabilization-policy instrument, any policymaker’s observation set of a kind that

I consider, and any path that is implementable for these model, policy instrument, and observation set.

Of course, unless the specific model, observation set, and implementable path considered are particularly

simple, these policy-instrument rules will typically be more complex than the policy-instrument rules

commonly considered in the literature, like Taylor’s (1993) interest-rate rule, in the sense of involving a

larger number of variables. This greater complexity does not matter at all in the rational-expectations

paradigm. However, it might raise concerns about the relevance of this paradigm in that context. Can

these rules be viewed as more than interesting theoretical benchmarks to which to compare simple rules

in rational-expectations models? I believe that they can. Actual decision procedures used by real-world

policymakers amount to complex rules involving many inputs, yet this complexity does not seem to raise

concerns of this kind. Svensson (2003, 2011) argues that, even within the realm of rational-expectations

models, the central bank’s complex reaction function need not be communicated to the private sector.

Similarly, it can be argued that all that the private sector needs to know, for such a rule to effectively

implement a given path as the unique local equilibrium, is the path itself (which the policymaker can

communicate through the publication of conditional economic forecasts) and the existence of such a rule,

but not the rule itself. One contribution of this paper is precisely to identify conditions under which

there exists such a rule, and conditions under which there does not.

I apply these general results to some specific models, policy instruments, and feasible paths, namely to

optimal monetary policy in Svensson and Woodford’s (2005) model, monetary policy based on constant-

interest-rate forecasts in Leitemo’s (2003) model, debt-stabilizing tax policy in Schmitt-Grohé and Uribe’s

(1997) model, and optimal tax policy in one of the models considered by Correia, Farhi, Nicolini, and

Teles (2013). Some of these applications shed new light on earlier results obtained in the literature.

For instance, Schmitt-Grohé and Uribe (1997) consider, in the standard neoclassical growth model,

a labor-income tax-rate rule that balances the government’s budget or stabilizes the expected future

stock of public debt, find that this rule leads to local equilibrium indeterminacy for many admissible

and empirically relevant values of the structural parameters, and conclude by warning against the use

of labor-income taxes to balance the budget or stabilize the expected future stock of public debt. I

show that, in the same model, for empirically plausible observation sets of the tax authority, all feasible

paths along which the government’s budget is balanced or the expected future stock of public debt is

stabilized are implementable for all admissible values of the structural parameters. This result implies

that Schmitt-Grohé and Uribe’s (1997) point is not against debt-stabilizing labor-income-tax policy per

se, but only against one specific way of implementing this policy. Similarly, I show that, in Leitemo’s

(2003) model, for empirically plausible observation sets of the central bank, the constant-interest-rate

forecast targeting path is implementable for all admissible values of the structural parameters (except

possibly a set of values of measure zero). This result implies that, contrary to what a cursory reading of

Leitemo’s (2003) findings may suggest, monetary policy based on constant-interest-rate forecasts does

not inherently generate local equilibrium indeterminacy.

Throughout the paper, I make three assumptions that are standard either in the general literature on

stabilization policy, or in the more specific literature on optimal stabilization policy. First, I assume the

existence of a commitment technology that ensures the credibility of policy-instrument rules both in and
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out of equilibrium. Second, I implicitly assume that the policymaker knows the value of the model’s

structural parameters, i.e. I abstract from any consideration of model uncertainty. And third, I focus

on local equilibrium determinacy, that is to say that I abstract from the possible existence of non-local

equilibria. In the context of interest-rate rules, as argued by Cochrane (2011), there is usually no solid

economic reason to assume away the existence of non-local equilibria. The most common policy proposal

to eliminate these equilibria, made initially by Christiano and Rostagno (2001) and Benhabib, Schmitt-

Grohé, and Uribe (2002), discussed by Woodford (2003a, Chapter 2), and used notably by Atkeson,

Chari, and Kehoe (2010), consists in switching from an interest-rate rule ensuring local equilibrium

determinacy to a money-growth rule (possibly accompanied by a non-Ricardian fiscal policy) when the

economy goes outside a specified neighborhood of the steady state considered. The interest-rate rules

that I design (when the policy instrument is the interest rate) fit naturally into this proposal, insofar

as they are followed by the central bank inside the specified neighborhood. In particular, they are thus

consistent with Atkeson, Chari, and Kehoe’s (2010) “sophisticated” approach to monetary policy.

This paper is not the first one to design explicit policy-instrument rules implementing a given feasible path

as the unique local equilibrium. Some existing papers − e.g., Evans and Honkapohja (2006), Svensson

and Woodford (2005, Subsections 4.1 and 4.3) − algebraically design explicit policy-instrument rules

that are consistent with a given feasible path, but find that these rules fail to implement that path

as the unique local equilibrium for many admissible and empirically relevant values of the structural

parameters. To my knowledge, only one of them − namely, Svensson and Woodford (2005, Subsections

3.6 and 4.2, and Section 5) − algebraically designs explicit policy-instrument rules that implement a

given feasible path as the unique local equilibrium for all admissible values of the structural parameters.

However, each of these papers considers a specific simple model (typically the basic New Keynesian

model or one of its variants), a specific stabilization-policy instrument (typically the interest rate), a

specific feasible path (typically the timeless-perspective Ramsey-optimal feasible path), and, in effect,

a specific policymaker’s observation set (typically such that the policymaker’s observation constraint is

slack in the optimization programme defining the timeless-perspective Ramsey-optimal feasible path).

My contribution is therefore to extend and generalize their results in terms of model, policy instrument,

observation set, and feasible path. Making this contribution requires to develop a new − arithmetic −
method of designing policy-instrument rules, as Svensson and Woodford’s (2005) algebraic method can

be applied only to simple models, observation sets, and implementable paths.

Nor is this paper the first one to design, in a general framework, policy specifications that are consistent

with a given feasible path and with no other local path satisfying the structural equations. Indeed,

Giannoni and Woodford (2010) design, in a broad class of models, “target criteria” that are consistent

with the timeless-perspective Ramsey-optimal path and with no other local path satisfying the structural

equations. Moreover, these criteria have two additional properties that may facilitate their communica-

tion to the public: they involve only the past, current, or expected future values of the variables featuring

in the objective function considered (when this function is purely quadratic), and their coefficients are

independent of certain structural parameters (in particular, the parameters governing the stochastic pro-

cess of the exogenous disturbances).5 However, these criteria are typically not explicit policy-instrument

rules, and sometimes not even policy-instrument rules.6 They are not meant to describe how timeless-

5These two properties have been emphasized, to various degrees, in Giannoni and Woodford (2002, 2003, 2005, 2010),
Svensson (1997, 2003, 2011), Svensson and Woodford (2005), and Woodford (2003a, Chapters 4, 7, and 8, 2007). In these
papers, such criteria may be called “target rules,” “targeting rules,” or “specific targeting rules.”

6Similarly, the policy-instrument rules that I design in a more restrictive but still fairly general framework in Loisel
(2009), which not only implement any given path as the unique local equilibrium, but also eliminate equilibrium trajectories
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perspective Ramsey-optimal stabilization policy could be implemented, but are instead proposed as, in

Svensson and Woodford’s (2005) terminology, a “higher-level policy specification.” In this optimal-policy

context, my contribution is therefore to determine whether and how these criteria can be operationally

implemented, i.e. whether and how the policymaker can set the policy instrument conditionally on her

observation set to implement, as the unique local equilibrium, the path that is Ramsey-optimal from the

timeless perspective subject to her observation constraint − whether this observation constraint is slack,

as implicitly assumed by Giannoni and Woodford (2010), or binding.

Finally, this paper is also related to Bassetto (2002, 2004, 2005). Indeed, like the latter, it tackles imple-

mentation problems in macroeconomics by requiring that the policymaker’s out-of-equilibrium behavior

be feasible − i.e., in my case, consistent with her observation set. However, there are three important

differences. First, this paper addresses a general local-equilibrium-determinacy issue, while Bassetto’s

papers address some specific global-equilibrium-determinacy issues. Second, the constraints faced out of

equilibrium by the policymaker are only informational in this paper, while they are both informational

and physical in Bassetto’s papers. Third, in this paper, playing after the private sector at each date

would give the policymaker the advantage of being able to react out of equilibrium to the private sec-

tor’s current actions or expectations. In Bassetto’s papers, it gives her the same advantage, but also a

disadvantage, as the private sector’s current actions may then reduce the set of her possible actions.

The rest of the paper is organized as follows. Section 1 justifies the assumption that the policymaker

does not observe the private sector’s date-t actions and expectations when setting her date-t policy

instrument. Section 2 illustrates, in the basic New Keynesian model, some of the results obtained in the

paper. Section 3 presents a broad class of locally linearizable dynamic stochastic discrete-time infinite-

horizon rational-expectations models, which includes most existing DSGE models. Section 4 provides,

in this class of models, for various alternative policymaker’s observation sets, and for any feasible path,

conditions for this path to be implementable, and shows how to design a corresponding policy-instrument

rule arithmetically. Section 5 applies these general results to, and derive their implications for, the

implementation of some specific stabilization policies in some specific models. I then conclude and

provide a technical appendix.

1 Portrait of the Policymaker as the First Mover

Throughout the paper, I will assume that the policymaker plays before the private sector at each date.

This section justifies that assumption.

One key difference between a policymaker and a private sector is that the latter is made of many more

individuals than the former. For the sake of the argument, suppose that the private sector is made

of a continuum of individuals, while the policymaker is a single individual. Suppose further that each

individual takes decisions at a finite frequency, due to information-collecting, information-processing,

and decision-making frictions, and that private agents’ decisions are not synchronized with each other.

Then, the private sector takes its decisions in continuous time, while the policymaker takes hers at

discrete times.7

gradually leaving the neighborhood of the steady state considered, are typically implicit, not explicit.
7In crisis times, these frictions may weaken, and the frequency of policy decisions increase. For instance, central banks

have swiftly taken decisions outside their regularly scheduled meetings at the height of the recent financial crisis. Even in
such circumstances, however, financial-market participants − considered collectively − still take decisions more frequently
than central banks. Moreover, I focus in this paper on policy-instrument rules that ensure local equilibrium determinacy,
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To translate this timing of events into discrete time, one needs to define (i) a date as a given period of

time, (ii) the value of the policy instrument at a given date as its average value during the corresponding

period, and (iii) the private sector’s decisions at a given date as the aggregation of private agents’

decisions over the corresponding period. There are four alternative ways to define a date, and therefore

as many candidate discrete-time translations of this timing of events. First, one can define a date as the

period of time between two consecutive policy decisions. In this case, the value of the policy instrument

at a given date is its constant value during the corresponding period, and the policymaker plays before

the private sector at each date. Second, one can define a date as a period of time that includes exactly one

policy decision, taken neither at the beginning nor at the end of this period. In this case, however, the

continuous-time within-period timing of events has no faithful discrete-time order-of-moves translation:

at each date, the policymaker plays neither entirely before nor entirely after the private sector, nor do

they truly play simultaneously with each other. Third, one can define a date as a period of time that

includes several policy decisions. At the limit, when the period includes an infinity of policy decisions,

the policymaker and the private sector play simultaneously with each other at each date. However,

this case is ill-suited to the study of the implementation of stabilization policy, which is the issue that

I address in this paper. Indeed, what matters from my perspective is how the policymaker should set

her policy instrument at each policy decision, not how she should set the average value of her policy

instrument over a period that includes several policy decisions. Fourth, one can define a date as a period

of time that includes sometimes one policy decision, sometimes none. However, by restricting the set of

feasible paths in non-trivial and unusual ways, this case would both complicate the analysis and hinder

the comparison with existing stabilization-policy models (in which the policy instrument can typically

change at each date).

To sum up, the discrete-time order of moves that is best suited to the study of the implementation

of stabilization policy, while allowing the policymaker to play at each date, is the one in which the

policymaker plays before the private sector at each date. Note that this order of moves is not necessarily

the one most commonly considered in the literature. For instance, as I argue in Subsection 2.2, most

analyses of monetary policy based on a DSGE model implicitly assume that the central bank plays

simultaneously with the private sector or after it at each date, because the interest-rate rules that they

consider require the interest rate to react out of equilibrium to the private sector’s current actions or

expectations. In this context, such a timing choice can be justified by the fact that these models are

aimed at being estimated on macroeconomic data, and that these data correspond to periods of time

(typically quarters) that include at least one policy decision taken neither at the beginning nor at the end

of the period. Therefore, there is no faithful discrete-time order-of-moves translation of the continuous-

time within-period timing of events, as discussed above, and one may as well assume that the central

bank plays simultaneously with the private sector or after it at each date. However, these papers do

not address − nor are they aimed at addressing − the issue of monetary-policy implementation. By

contrast, most analyses of monetary policy that address this issue or a closely related issue, from Poole

(1970) and Sargent and Wallace (1975) to King and Wolman (2004), Svensson and Woodford (2005),

and Atkeson, Chari, and Kehoe (2010), explicitly assume, as I do, that the central bank plays before the

private sector at each date.8

and hence are meant to apply only in “normal times.”
8One notable exception is provided by Eggertsson and Swanson (2008), who consider the same model as King and

Wolman (2004), but assume instead that the central bank and the private sector play simultaneously with each other. In
order to enable the date-t interest rate to react to date-t aggregate variables, they introduce a Walrasian auctioneer to
whom the central bank submits an interest-rate schedule that is a function of these variables.
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2 A New Keynesian Illustration

This section illustrates, in the well known basic New Keynesian model, some of the general results

obtained in the rest of the paper. I consider, in this model, several alternative observation sets for

the central bank. For each observation set, I do three things. First, I determine the path that is

Ramsey-optimal from Woodford’s (1999a) timeless perspective subject to the central bank’s observation

constraint, i.e., in the terminology introduced at the beginning of the paper, the timeless-perspective

Ramsey-optimal feasible path. Second, I provide conditions for this feasible path to be implementable.

Third, when it is implementable, I design some corresponding interest-rate rules. The method used to

design interest-rate rules in this section is a brute-force guess-and-verify method − arguably the one

that comes most naturally to mind, but one that can be applied only to simple models, observation sets,

and implementable paths, and therefore not the one that will be used to design policy-instrument rules

in the rest of the paper. One of the goals of the section is precisely to illustrate this limitation of that

guess-and-verify method.

I refer the reader to Woodford (2003a, Chapters 2, 4, and 6) and Gaĺı (2008, Chapter 3) for a detailed

presentation of the basic New Keynesian model. I restrict the analysis to the neighborhood of the

zero-inflation steady state, log-linearize the equilibrium conditions in this neighborhood, and express

all endogenous and exogenous variables as log-deviations from their values at that steady state. The

model’s agents are, in alphabetical order, a central bank (CB), Nature (N ), and a private sector (PS).

Time is discrete, indexed by t ∈ Z. At each date t, CB sets the interest rate it; N draws the realizations

of two i.i.d. exogenous shocks νt and ut such that E{νtut−k} = 0 for any k ∈ Z, where E{.} denotes the

unconditional-mean operator; and PS sets the inflation rate πt and the output level yt, which I will refer

to as PS’s actions, and forms its expectations of its own future actions and of CB’s future interest rate.9

The only assumption that I make at this stage about the chronological order of these moves is that, at

each date t ∈ Z, PS plays after CB and N : after CB, for the reasons I have put forward in Section 1; and

after N , in order to allow exogenous shocks to affect PS’s actions and expectations contemporaneously.

2.1 Structural Equations

The behavior of PS is described by the following two structural equations:

yt = Et {yt+1} − σ (it − Et {πt+1}) + νt, (1)

πt = βEt {πt+1}+ κ (yt − φνt) + ut, (2)

where β, κ, φ, σ are such that 0 < β < 1, κ > 0, 0 ≤ φ < 1, σ > 0, and Et{.} denotes the rational-

expectations operator conditionally on the observation set of PS when it sets πt and yt (with the

convention Et{πt} = πt and Et{yt} = yt).
10 I assume that this observation set, which I note OPSt ,

is made of all previous moves of all players: OPSt = {πt−1, yt−1, it,Et−1{π},Et−1{y},Et−1{i}, νt, ut},
where, throughout the paper, for any variable z and any date t, zt denotes the history of variable z until

9N also draws the realization of some sunspot shocks (as opposed to the fundamental shocks νt and ut) on which PS’s
actions could depend in equilibrium if the interest-rate rule did not ensure local equilibrium determinacy. However, the goal
of this section is precisely to design interest-rate rules that ensure local equilibrium determinacy (among other properties),
so that these sunspot shocks will play no role in equilibrium. Therefore, for expositional clarity, I omit mention of these
shocks in the main text, like the bulk of the related literature.

10These two structural equations are usually expressed in terms of the welfare-relevant output gap xt ≡ yt−φνt, instead
of the output level yt. I do not write them in this familiar form because (i) it is more convenient, in the context of this
paper, to express them in terms of some PS’s actions that are directly observed by CB, and (ii) I will naturally assume
that CB directly observes the output level, not the welfare-relevant output gap.
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date t included, i.e. (zt−j)j∈N, while Et−1{z} denotes the history of the private sector’s expectations

of variable z until date t included, i.e. (Et−j{zt−j+k})j∈N,k∈N∗ . As discussed notably by Woodford

(2003a, Chapters 2, 4, and 6), each of the two exogenous shocks νt and ut can be interpreted in at

least two different ways: νt may represent a fiscal-policy shock (exogenous variations in government

purchases) or a preference shock (exogenous shifts in the consumption-utility function or in both the

consumption-utility and the labor-disutility functions), while ut may represent another fiscal-policy shock

(exogenous variations in distorting taxes on output, employment, or wage income) or a market-power

shock (exogenous variations in the elasticity of substitution between differentiated goods). I will use these

interpretations alternatively in Subsections 2.4 to 2.7 to justify my assumptions about CB’s observation

set.

2.2 Interest-Rate Rule

Let OCBt denote the observation set of CB when it sets it. Since CB is assumed to play before PS at

each date t ∈ Z, all the sets OCBt that I will consider are included in the superset O
CB
t made of PS’s

past actions and expectations, CB’s past interest rates, and N ’s current and past exogenous shocks:

OCBt ⊂ O
CB
t ≡ OPSt r {it} = {πt−1, yt−1, it−1,Et−1{π},Et−1{y},Et−1{i}, νt, ut}. The behavior of CB is

described by an interest-rate rule. In the following, I will focus on interest-rate rules that express it as

a time-invariant function of a finite number of elements of O
CB
t :

it =
∑ne

j=1

∑ne

k=1

(
eπj,kEt−j {πt−j+k}+ eyj,kEt−j {yt−j+k}+ eij,kEt−j {it−j+k}

)
+
∑nf

j=1

(
fπj πt−j + fyj yt−j

)
+
∑ng

j=1
gjit−j +

∑nh

k=0
(hνkνt−k + hukut−k) , (3)

where (ne, nf , ng) ∈ N∗3, nh ∈ N, and all eπj,k, eyj,k, eij,k, fπj , fyj , gj , h
ν
k, huk are real numbers.

The key feature of interest-rate rules of type (3) is that they involve no PS’s current actions or expecta-

tions, consistently with my assumption that CB plays before PS at each date. In the terminology first

used by Svensson (1999), they are explicit. By contrast, most of the interest-rate rules considered in the

DSGE literature are extensions of Taylor’s (1993) rule that not only involve some PS’s current actions

or expectations, but also require the interest rate to react out of equilibrium to these current actions

or expectations.11 Therefore, they require CB to observe the value taken by these current actions or

expectations when setting the interest rate, and hence to play simultaneously with PS or after it at each

date. In Svensson’s (1999) terminology, they are implicit.12

2.3 Timeless-Perspective Ramsey-Optimal Feasible Path

In this section, for the sake of illustration, I focus on a specific feasible path, namely, the timeless-

perspective Ramsey-optimal feasible path. This path can be defined as the limit of the date-t0 Ramsey-

optimal feasible path as t0 → −∞. The date-t0 Ramsey-optimal feasible path is, in turn, defined as the

11Following the related literature, I implicitly define (i) the set of local paths as the set of paths that constantly remain
in the neighborhood of the steady state considered, (ii) the set of equilibrium paths as the set of local paths that satisfy
the structural equations and the policy-instrument rule at all dates, and (iii) the set of out-of-equilibrium paths as the set
of local paths that satisfy the structural equations at all dates, but not the policy-instrument rule at all dates.

12The explicit vs. implicit terminology is also used by Svensson (2003) and Svensson and Woodford (2005), among
others. Explicit interest-rate rules can also be encountered in the literature under the alternative names of “(explicit
or implied) reaction functions” (Svensson, 1999, 2003; Svensson and Woodford, 2005; Woodford, 2003a, Chapter 7,
2007), “fundamentals-based reaction functions” (Evans and Honkapohja, 2006), “policy functions” (Svensson, 2011), and
“backward-looking rules.”
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state-contingent path for the endogenous variables that maximizes households’ welfare at date t0 subject

to the structural equations and CB’s observation constraint. I assume for simplicity that the steady

state considered is efficient (due to an employment or production subsidy offsetting the monopolistic-

competition distortion), so that the second-order approximation of the date-t welfare loss function in the

neighborhood of this steady state is of the form Lt = Et{
∑+∞
k=0 β

k[(πt+k)2 + λ(yt+k − φνt+k)2]}, where

λ > 0.

2.4 When CB Observes Past Actions and Current and Past Shocks

I first consider the case in which CB observes all past actions, all current and past shocks, and no past

expectations, i.e. OCBt = {πt−1, yt−1, it−1, νt, ut}. The observation of all current and past shocks by CB
can be justified by the interpretation of these shocks as fiscal-policy shocks (as discussed in Subsection

2.1) and the assumption that the government publicly announces its fiscal-policy decisions νt and ut at

the beginning of period t, just before CB sets the interest rate. In this case, the timeless-perspective

Ramsey-optimal feasible path is characterized by the following proposition:

Proposition 1 (timeless-perspective Ramsey-optimal feasible path, in the basic New Key-

nesian model, when CB observes past actions and current and past shocks): in the basic New

Keynesian model, when OCBt = {πt−1, yt−1, it−1, νt, ut}, the timeless-perspective Ramsey-optimal feasible

path can be written in the following VARMA form: πt
yt
it

 =

 0 λ(1−µ)
κ 0

0 µ 0

0 −(κ−λσ)µ(1−µ)
κσ 0

 πt−1

yt−1

it−1

+

 0 µ
φ −κµ

λ
1−φ
σ

(κ−λσ)µ(1−µ)
λσ

[ νt
ut

]

+

 −λφ(1−µ)
κ 0
−φµ 0

(κ−λσ)φµ(1−µ)
κσ 0

[ νt−1

ut−1

]
, (4)

where µ ≡ λ+βλ+κ2−
√

(λ+βλ+κ2)2−4βλ2

2βλ ∈]0; 1[.

Proof : see, e.g., Evans and Honkapohja (2006). �

As is well known since Clarida, Gaĺı, and Gertler (1999) and Woodford (1999a), the timeless-perspective

Ramsey-optimal feasible path (4) is inertial in the presence of cost-push shocks, in the sense that it

makes πt, yt, and it depend on ut−1. This inertia enables CB to make PS’s current expectation of the

future inflation rate Et{πt+1} depend negatively on the current cost-push shock ut, and thus to relax

the constraint imposed by the Phillips curve (2), in order to bring both the current inflation rate πt and

the current welfare-relevant output gap yt − φνt closer to zero. This inertia result has been viewed as a

possible explanation for the observed smoothness of the interest-rate paths chosen by central banks over

time. I will come back to this issue in the next subsection.

It is not straightforward to find an interest-rate rule of type (3) that involves no expectations and

implements the timeless-perspective Ramsey-optimal feasible path (4) as the unique local equilibrium.

