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Abstract

The Effects of Management and Provision Accounts on Hedge Fund Returns -

Part I: The High Water Mark Scheme

A characteristic of hedge funds is not only an active portfolio management, but
also the allocation of portfolio performance between different accounts, which
are the accounts for the external investors and an account for the manage-
ment firm, respectively. Despite a lack of transparency in hedge fund market,
the strategy of performance allocation is publicly available. This paper shows
that, for the High Water Mark Scheme, these complex performance allocation
strategies might explain empirical facts observed in hedge fund returns, such as
return persistence, skewed return distribution, bias ratio, or implied increasing
risk appetite.

Keywords: Hedge Fund, Sharpe Performance, Manager Incentive, Risk Ap-
petite, High Water Mark.
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1 Introduction

The applied literature has shown that the return dynamics of individual hedge funds1

(HF) are very different from the return dynamics of more standard assets such as stocks,

currencies, or mutual funds. The HF return dynamics can depend on the management

style, but generally, feature persistence, especially at short term and in extreme returns

[Agarwal, Naik (2000), Koh, Koh, Teo (2003), Getmanski, Lo, Makarov (2004)], local

asymmetries around zero, called bias ratio in the literature [Abdulali (2006), Bollen, Pool

(2009), Darolles, Gourieroux, Jasiak (2009)], very heavy tails, for instance for Convertible

Arbitrage or Fixed Income Arbitrage funds; moreover, some HF returns are weakly corre-

lated with major asset market returns [Fung, Hsieh(1999)]. These empirical facts reflect

an underlying nonlinear dynamic of HF return, which can be explained by:

i) The frequent path dependent updating of the portfolio associated with the fund [see

e.g. Lo (2008)];

ii) The procedure used to allocate the performance between different accounts, that are

the investor’s account and the account of the management firm.

Since the sequence of portfolio updatings and allocations are not observable by the econo-

metrician and the standard investor2, the management style and its effect on returns are

difficult to analyse. On the other hand, the procedures used to allocate the total perfor-

mance between the different accounts are precisely described in the prospectus written at

the creation of the fund and validated by the appropriate authorities. The aim of this

paper and of its companion paper [Darolles, Gourieroux (2013)] is to discuss the possible

effects of these rather complex procedures and to see if they can partly explain empirical

facts observed on individual HF returns3.

In Section 2, we provide an example of allocations between accounts used in practice. We

1Note that we are interested in the return dynamics of individual hedge funds, not in hedge funds
indices.

2They are known by the fund manager and partly known by large investors, who profit of due diligence,
or investors in US funds reporting their holdings on Form 13F with the Security Exchange Commission
(SEC). This creates asymmetric information on HF markets.

3Performance based fees (also called incentive fees) are characteristics of hedge funds; they are much
less frequent for mutual funds. For instance, in 1999 only 108 out of a total 6.716 bond and stock mutual
funds used incentive fees [Elton, Gruber, Blake(2001)]. Moreover by law the mutual funds must use a
special form of incentive fees known as fulcrum fee (see the 1970 amendment to the Investment Company
Act of 1940). Typically, the fulcrum fees are centered around an index4 and have upper and lower limits
in size. Such constraints do not exist for HF.
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consider the rather standard high-water mark (HWM) scheme. The presence of several

accounts can imply significant differences between the return of the managed porfolio and

the published HF return. We describe in detail the nonlinear filter to pass from the port-

folio return to the published HF return.

Section 3 compares the portfolio and fund returns when the portfolio returns are indepen-

dent and identically Gaussian distributed. The i.i.d. Gaussian assumption on portfolio

returns corresponds to a rather exogenous portfolio management, whereas the hedge fund

manager will account for the existence of multiple accounts in his/her management strat-

egy.