One natural candidate is

it =
1− φ
σ

νt +
∑+∞

k=0

(κ− λσ)µ (1− µ)

λσ
µkut−k,
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whose right-hand side is the value, as a function of only exogenous shocks, taken by the interest rate on

the path (4) at date t. By construction, this rule is an interest-rate rule that involves no expectations

and is consistent with the path (4). However, it is not of type (3), since it involves an infinite sum of

current and past exogenous shocks. Moreover, as shown for instance by Woodford (2003a, Chapter 4),

for any admissible values of the structural parameters β, κ, λ, φ, and σ, this rule fails to ensure local

equilibrium determinacy, i.e. fails to implement the path (4) as the unique local equilibrium. Another

natural candidate is

it =
− (κ− λσ)µ (1− µ)

κσ
yt−1 +

1− φ
σ

νt +
(κ− λσ)µ (1− µ)

λσ
ut +

(κ− λσ)φµ (1− µ)

κσ
νt−1,

which corresponds to the last line of the VARMA representation (4) of the timeless-perspective Ramsey-

optimal feasible path. By construction, this rule is an interest-rate rule of type (3) that involves no

expectations and is consistent with the path (4). However, as shown numerically by Evans and Honkapo-

hja (2006) and discussed by Woodford (2003a, Chapter 7, 2007), for many admissible and empirically

relevant values of the structural parameters β, κ, λ, φ, and σ, this rule fails to ensure local equilibrium

determinacy, i.e. fails to implement the path (4) as the unique local equilibrium. To my knowledge,

there is no other attempt in the literature to find an interest-rate rule of type (3) that involves no expec-

tations and implements the path (4) as the unique local equilibrium in the basic New Keynesian model.

The following proposition aims at filling this gap in the literature by providing a non-empty parametric

family of such rules:

Proposition 2 (implementation of the timeless-perspective Ramsey-optimal feasible path,

in the basic New Keynesian model, when CB observes past actions and current and past

shocks): any interest-rate rule of type it = aπt−1 + byt−1 + cνt + dut + eνt−1 + fut−1, where

a < min

{
−
κ2σµ+ (1 + β)

[
2κµ+ (κ− λσ)µ2 (1− µ)

]
βλσ (1− µ2)

,
κ2σµ+ (1− β) (κ− λσ)µ2 (1− µ)

βλσ (1− µ)
2

}
,

b =
−λ (1− µ)

κµ
a− (κ− λσ)µ (1− µ)

κσ
, c =

1− φ
σ

, d =
(κ− λσ)µ (1− µ)

λσ
, e = −φb, and f = −a,

is such that the path (4) is the unique stationary solution of the system made of the IS equation (1), the

Phillips curve (2), and this rule.

Proof : see Appendix A.1. � This proposition is obtained as the outcome of a guess-and-verify procedure:

guess that there exist some interest-rate rules of type it = aπt−1 + byt−1 + cνt+dut+ eνt−1 +fut−1 with

(a, b, c, d, e, f) ∈ R6 that implement the path (4) as the unique local equilibrium, and verify that this is

indeed the case. Appendix A.1 simply shows that the condition on (a, b, c, d, e, f) stated in Proposition 2

is sufficient for (i) the system made of the IS equation, the Phillips curve, and such an interest-rate rule

to have a unique stationary solution (πt, yt, it)t∈Z, and (ii) the path (4) to be one stationary solution of

this system.

In the terminology that I have introduced at the beginning of this paper, Proposition 2 implies that

when CB observes all past actions, all current and past shocks, and no past expectations, the timeless-

perspective Ramsey-optimal feasible path is implementable for all admissible values of the structural

parameters β, κ, λ, φ, and σ. To understand how this proposition works, it is useful to decompose it

into two results. The first result is that, for any admissible values of the structural parameters, there

exists an interest-rate rule of type (3) involving no expectations and ensuring local equilibrium deter-

minacy. In the context of the basic New Keynesian model, this result is not new: it has been obtained,
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for instance, by Bullard and Mitra (2002) and Carlstrom and Fuerst (2002). The second − stronger −
result is that, for any admissible values of the structural parameters, there exists an interest-rate rule of

type (3) involving no expectations and implementing the timeless-perspective Ramsey-optimal feasible

path as the unique local equilibrium. It might be thought at first sight that this second result (concern-

ing the implementation of the timeless-perspective Ramsey-optimal feasible path) is a straightforward

consequence of the first one (concerning local equilibrium determinacy), on the ground that adding an

exogenous term to an interest-rate rule does not affect its ability to ensure local equilibrium determinacy

and can make the interest rate take the same in-equilibrium value as on the path considered. Such a

reasoning, however, would be wrong for two reasons.

First, the exogenous term that would need to be added to an arbitrary interest-rate rule of type (3)

involving no expectations and ensuring local equilibrium determinacy, for the interest rate to take the

same in-equilibrium value as on the path (4), would typically be written as an infinite sum of current

and past exogenous shocks, so that the resulting rule would typically not be of type (3), as this type

necessarily involves a finite (possibly degenerate) sum of these shocks. I overcome this difficulty by

designing an interest-rate rule that not only ensures local equilibrium determinacy, but also makes the

system made of the structural equations and itself admit the unique eigenvalue of the path (4) as one of

its eigenvalues.13 In other words, I choose coefficients a and b not only such that the number of unstable

eigenvalues of this system is 2, but also such that the value of its stable eigenvalue is µ.14

Second, the unique local equilibrium implemented by such an interest-rate rule would not necessarily be

the path (4). Indeed, even though the interest rate would, by construction, take the same in-equilibrium

value under such an interest-rate rule as on the path (4), the inflation rate and the output level might

not, as follows from Gaĺı’s (2011) analysis.15 I overcome this difficulty by designing an interest-rate rule

that is satisfied on the path (4). Therefore, the path (4) is one stationary solution of the system made of

the structural equations and this rule. Since this rule ensures local equilibrium determinacy, that system

has a unique stationary solution, which must then coincide with the path (4).

Note finally that none of the interest-rate rules designed in Proposition 2 satisfies the long-run Taylor

principle considered by Woodford (2003a, Chapter 4). Indeed, this principle states that if the inflation

rate were permanently higher by one percentage point, then the system made of the Phillips curve (2)

and the interest-rate rule should make the interest rate permanently higher by more than one percentage

point, i.e. a + 1−β
κ b > 1. Now, as clear from Appendix A.1, all the interest-rate rules designed in

Proposition 2 are, on the contrary, such that a + 1−β
κ b < 1. In fact, as clear from Condition (A.3) in

Appendix A.1, for interest-rate rules of type it = aπt−1 + byt−1 + et, where et is an exogenous term, the

long-run Taylor principle is not a necessary condition for local equilibrium determinacy in the basic New

Keynesian model, even when both a and b are restricted to be positive. By contrast, for interest-rate

rules of type it = aπt + byt + et, where et is again an exogenous term, this principle is a necessary

13Throughout the paper, by “eigenvalues” of a dynamic rational-expectations system, I mean the eigenvalues of the
matrix that characterizes the corresponding deterministic system written in Blanchard and Kahn’s (1980) form; and by
“eigenvalues” of a path written in a VARMA form, I mean the eigenvalues of the matrix that characterizes the VAR part
of this VARMA representation.

14Throughout the paper, I use the terms “stable” and “unstable” in the same sense as in the related literature, to mean
“of modulus strictly lower than one” and “of modulus higher than or equal to one” respectively.

15Gaĺı (2011) designs algebraically, in the same basic New Keynesian model (though without ν shocks), for any admissible
value of the structural parameters and any exogenously specified interest-rate path, several interest-rate rules ensuring local
equilibrium determinacy and such that the interest rate follows this path in each of the corresponding unique local equilibria.
He then illustrates numerically, for specific values of the structural parameters and a specific (constant) exogenous interest-
rate path, that these equilibria differ from each other in terms of the path followed by the inflation rate and the output
level.
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condition for local equilibrium determinacy in the same model when both a and b are restricted to be

positive, as shown for instance by Woodford (2003a, Chapter 4).

2.5 When CB Observes Past Actions and Past Shocks

I now turn to the case in which CB observes all past actions, all past shocks, no current shocks, and no

past expectations, i.e. OCBt = {πt−1, yt−1, it−1, νt−1, ut−1}. The observation of all past shocks and no

current shocks by CB can be justified by, again, the interpretation of these shocks as fiscal-policy shocks

and, this time, the assumption that the government publicly announces its fiscal-policy decisions νt and

ut at the beginning of period t, just after CB sets the interest rate. In this case, the timeless-perspective

Ramsey-optimal feasible path is characterized by the following proposition:

Proposition 3 (timeless-perspective Ramsey-optimal feasible path, in the basic New Key-

nesian model, when CB observes past actions and past shocks): in the basic New Keynesian

model, when OCBt = {πt−1, yt−1, it−1, νt−1, ut−1}, the timeless-perspective Ramsey-optimal feasible path

can be written in the following VARMA form: πt
yt
it

 =

 0 λ(1−µ)
κ 0

0 µ 0

0 −(κ−λσ)µ(1−µ)
κσ 0

 πt−1

yt−1

it−1

+ Ω0

[
νt
ut

]
+ Ω1

[
νt−1

ut−1

]
+ Ω2

[
νt−2

ut−2

]
, (5)

where Ω0, Ω1, and Ω2 are 3× 2 matrices whose elements are generically non-zero real numbers, except

the two elements in the last line of Ω0, which are equal to zero.16

Proof : see Appendix A.2. �

Interestingly, unlike (4), the timeless-perspective Ramsey-optimal feasible path (5) is inertial even in

response to ν shocks, in the sense that it makes πt, yt, and it depend on νt−1. To understand this

new optimal-inertia result, consider for simplicity the case in which there are no cost-push shocks, i.e.

ut = 0 for all t ∈ Z. Since it cannot react to νt (as νt /∈ OCBt ), the IS equation (1) prevents CB
from achieving (yt,Et{yt+1},Et{πt+1}) = (φνt, 0, 0). In such a context, this inertia enables CB to make

Et{yt+1} + σEt{πt+1} depend negatively on νt, and thus to relax the constraint imposed by the IS

equation (1), in order to bring yt closer to φνt − and therefore, via the Phillips curve (2), to bring πt

closer to zero.

Thus, Proposition 3 provides a new explanation for the observed smoothness of interest-rate paths

chosen by central banks over time. Unlike the existing explanations of this stylized fact that also rest

on a timeless-perspective Ramsey-optimal monetary policy, this new explanation does not rest on the

existence of cost-push shocks (as in the previous subsection), nor on the existence of non-negligible

transaction frictions that would make the second-order approximation of the instantaneous welfare loss

function include a term in i2t (as in Woodford, 1999b, 2000, 2003a, Chapter 7, 2003b).17 Instead, it

rests here on the existence of an ν shock and the assumption that CB observes the past values but not

the current value of this shock. Moreover, this new optimal-inertia result can be easily shown to obtain

16Throughout the paper, I use letters in bold to denote vectors and matrices that have (at least potentially) more than
one element.

17Svensson (2003, p. 462) questions the quantitative relevance of these transaction frictions and the implied optimal
inertia.
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for other shocks that also affect the natural rate of interest, like productivity shocks, provided that CB
observes the past values − or infers them from its observation set − but not the current value of these

shocks.18

Naturally, since the path (5) is absent from the literature, there has not been any attempt to find

an interest-rate rule of type (3) that (i) involves no past expectations and no current shocks, and (ii)

implements this path as the unique local equilibrium in the basic New Keynesian model. The following

proposition aims at filling this gap in the literature by providing a non-empty parametric family of such

rules:

Proposition 4 (implementation of the timeless-perspective Ramsey-optimal feasible path,

in the basic New Keynesian model, when CB observes past actions and past shocks): any

interest-rate rule of type it = aπt−1 + byt−1 + cνt−1 + dut−1 + eνt−2 + fut−2, where

a < min

{
−
κ2σµ+ (1 + β)

[
2κµ+ (κ− λσ)µ2 (1− µ)

]
βλσ (1− µ2)

,
κ2σµ+ (1− β) (κ− λσ)µ2 (1− µ)

βλσ (1− µ)
2

}
,

b =
−λ (1− µ)

κµ
a− (κ− λσ)µ (1− µ)

κσ
, and


c
d
e
f

 =

[
Ω′0
Ω′1

] −a
λ(1−µ)
κµ a

0

+

[
Ω′1
Ω′2

] 0
0
1

 ,

is such that the path (5) is the unique stationary solution of the system made of the IS equation (1), the

Phillips curve (2), and this rule.

Proof : see Appendix A.3. �

This proposition implies that when CB observes all past actions, all past shocks, no current shocks,

and no past expectations, the timeless-perspective Ramsey-optimal feasible path is implementable for

all admissible values of the structural parameters. It is obtained with the same guess-and-verify method

as Proposition 2, and it can be explained and interpreted in the same way as Proposition 2. Note that

the coefficients a and b satisfy the same constraints in both propositions. Indeed, as explained in the

previous subsection, these coefficients are chosen in order to (i) ensure local equilibrium determinacy,

and (ii) make the system made of the IS equation, the Phillips curve, and the interest-rate rule admit

the eigenvalues of the path (5) as its own eigenvalues. Now, (i) the conditions for local equilibrium

determinacy are the same in both cases, since the two parametric families of interest-rate rules defined

in Propositions 2 and 4 have the same deterministic structure (of type it = aπt−1 + byt−1), and (ii) the

two paths (4) and (5) have the same eigenvalues (in fact, the same unique eigenvalue µ), since they have

the same autoregressive structure.

18In the case of productivity shocks, the assumption that CB does not observe the period-t shock at the beginning of
period t seems reasonable. Moreover, CB can infer the past productivity shocks from its observation of past output and
employment levels. As an illustration, remove the i.i.d. fiscal-policy or preference shocks (νt)t∈Z from the model, and
replace them with i.i.d. productivity shocks (at)t∈Z. Accordingly, introduce the production function yt = (1− α)nt + at,
remove νt from the IS equation (1), replace φνt by ψat in the Phillips curve (2), and replace φνt+k by ψat+k for k ∈ N in
the welfare loss function, where 0 < α < 1, ψ > 0, and nt denotes the employment level at date t. Then, the values taken
by πt and it on the corresponding timeless-perspective Ramsey-optimal feasible path can be straightforwardly obtained by
replacing νt−k by −ψ

1−φat−k for k ∈ N in (A.24) and (A.25) in Appendix A.2, while the values taken by yt and nt on this

path can be residually obtained with the Phillips curve (2) and the production function. Clearly, this path is inertial, in
the sense that it makes the πt, yt, nt, and it depend on at−1.
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2.6 When CB Observes Past Actions and Past Expectations

I then consider the case in which CB observes all past actions, all past expectations, and no current or past

shocks, i.e. OCBt = {πt−1, yt−1, it−1,Et−1{π},Et−1{y},Et−1{i}}. The non-observation of any current

or past shock by CB can be justified by the interpretation of these shocks as preference and market-

power shocks (as discussed in Subsection 2.1). The observation of PS’s expectations by CB deserves a

short explanation. Strictly speaking, expectations are thoughts and, unless CB manages to monitor and

correctly interpret private agents’ brain activity, it cannot directly observe their expectations. In reality,

central banks do not observe private agents’ expectations, but may infer them from financial-market

prices and survey responses. The proper way to proceed would be to explicitly introduce these financial-

market prices and survey responses as additional PS’s actions, which CB would observe and from which

it would infer the value taken, whether in or out of equilibrium, by PS’s expectations.19 For simplicity

and without any loss in generality, I proceed instead as if CB directly observed PS’s expectations. I then

get the following proposition:

Proposition 5 (timeless-perspective Ramsey-optimal feasible path and its implementation,

in the basic New Keynesian model, when CB observes past actions and past expecta-

tions): in the basic New Keynesian model, when OCBt = {πt−1, yt−1, it−1,Et−1{π}, Et−1{y},Et−1{i}},
the timeless-perspective Ramsey-optimal feasible path is the path (5), and any interest-rate rule of type

it =
∑2
j=1(απj πt−j + αyj yt−j + αijit−j + αeπj Et−j{πt−j+1}+ αeyj Et−j{yt−j+1}) with

απ1
αy1
αi1
αeπ1
αey1

 =


a
b
0
0
0

+ Ω

[
c
d

]
and


απ2
αy2
αi2
αeπ2
αey2

 = Ω

[
e
f

]
, where (i) Ω ≡


0 1
1 −κ (1− φ)
σ κφσ
−σ − (β + κφσ)
−1 −κφ


and (ii) a, b, c, d, e, and f meet the conditions stated in Proposition 4, is such that the path (5) is the

unique stationary solution of the system made of the IS equation (1), the Phillips curve (2), and this

rule.

Proof : for each j ∈ {1, 2}, the IS equation (1) and the Phillips curve (2) taken at dates t − j can be

used to express νt−j and ut−j as functions of πt−j , yt−j , it−j , Et−j{πt−j+1}, and Et−j{yt−j+1}. The

replacement of νt−1, ut−1, νt−2, and ut−2 by these expressions in the interest-rate rule (R) stated in

Proposition 4 leads to the interest-rate rule (R′) stated in Proposition 5. This operation is neutral from

the local-equilibrium-determinacy point of view because the system made of (1), (2), and (R) taken at

all dates t ∈ Z is equivalent to the system made of (1), (2), and (R′) taken at all dates t ∈ Z. Proposition

5 follows. �

Proposition 5 implies that when CB observes all past actions, all past expectations, and no current or

past shocks, the timeless-perspective Ramsey-optimal feasible path is implementable for all admissible

values of the structural parameters. This proposition also designs a parametric family of corresponding

19For instance, in the basic New Keynesian model at hand, suppose that, in addition to the market for nominal one-period
bonds, whose price is it, there is a market for inflation-indexed one-period bonds, whose price is rt. Then the vector of PS’s
date-t actions becomes Yt = [ πt yt rt ]′, and the system of structural equations becomes the system made of the

IS equation (1), the Phillips curve (2), and the Fisher equation rt = it−Et{πt+1}. For any k ∈ N∗, if {rt−k, it−k} ⊂ OCBt ,
then, using the Fisher equation taken at date t− k, CB can infer at date t, from its observation of rt−k and it−k, the value
taken, whether in or out of equilibrium, by the short-term expectation Et−k{πt−k+1}.
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interest-rate rules, i.e. interest-rate rules that (i) involve only past actions and past expectations, and

(ii) implement the path (5) as the unique local equilibrium. The design of such rules may not seem

easy at first sight because introducing either actions or expectations into a given rule, in order to make

it consistent with a given path, may not be neutral from the local-equilibrium-determinacy point of

view. The trick is to (i) start from a rule that implements this path as the unique local equilibrium, but

involves past actions and past shocks (namely the rule designed by Proposition 4), (ii) use the structural

equations to express past shocks as functions of past actions and expectations, and (iii) replace the past

shocks in this rule by those expressions.

2.7 When CB Observes Past Actions

I finally consider the case in which CB observes all past actions, no past expectations, and no current or

past shocks, i.e. OCBt = {πt−1, yt−1, it−1}. The non-observation of any current or past shock by CB can

be justified by, again, the interpretation of these shocks as preference and market-power shocks, and its

non-observation of any past expectation by the absence of adequate surveys or financial markets. In this

case, CB can still react out of equilibrium to all past inflation rates, output levels, and interest rates. And

it has one degree of freedom in its choice of an interest-rate rule consistent with the timeless-perspective

Ramsey-optimal feasible path, given that it observes, for each past date, three endogenous variables

whose values on this path depend on only two exogenous shocks. Therefore, it might be thought at first

sight that, in this case as well, the timeless-perspective Ramsey-optimal feasible path is implementable

for all admissible values of the structural parameters. The following proposition shows, however, that it

may not:

Proposition 6 (timeless-perspective Ramsey-optimal feasible path and its implementation,

in the basic New Keynesian model, when CB observes past actions): in the basic New Keynesian

model, when OCBt = {πt−1, yt−1, it−1}, the timeless-perspective Ramsey-optimal feasible path is the path

(5), and there exists (απj , α
y
j , α

i
j)1≤j≤2 ∈ R6 such that the following two statements are equivalent to each

other:

(a) there exists an interest-rate rule of type (3) such that (i) ∀(j, k) ∈ {1, ..., ne}2, eπj,k = eyj,k = eij,k = 0,

(ii) ∀k ∈ {1, ..., nh}, hνk = huk = 0, and (iii) this path is the unique stationary solution of the system

made of the IS equation (1), the Phillips curve (2), and that rule,

(b) the system made of the IS equation (1), the Phillips curve (2), and the interest-rate rule it =∑2
j=1(απj πt−j + αyj yt−j + αijit−j) has a unique stationary solution.

Proof : see Appendix A.4. � In short, Appendix A.4 first shows that there exists (απj , α
y
j , α

i
j)1≤j≤2 ∈ R6

such that the set of interest-rate rules that (i) involve only past actions, and (ii) are consistent with the

path (5), is the set {K(L)[it −
∑2
j=1(απj πt−j + αyj yt−j + αijit−j)] = 0|K(L) ∈ R[L]}, where L denotes

the lag operator and R[L] the set of polynomials in L with real-number coefficients. It then shows that

the ability of an interest-rate rule of type K(L)[it −
∑2
j=1(απj πt−j + αyj yt−j + αijit−j)] to ensure local

equilibrium determinacy does not depend on K(L), so that either all the rules of this set ensure local

equilibrium determinacy, or none of them does.

For any calibration of the model’s structural parameters, I can determine numerically, using the algebraic

expression of (απj , α
y
j , α

i
j)1≤j≤2 provided in Appendix A.4, whether the timeless-perspective Ramsey-

optimal feasible path is implementable when CB observes only past actions. Let me consider, for instance,
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Table 1: Gaĺı’s (2008, Chapter 3) and Woodford’s (2003a, Chapter 4) calibrations
of the basic New Keynesian model21

Deep parameters

Notation Description Value in G Value in W
α Labor elasticity of output 0.67 0.75
β Discount factor 0.99 0.99
γ Intertemporal elasticity of substitution 1.00 −
ε Steady-state elasticity of substitution between diff. goods 6.00 7.88
χ Inverse of Frisch labor supply elasticity 1.00 0.11
s Steady-state ratio of government purchases to output 0.00 −
θ Probability of not being allowed to change one’s price 0.67 0.67

Reduced-form parameters

Notation Formula Value in G Value in W
σ (1− s)γ 1.000 6.250

κ (1−θ)(1−βθ)[α+(1+χ−α)σ]
σθ[α+(1+χ1W−α)ε] 0.125 0.022

λ κ
ε 0.021 0.003

φ α(1−1cl)
α+(1+χ−α)σ 0.335 or 0 0.250 or 0

Gaĺı’s (2008, Chapter 3) and Woodford’s (2003a, Chapter 4) calibrations of the basic New Keynesian

model, which are described in Table 1. Moreover, for each of these two calibrations, let me consider

two alternative cases. In the first case, νt comes from shifts in both the consumption-utility and the

labor-disutility functions (1cl = 1 in Table 1), and ut from variations in the elasticity of substitution

between differentiated goods. In the second case, νt comes from shifts in the sole consumption-utility

function (1cl = 0 in Table 1), and ut from both variations in the elasticity of substitution between

differentiated goods and shifts in the labor-disutility function.20 I find that, in both cases and for both

calibrations, the timeless-perspective Ramsey-optimal feasible path is implementable when CB observes

only past actions. I have also considered a grid of theoretically admissible values for the deep structural

parameters (i.e. a grid of values for α, β, γ, ε, χ, s, and θ such that 0 < α ≤ 1, 0 < β < 1, γ > 0,

ε > 1, χ > 0, 0 < s < 1, and 0 < θ < 1), and have obtained non-implementability only for empirically

implausible values of these parameters. Finally, I have considered model-inconsistent values for λ, as

often done in the applied literature (in which CB’s loss function is not required to coincide with the

welfare loss function), and have then obtained non-implementability for empirically relevant values of

the deep structural parameters (e.g. for some of Table 1’s values when λ = 1).

20For expositional clarity, I have so far omitted mention of PS’s other actions (i.e., at date t, the consumption level
ct, hours worked nt, and the real wage wt) and the intra-temporal structural equations (i.e. the goods-market-clearing
condition, the production function, and the labor vs. leisure trade-off). Clearly, this omission does not matter for the
results of Subsections 2.4 to 2.6. Neither does it matter for the results of this subsection, because, in each of the two
cases that I consider, whether the timeless-perspective Ramsey-optimal feasible path is implementable or not does not
depend on whether OCBt includes or does not include ct−1, nt−1, and wt−1 in addition to πt−1, yt−1, and it−1. Indeed,
in the first case, the intra-temporal structural equations imply that ct, nt, and wt are proportional to yt. And in the
second case, they imply that ct and nt are proportional to yt, and that wt is the only action (of PS or CB) whose value
on the timeless-perspective Ramsey-optimal feasible path does not depend only on νt and ut (as it also depends on a
non-degenerate weighted sum of the consumption-utility and labor-disutility shocks at date t).