In Section 4, we discuss the mean-variance efficient portfolio management according to

the account of interest. If the fund performance has to be maximized, the management

differs from the standard mean-variance management of the global portfolio. More pre-

cisely, the allocation scheme between accounts has a significant impact on the optimal

portfolio management. There exists a theoretical literature in the introduction of mul-

tiple accounts as an incentive for the hedge fund manager5. However, this question is

often considered under rather irrealistic assumptions such as continuous time incentives,

whereas the barrier effects apply monthly [see e.g. Goetzmann, Ingersoll, Ross (2003),

Kouwenberg, Ziemba (2007)], competitive hedge fund market, whereas each hedge fund

has a specific design and its secondary market is not very active [see e.g. Christoffersen,

Musto, Yilmaz (2013)], two periods instead of multiperiod optimization [see e.g. Christof-

fersen, Musto, Yilmaz (2013)], risk-neutral manager [Paganeas, Westerfield (2009)], bi-

nary returns [Christoffersen, Musto, Yilmaz (2013)], or rather ad-hoc account description,

which does not correspond to the account allocations proposed in the hedge fund industry

[Kazemi, Li (2009), Aragon, Nanda (2012)]. We try in this section to stay as close as

possible to the actual hedge fund designs and to focus on their dynamic features. Section

5 contains conclusions. Proofs are gathered in Appendices.

5There exists also a more empirical literature studying the links between the risk taken by the hedge
fund manager, often summarized by means of the HF return volatility, and some characteristics of the
HF, such as proxies for the optional feature of the compensation scheme [see e.g. Kazemi, Li (2009)].
These analysis are often based on the rather simple static linear regression techniques and thus neglect the
complexity of the compensation scheme, especially its dynamics and nonlinear features.
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2 High-Water Mark allocation scheme

There exist almost as many account allocation schemes as hedge funds shares, which

explains why any precautionary investor, regulator, or researcher6 should study in details

the prospectus of the funds. We describe below a standard scheme used to allocate the

performance between the account invested by external clients, called class A units in the

following, and the account invested by the management firm, called class B units7.

This allocation scheme is parametrized by an allocation rate, called performance fee rate, a

return benchmark, called hurdle rate, and a validity period corresponding to the duration

between consecutive resets of class B account. These parameters differ according to the

fund share.

2.1 Allocation between A and B accounts

Let us first consider two accounts, with respective values At, Bt at month t, t = 0, ..., T .

The contractual hurdle rate is denoted by yh,t, yh,t ≥ 0, and is assumed to be predetermined

and observable at date t. The contractual hurdle rate is a benchmark introduced to define

the performance allocations. This hurdle can be set to zero [see e.g. Panageas, Westerfield

(2009)], or to a cash return like the 1-month London Interbank Offered Rate (LIBOR)8.

The maximal value reached on the past by account A is discounted at rate yh,t and called

the high-water mark (HWM). This HWM is first computed at date t by:

HWMt = max
0≤τ≤t

[
Aτ

t∏
τ∗=τ

(1 + yh,τ∗)

]
, t = 0, ..., T − 1. (2.1)

and then compare to At+1 at date t + 1. The fee schedule is endogenous9 as a function

of past successes, but is entirely defined at date t, due to the choice of the predetermined

hurdle rate. We deduce that:

HWMt = max [HWMt−1, At] (1 + yh,t), t = 1, ..., T − 1, (2.2)

6Typically, it is misleading to consider as an homogenous class the set of funds reporting a high-water
mark benchmark in the standard Lipper/TASS database [see e.g. Aragon, Nanda (2012)].

7To simplify, we assume that there is neither redemption, nor subscription after the inception date and
no misreporting of the data. The changes observed in the values of the different accounts come from the
evolution of the portfolio return only.

8The hurdle rate has to be defined in the same currency as the fund reference currency, e.g. US Dollar,
Euro, Yen, ...

9Exogenous HWM of the type HWMt = HWM0

∏t

τ=1
(1+yh,τ ) are often assumed in the HF literature

[see e.g. Hodder, Jackwerth (2007)]. Such HWM schemes correspond to the fulcrum scheme for mutual
funds, but are very different from the actual HWM for hedge funds.
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with initial condition HWM0 = A0(1 + yh,0).

At period t, the global portfolio value At + Bt is invested and provides at the end of the

period a return net of base management fees10 denoted by yt+1. Then, the change in total

portfolio value (At + Bt)yt+1 is allocated between the two accounts. The performance

fee is not charged if the fund is globally in a deficit of performance with respect to the

high-water mark. Thus, this allocation depends on the location of:

At(1 + yt+1), (2.3)

with respect to the predetermined HWMt as follows:

1. if HWMt ≥ At(1 + yt+1), {
At+1 = At(1 + yt+1),
Bt+1 = Bt(1 + yt+1).

(2.4)

2. If HWMt < At(1 + yt+1),{
At+1 = At(1 + yt+1)− α[At(1 + yt+1)−HWMt],
Bt+1 = Bt(1 + yt+1) + α[At(1 + yt+1)−HWMt],

(2.5)

where 0 < α < 1 is the (high-water mark) performance fee rate. This performance

fee rate varies from 15% to 50%, with an increase in recent years [see e.g. Fung,

Hsieh(1999), Table 2, Zuckerman (2004)]. It is equal to 20% for the Quantum Fund

reported in Goetzmannn, Ingersoll, Ross (2003).

The updating equations (2.4)-(2.5) can also be written as:{
At+1 = At(1 + yt+1)− αAt [yt+1 − (HWMt −At)/At]+ ,
Bt+1 = Bt(1 + yt+1) + αAt [yt+1 − (HWMt −At)/At]+ ,

(2.6)

where X+ = max(X, 0), to highlight the presence of an option component. When the fund

gains enough value, the manager is paid and the strike price increases, but when the fund

loses money, the strike price remains unchanged and the manager retains his/her option

at the old strike price.

At short term horizon equal to 1, the future account values involve the payoff of a Eu-

ropean call option11 written on yt+1, with predetermined path dependent strike equal to

10The base management fee is generally proportional to the asset value managed by the fund. Without
loss of generality, we take them into account by considering portfolio return net of base management fee.

11Or of a European put option if we note that coefficient −α is negative and account for the put-call
parity relationship.



THIS VERSION: September 11, 2013 6

y0,t = (HWMt − At)/At. At larger horizon, we get a sequence of European calls with

changing strike prices. Both rolling effect and path dependent strike show that the op-

tion interpretation of the account allocation is significantly different from the simplified

European call interpretations introduced for instance in Kouwenberg and Ziemba (2007)

or Diez de los Rios, Garcia (2008), eq. (2.5), which neglects path dependence.

For a zero hurdle rate, the recursive equation for account A can also be written as:

At+1 = At(1 + yt+1)− α(HWMt+1 −HWMt)
+, (2.7)

which shows that the fund manager receives a fraction of the increase in HWM as con-

pensation.

In practice, the management firm is periodically paid by means of the management ac-

count, generally at the end of the year. The recursive equations are valid on a period

{0, T − 1} of a given length T corresponding to the duration between consecutive resets,

i.e. 0 and T . At time T , the management account is reset to the initial fixed12 contractual

value B0 and the HWM reset13 to AT (1 + yh,T ). Since the allocation scheme may create

nonstationary features, this practice breaks down possible explosive behavior.

If the reset time is T = 1, the HWM is equal to At(1 + yt+1) and regimes (2.4) and (2.5)

are active depending if the portfolio management out- or underperforms the hurdle. We

get y0,t = yh,t and the HWM disappears in equation (2.6) that becomes:{
At+1 = At(1 + yt+1)− αAt [yt+1 − yh,t]+ ,
Bt+1 = Bt(1 + yt+1) + αAt [yt+1 − yh,t]+ ,

(2.8)

and is reset at each date. In this setup a fixed proportion α of the return above the hurdle

is allocated to class B at each period, which corresponds to a standard fulcrum scheme.

To summarize, the evolutions of account values depend on the portfolio management,

that is, the sequence of portfolio returns (yt), and on the allocation design characterized

by hurdle rate (yh,t), performance fee rate α, and reset time14 T . The dynamic system is

12That is, this contractual value is not discounted.
13There exist funds with different reset times for the HWM and the B account.
14It is important to distinguish the reset time and the termination date of an hedge fund. Whereas

most hedge fund management contracts do not have a pre-specified termination date, a reset time is often
indicated. The presence of a reset time has significant implications on fund management and returns,
and has to be taken into account. By implicitely assuming an infinite reset time, a part of the literature
considered rather unrealistic models [see e.g. Panageas, Westerfield (2009)]. Typically, in a continuous
time framework, the reset time will imply jumps of an endogenous size at predetermined dates.
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recursive, since value (At) has an autonomous dynamic, and value (Bt) is fixed later. Let us

finally remark that the value of account A can decrease and even become smaller than the

initial value A0, or negative. Therefore, the HF can fail15 before the contractual reset time

T . We will consider in the theoretical analysis that the fund fails if At becomes negative

before reset time. From equation (2.6), we see that the portfolio return is necessarily

larger than −1 before the potential failure time, and account B is positive. From this

theoretical point of view, fund failure arises as the consequence of an abnormal negative

return. In practice, it is also possible that the fund manager decides to liquidate the fund

if the losses on account A are too large, even if At is still positive, or if his/her fees Bt are

too small.