21The period is a quarter. “G” and “W” refer respectively to Gaĺı’s (2008, Chapter 3) and Woodford’s (2003a, Chapter
4) calibrations, and 1W takes the value 0 in G and 1 in W. The reason why the formula for κ differs between G and W is
that Gaĺı (2008, Chapter 3) considers a single kind of labor, while Woodford (2003a, Chapter 4) considers differentiated
kinds of labor. Finally, 1cl takes the value 0 when the exogenous shock νt comes from variations in government purchases
or shifts in the consumption-utility function, and 1 when it comes from shifts in both the consumption-utility and the
labor-disutility functions.
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2.8 Discussion

In this section, I have investigated, in the basic New Keynesian model, for several alternative central

bank’s observation sets, under which conditions − if any − the timeless-perspective Ramsey-optimal fea-

sible path is implementable. However, even sticking with this model (the basic New Keynesian model)

and that kind of feasible path (timeless-perspective Ramsey-optimal feasible paths), I have left aside

interesting cases in terms of CB’s observation set. For instance, CB may not observe recent inflation

rates and output levels, due to macroeconomic-data publication lags. In this case, CB cannot react

out of equilibrium to these recent actions, which puts it further behind the curve, so that the condi-

tions for the timeless-perspective Ramsey-optimal feasible path to be implementable are unclear at first

sight. Moreover, this model (the basic New Keynesian model) and that kind of feasible path (timeless-

perspective Ramsey-optimal feasible paths) are specific in many ways. The analysis conducted in this

section provides little clue as to what the implementability conditions would look like, for similar alter-

native policymaker’s observation sets, in the same model for another kind of feasible path, in another

model for the same kind of feasible path, or in another model for another kind of feasible path.

The brute-force guess-and-verify method that I have used to establish Propositions 2 and 4 (as well as,

indirectly, Proposition 5) cannot be used to address these questions. Indeed, this method requires to (i)

consider a given parametric family of policy-instrument rules, (ii) derive inequality conditions for these

rules to ensure local equilibrium determinacy, i.e. for the characteristic polynomial of the implied system

(made of the structural equations and the rule considered) to have a given number of unstable roots,

(iii) derive equality conditions for these rules to be consistent with the feasible path considered, and

(iv) show that there exist some rules meeting these inequality and equality conditions for all admissible

values of the structural and feasible-path parameters (or else consider a larger parametric family of rules

and start again). Now, the computations become intractable in practice as soon as the degree of the

system’s characteristic polynomial reaches the value four or five.22 Of course, this method could still be

used to design policy-instrument rules numerically, but no general result could then be established.

In the next two sections, I will be able to address these questions, and generalize the results so far

obtained in a specific example, by using a method to design policy-instrument rules arithmetically, i.e.

by deriving their coefficients from the structural and implementable-path parameters with a finite number

of arithmetic operations (addition, subtraction, multiplication, and division).

3 The General Model

This section presents the general dynamic stochastic discrete-time infinite-horizon rational-expectations

model that will be used in the next section. I assume that this model admits at least one steady state

in the neighborhood of which its equilibrium conditions are log-linearizable. I restrict the analysis to

the neighborhood of this steady state, log-linearize the equilibrium conditions in that neighborhood, and

express all endogenous and exogenous variables as log-deviations from their values at that steady state.

The model’s agents are Nature (N ), a policymaker (PM), and a private sector (PS). Time is discrete,

22In the context of the basic New Keynesian model, the degree of this polynomial is equal to (i) three for the interest-rate
rules considered in Propositions 2 and 4, (ii) two or three for all the interest-rate rules considered by Woodford (2003a,
Chapter 4), and (iii) five or more, in the presence of observation lags (even of minimal length, i.e. of length one), for
interest-rate rules that are consistent both with these observation lags and with the corresponding timeless-perspective
Ramsey-optimal feasible path.
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indexed by t ∈ Z. At each date t, the agents − taken in alphabetical order − move as follows: N draws

the realization of exogenous shocks, PM sets the policy instrument, and PS sets its actions and forms

its expectations of its own future actions and PM’s future policy instrument.23 The only assumption

that I make at this stage about the chronological order of these moves is that, at each date t ∈ Z,

PS plays after N and PM: after N , in order to allow exogenous shocks to affect PS’s actions and

expectations contemporaneously; and after PM, for the reasons I have put forward in Section 1.

3.1 Exogenous Disturbances

The behavior of N consists in drawing, at each date t ∈ Z, the realization of εt, which is a centered

white-noise M2-dimension vector of exogenous shocks such that M2 ∈ N∗ and E{εtε′t−k} = 0 for any

k ∈ Z∗. I then introduce the M1-dimension vector of exogenous disturbances ξt, where M1 ∈ N∗, which

follows a centered stationary finite-order VARMA process driven by εt:

A1 (L) ξt = A2 (L) εt, (6)

with A1 (L)
(M1×M1)

≡
∑na1

k=0
A1,kL

k and A2 (L)
(M1×M2)

≡
∑na2

k=0
A2,kL

k,

where (na1 , na2) ∈ N2, all A1,k and A2,k have real numbers as elements, A1(0) is invertible, and all

the roots of |Xna1
A1(X−1)| are stable (i.e. of modulus strictly lower than one).24 For simplicity and

without any loss in generality, I also assume that A1(L) is diagonal.

3.2 Structural Equations

Let it denote the policy instrument at date t, and Ya
t the Na-dimension vector of PS’s actions at date

t, where Na ∈ N∗. Let Et{.} denotes the rational-expectations operator conditionally on the observation

set of PS when it sets Ya
t (with the convention Et{Ya

t } = Ya
t ). I assume that this observation set, which

I note OPSt , is made of all previous moves of all players: OPSt = {Ya,t−1, it,Et−1{Ya},Et−1{i}, εt}. Let

Ye
t an Ne-dimension vector of expectations formed by PS at date t, where Ne ∈ N, i.e. a vector whose

elements belong to the set made of the elements of Et{Ya
t+k} and Et{it+k} for k ∈ N∗. Finally, let

Yt ≡ [ Ya′
t Ye′

t ]′. The behavior of PS is described the following N ≡ Na +Ne structural equations:

Et {B (L) Yt + C (L) it}+ D(L)ξt = 0 (7)

with B (L)
(N×N)

≡
∑nb

k=−mb
BkL

k, C (L)
(N×1)

≡
∑nc

k=−mc
CkL

k, and D (L)
(N×M1)

≡
∑nd

k=0
DkL

k,

where (mb,mc, nb, nc, nd) ∈ N5; all Bk, Ck, and Dk have real numbers as elements; L denotes the lag

operator; and 0, throughout the paper, denotes a vector or a matrix whose elements are all equal to zero

(and whose dimension depends on the specific context in which it is used).

Note that the system of structural equations (7) explicitly features an arbitrary finite number of lags

and expected leads of PS’s actions, its expectations, and the policy instrument. As is well known, this

system could be rewritten in an equivalent reduced form with no lag and only one expected lead of a

vector of endogenous variables: B̃−1Et{Ỹt+1}+ B̃0Ỹt + C̃ĩt + D̃ξ̃t = 0, where B̃−1, B̃0, C̃, and D̃ are

23These actions should be interpreted in a broad sense: in most applications, they will typically include both quantities
and prices.

24As in Section 2, for expositional clarity, I omit mention of sunspot shocks (as opposed to the fundamental shocks εt)
in the main text, like the bulk of the related literature.
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matrices that have real numbers as elements, and Ỹt, ĩt, and ξ̃t are vectors whose elements belong to the

set made of the elements of, respectively, Et{Yt+k}, Et{it+k}, and Et{ξt+k} for k ∈ Z. As a matter of

fact, it is typically in this reduced form that the existing literature (e.g., Svensson, 1999, 2011; Giannoni

and Woodford, 2002; Woodford, 2003a, Chapter 8) writes a general system of structural equations. I

depart from the existing literature in this respect because I want to distinguish between PS’s actions

and its expectations, between its past and its current actions or expectations, and between the past and

the expected future policy instruments, since I will assume that PM may observe the ones but not the

others when she sets the current policy instrument. This reduced form, which mixes up all these actions

and expectations with each other within the same vectors Ỹt and ĩt, would therefore be ill-suited for my

purpose.

For each j ∈ {1, ..., N}, let ej denote the N -element vector whose jth element is equal to one and whose

other elements are equal to zero. Let JB denote the set of j ∈ {1, ..., N} such that e′jB(L) 6= 0, and JC

the set of j ∈ {1, ..., N} such that e′jC(L) 6= 0. Let mb
j ≡ −min[k ∈ {−mb, ..., nb}, e′jBk 6= 0] for each

j ∈ JB , and mc
j ≡ −min[k ∈ {−mc, ..., nc}, e′jCk 6= 0] for each j ∈ JC . Lastly, when JB = {1, ..., N},

let B̂ (L) ≡ [ Lm
b
1e1 · · · Lm

b
NeN ]B (L). I make the following four assumptions on B(L) and C(L):

Assumption 1: JB = {1, ..., N}.

Assumption 2: ∀j ∈ {1, ..., N}, mb
j ≥ 0.

Assumption 3: B̂(0) is invertible.

Assumption 4: JC 6= ∅.

These assumptions are not restrictive at all. Indeed, any relevant model should satisfy Assumptions

1 and 2 for the structural equations to represent PS’s choice of Yt, and Assumption 4 for the policy

instrument to have an effect on this choice. Then, given Assumptions 1, 2 and 4, Assumption 3 is made

without any loss in generality, since any system of type (6) and (7) satisfying Assumptions 1, 2 and 4

but not Assumption 3 can straightforwardly be rewritten in an equivalent form of type (6) and (7) either

satisfying Assumptions 1 to 4, or not satisfying Assumption 1.

3.3 Comparison with Existing DSGE Models

Many − if not most − existing DSGE models are such that their exogenous disturbances can be written

in a locally linearized form of type (6), and their structural equations in a locally linearized form of type

(7) that satisfies Assumptions 1 to 4. Consider, for instance, the basic New Keynesian model considered

in the previous section, which is the backbone of most existing DSGE models. Its exogenous disturbances

are trivially of type (6) with M1 = M2 = 2, and its structural equations (1) and (2) are already written

in a form of type (7) with Na = 2 and Ne = 0 that satisfies Assumptions 1 to 4 for all admissible values

of the structural parameters β, κ, λ, φ, and σ. Now consider a typical medium-scale DSGE model, such

as Smets and Wouters’ (2007): its exogenous disturbances are of type (6) with M1 = M2 = 6 (ignoring

the monetary-policy disturbance), and its structural equations are easily shown to be already written in

a form of type (7) with Na = 13 and Ne = 0 that satisfies Assumptions 1 to 4 for all admissible values

of its structural parameters, except a set of values of measure zero.25

25As can be easily checked, these structural equations, as they are written by Smets and Wouters (2007), satisfy As-
sumption 3 unless (1 − c1)[z1zy − αφpz1 − (1 − α)φp] + c2cy = 0, where c1, c2, cy , z1, zy , α, and φp are reduced-form
parameters, and the set of structural-parameter values such that this equality is satisfied is of measure zero.

19



In particular, my general framework allows for three interesting features. First, it allows for the presence

of policy transmission lags of the kind considered by, e.g., Rotemberg and Woodford (1999), Woodford

(2003a, Chapter 5), Christiano, Eichenbaum, and Evans (2005), and Svensson and Woodford (2005).

In these models, PS decides unconditionally in advance on its actions, so that the structural equations

make its current actions depend on its past expectations. My framework allows for the presence of such

lags − whatever their length − because PS’s past expectations may feature in the structural equations

(7) when Ne ≥ 1. In the literature, policy transmission lags are often considered in the case of monetary

policy, given the delay with which an unexpected monetary-policy decision affects the economy.

Second, it allows for the presence of policy implementation lags of the kind considered by Schmitt-Grohé

and Uribe (1997, Section III). These lags compel PM to choose unconditionally in advance the value of

her policy instrument. My framework captures the presence of such lags of an arbitrary length l ∈ N∗

when all variables of type Et{it+k} with k ∈ Z in the structural equations (7) are such that k ≤ −l, i.e.

when ∀j ∈ {1, ..., N}, mc
j ≤ −l. In the literature, policy implementation lags are most often considered

in the case of fiscal policy, given the relatively long period of time that is typically observed in practice

between the announcement and the implementation of fiscal-policy decisions.26

Third, it allows for the presence of news shocks of the kind considered by Christiano, Motto, and Rostagno

(2013). To see this possibility, consider for simplicity the case in which M1 = 1.27 Assume that the unique

element of ξt, noted ξt, follows the stochastic process
∑na1

k=0 a1,kξt−k =
∑na2

k=0 a2,kϕk,t−k, where na1 ∈ N,

na2 ∈ N∗, all a1,k and a2,k are real numbers, a1,0 6= 0, all the roots of
∑na1

k=0 a1,kX
na1−k are stable, and,

for each k ∈ {0, ..., na2}, ϕk,t−k is a shock whose realization is observed by PS at date t − k. For each

k ∈ {1, ..., na2}, ϕk,t is a “news shock” in the sense that it gives to PS at date t some information about

ξt+k without affecting ξt+j for j ∈ {0, ..., k − 1}. Assume further that the vector of date-t news shocks

ϕt ≡ [ ϕ1,t · · · ϕna2 ,t ] is such that E{ϕtϕ′t−k} = 1k=0W for any k ∈ Z, where W is a symmetric

positive semi-definite (na2 +1)×(na2 +1) matrix. Then, the stochastic process of ξt can easily be rewritten

in a form of type (6) with A1(L) ≡ [
∑na1

k=0 a1,kL
k], A2(L) ≡ [ a2,0 a2,1L · · · a2,na2Ln

a2
]W

1
2 , and

εt ≡W− 1
2ϕt.

3.4 Policy-Instrument Rule

Let OPMt denote the observation set of PM when she sets it. Since PM is assumed to play before PS
at each date t ∈ Z, all the sets OPMt that I will consider are included in the set O

PM
t made of PS’s past

actions and expectations, PM’s past policy instruments, and N ’s current and past exogenous shocks:

OPMt ⊂ OPMt ≡ OPSt r {it} = {Ya,t−1, it−1,Et−1{Ya},Et−1{i}, εt}. The behavior of PM is described

by a policy-instrument rule. Throughout the rest of the paper, I will focus on policy-instrument rules

that express it as a time-invariant function of a finite number of elements of O
PM
t , and I find it convenient

to write them in a form that involves the vector Yt, rather than the vector Ya
t :

E1 (L)Et
{

E2

(
L−1

) [
Y′t it

]′}
+ F (L) Yt +G (L) it + H (L) εt = 0 (8)

with E1 (L)
(1×me)

≡
∑ne

k=1
E1,kL

k, E2

(
L−1

)
(me×(N+1))

≡
∑ne

k=1
E2,kL

−k, F (L)
(1×N)

≡
∑nf

k=1
FkL

k, H (L)
(1×M2)

≡
∑nh

k=0
HkL

k,

26For instance, defining conservatively the date of announcement of a bill as the date when the bill becomes law, Morten
and Ravn (2010) find that around half of the “exogenous” U.S. tax bills since World War II were announced more than
one quarter ahead of their implementation date, and that the median implementation lag (i.e. the median period of time
between the announcement date and the implementation date) for these bills is six quarters.

27The reasoning can straightforwardly be generalized to cases in which M1 > 1. Christiano, Motto, and Rostagno (2013)
consider news shocks about future technology, monetary-policy, government-spending, equity, and risk disturbances.

20



and G(L) ≡
∑ng

k=0 gkL
k, where (me, ne, nf ) ∈ N∗3, (ng, nh) ∈ N2, all gk are real numbers, g0 6= 0, and

all E1,k, E2,k, Fk, Hk have real numbers as elements. The key feature of policy-instrument rules of

type (8) is that they involve no PS’s current actions or expectations, i.e. they are such that E1(0) = 0

and F(0) = 0, consistently with my assumption that PM plays before PS at each date t ∈ Z. In the

terminology first used by Svensson (1999), they are explicit. As I have argued in Subsection 2.2 in the

context of DSGE models of the monetary transmission mechanism, most of the policy-instrument rules

considered in the literature, on the contrary, do involve some PS’s current actions or expectations, and

do require PM to play after PS at each date t ∈ Z. In Svensson’s (1999) terminology, they are implicit.

3.5 Superset of Feasible Paths

Since all the observation sets OPMt that I will consider are included in the set O
PM
t defined in the

previous subsection, all the feasible paths that I will consider belong to the superset of paths that

are consistent with the structural equations and the observation set O
PM
t . For simplicity, I focus on

paths that can be written in a finite-order centered stationary VARMA process driven by the vector of

exogenous shocks εt.
28 And, for convenience, I consider paths for [ Y′t it ]′, rather than [ Ya′

t it ]′.

Therefore, the superset of feasible paths is the set of paths that can be written in the form

S (L)
[

Y′t it
]′

= T (L) εt (9)

with S (L)
((N+1)×(N+1))

≡
∑ns

k=0
SkL

k and T (L)
((N+1)×M2)

≡
∑nt

k=0
TkL

k,

where (ns, nt) ∈ N2; all Sk and Tk have real numbers as elements; S0 is the (N + 1)× (N + 1) identity

matrix IN+1; all the roots of |XnsS(X−1)| are stable; and S(L) and T(L) are such that the path

(Yt, it)t∈Z defined by (9) satisfies the structural equations (7).29 For each j ∈ {1, ..., N + 1}, let vj

denote the (N + 1)-element vector whose jth element is equal to one and whose other elements are

equal to zero. Without any loss in generality, I also impose S(L) to be such that if Ne ≥ 1, then

[ v1 ... vNa ]′S(L)[ vNa+1 ... vN ] = 0, so that the first Na lines of (9) do not involve any PS’s

expectations.

4 Design of Policy-Instrument Rules

In this section, I provide, in the general model of the previous section, for various alternative PM’s ob-

servation sets, and for any feasible path, conditions for this path to be implementable. In addition, when

it is implementable, I show how to design some corresponding policy-instrument rules arithmetically.

4.1 A Preliminary Result

Before proceeding, let me establish a preliminary result that will prove useful to design policy-instrument

rules in the rest of the paper. Let R[X] denote the set of polynomials in X with real-number coefficients,

28This focus on finite-order VARMA processes is not restrictive in the sense that, as straightforwardly follows from
Blanchard and Kahn’s (1980) analysis, the unique stationary solution of a linear time-invariant finite-order rational-
expectations model with finite-order VARMA disturbances necessarily follows a finite-order VARMA process, provided
that this model can be written in Blanchard and Kahn’s (1980) form.

29In fact, Assumptions 1 to 4 do not guarantee that the system of structural equations (7) has at least one stationary
solution (Yt, it)t∈Z. Naturally, the results that I will obtain in the next section make sense only if it does.
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and, for each j ∈ {1, ..., N +1}, let ∆j(X) ∈ R[X] denote the determinant of the N ×N matrix obtained

by removing its jth column from N × (N + 1) matrix Xmax{nb,nc}[ B(X−1) C(X−1) ]. I then get the

following lemma:

Lemma 1: for any policy-instrument rule of type (8) such that

E1(L) = 0, (10)

if max
j∈JC

(
mc
j −mb

j

)
≥ 1, then ∀k ∈

{
1, ...,max

j∈JC

(
mc
j −mb

j

)}
∩
{

1, ..., nf
}

, Fk = 0, (11)

the system made of the structural equations (7) and this rule can be written in Blanchard and Kahn’s

(1980) form with m ≡
∑N
j=1m

b
j non-predetermined variables, and its non-zero eigenvalues are (and have

the same multiplicity as) the non-zero roots of polynomial

Xmax{nf ,ng}
[∑N

j=1
(−1)

N+1−j
F
(
X−1

)
ej∆j (X) +G

(
X−1

)
∆N+1 (X)

]
. (12)

Proof : see Appendix B.1. � In short, Appendix B.1 essentially uses (i) Assumption 3 to show that the

system mentioned in Lemma 1 has exactly m non-predetermined variables, and (ii) a standard result of

time-series analysis (see, e.g., Hamilton, 1994, Chapter 10, Proposition 10.1) to show that the non-zero

eigenvalues of this system are the non-zero roots of (12).

Most of the policy-instrument rules of type (8) satisfying (10) that I will design in the rest of the paper

also satisfy (11), so that I will be conveniently able to use Lemma 1 to design them.30

4.2 When PM Observes Actions and Shocks, Possibly with Lags

I first consider the case in which PM observes all actions, all shocks, and no expectations. In addition, I

allow for the possibility that PM observes the actions of PS and shocks with some lags. More specifically,

I assume that there exists (lY , lε) ∈ N2 such that lε ≤ lY + 1 and OPMt = {Ya,t−1−lY , it−1, εt−lε}.31

When lY = lε = 0, there are no observation lags (as, for instance, in Subsection 2.4). When lY ≥ 1 or

lε ≥ 1, PM does not observe recent actions or shocks (as, for instance, in Subsection 2.5, where lY = 0

and lε = 1). The existence of observation lags can be justified by that of macroeconomic-data publication

lags.32 McCallum (1999), in particular, argues that policy-instrument rules for monetary policy need to

take such lags into account to be “operational,” and Orphanides (2001) points out that interest-rate rules

commonly considered in the literature involve variables that are, in fact, not known with any accuracy

until several quarters later. These publication lags may apply not only to PS’s actions, but also to

exogenous shocks, for instance to foreign macroeconomic data (considered as exogenous from the point

of view of a small open economy).

30Most DSGE models without policy transmission lags are such that max{mcj − mbj |j ∈ JC} ≤ 0, so that all policy-

instrument rules of type (8) meet condition (11) in these models. However, DSGE models with policy transmission lags
are often such that max{mcj −mbj |j ∈ JC} ≥ 1. Such is the case, for instance, of Svensson and Woodford’s (2005) model,
as apparent from Subsection 5.1’s analysis.

31The analysis can be straightforwardly extended to the case in which PM observes only some actions of PS, instead
of all of them, i.e. to the case in which there exist (lY , lε) ∈ N2 and a set I such that lε ≤ lY + 1, ∅  I  {1, ..., Na}, and
OPMt = {e′iYt−1−lY , it−1, εt−lε |i ∈ I}. In practice, one example of PS’s action that PM may not observe, even with a
lag, is the capital utilization rate in the service sector.

32Some variables, most notably some financial-market variables, can clearly be observed without any lag by the policy-
maker. However, as argued by Leeper, Sims and Zha (1996, p. 40) and Rotemberg and Woodford (1999, pp. 93-94), the
policymaker may still react with some lags to these variables because of data-processing and decision-making frictions.
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I assume, mostly for convenience, that observation lags on shocks are not too large relatively to obser-

vation lags on PS’s actions, i.e. lε ≤ lY + 1.33 Of course, when lε ≤ lY , if PM manages to implement a

given feasible path as the unique local equilibrium, then she will be able to recover, at each date t ∈ Z,

from her observation of the exogenous shocks εt−lε , the value taken in equilibrium by the actions of PS
that she does not observe, namely Yt−lε−k for k ∈ {0, ..., lY − lε}. However, the relevant question is

whether her inability to react out of equilibrium to these actions prevents her from implementing that

path as the unique local equilibrium in the first place.

In this case, the rules of type (8) that are consistent with OPMt are those that satisfy (10),

if Ne ≥ 1, then F(L)[ eNa+1 ... eN ] = 0, (13)

if lY ≥ 1, then ∀k ∈ {1, ..., lY } ∩ {1, ..., nf}, Fk[ e1 ... eNa ] = 0, (14)

and if lε ≥ 1, then ∀k ∈ {0, ..., lε − 1} ∩ {0, ..., nh}, Hk = 0, (15)

while the feasible paths, i.e. the paths of type (9) that are consistent with OPMt , are those that satisfy

if Ne ≥ 1, then v′N+1S(L)[ vNa+1 ... vN ] = 0, (16)

if lY ≥ 1, then ∀k ∈ {1, ..., lY } ∩ {1, ..., ns}, v′N+1Sk[ v1 ... vNa ] = 0, (17)

and if lε ≥ 1, then ∀k ∈ {0, ..., lε − 1} ∩ {0, ..., nt}, v′N+1Tk = 0. (18)

Let D(X) ∈ R[X] denote the greatest common divisor, defined up to a non-zero real-number multiplica-

tive scalar, of all non-zero ∆j(X) for j ∈ {1, ..., Na} ∪ {N + 1}. I then obtain the following proposition,

which generalizes Propositions 2 and 4 to any policy, any model, any observation-lag length, and any

feasible path:

Proposition 7 (feasible-path implementation, in the general model, when PM observes

actions and shocks, possibly with lags): if D(X) has at most m unstable roots (taking into account

their multiplicity), then, for any (lY , lε) ∈ N2 such that lε ≤ lY + 1, for any path (Yt, it)t∈Z of type (9)

satisfying (16), (17), and (18), there exists an arithmetically designable policy-instrument rule of type

(8) satisfying (10), (13), (14), and (15), such that this path (Yt, it)t∈Z is the unique stationary solution

of the system made of the structural equations (7) and that rule.

Proof : see Appendix B.2. � In short, Appendix B.2 proceeds as follows. It first applies Bézout’s identity

to (∆i(X))i∈{1,...,Na}∪{N+1}, i.e. it shows the existence of (Ui(X))i∈{1,...,Na}∪{N+1} ∈ R[X]N
a+1 such

that
∑
i∈{1,...,Na}∪{N+1} Ui(X)∆i(X) = D(X).34 It then uses the Euclidian division to design, from

(Ui(X))i∈{1,...,Na}∪{N+1}, some F(L) and G(L) such that (i) F(L) satisfies (11), (13), and (14), (ii) (12)

has exactly m unstable roots (taking into account their multiplicity), and (iii) (12) admits the roots of

|XnsS(X−1)| as stable roots. At this stage, given Lemma 1, any policy-instrument rule of type (8) with

E1(L) = 0 and these F(L) and G(L) is such that (i) the system made of the structural equations (7) and

33Clearly, all the implementation lags described in Subsection 3.3 can be equivalently rewritten as observation lags. The
reverse, however, is not true because no implementation lags can mimick the effects of observation lags of lengths lY and
lε such that lY 6= lε.

34Bézout’s identity is named after Étienne Bézout (1730-1783), who extended to polynomials a result first obtained for
integers by Claude-Gaspard Bachet de Méziriac (1581-1638). It is sometimes unnamed and presented as a corollary of the
Euclidean algorithm (see, e.g., Prasolov, 2004, Chapter 2, Theorem 2.1.1). I have searched for papers in economics that
use Bézout’s identity, and have found only d’Autume (1990) and Loisel (2009). D’Autume (1990) uses it to characterize
the set of solutions of a linear scalar equation with rational expectations and ARMA disturbances. And in Loisel (2009),
I use it to design policy-instrument rules that are typically not of type (8).
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this rule has at most one stationary solution, since it meets Blanchard and Kahn’s (1980) order condition

(but not necessarily their rank condition), and (ii) the eigenvalues of the feasible path (9) considered

are also eigenvalues of this system. Finally, Appendix B.2 uses Cramer’s rule to residually choose H(L)

satisfying (15) and such the feasible path (9) considered is one, and hence the unique, stationary solution

of this system.35

Proposition 7 provides, when PM observes actions and shocks (possibly with lags), for each feasible path,

a sufficient condition for this path to be implementable. In addition, it says that, when this condition

is met, a corresponding policy-instrument rule can be designed arithmetically. To understand how this

proposition works, it is useful to decompose it into three results of increasing strength. The first result

is that, for any system of structural equations of type (7) satisfying Assumptions 1 to 4, for any PM’s

observation set of a kind considered in this subsection, under a certain condition that does not involve the

observation-lag length lY ∈ N, there exists a policy-instrument rule consistent with this observation set

and ensuring local equilibrium determinacy.36 This result is not obvious. Most of the policy-instrument

rules considered in the literature, at least in the context of DSGE models of the monetary transmission

mechanism, manage to ensure local equilibrium determinacy by requiring the policy instrument to react

out of equilibrium to PS’s current actions or expectations. Against this background, by preventing PM
from reacting out of equilibrium to these current actions or expectations, my timing assumption thus

puts PM behind the curve.37 Policy implementation or observation lags, when present, put her still

further behind the curve by preventing her from reacting out of equilibrium to PS’s recent actions or

expectations.38 The way PM can still ensure local equilibrium determinacy in such a situation is via

PS’s expectation that she will go on following her policy-instrument rule in the future. Indeed, in models

that raise non-trivial local-equilibrium-indeterminacy issues, the structural equations make Yt depend

on both Et{it+j} and Et{Yt+k} for some j ∈ Z and k ∈ N∗. By recurrence, they also make Yt depend

on Et{Yt+nk} for some n ∈ N∗ such that nk ≥ −j + lY + 1. Therefore, they make Yt depend indirectly

on Et{it+nk+j}. Now, by imposing an out-of-equilibrium reaction of it to Yt−(nk+j), a policy-instrument

rule also imposes an out-of-equilibrium reaction of Et{it+nk+j} to Yt. The latter reaction can be viewed

as the feedback mechanism that ensures local equilibrium determinacy.39

The second − stronger − result is that, for any system of structural equations of type (7) satisfying

Assumptions 1 to 4, for any PM’s observation set of a kind considered in this subsection, under the

same condition as the one previously mentioned, all feasible paths are implementable. As in Subsection

2.4 (in the specific context of the basic New Keynesian model, no observation lags, and the timeless-

35Cramer’s rule is named after Gabriel Cramer (1704-1752), who generalized to an arbitrary finite number of unknowns
a result first obtained for two or three unknowns by Colin Maclaurin (1698-1746). This rule expresses the unique solution
of a system of linear equations with as many equations as unknowns as a function of the determinants of some matrices.

36The simplest way to illustrate this result is to consider the limit of Section 2’s basic New Keynesian model as the degree
of price stickiness tends towards zero and the elasticity of substitution between differentiated goods towards infinity (see,
e.g., Gaĺı, 2008, Chapter 2, for a detailed presentation of this “classical monetary model”). In the deterministic version of
the resulting model, the only structural equation that involves PS’s expectations is the Fisher equation Et{πt+1}− it = 0
and, for any lY ∈ N, the rule it = απt−lY −1 with −1 < α < 1 clearly ensures local equilibrium determinacy.

37In Eggertsson and Swanson’s (2008, p. 3) words: “if the government moves first, this curbs its ability to react to the
behavior of the private sector in that period, limiting its ability to exclude self-fulfilling prophecies.”

38If anything, the existing literature suggests that such lags may reduce the policymaker’s ability to ensure local equilib-
rium determinacy. For instance, Benhabib (2004, Subsection 3.4) considers, in the context of a specific model, a parametric
family of simple interest-rate rules that are consistent with observation lags of arbitrary length l ∈ N∗. Holding constant
the values of the model’s parameters other than l, he finds numerically that local equilibrium indeterminacy arises for
sufficiently large values of l.

39A similar idea is expressed in Rotemberg and Woodford (1999, p. 109) and Svensson and Woodford (2005, p. 75) in
the context of models with monetary-policy transmission lags. In Rotemberg and Woodford’s (1999, p. 109) words, for
instance: “lags in the effects of a monetary policy change do not imply that an effective policy must be ‘forward-looking.’
The crucial insight is that there is no need for policy to be forward-looking as long as the private sector is.” (The emphasis
is theirs.)
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perspective Ramsey-optimal feasible path), it might be thought at first sight that this second result

(concerning feasible-path implementation) is a straightforward consequence of the first one (concerning

local equilibrium determinacy), on the ground that adding an exogenous term to a policy-instrument rule

does not affect its ability to ensure local equilibrium determinacy and can make the policy instrument

take the same in-equilibrium value as on the feasible path considered. Such a reasoning, however, would

be wrong for essentially the same two reasons as in Subsection 2.4.

First, the exogenous term that would need to be added to an arbitrary policy-instrument rule of type (8)

consistent with OPMt and ensuring local equilibrium determinacy, for the policy instrument to take the

same in-equilibrium value as on the feasible path considered, would typically be written as an infinite

sum of current and past exogenous shocks, so that the resulting rule would typically not be of type (8),

as this type requires that H(L)ξt be a finite (possibly degenerate) sum of these shocks. I overcome this

difficulty by designing a policy-instrument rule that not only ensures local equilibrium determinacy, but

also makes the system made of the structural equations and itself admit the eigenvalues of the feasible

path considered as (at least some of) its own eigenvalues. I do this by using Bézout’s identity to choose

not only the number of unstable eigenvalues of this system, but also the values of (at least some of) its

stable eigenvalues.

Second, the unique local equilibrium implemented by such a policy-instrument rule would not necessarily

be the feasible path considered. Indeed, even though the policy instrument would, by construction, take

the same in-equilibrium value under such a policy-instrument rule as on this path, PS’s actions might

not, as follows from Gaĺı’s (2011) analysis.40 I overcome this difficulty by designing a policy-instrument

rule that is satisfied on the feasible path considered. Therefore, this path is one stationary solution

of the system made of the structural equations and this rule. Since this rule ensures local equilibrium

determinacy, that system has a unique stationary solution, which must then coincide with that path.

Finally, the third and last result encapsulated in Proposition 7 is that the policy-instrument rule in

question is arithmetically designable, that is to say that F(L), G(L), and H(L) can be − and, in

Appendix B.2, are − derived from A1(L), A2(L), B(L), C(L), D(L), S(L), and T(L) with a finite

number of arithmetic operations (addition, subtraction, multiplication, and division). In particular, the

design of this rule does not require the determination of any polynomial roots (except trivially roots of

polynomials of degree one), nor equivalently the determination of any matrix eigenvalues (except trivially

eigenvalues of one-by-one matrices).41 Therefore, it does not require the use of any existing algorithm to

solve locally linearizable dynamic stochastic discrete-time infinite-horizon rational-expectations models

(e.g., the algorithms developed by Klein, 2000, and Sims, 2002). Instead, it uses Bézout’s identity, the

Euclidean division, and Cramer’s rule, all of which involve a finite number of arithmetic operations, to

directly transform the polynomials characterizing the structural equations and the implementable path

considered into the polynomials characterizing the policy-instrument rule.

This arithmetic-designability property implies that, for each model and each implementable path, the

coefficients of the policy-instrument rule in question can be expressed as explicit functions of the struc-

tural and implementable-path parameters. More precisely, each element of F(L), G(L), and H(L) can

40Gaĺı (2011) shows that the multiplicity result he obtains in the context of Section 2’s basic New Keynesian model (as
I relate in Footnote 15) extends to Smets and Wouters’ (2007) typical medium-scale DSGE model as well.

41As is well known, generically speaking, polynomial roots cannot be arithmetically determined for polynomial degrees
strictly higher than one. Nor can they be algebraically determined − i.e., determined with a finite number of algebraic op-
erations (addition, subtraction, multiplication, division, exponentiation with rational exponents) − for polynomial degrees
strictly higher than four, as established by the Abel-Ruffini theorem, which is named after Paolo Ruffini (1765-1822) and
Niels Henrik Abel (1802-1829).
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be expressed as a rational function of the elements of A1(L), A2(L), B(L), C(L), D(L), S(L), and

T(L), i.e. as a fraction of polynomial functions of these elements (with real-number coefficients).42

Of course, unless the specific model and implementable path considered are particularly simple, these

rational functions will involve, by most standards, an unusually large number of terms in the numer-

ator and the denominator. However, their manipulation with a symbolic-computation software should

raise no practical difficulty, for instance to compute their derivatives and determine how the coefficients

of the policy-instrument rule respond to an arbitrarily small change in the value of the structural or

implementable-path parameters.

The implementability condition stated in Proposition 7 is that D(X) should have at most m unstable

roots.43 How restrictive is this condition? The following proposition provides an answer to this question:

Proposition 8 (a “weak Sargent-Wallace property” as a sufficient condition for Proposition

7’s implementability condition to be met): if the system of structural equations (7) has at least

one stationary solution (Yt)t∈Z whatever the exogenous stationary process for (it)t∈Z, then D(X) has at

most m unstable roots (taking into account their multiplicity).

Proof : suppose that the system of structural equations (7) has at least one stationary solution (Yt)t∈Z

whatever the exogenous stationary process for (it)t∈Z. Consider the policy-instrument rule it = Φt,

where Φt follows an arbitrary exogenous stationary process. This rule is of type (8) with F(L) = 0 and

G(L) = 1, and satisfies (10) and (11). Therefore, Lemma 1 implies that (i) the system made of (7) and

this rule can be written in Blanchard and Kahn’s (1980) form with m non-predetermined variables, and

(ii) the non-zero eigenvalues of this system are (and have the same multiplicity as) the non-zero roots

of (12), i.e. the non-zero roots of ∆N+1(X). Since this system has − by assumption − at least one

stationary solution (Yt)t∈Z, Blanchard and Kahn’s (1980) order condition implies that ∆N+1(X) has at

most m unstable roots (taking into account their multiplicity), and hence so does D(X). Proposition 8

follows. �

Proposition 8 says that Proposition 7’s implementability condition is met as soon as the system of

structural equations (7) has at least one stationary solution (Yt)t∈Z whatever the exogenous stationary

process for (it)t∈Z. The latter condition seems hardly restrictive, at least in the case of monetary policy.

Indeed, it is well known that existing DSGE models of the monetary transmission mechanism typically

have what Giannoni and Woodford (2002) and Woodford (2003a, Chapter 8) call the “Sargent-Wallace

property,” after Sargent and Wallace (1975), that is to say that interest-rate rules expressing the interest

rate as a function of only exogenous shocks typically lead to local equilibrium multiplicity in these

models. Proposition 8 therefore implies that these models typically meet Proposition 7’s implementability

condition. Proposition 7 then implies that all feasible paths are typically implementable in these models

when PM observes actions and shocks, possibly with lags.

That said, only particularly simple models, such as Section 2’s basic New Keynesian model, have been

analytically shown to have this Sargent-Wallace property for all admissible values of their structural

42In the general case, though, the coefficients of the policy-instrument rule in question cannot easily be expressed
as rational functions of the structural and implementable-path parameters, because the precise number and nature of
arithmetic operations involved depend on the specific model and implementable path at hand in a non-trivial way.

43This condition is sufficient, but not necessary, essentially because when max{mcj −mbj |j ∈ JC} ≥ 1 + lY , there may

exist a rule of type (8) satisfying (10), (13), and (14), but not (11), such that the system made of the structural equations
(7) and this rule has more than m non-predetermined variables.
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parameters.44 More complex models have been checked to have this property only numerically, for some

specific values of their structural parameters. Now, a formal proof that Proposition 7’s implementability

condition is met for all admissible values of the structural parameters would be of high value added,

especially given my emphasis on arithmetically designable policy-instrument rules. Of course, such a

proof can be established only on a model-specific basis. One way to establish it is to (i) use Euclid’s

algorithm to arithmetically derive D(X), and (ii) show that D(X) is of degree strictly lower than m

for all admissible values of the structural parameters (except possibly a set of values of measure zero).

Another way to establish it is to (i) note that the roots of D(X), if any, are the solutions in X of the

system made of the equations ∆i(X) = 0 for i ∈ {1, ..., Na} ∪ {N + 1}, (ii) note that this system is non-

linear in the unknown X, but linear in the K unknowns Xk for k ∈ {1, ...,K} with K ≡ max{d∆i(X)|i ∈
{1, ..., Na} ∪ {N + 1}} (where, for any P(X) ∈ R[X], dP denotes the degree of P(X)), and (iii) if

K < Na + 1, then check analytically that this linear system has no solution (X,X2, ..., XK), and hence

that D(X) = 1, for all admissible values of the structural parameters (except possibly a set of values of

measure zero). For instance, applying the latter method to Smets and Wouters’ (2007) typical medium-

scale DSGE model, one can easily show that D(X) = 1, and hence that Proposition 7’s implementability

condition is met, for all admissible values of the structural parameters of this model (except possibly

a set of values of measure zero). Therefore, all feasible paths are implementable in this model, for all

admissible values of its structural parameters (except possibly a set of values of measure zero), when the

central bank observes actions and shocks, possibly with lags.

4.3 When PM Observes Actions and Expectations, Possibly with Lags

I now turn to the case in which PM observes all actions, all expectations, and no shocks. In addition, I

allow for the possibility that PM observes PS’s actions and expectations with some lags. More specifi-

cally, I assume that there exists lY ∈ N such that OPMt = {Ya,t−1−lY , it−1,Et−1−lY {Ya},Et−1−lY {i}}.
In this case, the rules of type (8) that are consistent with OPMt are those that satisfy

if lY ≥ 1, then ∀k ∈ {1, ..., lY } ∩ {1, ..., ne}, E1,k = 0, (19)

if lY ≥ 1, then ∀k ∈ {1, ..., lY } ∩ {1, ..., nf}, Fk = 0, (20)

and H(L) = 0, (21)

while the feasible paths, i.e. the paths of type (9) that are consistent with OPMt , are those that satisfy

if lY ≥ 1, then ∀k ∈ {1, ..., lY } ∩ {1, ..., ns}, v′N+1Sk[ v1 ... vN ] = 0, (22)

and v′N+1T(L) = 0. (23)

I then obtain the following proposition, which generalizes Proposition 5 to any policy, any model, any

observation-lag length, and any feasible path:

Proposition 9 (feasible-path implementation, in the general model, when PM observes

actions and expectations, possibly with lags): if D(X) has at most m unstable roots (taking

into account their multiplicity), and if rank[A2(X)] = M2 and rank[D(X)] = M1 over R[X], then, for

any lY ∈ N, for any path (Yt, it)t∈Z of type (9) satisfying (22) and (23), there exists an arithmetically

44A proof that Section 2’s basic New Keynesian model has this Sargent-Wallace property for all admissible values of its
structural parameters can be found in, e.g., Woodford (2003a, Chapter 4).
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designable policy-instrument rule of type (8) satisfying (19), (20), and (21), such that this path (Yt, it)t∈Z

is the unique stationary solution of the system made of the structural equations (7) and that rule.

Proof : see Appendix B.3. � In short, Appendix B.3 proceeds along the lines of the proof of Proposition

5, but (i) starts from the policy-instrument rule designed by Proposition 7 when lε = lY + 1, instead of

the interest-rate rule stated in Proposition 4, and (ii) uses the condition that rank[A2(X)] = M2 and

rank[D(X)] = M1 over R[X], i.e. that ∀(P1(X), ..., PM2
(X)) ∈ R[X]M2 r (0, ..., 0), A2(X)[ P1(X) ...

PM2(X)]′ 6= 0, and ∀(P1(X), ..., PM1(X)) ∈ R[X]M1 r (0, ..., 0), D(X)[ P1(X) ... PM1
(X) ]′ 6= 0, to

transform this rule into a rule involving only actions and expectations.

Proposition 9 provides, when PM observes actions and expectations (possibly with lags), for each feasible

path, two conditions that are jointly sufficient for this path to be implementable (and says that, when

these conditions are met, a corresponding policy-instrument rule can be designed arithmetically). I have

argued, in the previous section, that the first of these two implementability conditions (namely, that

D(X) should have at most m unstable roots) is hardly restrictive. My impression is that the second

one (namely, that rank[A2(X)] = M2 and rank[D(X)] = M1 over R[X]) is no more restrictive in the

absence of news shocks of the kind described in Subsection 3.3. In fact, I have been unable to find any

existing DSGE model whose exogenous disturbances and structural equations (i) are of type (6) and (7)

satisfying Assumptions 1 to 4, (ii) feature no news shocks of the kind described in Subsection 3.3, and

(iii) do not meet this second implementability condition. Consider, for instance, Section 2’s basic New

Keynesian model: its exogenous disturbances and structural equations are such that

A2(X) =

[
1 0
0 1

]
and D(X) =

[
1 0
−κφ 1

]
,

so that they trivially meet this condition. Now consider Smets and Wouters’ (2007) typical medium-scale

DSGE model: its exogenous disturbances and structural equations are such that

A2(X)
(6×6)

=


1 0 0 0 0 0
0 1 0 0 0 0
ρga 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1− µpX 0
0 0 0 0 0 1− µwX

 and D(X)
(13×6)

=



φp 0 0 0 0 0
1 0 0 0 0 0
0 −c3 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 k2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0


,

where (c3, k2, µp, µw, φp, ρga) ∈ R6, so that they also meet this condition.45 Given the discussion about

the first implementability condition in the previous subsection, Proposition 9 therefore implies that

all feasible paths are implementable in these two models, for all admissible values of their structural

parameters (except possibly a set of values of measure zero), when PM observes actions and expectations,

possibly with lags. However, models with news shocks of the kind described in Subsection 3.3, such as

Christiano, Motto, and Rostagno’s (2013), typically do not meet this second implementability condition

as they are typically such that M1 < M2 and hence rank[A2(X)] < M2 over R[X] (as clear from the

example given in Subsection 3.3).

45In this model, A2(L) 6= A2(0) because the price-markup and wage-markup disturbances follow ARMA(1,1) processes,
and A2(0) is not diagonal because the spending shock is a linear combination of the productivity shock and another white
noise.
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4.4 When PM Observes Actions, Possibly with Lags

I finally consider the case in which PM observes all actions, no expectations, and no shocks. In addition, I

allow again for the possibility that PM observes PS’s actions with some lags. More specifically, I assume

that there exists lY ∈ N such that OPMt = {Ya,t−1−lY , it−1}. In this case, the rules of type (8) that are

consistent with OPMt are those that satisfy (10), (13), (14) and (21), while the feasible paths, i.e. the

paths of type (9) that are consistent with OPMt , are those that satisfy (16), (17), and (23). I then obtain

the following proposition, which generalizes Proposition 6 to any policy, any model, any observation-lag

length, and any feasible path:

Proposition 10 (feasible-path implementation, in the general model, when PM observes

actions, possibly with lags): for any lY ∈ N, for any path (Yt, it)t∈Z of type (9) satisfying (16),

(17), and (23), if rank{T(X)′[ v1 ... vNa ]} = Na over R[X], then the following two statements are

equivalent to each other:

(a) there exists a policy-instrument rule of type (8) satisfying (10), (13), (14), and (21), such that this

path (Yt, it)t∈Z is the unique stationary solution of the system made of the structural equations (7) and

that rule,

(b) the system made of the structural equations (7) and the last line of (9) has a unique stationary

solution.

Proof : (b) trivially implies (a). To show that (a) implies (b), consider a given path of type (9)

satisfying (17) and (23). The condition that rank{T(X)′[ v1 ... vNa ]} = Na over R[X] (i.e. that

∀(P1(X), ..., PNa(X)) ∈ R[X]N
a r (0, ..., 0),

∑Na

j=0 Pj(X)T(X)′vj 6= 0) is necessary and sufficient for the

system made of the first Na lines of (9), taken at all dates t ∈ Z, to imply no equation without exogenous

shocks. Therefore, under this condition, any rule of type (8) that (i) satisfies (10), (13), (14), and (21),

and (ii) is consistent with the path considered, is necessarily of type

K(L)v′N+1S(L)[ Y′t it ]′ = 0 (24)

with K(L) ≡
∑nk

j=0 kjL
j , where nk ∈ N, all kj are real numbers and, without any loss in generality, k0 is

normalized to one. Now, for anyK(L), (24) has a unique stationary solution in (v′N+1S(L)[ Y′t it ]′)t∈Z,

namely v′N+1S(L)[ Y′t it ]′ = 0, which corresponds to the last line of (9). Therefore, for any K(L), the

system made of the structural equations (7) and the rule (24) has exactly the same stationary solutions

in (Yt, it)t∈Z as the system made of the structural equations (7) and the last line of (9). Proposition 10

follows. �

An alternative way to understand this result is to note that, according to a standard result of time-

series analysis (see, e.g., Hamilton, 1994, Chapter 10, Proposition 10.1), for any K(L), the eigenvalues

of the system made of the structural equations (7) and the rule (24) are those of the system made of

the structural equations (7) and the last line of (9), plus the roots of polynomial XnkK(X−1). Thus,

choosing some K(L) amounts to choose some additional eigenvalues for the system without changing

the number of its non-predetermined variables. If the system made of the structural equations (7)

and the last line of (9) has strictly fewer non-predetermined variables than unstable eigenvalues, then

no choice of K(L) can make the resulting system meet Blanchard and Kahn’s (1980) order condition.