2.2 Discussion of the High-Water Mark scheme

Let us now discuss scheme (2.1) − (2.5). Since HWMt ≥ At, regime (2.4) applies if the

spread between the net portfolio return and the hurdle yt+1 − yh,t is negative. If the

spread is negative, the total loss is allocated proportionally to each account. If the spread

is positive and small, regime (2.4) still applies and the same return is applied to accounts

A and B. If the spread is positive and large enough to hit the HWM, the allocation rule is

no longer proportional. The gain is shared between accounts A and B, with an allocation

more favorable for the managing firm [see (2.5)]. The values of accounts A and B can

increase or decrease, but the effect of net portfolio return yt+1 is no longer symmetric.

If the reset time is T = 1, the dependence of ∆At+1 = At+1−At (resp. ∆Bt+1 = Bt+1−Bt)

with respect to net porfolio return yt+1 is described in Figure 1 (resp. Figure 2).

[Insert Figure 1: ∆At+1 as a function of yt+1 (unitary reset time)]

[Insert Figure 2: ∆Bt+1 as a function of yt+1 (unitary reset time)]

The value of the class A unit is a continuous increasing function of the net portfolio

return with a change of slope at threshold y0,t. The payoff on B account is a convex function

of the return, which might be an incentive for the fund manager to take risk, i.e. to produce

large positive returns at some date to feed account B. These extreme positive returns might

15A HF fails when the fund manager decides to liquidate the fund and gives back the remaining asset
under management to investors. The decision for liquidation is not contractual, but is at the discretion of
the fund manager.
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have to increase in time due the increasingness of the high-water mark as function of past

successes. This misleading intuition has been challenged by Carpenter(2000), Ross(2004),

Panageas, Westerfield(2009) [see also the discussion in Section 4].

Let us also discuss this scheme if the fund manager invests only in a riskfree asset, yt+1 =

yf,t, with a riskfree return larger than the hurdle, yf,t ≥ yh,t, say16. Since At(1 + yf,t) ≥

At(1 + yh,t) = HWMt, the fund manager would profit systematically of such a static

riskfree investment. Surprisingly, this account allocation scheme is often used in the HF

industry with a zero hurdle rate yh,t = 0.

2.3 The returns and effective performance fees

A major point in the discussion of fund returns is the definition of returns in case of several

accounts. Indeed, the following returns can be introduced:

i) the total portfolio net return yt+1,

ii) the return on B account17: yB,t+1 = (Bt+1 −Bt)/Bt,

iii) the return on A account: yA,t+1 = (At+1 −At)/At.

The fund returns available in the standard Hedge Funds Research (HFR) or Lipper-Tass

databases are returns (yA,t) corresponding to class A units. They can feature dynamics

very different from the dynamics of (yt) and (yB,t). For instance, return yA,t is always

smaller or equal to the total net porfolio return yt. It coincides with it at some endogeneous

periods, and is strictly below, otherwise. It can be important in the analysis to distinguish

the reported HF return yA,t and the underlying total portfolio return yt. As an illustration,

the methodology proposed in Henriksson, Merton (1981) [see also Glosten, Jagannathan

(1994), Agarwal, Naik (2004), Diez de los Rios, Garcia (2008)] to detect the market timing

ability of a portfolio manager consists in running a regression of the HF return on a market

return and on a put option payoff written on this market return, say, and to test if the

optional component is significant18. Applied to reported HF return yt, this optional effect

will likely appear as a consequence of the HWM scheme, even if this effect is not present in

the total portfolio return, that is, if the portfolio manager shows no market timing ability.

16Under no arbitrage opportunity, this means that the contractual riskfree rate has been fixed at a level
strictly smaller than the market riskfree rate.

17We have to choose a contractual positive B0 initial value to give a meaning to this return.
18This methodology has to be applied on individual hedge funds, not on HF indices, to get this inter-

pretation.
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This might explain why ”this option like payoff (effect) is not restricted only to trend

followers and risk arbitrageurs, but is a feature on a wide range of hedge funds strategies”

[Agarwal, Naik (2004), p. 66]. Anyway, the first equation in (2.6) shows that the observed

return yA,t is a complicated nonlinear function of yt, yt−1, ..., yh,t, yh,t−1, ... , function which

is known from the prospectus19.

The ex-post performance allocation rate, i.e.:

αt =
Bt+1 −Bt

At+1 +Bt+1 − (At +Bt)
=

BtyB,t
AtyA,t +BtyB,t

, (2.9)

is not constant in time, can be erratic and rather different from the announced rate α.

An effective performance allocation rate can be computed on a larger period to smooth

the α′t s, for instance on the period [0, T ] corresponding to the time between resets. This

effective performance allocation is:

α̂T =
BT −B0

AT +BT − (A0 +B0)
, (2.10)

and can also be different from α even for large T . Rate α̂T is likely strictly larger than

α, since the total loss is assigned to account A, when the portfolio underperforms. It can

even be larger due to the nonlinear allocation filtering which can create a convexity effect

(see Appendix 1).

3 The effects of the scheme on i.i.d. Gaussian portfolio
returns

In this section, we assume a zero riskfree rate, a zero hurdle rate yh,t = 0, and i.i.d.

Gaussian net portfolio returns yt ∼ N(m,σ2), where m (resp. σ2) is the path-independent

expected return (resp. volatility). Thus, we assume a constant hedge fund leverage ratio

[see Getmanski, Lo, Makarov (2004), eq. 10] and do not consider the additional uncer-

tainty associated with the hurdle. Except in the special case of unitary reset time in the

standard allocation scheme (see Appendix 1), a theoretical analysis of the dynamics of

bank accounts is difficult due to the nonlinear path dependent allocation schemes. The

dynamic properties are discussed below by means of simulation studies.

19In Getmanski, Lo, Makarov (2004), the observed return yA,t is written as a Moving Average MA(2)
process of the underlying porfolio return. This moving average representation is a linar stochastic approxi-
mation of the actual known nonlinear deterministic relation existing between the returns. Its interpretation,
which neglects nonlinearity, can be misleading.
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In the standard High-Water Mark allocation scheme with zero hurdle, the joint dy-

namics of Class A value and high-water mark is characterized by the bivariate recursive

system:{
At+1 = At(1 + yt+1)− α[At(1 + yt+1)−HWMt]

+,
HWMt+1 = max [HWMt, At(1 + yt+1)− α(At(1 + yt+1)−HWMt)

+] .
(3.1)

with given initial condition (A0, HWM0). The bivariate process (At, HWMt) is a Markov

process. The joint transition distribution of (At, HWMt) involves two partly degenerate

distributions. Therefore, the joint bivariate transition is given by20:

ft(at+1, HWMt+1)

=
{
Iat+1>HWMt × 1

(1−α)Atσ
√
2π
ϕ
[
at+1−At(1+m)+α[At(1+m)−HWMt]

(1−α)Atσ

]
+ Iat+1<HWMt × 1

Atσ
√
2π
ϕ
[
at+1−At(1+m)

Atσ

]}
⊗ ε(HWMt+1=Max(HWMt,at+1)),

(3.2)

where ε(.) denotes a point mass, ϕ the probability density function (pdf) of the standard

normal distribution and ⊗ the tensor product.

To illustrate the consequences of the allocation scheme on accounts returns, let us con-

sider risky returns following a Gaussian distribution with mean m = 1%, and volatility

σ = 3.46%. We set the performance fee rate at α = 20%. The initial values of the accounts

are A0 = 100, B0 = 10 and the reset time is set to T = 72 months= 6 years.

[Insert Figure 3: Return Dynamics]

The return dynamics for yt, yA,t, yB,t are given in Figure 3. The return on management

account is much more volatile than the underlying portfolio return and we observe the

clustering for positive returns corresponding to the threshold effect of the HWM. The

trajectories of yt and yA,t are quite close21: the HWM effect is seen by the smoothing of

peaks of yt trajectories for the account A. These evolutions can be summarized in different

ways. First, we compare the historical distribution of returns yt and yA,t. Second, we

consider the associated autocorrelogram.