Alternatively, if the system made of the structural equations (7) and the last line of (9) has strictly more
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non-predetermined variables than unstable eigenvalues, then K(L) can be chosen such that the resulting

system satisfies Blanchard and Kahn’s (1980) order condition, but this system will not meet Blanchard

and Kahn’s (1980) rank condition, because the additional unstable eigenvalues will not have the right

eigenvectors.

Proposition 10 provides, when PM observes actions (possibly with lags), for each feasible path of a

certain kind, a necessary and sufficient condition for this path to be implementable (in which case a

corresponding policy-instrument rule is directly provided by the last line of the feasible path). The

restriction on the kind of feasible paths considered (namely, that rank{T(X)′[ v1 ... vNa ]} = Na

over R[X]) requires that M2 ≥ Na, but is consistent with M2 = Na. In the latter case, since PM’s

observation set includes Na + 1 actions (Na actions of PS, plus her own action), there is one more

endogenous variable in PM’s observation set than exogenous shocks in the model, so that there is

one degree of freedom in the choice of a policy-instrument rule consistent with PM’s observation set

and the feasible path considered. It might be thought at first sight that this degree of freedom could

be successfully exploited to find a policy-instrument rule that is consistent with PM’s observation set

and implements the feasible path considered as the unique local equilibrium. Proposition 10 shows

that it cannot, and that the feasible path considered is not implementable when the policy-instrument

rule corresponding to the last line of its VARMA representation (9) does not ensure local equilibrium

determinacy. One example of feasible path that may not be implementable when PM observes past

actions is the timeless-perspective Ramsey-optimal feasible path. I have found in Subsection 2.7 that, in

the basic New Keynesian model, this path seems to be non-implementable only for empirically implausible

calibrations of that model. I will soon show in Subsection 5.1 that, in Svensson and Woodford’s (2005)

New Keynesian model with policy transmission lags, this path is not implementable for empirically

relevant calibrations of that model.

5 Applications and Implications

In this section, I apply the general results of the previous section to some specific models, policy instru-

ments, observation sets, and feasible paths. More precisely, for each model, policy instrument, and path

considered, I check whether the conditions for this path to be implementable are met for empirically

plausible policymaker’s observation sets in that model. The outcome of this check may have interesting

implications, which I highlight in due course.

5.1 Optimal Monetary Policy

I start by considering monetary policy and the timeless-perspective Ramsey-optimal feasible path −
as in Section 2, but no longer in the context of the basic New Keynesian model. Some fifteen years

ago, Rotemberg and Woodford (1999, p. 103) wrote that “the construction of a feedback rule for the

funds rate that implements the optimal allocation − that is not only consistent with it but also renders

it the unique stationary equilibrium consistent with the proposed policy rule − remains a nontrivial

problem.” In essence, this statement is still valid today when the interest-rate rule is required to be

explicit, i.e. when the central bank’s (CB) observation set does not include the private sector’s (PS)

current actions and expectations. Indeed, as already mentioned in the introduction, to my knowledge,

only Svensson and Woodford (2005, Subsections 3.6 and 4.2, and Section 5) manage to design, in a
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model with a forward-looking system of structural equations, explicit interest-rate rules that implement

the timeless-perspective Ramsey-optimal feasible path as the unique local equilibrium for all admissible

values of the structural parameters.46

The model considered by Svensson and Woodford (2005) is Section 2’s basic New Keynesian model with

one-period policy transmission lags and AR(1) disturbances. In this model, at each date t, PS sets

the inflation rate πt and the welfare-relevant output gap xt according to the following IS equation and

Phillips curve:

xt = Et−1 {xt+1} − σ (Et−1 {it} − Et−1 {πt+1} − rnt ) , (25)

πt = βEt−1 {πt+1}+ κEt−1 {xt}+ ut, (26)

where β, κ, σ are such that 0 < β < 1, κ > 0, σ > 0, and it denotes the interest rate set by CB at date

t. The exogenous disturbances rnt and ut follow the AR(1) processes characterized by

rnt = ωrnt−1 + ηt, (27)

ut = ρut−1 + εt, (28)

where ω and ρ are such that 0 ≤ ω < 1 and 0 ≤ ρ < 1, and ηt and εt are i.i.d. exogenous shocks

such that E{ηtεt−k} = 0 for any k ∈ Z.47 Finally, the date-t welfare loss function is of the form

Lt = Et{
∑+∞
k=0 β

k[(πt+k)2 + λ(xt+k)2]}, where λ > 0. Svensson and Woodford (2005) determine the

timeless-perspective Ramsey-optimal feasible path when CB’s observation set is such that CB’s observa-

tion constraint is slack in the optimization programme defining this path.48 They design three explicit

interest-rate rules that implement this path as the unique local equilibrium for all admissible values

of the structural parameters. All three rules involve past expectations of PS and past exogenous dis-

turbances.49 However, it seems reasonable, in the context of this model, to consider that CB may not

observe PS’s expectations or exogenous shocks.50 Therefore, the question arises as to whether the

timeless-perspective Ramsey-optimal feasible path is still implementable in this model when CB observes

only past actions and shocks, or only past actions and expectations, or only past actions.

This question cannot be addressed by using Svensson and Woodford’s (2005) algebraic method of de-

signing interest-rate rules, which is similar to the guess-and-verify method that I use in Section 2, for the

reason discussed in Subsection 2.8 (namely, because the degree of the characteristic polynomials of the

systems to be considered would be too large for the computations to be analytically tractable). It can eas-

ily be answered, however, by applying the general results of the previous section, as I now do. Let me first

rewrite the IS equation (25) and Phillips curve (26) in terms of the output level yt, instead of the welfare-

relevant output gap xt, as it seems relevant to assume that CB directly observes the former, not the latter.

46I qualify a system of structural equations of type (7) satisfying Assumptions 1 to 4 as “forward-looking” when ∃j ∈
{1, ..., N}, mbj > 0, or ∃j ∈ JC , mcj > 0 (so that, due to Assumption 3, it cannot be rewritten in an equivalent form

with ∀j ∈ {1, ..., N}, mbj ≤ 0, and ∀j ∈ JC , mcj ≤ 0). Focusing on models with a forward-looking system of structural
equations does not entail any loss in generality since it is only in these models that the policymaker faces a non-trivial
local-equilibrium-indeterminacy problem. The set of such models includes, of course, most models built on microeconomic
foundations.

47In Svensson and Woodford’s (2005) original model, the mean r of rnt is allowed to be non-zero. For simplicity and
without any loss in generality, I set r = 0.

48Given that it appears in the IS equation (25) and Phillips curve (26) only through the term Et−1{it}, such an
observation set need not include any current endogenous or exogenous variable.

49The first rule involves Et−1{πt}, Et−1{xt}, rnt−1, ut−1 (Subsection 3.6), the second one Et−1{πt}, Et−1{xt},
Et−2{xt−1}, rnt−1, ut−1 (Subsection 4.2), and the third one Et−1{πt}, Et−1{xt}, Et−2{xt−1}, rnt−1, ut−1 (Section 5).

50In this model, as mentioned in Svensson and Woodford (2005), rnt may come from exogenous variations in a component
of aggregate expenditure other than (predetermined) private consumption, and ut from exogenous measurement errors in
the price index or exogenous variations in the markup of (non-predetermined) retail prices over (predetermined) wholesale
prices.
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To that aim, consider exogenous variations in a component of aggregate expenditure other than private

consumption, e.g. government purchases, and note νt their realization at date t. Following Woodford

(2003a, Chapters 4 and 5), I get that yt = Et−1{yt+1} − σ(Et−1{it} − Et−1{πt+1}) + νt − Et−1{νt+1}
and xt = yt − φνt, where 0 < φ < 1. These two equations are consistent with the IS equation

(25) and the AR(1) process (27) if νt follows the stationary ARMA(1,1) process characterized by

νt = ωνt−1 + σ
1−φεt + σω2

(1−φ)(1−ω)εt−1. In this case, νt can be rewritten as νt = σ
1−φr

n
t + σω2

(1−φ)(1−ω)r
n
t−1,

and the IS equation (25) and Phillips curve (26) as

yt = Et−1 {yt+1} − σ
(
Et−1 {it} − Et−1 {πt+1} −

rnt
1− φ

)
, (29)

πt = βEt−1 {πt+1}+ κEt−1 {yt} −
κφσω

(1− φ)(1− ω)
rnt−1 + ut. (30)

Then, the system made of (27), (28), (29), and (30) can easily be rewritten in a form of type (6)

and (7) with M1 = M2 = Na = 2, Ne = 5, ξt = [ rnt ut ]′, εt = [ ηt εt ]′, Ya
t = [ πt yt ]′,

Ye
t = [ Et{πt+1} Et{πt+2} Et{yt+1} Et{yt+2} Et{it+1} ]′,

A1(L) =

[
1− ωL 0

0 1− ρL

]
, A2(L) =

[
1 0
0 1

]
, C(L) =

[
0 0 0 0 0 0 −L−1

]′
,

B(L)
(7×7)

=



1 0 0 −βL −κL 0 0
0 1 0 −σL 0 −L σL
0 0 1 −β −κ 0 0
0 0 −L−1 1 0 0 0
0 0 0 −σ 1 −1 σ
0 0 0 0 −L−1 1 0
0 0 0 0 0 0 1


, and D(L)

(7×2)

=



κφσωL
(1−φ)(1−ω) −1

−σ
1−φ 0
κφσω

(1−φ)(1−ω) −ρ
0 0
−σω
1−φ 0

0 0
0 0


.

Moreover, it is easy to check that B(L) and C(L) satisfy Assumptions 1 to 4 for all admissible values of

the structural parameters β, κ, φ, ρ, σ, and ω. Finally, it is also easy to check that (i) ∆1(X) = κσX2,

which implies that D(X) has no unstable roots, and (ii) rank[A2(X)] = M2 and rank[D(X)] = M1 over

R[X]. Therefore, Svensson and Woodford’s (2005) model meets Propositions 7 and 9’s implementability

conditions for all admissible values of its structural parameters. As a consequence, all feasible paths, in

particular the timeless-perspective Ramsey-optimal feasible path, are implementable in this model, for

all admissible values of its structural parameters, when CB observes past actions and shocks, or past

actions and expectations, possibly with lags.

In order to determine whether the timeless-perspective Ramsey-optimal feasible path is also imple-

mentable in this model when CB observes only past actions (without lags), I first need to write this path

in a form of type (9) satisfying (16) and (23). The following proposition addresses this need, focusing

for expositional clarity on [ Ya′
t it ]′, i.e. leaving aside Ye

t :

Proposition 11 (timeless-perspective Ramsey-optimal feasible path, in Svensson and Wood-

ford’s (2005) model, when CB observes past actions): in Svensson and Woodford’s (2005) model,

there exists (απj , α
y
j , α

i
j)1≤j≤3 ∈ R9 such that, when OCBt = {πt−1, yt−1, it−1}, the timeless-perspective
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Ramsey-optimal feasible path can be written in the following VARMA form: πt
yt
it

 =

 ρ+ µ 0 0
0 ρ+ ω + µ 0
απ1 αy1 αi1

 πt−1

yt−1

it−1

+

 −ρµ 0 0
0 −ρω − ρµ− ωµ 0
απ2 αy2 αi2

 πt−2

yt−2

it−2

+

 0
0
απ3

0 0
ρωµ 0
αy3 αi3

 πt−3

yt−3

it−3

+

 0 1
σ

1−φ 0

0 0

[ ηt
εt

]
+

 0 ρµ
1−βρµ − ρ− µ

−(ρ+µ)σ
1−φ − (1−φ−ω)σω

(1−φ)(1−ω)
−κρµ

λ(1−βρµ)

0 0

[ ηt−1

εt−1

]

+

 0 −βρ2µ2

1−βρµ
ρσµ
1−φ + (1−φ−ω)(ρ+µ)σω

(1−φ)(1−ω)
κρωµ

λ(1−βρµ)

0 0

[ ηt−2

εt−2

]
+

 0 0
−(1−φ−ω)ρσωµ

(1−φ)(1−ω) 0

0 0

[ ηt−3

εt−3

]
, (31)

where µ ≡ λ+βλ+κ2−
√

(λ+βλ+κ2)2−4βλ2

2βλ ∈]0; 1[.

Proof : see Appendix A.5. � In short, Appendix A.5 simply rewrites the timeless-perspective Ramsey-

optimal feasible path determined by Svensson and Woodford (2005) in a VARMA form whose πt and yt

lines involve no PS’s expectations, and whose it line involves no PS’s expectations and no exogenous

shocks.

The 2× 2 matrix obtained by removing its last line from the 3× 2 matrix multiplying [ ηt εt ]′ in (31)

is of rank two for all admissible values of the structural parameters. Therefore, any path of type (9)

whose Ya
t and it lines are written as in (31) is such that rank{T(X)′[ v1 ... vNa ]} = Na over R[X].

Proposition 10 then implies that the timeless-perspective Ramsey-optimal feasible path is implementable

when OCBt = {πt−1, yt−1, it−1} if and only if the system made of (29), (30), and the last line of (31) has

a unique stationary solution. For any calibration of the model’s structural parameters, I can determine

numerically, using the algebraic expression of (απj , α
y
j , α

i
j)1≤j≤3 provided in Appendix A.5, whether this

necessary and sufficient implementability condition is met. Since Svensson and Woodford (2005) do not

calibrate their model, I set the parameters β, κ, λ, φ, and σ to their values in Gaĺı’s (2008, Chapter 3)

or Woodford’s (2003a, Chapter 4) calibration of the basic New Keynesian model described in Table 1,

with 1cl = 1, and I consider a grid of values between zero and one for the parameters ρ and ω. The

results that I obtain are presented in Figure 1, which shows that, in Svensson and Woodford’s (2005)

model, there exist admissible and empirically relevant values for the structural parameters such that

the timeless-perspective Ramsey-optimal feasible path is not implementable when CB observes only past

actions (without lags).

5.2 Monetary Policy Based on Constant-Interest-Rate Forecasts

A number of central banks in the world take their interest-rate decisions on the basis of macroeconomic

projections that are conditional on the interest rate being constant during the projection period. Leitemo

(2003) has formalized such a decision procedure by considering that, at each date, the central bank sets

the interest rate at a value such that the forecast of the inflation rate, at a given horizon and conditional

on the interest rate remaining at this value during the projection period, equals a given exogenous target.

Leitemo (2003) shows, in a general model with a forward-looking system of structural equations, that

this decision procedure can be represented by an implicit interest-rate rule. In the case where this

rule ensures local equilibrium determinacy, let me define the constant-interest-rate forecast targeting
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Figure 1: Implementability of the timeless-perspective Ramsey-optimal feasible path
in Svensson and Woodford’s (2005) model when CB observes past actions

Gaĺı’s (2008, Chapter 3) calibration

ρ
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1
Woodford’s (2003a, Chapter 4) calibration

ρ
ω
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b Implementability region b Non-implementability region

path as the unique local equilibrium under this rule. Does there exist an explicit interest-rate rule that

implements this path as the unique local equilibrium?

To my knowledge, only Leitemo (2003) addresses this question in a model with a forward-looking system

of structural equations. He considers a model with policy transmission lags in which, at each date t, PS
sets the inflation rate πt and the output gap xt according to the following structural equations:

xt = ρ0xt−1 + ρ1xt−2 − β
∑4

j=1
(it−j − πt−j) + ηt, (32)

πt = αEt−1 {πt+1}+ (1− α)πt−1 + γxt−1 + εt, (33)

where (α, β, γ, ρ0, ρ1) ∈ R5, it denotes the interest rate set by CB at date t, and ηt and εt are i.i.d.

exogenous shocks such that E{ηtεt−k} = 0 for any k ∈ Z.51 He numerically obtains an explicit interest-

rate rule that is consistent with the constant-interest-rate forecast targeting path by solving, for it, the

system made of (i) the structural equations (32) and (33) taken at dates t+ k for k ≥ 0, (ii) the implicit

interest-rate rule mentioned above, taken at dates t+k for k ≥ 0, and (iii) the stationarity (i.e., localness)

restriction. This rule involves past actions, past expectations, and current shocks.52 However, Leitemo

(2003) finds that, for the specific structural-parameter values that he considers, this rule fails to ensure

local equilibrium determinacy, i.e. fails to implement that path as the unique local equilibrium. He

concludes by warning against basing monetary policy on constant-interest-rate forecasts.

However, the fact that this explicit interest-rate rule fails to ensure local equilibrium determinacy does

not imply that all the explicit interest-rate rules that are consistent with the constant-interest-rate

forecast targeting path fail to ensure local equilibrium determinacy. So the question remains open as to

whether this path is implementable in that model, for the specific structural-parameter values considered

by Leitemo (2003) or for any other admissible structural-parameter values. This question can easily be

51Leitemo (2003) uses the notation yt to denote the output gap at date t. For reasons of consistency with the notations
of Section 2 and Subsection 5.1, I use instead the notation xt for this variable, and yt for the output level at date t.

52Leitemo (2003) writes this rule in a form that is not of type (8) as it involves (πt−j)0≤j≤3, (xt−j)0≤j≤1, and
(it−j)1≤j≤3. Using (32) and (33), one can straightforwardly rewrite it in a form of type (8) that involves (πt−j)1≤j≤4,
(xt−j)1≤j≤2, (it−j)1≤j≤4, Et−1{πt+1}, ηt, and εt.
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answered by applying the general results of the previous section, as I now do. As it seems relevant to

assume that CB directly observes the output level, not the output gap, let me first note yt the output

level at date t and postulate, without any loss in generality, a relationship between xt and yt of type

xt = yt+δη(L)ηt+δε(L)εt, where (δη(X), δε(X)) ∈ R[X]2.53 Then, the system made of (32) and (33) can

easily be rewritten in a form of type (6) and (7) with M1 = M2 = Na = Ne = 2, ξt = εt = [ ηt εt ]′,

Ya
t = [ πt yt ]′, Ye

t = [ Et{πt+1} Et{πt+2} ]′, A1(L) = A2(L) = I2,

B(L)
(4×4)

=


1− (1− α)L −γL 0 −αL
−β
4

∑4
j=1 L

j 1− ρ0L− ρ1L
2 0 0

−(1− α) −γ 1 −α
0 0 −L−1 1

 , C(L)
(4×1)

=


0

β
4

∑4
j=1 L

j

0
0

 ,

and D(L)
(4×2)

=


−γLδη(L) −1− γLδε(L)

−1 + (1− ρ0L− ρ1L
2)δη(L) (1− ρ0L− ρ1L

2)δε(L)
−γδη(L) −γδε(L)

0 0

 .

It is easy to check that B(L) and C(L) satisfy Assumptions 1 to 4 for all admissible values of the

structural parameters α, β, γ, ρ0, and ρ1, except when α = 0. In the latter case, the system of structural

equations is not forward-looking, so that all feasible paths are trivially implementable for any CB’s

observation set. Let me focus, in the following, on the alternative case in which α 6= 0. It is also easy to

check that (i)

∆1(X) =
−βγ

4
(X + 1) (X − i) (X + i)Pα(X),

∆2(X) =
−β
4

(X + 1) (X − i) (X + i)Qα(X),

∆5(X) = ∆1(X)−X2
(
X2 − ρ0X − ρ1

)
Qα(X),

where Pα(X) ≡ αX2 − αX + 1 and Qα(X) ≡ α (2− α)X2 −
(
1 + α− α2

)
X + (1− α), (ii) ∀α ∈ R∗,

Pα(X) and Qα(X) have no root in common, (iii) ∀α ∈ R∗, neither i nor −i is a root of Qα(X), and

(iv) ∀(ρ0, ρ1) ∈ R2, neither i nor −i is a root of X2 − ρ0X − ρ1 unless (ρ0, ρ1) = (0,−1). Therefore, a

necessary and sufficient condition for D(X) to have at most m = 1 unstable root is (ρ0, ρ1) 6= (0,−1).

As a consequence, Leitemo’s (2003) model meets Proposition 7’s implementability condition for all

admissible values of its structural parameters, except the set of values of measure zero characterized by

(ρ0, ρ1) = (0,−1). Proposition 7 then implies that all feasible paths, in particular the constant-interest-

rate forecast targeting path, are implementable in this model, for all admissible values of its structural

parameters except possibly a set of values of measure zero, when CB observes past actions and current

and past shocks. Moreover, Leitemo’s (2003) concept of constant-interest-rate forecast targeting path

can easily be extended to cases in which CB observes actions and shocks with a lag (and in particular

does not observe current shocks), as well as to cases in which it observes actions and expectations (but no

shocks), again possibly with a lag. Since rank[A2(X)] = M2 and rank[D(X)] = M1 over R[X] whatever

(δη(X), δε(X)) ∈ R[X]2, Propositions 7 and 9 imply that all feasible paths, in particular the constant-

interest-rate forecast targeting path, are implementable in these cases too, for all admissible values of

the model’s structural parameters except possibly again the set of values of measure zero characterized

by (ρ0, ρ1) = (0,−1).

To sum up, for all admissible values of the model’s structural parameters (except possibly a set of

values of measure zero), a central bank that observes actions and shocks, or actions and expectations,

53This relationship is a generalization of the relationships between the welfare-relevant output gap xt and the output
level yt that were obtained in Section 2 and Subsection 5.1 in the context of micro-founded models.
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possibly with lags, can conduct monetary policy on the basis of constant-interest-rate forecasts without

generating local equilibrium indeterminacy. This result implies that Leitemo’s (2003) point is not against

monetary policy based on constant-interest-rate forecasts per se, but only against one specific way of

implementing this policy. Basing monetary policy on constant-interest-rate forecasts may well have a

number of inherent drawbacks, as argued by, e.g., Leitemo (2003) and Woodford (2007). But, at least in

the context of this model and those observation sets, generating local equilibrium indeterminacy is not

one of them.

5.3 Debt-Stabilizing Tax Policy

Schmitt-Grohé and Uribe (1997) consider, in the standard neoclassical growth model, a labor-income

tax-rate rule that balances the government’s budget (in the absence of policy implementation lags) or

equalizes the expected future value of the stock of public debt to its initial value (in the presence of

policy implementation lags).54 They find that this rule leads to local equilibrium indeterminacy in both

cases for many admissible and empirically relevant values of the structural parameters, whether the

labor-income tax is accompanied or not by a capital-income tax that varies in the same proportion.

They conclude by warning against the use of labor-income taxes to balance the budget or stabilize the

expected future stock of public debt. In this subsection, I apply the general results of the previous

section to their framework in order to investigate the robustness of their results and conclusion.

Consider, for instance, Schmitt-Grohé and Uribe’s (1997) model in the case where the labor-income tax

is accompanied by a capital-income tax that varies in the same proportion, so that it amounts to an

income tax.55 In this model, at each date t, PS sets the output level yt, the capital stock kt, hours

worked ht, the consumption level ct, the (after-tax) rental price of capital ut, and the (after-tax) wage

wt, according to the following structural equations:

yt = at + (1− sh)kt + shht, (34)

kt = (1− δ)kt−1 +
δ

si
yt−1 −

δsc
si
ct−1 −

δ(1− sc − si)
si

gt−1, (35)

ht =
wt
γ
− ct
γ

, (36)

ct = Et {ct+1 − χut+1} , (37)

ut = at − sh(kt − ht)−
τ

1− τ
τt−l, (38)

wt = at + (1− sh)(kt − ht)−
τ

1− τ
τt−l, (39)

where χ ≡ δ(1−sh)(1−τ)
δ(1−sh)(1−τ)+(1−δ)si ; γ, δ, sc, sh, si, and τ are such that γ > 0, 0 < δ < 1, 0 < sc < 1,

0 < si < 1, 0 < sc + si < 1, 0 < sh < 1, and 0 < τ < 1; τt denotes the income tax rate set by

the tax authority T A at date t; and l ∈ N denotes the length of the tax-policy-implementation lags.