20Note that yt+1 > y0,t, iff At+1 > HWMt.
21It could be rather misleading to analyse the correlation between both returns in this dynamic frame-

work. For instance, for a unitary reset time, we would have yA,t = yt−αy+t . We see immediately that the
conditional correlation between yA,t and yt for ”small” return yA,t < 0 (resp. ”large” return yA,t > 0) is
equal to 1 [resp. 1], whereas the unconditional correlation between the returns is positive, but significantly
smaller than 1, with a value function of α.
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[Insert Figure 4: Historical Distributions of Returns]

The smoothed historical distributions of yt and yA,t are given in the first panel of

Figure 4 and the histogram of yA,t in the second panel. The presence of the management

account explains the negative drift observed when passing from a positive portfolio return

yt to account A return. Indeed, the left part of the distribution is not impacted by the

allocation scheme, whereas the right part is. The probability to observe high return is

lower; the return distribution becomes more concentrated and skewed.

The nonlinear autoregressive effect due to the HWM barrier is difficult to detect from

a standard linear analysis of serial dependence, but also from an analysis of the linear

dependence between squared returns (see Figure 6). We observe a cycle effect in both

autocorrelograms22, which is just significant.

[Insert Figure 5: ACF and Squared ACF on Returns]

Let us now compare the characteristics of HF returns yA,t+1, for different values of the

performance fee rate α, α = 0%, 10%, 20%, 50%, the limiting case α = 0% corresponding

to yA,t+1 = yt+1. We fix the initial values to A0 = 100, B0 = 10. Finally, we set m to

1%, consider different underlying annualized Sharpe performance ratio23 for the portfolio

return P =
√

12×m/σ = 0.5, 1, 1.5 and different reset times for the fund, i.e. T = 24 (2

years), 48(4 years), 72(6 years).

[Insert Table 1: Statistics on yA(T )]

Table 1 provides the mean, variance, annualized Sharpe performance, skewness, excess

kurtosis and 5% − 95% quantiles of the average class A return on period (0, T ), that

is yA(T ) = (AT − A0)/(TA0). These summary statistics are obtained with S = 10000

replications for each Monte-Carlo design.

For a zero performance fee, the return of class A unit is equal to the return of the underlying

portfolio, i.e. yA(T ) = 1
T

[∏T
t=1(1 + yt)− 1

]
. For horizon T 6= 1, this return is no longer

Gaussian and a convexity effect appears in the computation of the mean and the variance.

For instance, we get:

E [yA(T )] =
1

T

{
(1 +m)T − 1

}
' 1 +m+

T − 1

2
m2, (3.3)

22This is a consequence of the threshold autoregressive effects in the HWM dynamics [see Tong (1983)].
23The Sharpe performance ratio measures the annualized excess return per unit of annualized risk.
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for small mean m, and:

V [yA(T )] =
1

T 2
V

[
T∏
t=1

(1 + yt)

]

=
1

T 2

E
[
T∏
t=1

(1 + yt)
2

]
−
(
E

[
T∏
t=1

(1 + yt)

])2


=
1

T 2

{[
σ2 + (1 +m)2

]T
− (1 +m)2T

}
' 1

T 2

[
T (m2 + σ2 + 2m) +

T (T − 1)

2
(m2 + σ2 + 2m)2 − T (m2 + 2m)

− T (T − 1)

2
(m2 + 2m)2

]
' σ2

2
+ (T − 1)2mσ2,

for small m, σ of a same magnitude. The convexity effects on these moments and the

associated Sharpe ratio can be checked on all rows of Table 3 corresponding to α = 0.

As expected from the design of management fees, the return distribution is shifted to the

left. Thus, the mean, median and quantiles diminish when α increases. There is also a

diminution of risk, since this distribution becomes more concentrated as observed on the

values of the standard deviation and kurtosis. Finally, the distribution is right skewed for

α = 0, due to the convexity effect describe above, but the skewness diminishes when α

increases due to the option interpretation of the HWM .

4 Endogeneous portfolio management

By considering i.i.d. Gaussian portfolio return in Section 3, we have implicitely assumed

that the portfolio manager was investing in a kind of market portfolio, and in particular

that his/her management strategy does not account for the existence of multiple accounts.

The aim of this section is to discuss how the dynamics of account returns is modified with

an endogenous investment strategy. In practice, the fund manager will account for an

incentive mix such as reporting of good investor’s performance, benefiting from the HWM

on the management account, and controlling the risk of fund closure. In this section, we

focus on mean-variance myopic strategies without taking into account the risk of fund

closure. The strategies differ by the account value which is chosen as the main target.