The exogenous productivity and government-purchase disturbances at and gt follow the AR(1) processes

characterized by

at = θaat−1 + εat , (40)

gt = θggt−1 + εgt , (41)

54Most of Schmitt-Grohé and Uribe’s (1997) analysis is conducted in continuous time. I refer here to the discrete-time
analysis conducted at the end of Section III, in Section IV, and in the Appendix of their paper.

55This model amounts to the one detailed in the Appendix of their paper, augmented with technology and government-
purchase disturbances and policy implementation lags. They use this model without disturbances at the end of Section
III, and without policy implementation lags in Section IV.
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where θa and θg are such that 0 ≤ θa < 1 and 0 ≤ θg < 1, and εat and εgt are i.i.d. exogenous shocks

such that E{εat ε
g
t−k} = 0 for any k ∈ Z. Schmitt-Grohé and Uribe (1997) consider, when l = 0, an

implicit income-tax-rate rule that balances the budget (both in and out of equilibrium) and, when l ≥ 1,

an implicit income-tax-rate rule that stabilizes the expected future stock of public debt (again, both in

and out of equilibrium).56 They find that both rules lead to local equilibrium indeterminacy for many

admissible and empirically relevant values of the structural parameters.

However, the fact that these income-tax-rate rule fail to ensure local equilibrium determinacy does not

imply that all the income-tax-rate rules that balance the budget or stabilize the expected future stock of

public debt in equilibrium fail to ensure local equilibrium determinacy. So the question remains open as to

whether the feasible paths along which the government’s budget is balanced or the expected future stock

of public debt is stabilized are implementable in this model for empirically plausible T A’s observation

sets. To answer this question, consider the system made of equations (34) to (41) in the absence of

policy implementation lags, i.e. when l = 0, and rewrite this system in a form of type (6) and (7) with

M1 = M2 = 2, Na = 6, Ne = 0, ξt = [ at gt ]′, εt = [ εat εgt ]′, Ya
t = [ yt kt ht ct ut wt ]′,

A1(L) =

[
1− θaL 0

0 1− θgL

]
, A2(L) =

[
1 0
0 1

]
, C(L) =

[
0 0 0 0 τ

1−τ
τ

1−τ
]′

,

B(L)
(6×6)

=



1 −(1− sh) −sh 0 0 0
−δ
si
L 1− (1− δ)L 0 δsc

si
L 0 0

0 0 1 1
γ 0 −1

γ

0 0 0 L−1 − 1 −χL−1 0
0 sh −sh 0 1 0
0 −(1− sh) 1− sh 0 0 1

 , D(L)
(6×2)

=



−1 0

0 δ(1−sc−si)
si

L

0 0
0 0
−1 0
−1 0

 .

It is easy to check that B(L) and C(L) satisfy Assumptions 1 to 4 for all admissible values of the

structural parameters γ, δ, sc, sh, si, and τ . Moreover, it is also easy to check that (i) ∆2(X) is of

degree one, which implies that D(X) has at most m = 1 unstable root, and (ii) rank[A2(X)] = M2

and rank[D(X)] = M1 over R[X]. Therefore, Schmitt-Grohé and Uribe’s (1997) model without policy

implementation lags meets Propositions 7 and 9’s implementability conditions for all admissible values

of its structural parameters. As a consequence, all feasible paths, in particular all feasible paths along

which the budget is balanced or the expected future stock of public debt is stabilized, are implementable

in this model, for all admissible values of its structural parameters, when T A observes past actions and

shocks, or past actions and expectations, possibly with lags.57 Moreover, since implementation lags can

be equivalently rewritten as observation lags (as already mentioned in Footnote 33), the statement of

the previous sentence is also valid in the presence of policy implementation lags, i.e. when l ≥ 1.

So, to sum up, for all admissible values of the model’s structural parameters, whether in the absence

or in the presence of policy implementation lags, a tax authority that observes actions and shocks, or

actions and expectations, possibly with lags, can conduct an income-tax policy that balances the budget

or stabilizes the expected future stock of public debt in equilibrium without generating local equilibrium

56The first rule involves yt and gt, and the second one yt, ut, bt−1, (Et{yt+k})1≤k≤l, (Et{ut+k})1≤k≤l, (Et{τt+k})1≤k≤l,
and gt (where bt−1 denotes the stock of public debt at date t− 1).

57It seems natural to assume that T A directly observes government-purchase shocks, but not productivity shocks.
Therefore, one choice of T A’s observation set that seems reasonable is, for instance, OT At = {Ya,t−1, τ t−1, εg,t−1}.
This observation set is not of a kind considered in Subsection 4.2, since it does not include εa,t−1. However, using the
production function (34) and the AR(1) process (40), T A can infer past productivity shocks εa,t−1 from its observation
of yt−1, kt−1, and ht−1. Therefore, the set of implementable paths is the same whether OT At = {Ya,t−1, τ t−1, εg,t−1} or
OT At = {Ya,t−1, τ t−1, εa,t−1, εg,t−1}. Since the latter observation set is of a kind considered in Subsection 4.2, this set of
implementable paths is characterized by Proposition 7’s implementability condition.
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indeterminacy. This result implies that Schmitt-Grohé and Uribe’s (1997) point is not against debt-

stabilizing labor-income-tax policy per se, but only against one specific way of implementing this policy

− one that achieves the policy’s goal not only in, but also out of equilibrium. Debt-stabilizing income-

tax policy may have the inherent drawback of amplifying business cycles, as recalled by Schmitt-Grohé

and Uribe (1997). But, at least in the context of their model and those observation sets, and provided

that it is not required to achieve its goal also out of equilibrium, this policy does not have the inherent

drawback of generating local equilibrium indeterminacy.

5.4 Optimal Tax Policy

Correia, Farhi, Nicolini, and Teles (2013) have recently shown, in the context of various models, that

an adequate mix of consumption, labor-income, capital-income, profit, and lump-sum taxes can support

the first-best allocation even when the (short-term nominal) interest rate is at its zero lower bound.

However, they do not address the issue of the local implementation of this optimal tax policy, i.e. the

issue of how to set these tax instruments in order to implement the first-best allocation as the unique

local equilibrium in the neighborhood of the efficient steady state. Nor do they address the issue of

the optimal tax policy and its implementability when the first-best allocation is not feasible, whether

because this allocation is not consistent with the observation set of the tax authority (T A), or because

policy implementation lags make the tax instruments not flexible enough. Addressing these issues is not

trivial, since setting all the tax instruments at their optimal values as functions of only exogenous shocks

would lead to local equilibrium indeterminacy in the models that they consider. In this subsection, I

address these issues by applying, when necessary, the general results of the previous section to their

framework.

Take, for instance, the first and simplest model that they consider, which is Section 2’s basic New

Keynesian model with (i) constant returns to scale (α = 1), (ii) a single kind of labor (1W = 0), (iii)

no ut disturbances, (iv) νt = ν1,t + ν2,t, where ν1,t is a government-purchase disturbance and ν2,t a

preference disturbance, (v) productivity disturbances at, (vi) a consumption tax and a labor-income tax.

Assume for simplicity that the interest rate is permanently at its zero lower bound. Assume further

that the preference disturbance ν2,t, whose nature is not specified in Correia, Farhi, Nicolini, and Teles

(2013), comes from shifts in the consumption-utility function. Next, allow for tax-policy-implementation

lags of length l ∈ N, as in Schmitt-Grohé and Uribe (1997) and the previous subsection. Finally, note

τ ct and τnt the consumption-tax and labor-income-tax rates (in levels, not in log-deviations from some

steady state), and rewrite equivalently the two policy instruments as I1,t ≡ 1+τct
1+τct−1

and I2,t ≡ 1+τct
1−τnt

in

levels, and as i1,t and i2,t in log-deviations from the efficient steady state.58 Then, in the resulting model,

at each date t, PS sets hours worked nt, the output level yt, the consumption level ct, the (pre-tax)

58I make this change of variables because, when T A does not observe any current (exogenous or endogenous) variable,
the first-best allocation is feasible only if the log-linearized tax rates follow random walks, whereas it is feasible with
stationary processes for i1,t and i2,t.
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inflation rate πt, and the (pre-tax) real wage wt, according to the following structural equations:

nt = yt − at, (42)

yt = (1− s)ct + ν1,t, (43)

ct = Et {ct+1}+ γEt {πt+1}+ γEt {i1,t+1−l} − Et {ν2,t+1}+ ν2,t, (44)

πt = βEt {πt+1}+ ψ(wt − at), (45)

wt =
1

γ
ct + χnt + i2,t−l −

1

γ
ν2,t, (46)

where ψ ≡ (1−θ)(1−βθ)
θ , and β, γ, χ, s, and θ are such that 0 < β < 1, γ > 0, χ > 0, 0 < s < 1, and

0 < θ < 1.59 I assume that the disturbances at, ν1,t, and ν2,t, whose stochastic process is not specified

in Correia, Farhi, Nicolini, and Teles (2013), follow a VARMA process characterized by

O(L)[ at ν1,t ν2,t ]′ = P(L)[ εat εν1
t εν2

t ]′, (47)

where O(X) and P(X) are 3× 3 matrices whose elements belong to R[X], and εat , εν1
t , and εν2

t are i.i.d.

exogenous shocks such that E{εat ε
ν1

t−k} = E{εat ε
ν2

t−k} = E{εν1
t ε

ν2

t−k} = 0 for any k ∈ Z. I also assume, for

simplicity and without any loss in generality, that O(0) = I3.

As shown by Correia, Farhi, Nicolini, and Teles (2013), the first-best allocation is characterized by

the production function (42), the binding resource constraint (43), the efficiency condition 1
γ ct + χnt =

at+
1
γ ν2,t, and the condition that output and consumption levels should be identical across differentiated

goods. To be met in a decentralized equilibrium, the latter condition requires πt = 0, and therefore

wt = at. It is then easy to check that, when T A does not observe any current (exogenous or endogenous)

variable, this allocation is feasible if and only if there are no policy implementation lags (l = 0) and the

policy instruments take the following values in equilibrium:

i1,t =
1 + χ

1 + (1− s)γχ
at−1 −

χ

1 + (1− s)γχ
ν1,t−1 −

(1− s)χ
1 + (1− s)γχ

ν2,t−1 (48)

and i2,t = 0. (49)

Now, it seems reasonable to assume, for instance, that T A directly observes, at date t, PS’s actions nt−1,

yt−1, ct−1, πt−1, and wt−1, its own actions i1,t−1 and i2,t−1, and the government-purchase disturbance

ν1,t−1, but not the productivity disturbance at−1, nor the preference disturbance ν2,t−1. One pair of

policy-instrument rules that is consistent with the first-best allocation and such an observation set is

the pair made of (49) and the rule that is obtained by (i) using the production function (42) and the

first-order condition (46), taken at date t − 1, to express at−1 and ν2,t−1 as functions of nt−1, yt−1,

ct−1, wt−1, and i2,t−1, and (ii) replacing at−1 and ν2,t−1 in (48) by these expressions. However, this pair

of rules necessarily leads to local equilibrium indeterminacy, since (i) it has the same local-equilibrium-

determinacy properties as the pair made of (48) and (49), (ii) the system made of the structural equations

(42) to (46) and the rules (48) and (49) has the same structure (except for exogenous terms) as the

system of equilibrium conditions in Section 2’s basic New Keynesian model when the central bank sets

the interest rate as a function of only exogenous shocks, and (iii) as is well known, the latter model

has the Sargent-Wallace property discussed in Subsection 4.2 for all admissible values of its structural

parameters. Now, in this simple framework, local equilibrium determinacy can be easily achieved by

59For consistency reasons, I use Table 1’s notations for these structural parameters, rather than the notations of Correia,
Farhi, Nicolini, and Teles (2013).
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adding a term ϕπt−1 with ϕ > 1 to the i1,t rule to get

i1,t = ϕπt−1 +
1 + χ

1 + (1− s)γχ
(yt−1−nt−1)− χ

1 + (1− s)γχ
ν1,t−1−

(1− s)χ
1 + (1− s)γχ

(ct−1 +γχnt−1−γwt−1).

(50)

Indeed, the system made of the structural equations (42) to (46) and the rules (49) and (50) has the

same structure (except for exogenous terms) as the system of equilibrium conditions in Section 2’s basic

New Keynesian model when the central bank follows the implicit interest-rate rule it = ϕπt, and the

latter rule is well known for ensuring local equilibrium determinacy for all admissible values of the

structural parameters of this model (as shown by, e.g., Woodford, 2003a, Chapter 4). Moreover, given

that πt−1 = 0 is consistent with the first-best allocation, this allocation is one, and therefore the unique,

local equilibrium under rules (49) and (50). Therefore, the first-best allocation is implementable in

this model when there are no policy implementation lags (l = 0) and T A observes, at date t, PS’s

actions nt−1, yt−1, ct−1, πt−1, and wt−1, its own actions i1,t−1 and i2,t−1, and the government-purchase

disturbance ν1,t−1.60

The issue of the implementability of optimal tax policy becomes more complex when optimal tax policy

cannot support the first-best allocation, i.e. when this allocation is not feasible, for instance because of

observation or implementation lags. In such cases, however, it can be easily addressed by applying the

general results of the previous section to this specific framework, as I now do. Since these results have

been obtained under the assumption of a single policy instrument, let me first write, without any loss in

generality, the dynamics of i2,t on the feasible path considered in the VARMA form

Q(L)i2,t = R(L)[ εat εν1
t εν2

t ]′, (51)

where Q(X) ∈ R[X] and R(X) is a 1 × 3 matrix whose elements belong to R[X].61 Now consider

the model without policy implementation lags (l = 0), and rewrite the system made of equations (42)

to (47) and (51) in a form of type (6) and (7) with M1 = 5, M2 = 3, Na = 5, Ne = 0, ξt =

[ at ν1,t ν2,t Et {ν2,t+1} i2,t ]′, εt = [ εat εν1
t εν2

t ]′, Ya
t = [ nt yt ct πt wt ]′,

A1(L)
(5×5)

=


0 0

O(L) 0 0
0 0

J−JO(L)
L 1 0

0 0 0 0 Q(L)

 , A2(L)
(5×3)

=

 P(L)
J[P(L)−P(0)]

L
R(L)

 , C(L)
(5×1)

=


0
0

−γL−1

0
0

 ,

B(L)
(5×5)

=


1 −1 0 0 0
0 1 −(1− s) 0 0
0 0 1− L−1 −γL−1 0
0 0 0 1− βL−1 −ψ
−χ 0 −1

γ 0 1

 , and D(L)
(5×5)

=


1 0 0 0 0
0 −1 0 0 0
0 0 −1 1 0
ψ 0 0 0 0
0 0 1

γ 0 −1

 ,

where J ≡ [ 0 0 1 ]. It is easy to check that B(L) and C(L) satisfy Assumptions 1 to 4 for all

admissible values of the structural parameters β, γ, χ, s, and θ. Moreover, since Section 2’s basic New

Keynesian model has the Sargent-Wallace property discussed in Subsection 4.2, Proposition 8 implies

that D(X) has at most m = 2 unstable roots. Therefore, Correia, Farhi, Nicolini, and Teles’ (2013) model

60Of course, it is also implementable when T A does not directly observe ν1,t−1 at date t, since T A can then use the
goods-market-clearing condition (43), taken at date t− 1, to infer ν1,t−1 from its observation of yt−1 and ct−1.

61More generally, in models with several policy instruments, one can (i) set all of them, except one, according to their
expressions in the VARMA specification of the feasible path considered, (ii) treat these policy-instrument rules in the same
way as structural equations (if they involve some endogenous variables) or as stochastic processes for disturbances (if they
do not), and (iii) apply Proposition 7 or 9 to the remaining policy instrument and the feasible path considered.
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without policy implementation lags meets Proposition 7’s implementability condition for all admissible

values of its structural parameters. As a consequence, all feasible paths, in particular the timeless-

perspective Ramsey-optimal feasible path, are implementable in this model, for all admissible values of

its structural parameters, when T A observes past actions and shocks, possibly with lags.62 Moreover,

since implementation lags can be equivalently rewritten as observation lags (as already mentioned in

Footnote 33), the statement of the previous sentence is also valid in the presence of policy implementation

lags, i.e. when l ≥ 1.

Conclusion

This paper addresses the issue of local path implementation in a broad class of locally linearizable

dynamic stochastic discrete-time infinite-horizon rational-expectations models, which includes many, if

not most, of the models currently used for macroeconomic-stabilization policy analysis. In this class

of models, for various alternative policymaker’s observation sets, and for any feasible path (i.e. any

local path that is consistent with the structural equations and the policymaker’s observation set), I

provide conditions for this path to be implementable (i.e. for the existence of a policy-instrument rule

that is consistent with the policymaker’s observation set and implements this path as the unique local

equilibrium). Moreover, for any implementable path, I show how to design a corresponding policy-

instrument rule arithmetically, and thus obtain its coefficients as rational functions of the structural and

implementable-path parameters. Finally, I apply these general results to, and derive their implications

for, the implementation of some specific stabilization policies, namely monetary policy, monetary policy

based on constant-interest-rate forecasts, debt-stabilizing tax policy, and optimal tax policy, in some

specific models.

Overall, the view that should emerge from the paper is that the policymaker’s observation set is a key

ingredient of the environment that should be explicitly stated alongside other ingredients such as pref-

erences, technology, and markets. Not only does the set of feasible paths depend on this observation

set, but, for a given set of feasible paths, so does the (possibly strict) subset of implementable paths.

Consider, for instance, the timeless-perspective Ramsey-optimal feasible path, which is often consid-

ered as a benchmark in normative analyses. The literature that considers this path typically focuses

on observation sets for the policymaker that make her observation constraint slack (e.g., observation

sets that include all current and past exogenous shocks, possibly among other variables). In many in-

stances, however, there is an alternative, empirically more relevant observation set for the policymaker,

which makes her observation constraint binding (e.g., an observation set that does not include current

endogenous or exogenous variables). So, another natural benchmark would be the timeless-perspective

Ramsey-optimal feasible path corresponding to this alternative observation set. And still another natu-

ral benchmark would be the corresponding timeless-perspective Ramsey-optimal implementable path. I

have shown that the first benchmark may provide, in the basic New Keynesian model, a new explanation

for the observed smoothness of interest-rate paths chosen by central banks over time, and that the second

62As already mentioned, one choice of T A’s observation set that seems reasonable is, for instance, OT At =

{Ya,t−1, it−1
1 , it−1

2 , εν1,t−1}. This observation set is not of a kind considered in Subsection 4.2, since it does not in-
clude εa,t−1 nor εν2,t−1. However, using the production function (42) and the first-order condition (46), T A can
infer εa,t−1 and εν2,t−1 from this observation set. Therefore, the set of implementable paths is the same whether
OT At = {Ya,t−1, it−1

1 , it−1
2 , εν1,t−1} or OT At = {Ya,t−1, it−1

1 , it−1
2 , εa,t−1, εν1,t−1, εν2,t−1}. Since the latter observa-

tion set is of a kind considered in Subsection 4.2, this set of implementable paths is characterized by Proposition 7’s
implementability condition.
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benchmark may differ from the first one in Svensson and Woodford’s (2005) model even when there is

one more endogenous variable in the central bank’s observation set than exogenous shocks in the model.

The analysis conducted in this paper could be extended in at least two interesting directions. First, I have

focused on some specific kinds of observation sets for the policymaker. Other kinds of observation sets

could be considered (in particular sets that include, among other variables, some but not all exogenous

shocks), and the set of implementable paths could be characterized for each of them. Second, none of

the policy-instrument rules that I have designed in this paper is unique. In fact, for each observation set

and each implementable path, there exists an infinity of rules that are consistent with this observation

set and implement that path as the unique local equilibrium.63 This multiplicity opens the door to the

design of rules with additional properties. This degree of freedom could be illustrated by designing, for

instance, non-superinertial policy-instrument rules.64 I leave these two extensions for future research.

Appendix B

In this appendix, I prove Lemma 1, Proposition 7, and Proposition 9. Before proceeding, let me introduce

the following notations. For any system of equations (S), let Et{(S)} (respectively L(S)) denote the

system obtained by applying operator Et (respectively L) on both the left- and the right-hand sides of

each equation of (S). For any non-zero integers n and p, any n× p matrix K and any p-equation system

(S), let K(S) denote the n-equation system obtained by applying K to both the p-element vector made

of the left-hand sides of the equations of (S) and the p-element vector made of their right-hand sides

− so that, in particular, for any N -equation system (S) and any j ∈ {1, ..., N}, e′j(S) denotes the jth

equation of (S). For any non-zero integer n, let In denote the n×n identity matrix. For any polynomial

H(X) ∈ R[X], let dH denote the degree of H(X). Lastly, let |.| denote the modulus operator (when

applied to a complex number), the determinant operator (when applied to a matrix), or the cardinality

operator (when applied to a set).

B.1 Proof of Lemma 1

Consider a system of structural equations (S) of type (7) and a policy-instrument rule (R) of type (8)

satisfying (11). I proceed in two steps: first, I show that the system made of (S) and (R) can be

written in Blanchard and Kahn’s (1980) form with m non-predetermined variables; second, I show that

its non-zero eigenvalues are the non-zero roots of (12).

Step 1: for each j ∈ {1, ..., N}, if j ∈ JC then replace sequentially, for k = 0, ...,mc
j + m, Et{it+mcj−k}

(if it appears) in e′j(S) by its expression in Et{Lk−m
c
j (R)}. Let (S̃) denote the resulting system, and let

(m̃b
j)1≤j≤N and

̂̃
B(L) denote the counterparts of (mb

j)1≤j≤N and B̂(L) for (S̃). Note that
̂̃
B(0) = B̂(0),

since (R) satisfies (11). The rest of Step 1 is essentially devoted to the rewriting of (S̃). For simplicity, I

will keep the same notations (S̃), (m̃b
j)1≤j≤N and

̂̃
B(L) throughout the rewriting process. The previous

63These rules may differ, for instance, in terms of the unstable eigenvalues of the implied (N + 1)-equation system (made
of the structural equations and the rule considered).

64The term “superinertial” was coined by Woodford (1999b). In my framework, rules of type (8) satisfying (10) are said
to be superinertial when the polynomial XngG(X−1) has at least one unstable root. In the literature on optimal monetary
policy, superinertial interest-rate rules are common. They can be found in, e.g., Giannoni and Woodford (2002, 2003,
2005), Rotemberg and Woodford (1999), and Woodford (1999b, 2003a, Chapter 8). Their pervasiveness has led Woodford
(1999b, p. 32) to call for “further investigation of the robustness of the conclusion that the largest autoregressive root
should exceed one under an optimal policy” in models of the monetary transmission mechanism. This extension would
answer his call.
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operation ensures that none of the rewritten systems (S̃) will include any variable of type Et{it+k} for

k ∈ N. Now re-order the lines of (S̃) so that m̃b
1 ≥ ... ≥ m̃b

N . Let K ∈ {1, ..., N} and (j1, ..., jK) ∈
{1, ..., N}K be such that m̃b

1 = ... = m̃b
j1
> m̃b

j1+1 = ... = m̃b
j2
> ... > m̃b

jK−1+1 = ... = m̃b
jK

= m̃b
N .

Re-order the columns of B̃(L) so that ∀j ∈ {1, ..., N−1}, the (N−j)×(N−j) matrix noted Mj obtained

by removing the first j lines and the first j columns from
̂̃
B(0) is invertible, this re-ordering being made

possible by Assumption 3. Re-order the elements of Yt accordingly and note Ỹt the resulting vector.

For each j ∈ {1, ..., j1}, replace e′j(S̃) by

e′j
̂̃
B (0)

−1 Et


1 0 · · · 0

0 Lm̃
b
2−m̃

b
1

. . .
...

...
. . .

. . . 0

0 · · · 0 Lm̃
b
N−m̃

b
1


(
S̃
)

.

This operation makes the first j1 lines of
̂̃
B(0) identical to the first j1 lines of the N×N identity matrix. If

K = 1, then the system made of (S̃) and (R), which is equivalent to the system made of (S) and (R), can

easily be written in Blanchard and Kahn’s (1980) form with j1m̃
b
j1

=
∑N
j=1m

b
j = m non-predetermined

variables. Alternatively, if K ≥ 2, then for each i ∈ {j1 + 1, ..., N} and each j ∈ {1, ..., j1}, replace

sequentially, for k = 1, ..., m̃b
j1
− m̃b

j2
, Et{e′iỸt+m̃bj1

−k} (if it appears) in e′j(S̃) by its expression in

M−1
j1
Et




0 0 · · · 0 Lm̃

b
j1+1−m̃

b
j1

+k 0 · · · 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 · · · 0 0 0 · · · 0 Lm̃
b
N−m̃

b
j1

+k


(
S̃
)


.

This operation does not affect the first j1 lines of
̂̃
B(0), and ensures in particular that for each i ∈

{j1 + 1, ..., j2}, (i) (S̃) does not include any variable of type Et{e′iỸt+k} with m̃b
j2
< k < m̃b

j1
, and (ii)

e′j1+1(S̃), ..., e′j2(S̃) are the only lines of (S̃) in which Et{e′iỸt+m̃bj2
} may appear. Proceed in a similar

way as previously to transform e′j(S̃) for j ∈ {j1 + 1, ..., j2}, then (if K ≥ 3) e′j(S̃) for j ∈ {j2 + 1, ..., j3},
and so on up to e′j(S̃) for j ∈ {jK−1 + 1, ..., jK}. Then, for each i ∈ {1, ..., N}, (i) the only variable

of type Et{e′iỸt+k} with k ≥ min{m̃b
j |1 ≤ j ≤ N} that appears in (S̃) is Et{e′iỸt+m̃bi

}, and (ii) this

variable appears only in line e′i(S̃), and its coefficient is one (as
̂̃
B(0) is the N × N identity matrix).

Therefore, the system made of (S̃) and (R), which is equivalent to the system made of (S) and (R),

can then easily be written in Blanchard and Kahn’s (1980) form with
∑K
k=1 jkm̃

b
jk

=
∑N
j=1m

b
j = m

non-predetermined variables.

Step 2: let IC ≡ {j ∈ JC |mc
j ≥ mb

j}. For each j ∈ IC , ∃Kj(X) ∈ R[X] such that Lm
b
je′jC(L) −

Lm
b
j−m

c
jKj(L)G(L) is of the form

∑nΦj

k=1 Φj,kL
k where nΦj ∈ N∗ and all Φj,k are real numbers. Now, the

non-zero eigenvalues of the system made of (S) and (R) are those of the corresponding perfect-foresight

deterministic system [
B (L) C (L)
F (L) G (L)

] [
Yt

it

]
= 0,

which are in turn those of Ψ1(L)[ Y′t it ]′ = 0 with

Ψ1(L) ≡


Lm

b
1e′1C (L)

B̂ (L)
...

Lm
b
Ne′NC (L)

F (L) G (L)

 ,
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or equivalently those of Ψ2(L)[ Y′t it ]′ = 0 with Ψ2(L)
((N+1)×(N+1))

≡
∑nψ2

k=0 Ψ2,kL
k =


e′1B̂ (L)− 11∈ICL

mb1−m
c
1K1 (L) F (L) Lm

b
1e′1C (L)− 11∈ICL

mb1−m
c
1K1 (L)G (L)

...
...

e′N B̂ (L)− 1N∈ICLm
b
N−m

c
NKN (L) F (L) Lm

b
Ne′NC (L)− 1N∈ICLm

b
N−m

c
NKN (L)G (L)

F (L) G (L)

 ,

where nψ2 ∈ N and all Ψ2,k have real numbers as elements. Since (R) satisfies (11),

Ψ2,0 =


0

B̂ (0)
...
0

0 · · · 0 g0

 .

Since |B̂(0)| 6= 0 and g0 6= 0, Ψ2,0 is invertible, so that according to a standard result of time-series

analysis (see, e.g., Hamilton, 1994, Chapter 10, Proposition 10.1) the non-zero eigenvalues of the system

made of (S) and (R) are the non-zero roots of polynomial |Xnψ2
Ψ2(X−1)| ∈ R[X]. Note that Ψ2(L)

has been obtained by adding −Lm
b
j−m

c
jKj(L)v′N+1Ψ1(L) to v′jΨ1(L) for each j ∈ IC . Now, adding a

scalar multiple of one row to another row leaves the determinant of a matrix unchanged. Therefore,

|Xnψ2
Ψ2(X−1)| = |Xnψ2

Ψ1(X−1)|. Finally, |Xnψ2
Ψ1(X−1)| is equal to (12) up to a multiplicative

factor of type Xz with z ∈ Z. Therefore, the non-zero roots of |Xnψ2
Ψ1(X−1)| are those of (12).

Lemma 1 follows.

B.2 Proof of Proposition 7

Assume that D(X) has at most m unstable roots (taking into account their multiplicity). Consider a

given path of type (9) satisfying (16), (17), and (18), and note it (P ). I proceed in two steps: first, I

design some F(L) satisfying (13) and (14) and some G(L) such that, whatever H(L), the system made

of the structural equations (7) and the corresponding policy-instrument rule (8) satisfying (10) has at

most one stationary solution; second, I design H(L) satisfying (15) such that (P ) is one, and hence the

unique, stationary solution of this system.

Step 1: Bézout’s identity implies that there exists (Ui(X))i∈{1,...,Na}∪{N+1} ∈ R[X]N
a+1 such that∑

i∈{1,...,Na}∪{N+1}
Ui (X) ∆i (X) = D (X) . (B.1)

Let Θ(X) ≡ |XnsS(X−1)| ∈ R[X]. Let Z(X) be a given polynomial such that (i) Z(X)D(X) has exactly

m unstable roots (taking into account their multiplicity), and (ii) Θ(X) is a divisor of Z(X)D(X). The

existence of Z(X) is a consequence of the assumptions that (i) D(X) has at most m unstable roots

(taking into account their multiplicity), and (ii) all the roots of Θ(X) are stable. Let n ∈ N be such that

n ≥ 2d∆N+1
− dD − dZ + max

{
dUN+1

, max
i∈{1,...,Na}

(dUi) + max

{
lY ,max

j∈JC

(
mc
j −mb

j

)}}
.

Finally, let Q(X) ∈ R[X] and R(X) ∈ R[X] denote respectively the quotient and the remainder of

the Euclidean division of XnZ(X) by ∆N+1(X), i.e. the unique polynomials such that XnZ(X) =

∆N+1(X)Q(X) +R(X) with dR < d∆N+1
. Multiplying the left- and right-hand sides of (B.1) by R(X),

I obtain R(X)
∑
i∈{1,...,Na} Ui(X)∆i(X) = R(X)D(X) and therefore∑

i∈{1,...,Na}
[R (X)Ui (X)] ∆i (X) + [R (X)UN+1 (X) +Q (X)D (X)] ∆N+1 (X)

= XnZ (X)D (X) . (B.2)
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Let Fi(X) ≡ R(X)Ui(X) for i ∈ {1, ..., Na}, Fi(X) ≡ 0 for i ∈ {Na + 1, ..., N} (if Ne ≥ 1), and

G(X) ≡ R(X)UN+1(X) + Q(X)D(X). Let A1,j(L) denote the jth element of the diagonal of A1(L)

for each j ∈ {1, ...,M1}, and let A1(L) ≡
∏M1

j=1A1,j(L). The choice of G(L) ≡ A1(L)LdGG(L−1) is

admissible since it implies that G(L) is of type
∑ng

k=0 gkL
k, where ng ∈ N, all gk are real numbers, and

g0 6= 0. Moreover, given that
n ≥ 2d∆N+1

− dD − dZ + max

{
dUN+1

, max
i∈{1,...,Na}

(dUi) + max

{
lY ,max

j∈JC

(
mc
j −mb

j

)}}
n = d∆N+1

+ dQ − dZ
d∆N+1

> dR

=⇒ dQ + dD > dR + max

{
dUN+1

, max
i∈{1,...,Na}

(dUi) + max

{
lY ,max

j∈JC

(
mc
j −mb

j

)}}

=⇒


dQ + dD > dR + dUN+1

dQ + dD > dR + max
i∈{1,...,Na}

(dUi) + max

{
lY ,max

j∈JC

(
mc
j −mb

j

)}
=⇒ dG = dQ + dD > dFi + max

{
lY ,max

j∈JC

(
mc
j −mb

j

)}
for i ∈ {1, ..., Na},

the choice of F(L) ≡ A1(L)LdG
∑N
i=1(−1)N+1−iFi(L−1)e′i is admissible too since it implies that (i) F(L)

is of type
∑nf

k=1 FkL
k, where nf ∈ N∗ and all Fk are 1×N matrices whose elements are real numbers,

and (ii) F(L) satisfies (13) and (14). Finally, this choice is such that F(L) also satisfies (11). Lemma

1 then implies that any rule of type (8) with E1(L) = 0 and these F(L) and G(L) is such that (i)

the system made of the structural equations (7) and this rule can be written in Blanchard and Kahn’s

(1980) form with m non-predetermined variables, and (ii) the non-zero eigenvalues of this system are

the non-zero roots of (12) and hence, given (B.2), the non-zero roots of XdA1A1(X−1)Z(X)D(X). Now,

XdA1A1(X−1)Z(X)D(X) has exactly m unstable roots (taking into account their multiplicity). As a

consequence, the system made of the structural equations (7) and any policy-instrument rule (8) with

E1(L) = 0 and these F(L) and G(L) meets Blanchard and Kahn’s (1980) order condition and has

either one or zero stationary solution, depending on whether it meets Blanchard and Kahn’s (1980) rank

condition.

Step 2: consider first the case in which max{mc
j −mb

j |j ∈ JC} ≤ 0. Along the path (P ), there exist (i)

a unique 1×M2 matrix Ξ(L) ≡
∑+∞
k=lε

ΞkL
k, where all Ξk have real numbers as elements, such that

F (L) Yt +G (L) it + Ξ (L) εt = 0, (B.3)

where F(L) and G(L) are the ones designed in Step 1, and (ii) a unique N × M2 matrix Π(L) ≡
[
∑mb1−1
k=0 Π1,kL

k · · ·
∑mbN−1
k=0 ΠN,kL

k ]′, where all Πj,k have real numbers as elements, such that

 Lm
b
1e′1C (L)

B̂ (L)
...

Lm
b
Ne′NC (L)

[ Yt

it

]
+

 Lm
b
1e′1D(L)

...

Lm
b
Ne′ND(L)

 ξt + Π (L) εt = 0. (B.4)
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Multiplying the left- and right-hand sides of (B.4) by A1(L) leads to

A1 (L)

 Lm
b
1e′1C (L)

B̂ (L)
...

Lm
b
Ne′NC (L)

[ Yt

it

]
+

 Lm
b
1e′1D(L)

...

Lm
b
Ne′ND(L)

×

∏M1

j=2A1,j (L) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0
∏M1−1
j=1 A1,j (L)

A2(L)εt +A1(L)Π (L) εt = 0 (B.5)

since, as a scalar, A1(L) is such that A1(L)K = KA1(L) for any matrix K. The system made of

(B.3) and (B.5) is of VARMA type Λ1(L)[ Y′t it ]′ = Λ2(L)εt with |Λ1(0)| 6= 0, since |A1(0)| 6= 0,

|B̂(0)| 6= 0, max{mc
j − mb

j |j ∈ JC} ≤ 0, F(0) = 0, and G(0) 6= 0. Cramer’s rule then implies that

there exist (n1, ..., nN+1) ∈ NN+1, where nj ≥ d∆j for j ∈ {1, ..., N + 1}, and an (N + 1) ×M2 matrix

Γ(L) ≡
∑nγ

k=0 ΓkL
k, where nγ ∈ N and all Γk have real numbers as elements, such that this system can

be rewritten

A1 (L)LdZ+dDZ
(
L−1

)
D
(
L−1

)
[ Y′t it ]′

= Γ (L) εt + [ Ln1∆1

(
L−1

)
· · · LnN+1∆N+1

(
L−1

)
]′Ξ (L) εt, (B.6)

given Step 1. But Cramer’s rule also implies that there exists an (N+1)×M2 matrix Υ(L) ≡
∑nυ

k=0 ΥkL
k,

where nυ ∈ N and all Υk have real numbers as elements, such that the path (P ) can be rewritten

LdΘΘ(L−1)[ Y′t it ]′ = Υ(L)εt, which implies

A1 (L)LdZ+dDZ
(
L−1

)
D
(
L−1

)
[ Y′t it ]′

= A1 (L)
LdZ+dDZ

(
L−1

)
D
(
L−1

)
LdΘΘ (L−1)

Υ (L) εt, (B.7)

where
XdZ+dDZ(X−1)D(X−1)

XdΘΘ(X−1)
is of finite degree by construction of Z (X). Given that Assumption 3

implies ∆N+1 (X) 6= 0, the identification of (B.6) with (B.7) shows that Ξ(X) is of finite degree too.

Thus, the choice of H(L) ≡ Ξ(L) is admissible, since it implies that (i) H(L) is of type
∑nh

k=0 HkL
k,

where nh ∈ N and all Hk are 1×M2 matrices whose elements are real numbers, and (ii) H(L) satisfies

(15). In the alternative case in which max{mc
j −mb

j |j ∈ JC} > 0, an admissible H(L) can be designed

in a similar way by using the fact that the F(L) designed in Step 1 satisfies (11). Therefore, the rule of

type (8) with E1(L) = 0 and the F(L), G(L), and H(L) designed in Steps 1 and 2 satisfies (10), (13),

(14), and (15), and is such that (i) the system made of (7) and this rule has at most one stationary

solution, and (ii) the path (P ) is one stationary solution of that system. Proposition 7 follows.

B.3 Proof of Proposition 9

Assume that D(X) has at most m unstable roots (taking into account their multiplicity). Consider a

given lY ∈ N and a given path of type (9) satisfying (22) and (23). This path can be rewritten in an

equivalent form of type (9) satisfying (16), (17), and (18) with lε = lY + 1. Then, Proposition 7 applied

to this path implies that there exists an arithmetically designable policy-instrument rule of type

F̃ (L) Yt + G̃ (L) it + H̃ (L) εt = 0 (B.8)
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with F̃ (L)
(1×N)

≡
∑ñf

k=lY +1
F̃kL

k, G(L) ≡
∑ñg

k=0
g̃kL

k, and H̃ (L)
(1×M2)

≡
∑ñh

k=lY +1
H̃kL

k,

where (ñf , ñh) ∈ [N r {0, ..., lY }]2, ñg ∈ N, all g̃k are real numbers, g̃0 6= 0, and all F̃k, H̃k have real

numbers as elements, such that this path is the unique stationary solution of the system made of the

structural equations (7) and that rule (B.8). Assume moreover that rank[A2(X)] = M2 over R[X], i.e.

that ∀(P1(X), ..., PM2
(X)) ∈ R[X]M2r (0, ..., 0), A2(X)[ P1(X) ... PM2(X) ]′ 6= 0. Then, (6) implies

that there exist

Ã1 (L)
(M2×M1)

≡
∑ña1

k=−m̃a1
Ã1,kL

k and Ã2 (L)
(M2×M2)

≡


Ã2,1 (L) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 Ã2,M2
(L)

 ,

where Ã2,j(L) ≡
∑ña2

k=0 ã2,j,kL
k for 1 ≤ j ≤ M2, (m̃a1 , ña1 , ña2) ∈ N3, all Ã1,k have real numbers

as elements, all ã2,j,k are real numbers, and Ã2(0) = IM2
, such that Ã2(L)εt = Ã1(L)ξt. As-

sume finally that rank[D(X)] = M1 over R[X], i.e. that ∀(P1(X), ..., PM1
(X)) ∈ R[X]M1 r (0, ..., 0),

D(X)[ P1(X) ... PM1
(X) ]′ 6= 0. Then, (7) implies that there exist

D̃ (L)
(M1×M1)

≡


D̃1 (L) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 D̃M1 (L)

 and Ẽ (L)
(M1×N)

≡
∑ñe

k=−m̃e
ẼkL

k,

where D̃j(L) ≡
∑ñd

k=0 d̃j,kL
k for 1 ≤ j ≤M1, (m̃e, ñd, ñe) ∈ N3, all Ẽk have real numbers as elements, all

d̃j,k are real numbers, and D̃(0) = IM1 , such that D̃(L)ξt = Ẽ(L)Et {B (L) Yt + C (L) it}. Multiplying

the left- and right-hand sides of (B.8) by P (L) ≡
∏M1

j=1 D̃j(L)
∏M2

j=1 Ã2,j(L) leads to the rule

P (L)F̃ (L) Yt + P (L)G̃ (L) it + H̃ (L)


∏M2

j=2 Ã2,j(L) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0
∏M2−1
j=1 Ã2,j(L)

 Ã1 (L)


∏M1

j=2 D̃j(L) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0
∏M1−1
j=1 D̃j(L)

 Ẽ(L)Et {B (L) Yt + C (L) it} = 0, (B.9)

since P (L)εt = Et {P (L)εt}. The rule (B.9) is of type (8) and satisfies (19), (20), and (21). Moreover,

the transformation of (B.8) into (B.9) is neutral from the local-equilibrium-determinacy point of view.

Proposition 9 follows.
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Appendix A (Not For Publication)

In this appendix, I prove Propositions 2, 3, 4, 6, and 11.

A.1 Proof of Proposition 2

Consider an interest-rate rule of type

it = aπt−1 + byt−1 + cνt + dut + eνt−1 + fut−1, (A.1)

where (a, b, c, d, e, f) ∈ R6. I proceed in three steps: first, I derive a sufficient condition on (a, b, c, d, e, f)

for the system made of (1), (2) and (A.1) to have a unique stationary solution (πt, yt, it)t∈Z; second, I

derive a necessary and sufficient condition on (a, b, c, d, e, f) for the path (4) to be one stationary solution

of this system; third, I show that these two conditions are equivalent to the conditions mentioned in

Proposition 2.

Step 1: the system made of (1), (2) and (A.1) is equivalent to the system made of

Et



πt+1

πt
yt+1

yt


 =


1
β 0 −κ

β 0

1 0 0 0
−σ
β σa 1 + κσ

β σb

0 0 1 0




πt
πt−1

yt
yt−1

+


κφ
β νt −

1
βut

0
Φt
0

 , (A.2)

where Φt ≡ (σc− κφσ
β −1)νt+(σd+ σ

β )ut+σeνt−1 +σfut−1, which characterizes the dynamics of π and y,

and (A.1), which uniquely determines the dynamics of i from those of π and y. Therefore, this system has

a unique stationary solution (πt, yt, it)t∈Z if and only if (A.2) has a unique stationary solution (πt, yt)t∈Z.

Now, (A.2) is written in Blanchard and Kahn’s (1980) form with two non-predetermined variables.

Moreover, (A.2) satisfies Blanchard and Kahn’s (1980) rank condition, as can be easily checked. As a

consequence, (A.2) has a unique stationary solution (πt, yt)t∈Z if and only if it satisfies Blanchard and

Kahn’s (1980) order condition, that is to say if and only if it has exactly two unstable eigenvalues, or

equivalently if and only if the corresponding characteristic polynomial XP(X), where P(X) ≡ βX3 +

ω2X
2 + ω1X + ω0 with ω2 ≡ −(1 + β + κσ), ω1 ≡ 1− βσb and ω0 ≡ κσa+ σb, has exactly two unstable

roots (taking into account their multiplicity). Since P(X) → −∞ as X → −∞ and P(X) → +∞
as X → +∞ for X ∈ R, one sufficient condition for that is P(−1) = −β + ω2 − ω1 + ω0 > 0 and

P(1) = β + ω2 + ω1 + ω0 < 0. Given that σ > 0, this condition can be equivalently rewritten

κa+ (1 + β) b > κ+
2 (1 + β)

σ
and κa+ (1− β) b < κ. (A.3)

Step 2: by construction, (1) and (2) are consistent with (4). Moreover, since νt and ut are independent

of each other, (A.1) is consistent with the path (4) if and only if c = 1−φ
σ , d = (κ−λσ)µ(1−µ)

λσ , e+ φb = 0,

f + µa− κµ
λ b = (κ−λσ)µ2(1−µ)

λσ and λ(1−µ)
κ a+ µb = −(κ−λσ)µ2(1−µ)

κσ , i.e. if and only if

b =
−λ (1− µ)

κµ
a− (κ− λσ)µ (1− µ)

κσ
, c =

1− φ
σ

, d =
(κ− λσ)µ (1− µ)

λσ
, e = −φb and f = −a. (A.4)

Step 3: from Steps 1 and 2, I get that a sufficient condition for the path (4) to be the unique stationary

solution of the system made of (1), (2) and (A.1) is that (A.3) and (A.4) jointly hold. Now, the system
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made of (A.3) and (A.4) is equivalent to the system made of (A.4),[
κ2µ− (1 + β)λ (1− µ)

κµ

]
a >

κ2σ + (1 + β) [2κ+ (κ− λσ)µ (1− µ)]

κσ

and

[
κ2µ− (1− β)λ (1− µ)

κµ

]
a <

κ2σ + (1− β) (κ− λσ)µ (1− µ)

κσ
.

Moreover, using βλµ2 − (λ+ βλ+ κ2)µ+ λ = 0 and 0 < µ < 1, I get

κ2µ− (1 + β)λ (1− µ)

κµ
=

(
λ+ βλ+ κ2

)
µ− λ− βλ

κµ
=
−βλ

(
1− µ2

)
κµ

< 0

and
κ2µ− (1− β)λ (1− µ)

κµ
=

(
λ− βλ+ κ2

)
µ− λ+ βλ

κµ
=
βλ (1− µ)

2

κµ
> 0.

Therefore, the system made of (A.3) and (A.4) is equivalent to the system made of (A.4),

a < −
κ2σµ+ (1 + β)

[
2κµ+ (κ− λσ)µ2 (1− µ)

]
βλσ (1− µ2)

and a <
κ2σµ+ (1− β) (κ− λσ)µ2 (1− µ)

βλσ (1− µ)
2 .

Proposition 2 follows.

A.2 Proof of Proposition 3

Given that the timeless-perspective Ramsey-optimal feasible path is defined as the limit of the date-

t0 Ramsey-optimal feasible path as t0 → −∞, I proceed in four steps: in the first step, I write the

optimization problem that defines the date-t0 Ramsey-optimal feasible path; in the second and third

steps, I solve this problem and determine the date-t0 Ramsey-optimal feasible path; in the fourth step, I

deduce the timeless-perspective Ramsey-optimal feasible path from the date-t0 Ramsey-optimal feasible

path.

Step 1: the date-t0 Ramsey-optimal feasible path is defined as the state-contingent path for the en-

dogenous variables that maximizes welfare at date t0 subject to the structural equations and CB’s ob-

servation constraint. To determine this path, I follow the undetermined-coefficients method and specify

the inflation rate and the output level in the following general linear way: πt0+k =
∑k
j=0 a

π
j,kνt0+k−j +∑k

j=0 b
π
j,kut0+k−j and yt0+k = φνt0+k+

∑k
j=0 a

y
j,kνt0+k−j +

∑k
j=0 b

y
j,kut0+k−j for k ≥ 0. I seek the values

of coefficients (aπj,k, b
π
j,k, a

y
j,k, b

y
j,k)k≥0,0≤j≤k that minimize

Lt0 = Et0

{∑+∞

k=0
βk

[(∑k

j=0
aπj,kνt0+k−j +

∑k

j=0
bπj,kut0+k−j

)2

+λ

(∑k

j=0
ayj,kνt0+k−j +

∑k

j=0
byj,kut0+k−j

)2
]}

subject to the following constraints:

φ+ ay0,k − a
y
1,k+1 − σa

π
1,k+1 − 1 = 0 for k ≥ 0, (A.5)

aπj,k − βaπj+1,k+1 − κa
y
j,k = 0 for k ≥ 0 and j ∈ {0, ..., k} , (A.6)

by0,k − b
y
1,k+1 − σb

π
1,k+1 = 0 for k ≥ 0, (A.7)

bπ0,k − βbπ1,k+1 − κb
y
0,k − 1 = 0 for k ≥ 0, (A.8)

bπj,k − βbπj+1,k+1 − κb
y
j,k = 0 for k ≥ 1 and j ∈ {1, ..., k} . (A.9)
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These constraints come from (i) the structural equations (1) and (2), (ii) the assumption that E{νtut−k}
= 0 for any k ∈ Z, and (iii) the assumption on CB’s observation set, which implies that it can-

not depend on (νt, ut). I note respectively (ΩIS,ak )k≥0, (ΩPC,aj,k )k≥0,0≤j≤k, (ΩIS,bk )k≥0, (ΩPC,b0,k )k≥0 and

(ΩPC,bj,k )k≥1,1≤j≤k the Lagrange multipliers associated with these constraints. Since E{νtut−k} = 0 for

any k ∈ Z, coefficients (aπj,k, a
y
j,k)k≥0,0≤j≤k are determined separately from coefficients (bπj,k, b

y
j,k)k≥0,0≤j≤k.

Step 2: let me first focus on the determination of coefficients (aπj,k, a
y
j,k)k≥0,0≤j≤k. The first-order

conditions of the Lagrangian’s minimization with respect to these coefficients are

2Vνβ
kaπ0,k − ΩPC,a0,k = 0 for k ≥ 0,

2Vνβ
kaπ1,k + σΩIS,ak−1 − ΩPC,a1,k + βΩPC,a0,k−1 = 0 for k ≥ 1,

2Vνβ
kaπj,k − ΩPC,aj,k + βΩPC,aj−1,k−1 = 0 for k ≥ 2 and j ∈ {2, ..., k} ,

2Vνβ
kλay0,k − ΩIS,ak + κΩPC,a0,k = 0 for k ≥ 0,

2Vνβ
kλay1,k + ΩIS,ak−1 + κΩPC,a1,k = 0 for k ≥ 1,

2Vνβ
kλayj,k + κΩPC,aj,k = 0 for k ≥ 2 and j ∈ {2, ..., k} ,

where Vν denotes the variance of νt. After some algebra to get rid of the Lagrange multipliers, I obtain

that these first-order conditions amount to the following conditions on coefficients (aπj,k, a
y
j,k)k≥0,0≤j≤k:

βλay1,k + (1 + κσ)λay0,k−1 + βκaπ1,k + (1 + β + κλσ)κaπ0,k−1 = 0 for k ≥ 1, (A.10)

βκaπ2,k + βλay2,k + βκaπ1,k−1 + κλσay0,k−2 + (β + κλσ)κaπ0,k−2 = 0 for k ≥ 2, (A.11)

κaπj,k + λayj,k − λa
y
j−1,k−1 = 0 for k ≥ 3 and j ∈ {3, ..., k} . (A.12)

Noting v ≡ k − j, Aπj,v ≡ aπj,k, and Ayj,v ≡ ayj,k for k ≥ 0 and 0 ≤ j ≤ k, I can rewrite (A.5), (A.6),

(A.10), (A.11) and (A.12) respectively as

Ay0,v −A
y
1,v − σAπ1,v − (1− φ) = 0 for v ≥ 0, (A.13)

Aπj,v − βAπj+1,v − κA
y
j,v = 0 for j ≥ 0 and v ≥ 0, (A.14)

βλAy1,v + (1 + κσ)λAy0,v + βκAπ1,v + (1 + β + κλσ)κAπ0,v = 0 for v ≥ 0, (A.15)

βκAπ2,v + βλAy2,v + βκAπ1,v + κλσAy0,v + (β + κλσ)κAπ0,v = 0 for v ≥ 0, (A.16)

κAπj,v + λAyj,v − λA
y
j−1,v = 0 for j ≥ 3 and v ≥ 0, (A.17)

which implies that ∀j ≥ 0, Aπj,v and Ayj,v do not depend on v, so that I can note them aπj and ayj

respectively. Equations (A.14) and (A.17) imply the recurrence equation βλaπj+2 − (βλ+ κ2 + λ)aπj+1 +

λaπj = 0 for j ≥ 2. The roots of the corresponding characteristic polynomial are the following two strictly

positive real numbers:

µ ≡
(
βλ+ κ2 + λ

)
−
√

(βλ+ κ2 + λ)
2 − 4βλ2

2βλ
< 1,

µ′ ≡
(
βλ+ κ2 + λ

)
+

√
(βλ+ κ2 + λ)

2 − 4βλ2

2βλ
> 1.

Since βµ′2 ≥ 1, as can be readily checked, the solution of the recurrence equation that minimizes

Lt0 is of the form aπj = aπ2µ
j−2 for j ≥ 2. Equation (A.14) then implies that ayj =

(1−βµ)aπ2
κ µj−2

for j ≥ 2. Coefficients aπ0 , aπ1 , aπ2 , ay0 and ay1 are then determined by the linear system made of

(A.13), (A.14) for j ∈ {0, 1}, (A.15), (A.16) and ay2 =
(1−βµ)aπ2

κ . I thus eventually obtain aπ0 = a0,
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aπ1 = a1, aπj = a2µ
j−2 for j ≥ 2, ay0 = a0−βa1

κ , ay1 = a1−βa2

κ and ayj = (1−βµ)a2

κ µj−2 for j ≥ 2, where

[ a0 a1 a2 ]′ ≡M−1[ 0 0 κ(1− φ) ]′ with

M ≡

 − (βκ2 + κλσ + κ2 + κ3λσ + λ
)
−βκ (κ− λσ) β2λ(

βκ+ κ2λσ + λσ
)
κ βκ (κ− λσ) β

(
−βλµ+ κ2 + λ

)
1 − (1 + β + κσ) β

 .

Step 3: let me now turn to the determination of coefficients (bπj,k, b
y
j,k)k≥0,0≤j≤k. The first-order con-

ditions of the Lagrangian’s minimization with respect to these coefficients are the same as those with

respect to coefficients (aπj,k, a
y
j,k)k≥0,0≤j≤k except that ∀k ≥ 0, ∀j ∈ {0, ..., k}, aπj,k, ayj,k, ΩIS,ak and ΩPC,aj,k

should be respectively replaced by bπj,k, byj,k, ΩIS,bk and ΩPC,bj,k , and Vν by Vu, where the latter denotes

the variance of ut. Therefore, after some algebra to get rid of the Lagrange multipliers, I obtain that

these first-order conditions amount to three conditions on coefficients (bπj,k, b
y
j,k)k≥0,0≤j≤k that are the

same as Equations (A.10), (A.11) and (A.12), except that ∀k ≥ 0, ∀j ∈ {0, ..., k}, aπj,k and ayj,k should

be respectively replaced by bπj,k and byj,k. Noting v ≡ k − j, Bπj,v ≡ bπj,k and Byj,v ≡ byj,k for k ≥ 0 and

0 ≤ j ≤ k, I can rewrite (A.7), (A.8), (A.9) and these three conditions as

By0,v −B
y
1,v − σBπ1,v = 0 for v ≥ 0, (A.18)

Bπ0,v − βBπ1,v − κB
y
0,v − 1 = 0 for v ≥ 0, (A.19)

Bπj,v − βBπj+1,v − κB
y
j,v = 0 for j ≥ 1 and v ≥ 0, (A.20)

βλBy1,v + (1 + κσ)λBy0,v + βκBπ1,v + (1 + β + κλσ)κBπ0,v = 0 for v ≥ 0, (A.21)

βκBπ2,v + βλBy2,v + βκBπ1,v + κλσBy0,v + (β + κλσ)κBπ0,v = 0 for v ≥ 0, (A.22)

κBπj,v + λByj,v − λB
y
j−1,v = 0 for j ≥ 3 and v ≥ 0, (A.23)

which implies that ∀j ≥ 0, Bπj,v and Byj,v do not depend on v, so that I can note them bπj and byj

respectively. Equations (A.20) and (A.23) imply the same recurrence equation in bπj for j ≥ 2 as the

recurrence equation in aπj for j ≥ 2 obtained above, namely, βλbπj+2 − (βλ + κ2 + λ)bπj+1 + λbπj = 0 for

j ≥ 2. Therefore, in a similar way as above, I get bπj = bπ2µ
j−2 for j ≥ 2. Equation (A.20) then implies

that byj =
(1−βµ)bπ2

κ µj−2 for j ≥ 2. Coefficients bπ0 , bπ1 , bπ2 , by0 and by1 are then determined by the linear

system made of (A.18), (A.19), (A.20) for j = 1, (A.21), (A.22) and by2 =
(1−βµ)bπ2

κ . I thus eventually

obtain bπ0 = b0, bπ1 = b1, bπj = b2µ
j−2 for j ≥ 2, by0 = b0−βb1−1

κ , by1 = b1−βb2
κ and byj = (1−βµ)b2

κ µj−2 for

j ≥ 2, where [ b0 b1 b2 ]′ ≡M−1[ −λ (1 + κσ) κλσ 1 ]′.

Step 4: the coefficients (aπj,k, b
π
j,k, a

y
j,k, b

y
j,k)k≥0,0≤j≤k that I have obtained in Steps 2 and 3 give me the

inflation rate and the output level on the date-t0 Ramsey-optimal feasible path as functions of shocks

having occurred since date t0. By making t0 tend towards −∞, I straightforwardly get these two variables

on the timeless-perspective Ramsey-optimal feasible path, as functions of all current and past shocks:[
πt
yt

]
=

[
a0 b0

κφ+a0−βa1

κ
b0−βb1−1

κ

] [
νt
ut

]
+

[
a1 b1

a1−βa2

κ
b1−βb2

κ

] [
νt−1

ut−1

]
+
∑+∞

j=2

[
a2µ

j−2 b2µ
j−2

(1−βµ)a2µ
j−2

κ
(1−βµ)b2µ

j−2

κ

] [
νt−j
ut−j

]
. (A.24)

Using this result and the IS equation (1), I then residually obtain the interest rate on the timeless-

perspective Ramsey-optimal feasible path, as a function of all past shocks:

it =
[

(1+β−βµ+κσ)a2−a1

κσ
(1+β−βµ+κσ)b2−b1

κσ

] [
νt−1

ut−1

]
+
∑+∞

j=2

[
−(κ−λσ)a2µ

j−1

λσ
−(κ−λσ)b2µ

j−1

λσ

] [ νt−j
ut−j

]
. (A.25)
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Finally, using βλµ2−
(
λ+ βλ+ κ2

)
µ+λ = 0, I can easily rewrite the system made of (A.24) and (A.25)

in the VARMA form stated in Proposition 3, where

Ω0 ≡

 a0 b0
κφ+a0−βa1

κ
b0−βb1−1

κ
0 0

 , Ω2 ≡


λ(1−µ)(a2−µa1)

κ2µ
λ(1−µ)(b2−µb1)

κ2µ
a2−µa1

κ
b2−µb1

κ
−(κ−λσ)(1−µ)(a2−µa1)

κ2σ
−(κ−λσ)(1−µ)(b2−µb1)

κ2σ

 and Ω1 ≡


λ(1−µ)(κφµ+a1−µa0)

κ2µ
λ(1−µ)(b1−µb0+µ)

κ2µ
(κφµ+a1−µa0)−β(a2−µa1)

κ
(b1−µb0+µ)−β(b2−µb1)

κ
−(κ−λσ)(1−µ)(κφµ+a1−µa0)+κ(1+β−βµ+κσ)(a2−µa1)

κ2σ
−(κ−λσ)(1−µ)(b1−µb0+µ)+κ(1+β−βµ+κσ)(b2−µb1)

κ2σ

 .

Proposition 3 follows.

A.3 Proof of Proposition 4

Consider an interest-rate rule of type

it = aπt−1 + byt−1 + cνt−1 + dut−1 + eνt−2 + fut−2, (A.26)

where (a, b, c, d, e, f) ∈ R6. I proceed in three steps, along the lines of Appendix A.1.

Step 1: identical to Step 1 of Appendix A.1, except that (i) (A.1) should be replaced by (A.26), and (ii)

the third element of the last term in (A.2) should be−(1+κφσ
β )νt+

σ
βut+σcνt−1+σdut−1+σeνt−2+σfut−2

instead of Φt.

Step 2: by construction, (1) and (2) are consistent with (5). Moreover, since νt and ut are independent

of each other, I easily get, after some algebra to re-arrange the terms, that (A.26) is consistent with the

path (5) if and only if

b =
−λ (1− µ)

κµ
a− (κ− λσ)µ (1− µ)

κσ
and


c
d
e
f

 =

[
Ω′0
Ω′1

] −a
λ(1−µ)
κµ a

0

+

[
Ω′1
Ω′2

] 0
0
1

 . (A.27)

Step 3: identical to Step 3 of Appendix A.1, except that (4), (A.1) and (A.4) should be respectively

replaced by (5), (A.26) and (A.27). Proposition 4 follows.

A.4 Proof of Proposition 6

I proceed in two steps: first, I determine the unique (απj , α
y
j , α

i
j)1≤j≤2 ∈ R6 such that the interest-rate

rule it =
∑2
j=1(απj πt−j + αyj yt−j + αijit−j) is satisfied on the path (5); second, I show that the set of

interest-rate rules that (i) involve only past actions, and (ii) are satisfied on the path (5), is the set

{K(L)[it−
∑2
j=1(απj πt−j +αyj yt−j +αijit−j)]|K(L) ∈ R[L]}, where L denotes the lag operator and R[L]

the set of polynomials in L with real-number coefficients, and that either all the rules of this set ensure

local equilibrium determinacy, or none of them does.

Step 1: the path (5) can be equivalently rewritten as (A.24) and (A.25). Define implicitly the 2 × 2

matrices P0, P1, and P2 by rewriting (A.24) as[
πt
yt

]
= P0

[
νt
ut

]
+ P1

[
νt−1

ut−1

]
+ P2

∑+∞

j=2
µj−2

[
νt−j
ut−j

]
, (A.28)
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and the 1× 2 matrices Q1 and R1 by rewriting (A.25) as

it = Q1

[
νt−1

ut−1

]
+ R1

∑+∞

j=2
µj−2

[
νt−j
ut−j

]
. (A.29)

By recurrence on k ∈ {1, ..., 2}, using (A.28) and (A.29) at date t− k, I easily get that, on the path (5),

for any k ∈ {0, 1, 2} and any (αi1, α
i
2) ∈ R2,

it = 1k≥1

∑k

j=1

(
QjP

−1
0 [ πt−j yt−j ] + αijit−j

)
+ Qk+1

[
νt−k−1

ut−k−1

]
+ Rk+1

∑+∞

j=k+2
µj−k−2

[
νt−j
ut−j

]
with [ Qk+1 Rk+1 ]

(1×2) (1×2)

= [ Qk Rk ]
(1×2) (1×2)

P− αik[ Q1 R1 ], where P
(4×4)

≡
[
−P−1

0 P1 −P−1
0 P2

I2 µI2

]
.

Since [ Q3 R3 ] = [ Q1 R1 ](P2 − αi1P− αi2I4), the choice of

[
αi1 αi2

]
= [ Q1 R1 ]P2J

[
[ Q1 R1 ]PJ
[ Q1 R1 ]J

]−1

, where J =

[
1 0 0 0
0 1 0 0

]′
, (A.30)

implies Q3 = 0. Moreover, it can be analytically checked, with the help of a symbolic-computation

software, that this choice also implies R3 = 0. Therefore, there exists a unique (απj , α
y
j , α

i
j)1≤j≤2 ∈ R6

such that

it =
∑2

j=1
(απj πt−j + αyj yt−j + αijit−j) (A.31)

is satisfied on the path (5), and it is characterized by [ απk αyk ] = QkP
−1
0 for k ∈ {1, 2} and (A.30).

This result implies in particular that when OCBt = {πt−1, yt−1, it−1}, the timeless-perspective Ramsey-

optimal feasible path is the path (5).

Step 2: (b) trivially implies (a). To show that (a) implies (b), note first that Ω0 (defined in Step 4

of Appendix A.2) is of rank 2 (over R). Therefore, the system made of the first two lines of the path

(5), taken at all dates t ∈ Z, implies no equation without exogenous shocks. As a consequence, any

interest-rate rule of type (3) that is (i) such that ∀(j, k) ∈ {1, ..., ne}2, eπj,k = eyj,k = eij,k = 0, (ii) such

that ∀k ∈ {1, ..., nh}, hνk = huk = 0, and (iii) consistent with the path (5), is necessarily of type

K(L)

[
it −

∑2

j=1

(
απj πt−j + αyj yt−j + αijit−j

)]
= 0, (A.32)

with K(L) ≡
∑nk

j=0 kjL
j , where L denotes the lag operator, nk ∈ N, all kj are real numbers and, without

any loss in generality, k0 is normalized to one. Now, for any such K(L), (A.32) has a unique stationary

solution in [it−
∑2
j=1(απj πt−j +αyj yt−j +αijit−j)]t∈Z, namely it−

∑2
j=1(απj πt−j +αyj yt−j +αijit−j) = 0,

which corresponds to the interest-rate rule (A.31). Therefore, for any such K(L), the system made of the

IS equation (1), the Phillips curve (2), and the interest-rate rule (A.32) has exactly the same stationary

solutions in (πt, yt, it)t∈Z as the system made of the IS equation (1), the Phillips curve (2), and the

interest-rate rule (A.31). Proposition 6 follows.

A.5 Proof of Proposition 11

Svensson and Woodford (2005) provide the following expressions for Et{πt+1}, Et{xt+1}, and it, as

functions of rnt and ut, on the timeless-perspective Ramsey-optimal feasible path (when CB’s observation
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set is such that CB’s observation constraint is slack in the optimization programme defining this path):65

Et{πt+1} =
ρµ

1− βρµ
ut −

(1− µ)ρµ

1− βρµ
∑+∞

j=1
µj−1ut−j , (A.33)

Et{xt+1} =
−κρµ

λ(1− βρµ)

∑+∞

j=0
µjut−j , (A.34)

it = ωrnt−1 +
(λσ − κ)ρ2µ

λσ(1− βρµ)
ut−1 −

(λσ − κ)(1− µ)ρµ

λσ(1− βρµ)

∑+∞

j=1
µj−1ut−j . (A.35)

Using these expressions, the IS equation (25), the Phillips curve (26), xt = yt − φνt, and νt = σ
1−φr

n
t +

σω2

(1−φ)(1−ω)r
n
t−1, I easily get πt and yt on this path as functions of rnt , rnt−1, and ut:

πt = ut +

(
ρµ

1− βρµ
− ρ
)
ut−1 −

(1− µ)ρµ

1− βρµ
∑+∞

j=2
µj−2ut−j , (A.36)

yt =
σ

1− φ
rnt −

(1− φ− ω)σω

(1− φ)(1− ω)
rnt−1 −

κρµ

λ(1− βρµ)

∑+∞

j=1
µj−1ut−j . (A.37)

Multiplying the left- and right-hand sides of (A.36) by (1 − ρL)(1 − µL), and the left- and right-hand

sides of (A.37) by (1 − ρL)(1 − ωL)(1 − µL), leads to the first two lines of (31). Now replace rnt−1 and

rnt−2, in (A.37) taken at date t− 1, by their expressions in (A.35) taken at dates t and t− 1 respectively.

Then replace ut−1, in the resulting equation, by its expression in (A.36) taken at date t − 1. Finally,

multiply the left- and right-hand sides of the resulting equation by (1−φ)ω
σ , and thus get

zt = q2ut−2 + r2

∑+∞

j=3
µj−3ut−j , (A.38)

where zt ≡ it −
(1− φ− ω)ω

1− ω
it−1 −

(1− φ)ω

σ
yt−1 +

(λσ − κ)(1− ρ− µ)ρµ

λσ(1− βρµ)
πt−1,

q2 ≡ (λσ − κ)ρµ

λσ(1− βρµ)

{
(1− ρ− µ)

[
(1− φ− ω)ω

1− ω
+

ρµ

1− βρµ
− ρ
]
− (1− µ)µ

}
+
κ(1− φ)ρωµ

λσ(1− βρµ)
,

r2 ≡ (λσ − κ)(1− µ)ρµ2

λσ(1− βρµ)

[
(1− φ− ω)ω

1− ω
− (1− ρ− µ)ρ

1− βρµ
− µ

]
+
κ(1− φ)ρωµ2

λσ(1− βρµ)
.

Let p1 ≡ ρµ
1−βρµ − ρ and p2 ≡ −(1−µ)ρµ

1−βρµ , so that (A.36) is written

πt = ut + p1ut−1 + p2

∑+∞

j=2
µj−2ut−j . (A.39)

Replace ut−2 in (A.38) by its expression in (A.39) taken at date t− 2, and subtract the left- and right-

hand sides of the resulting equation by, respectively, the left- and right-hand sides of (A.38) taken at

date t− 1 and multiplied by an arbitrary real number αz1, to get

zt = αz1zt−1 + q2πt−2 + q3(αz1)ut−3 + r3(αz1)
∑+∞

j=4
µj−4ut−j , (A.40)

where q3(αz1) ≡ −q2α
z
1 + r2−p1q2 and r3(αz1) ≡ −r2α

z
1 + r2µ−p2q2. Similarly, replace ut−3 in (A.40) by

its expression in (A.39) taken at date t− 3, and subtract the left- and right-hand sides of the resulting

equation by, respectively, the left- and right-hand sides of (A.38) taken at date t− 2 and multiplied by

an arbitrary real number αz2, to get

zt = αz1zt−1 + q2πt−2 + αz2zt−2 + q3(αz1)πt−3 + q4(αz1, α
z
2)ut−4 + r4(αz1, α

z
2)
∑+∞

j=5
µj−5ut−j , (A.41)

65There are three differences between Equations (A.33), (A.34), (A.35), and Equations (26), (27), (32) in Svensson and
Woodford (2005). First, as already explained in Footnote 47, I have set r = 0 for simplicity. Second, for reasons of
consistency with Section 2’s notations, I use the notation µ instead of c. Third, I have corrected a typo in Equation (27),
i.e. removed the negative sign just after the equality sign.
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where q4(αz1, α
z
2) ≡ −q2α

z
2 + r3(αz1)−p1q3(αz1) and r4(αz1, α

z
2) ≡ −r2α

z
2 + r3(αz1)µ−p2q3(αz1). The choice

of [
αz1
αz2

]
=

[
r2 − p1q2 q2

r2µ− p2q2 r2

]−1 [
(p2

1 − p2)q2 + (µ− p1)r2

(p1 − µ)p2q2 + (µ2 − p2)r2

]
(A.42)

implies q4(αz1, α
z
2) = r4(αz1, α

z
2) = 0. Replacing αz1 and αz2 in (A.41) by their expressions in (A.42) leads

to the third line of (31) with

 απ1 αy1 αi1
απ2 αy2 αi2
απ3 αy3 αi3

 ≡


−(λσ−κ)(1−ρ−µ)ρµ
λσ(1−βρµ)

(1−φ)ω
σ

(1−φ−ω)ω
1−ω + αz1

(λσ−κ)(1−ρ−µ)ρµ
λσ(1−βρµ) αz1 + q2

−(1−φ)ω
σ αz1

−(1−φ−ω)ω
1−ω αz1 + αz2

(λσ−κ)(1−ρ−µ)ρµ
λσ(1−βρµ) αz2 − q2α

z
1 + r2 −

(
ρµ

1−βρµ − ρ
)
q2

−(1−φ)ω
σ αz2

−(1−φ−ω)ω
1−ω αz2

 .

Therefore, the timeless-perspective Ramsey-optimal feasible path determined by Svensson and Woodford

(2005) can be rewritten in the form (31), which is consistent with OCBt = {πt−1, yt−1, it−1}. Now, this

path is determined by Svensson and Woodford (2005) under the assumption that CB’s observation

constraint is slack. As a consequence, (31) is the timeless-perspective Ramsey-optimal feasible path

when OCBt = {πt−1, yt−1, it−1}. Proposition 11 follows.
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