We consider the case of unitary reset times, where explicit strategies can be derived and
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analysed.

For illustration, let us assume that the fund manager invests only in a riskfree asset with

zero riskfree rate and in a risky asset with i.i.d. Gaussian returns24, denoted by y∗t . With

unitary reset time and the hurdle rate equal to the riskfree rate yh,t = yf,t = 0, the

allocation between A and B accounts is given by (2.8):{
At+1 = At(1 + yt+1)− αAt(yt+1)

+,
Bt+1 = Bt(1 + yt+1) + αAt(yt+1)

+.
(4.1)

where yt+1 is the portfolio return. Let us now consider the portfolio allocation at date t.

The total budget is allocated between the two assets: Wt = At +Bt = a0,t +at, where a0,t

(resp. at) is the value invested in the riskfree asset (resp. risky asset). At date t+ 1, the

portfolio value becomes:

Wt+1 = a0,t + at(1 + y∗t+1) = Wt + aty
∗
t+1.

We deduce the portfolio return as:

yt+1 =
Wt+1 −Wt

Wt
= δty

∗
t+1, (4.2)

where δt = at/(At + Bt) denotes the fraction invested in risky asset. By substitution in

(4.1), we get: {
At+1 = At + δt

[
Aty

∗
t+1 − αAt(y∗t+1)

+
]
,

Bt+1 = Bt + δt
[
Bty

∗
t+1 + αAt(y

∗
t+1)

+
]
,

(4.3)

and

At+1 +Bt+1 = (At +Bt)(1 + δty
∗
t+1). (4.4)

Let us now consider a myopic mean-variance investor25, with absolute risk aversion26 η.

The optimal allocation depends on the account he/she is interested in.

i) If the account of interest is the total account A + B, the optimal allocation is the

standard mean-variance efficient allocation [Markovitz (1952)] given by:

δ∗t =
1

At +Bt

1

η

E(y∗t+1)

V (y∗t+1)
. (4.5)

24This assumption is compatible with the standard Black-Scholes model.
25This corresponds to the two periods behavior analyzed in Christoffersen, Musto, Yilmaz (2013).
26We assume that the risk aversion is constant. Thus, the fund manager does not change his/her risk

aversion as function of the size of the managed portfolio, or his/her past successes.
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Under the i.i.d. Gaussian assumption, the value invested in the risky asset is time depen-

dent. As usual, the portfolio manager is proportionally investing less in risky asset, when

At +Bt increases. This total change in portfolio value, (At +Bt)δ
∗
t y
∗
t+1 = 1

η

E(y∗t+1)

V (y∗t+1)
y∗t+1, is

i.i.d. Gaussian, whenever y∗t+1 is i.i.d. Gaussian.

ii) If the account of interest is account B, the efficient allocation becomes:

Btδ
∗
B,t =

1

η

E[y∗t+1 + αγt(y
∗
t+1)

+]

V [y∗t+1 + αγt(y∗t+1)
+]
, (4.6)

where γt = At/Bt. As expected, the allocation is different from the standard allocation

δ∗t . It changes in time due to the evolution of both accounts (At, Bt). Moreover, the

ratio between this allocation and the standard one shows a double effect: the effect of

portfolio size, which diminishes from At+Bt to Bt and implies an increase of the quantity

invested in the risky asset; the effect of the optional component depends on time and tail

distribution of the underlying return. The global effects is unclear.

For instance, if γt is large, the investment in risky asset will become very small. Contrary

to a usual belief, it is not guaranteed that giving an option to the fund manager makes

him/her willing to take risk, even if he/she focus on the management account. This is

compatible with the recent literature on incentives, in which several authors arrive to

similar conclusions for instance by changing the utility function [Ross(2004)], introducing

an infinite horizon [Panageas, Westerfield (2009)], or considering an option on the portfolio

itself, not on the HWM [Carpenter(2000)]. As noted in this literature, if the value of

account B becomes large, that is ”if the HF manager has a substantial personal investment

in the fund, this will inhibit excessive risk taking” [Fung, Hsieh (1999)]”. This can lead

to surprising consequences: for instance, at initial date 0, a small value of B0 can be an

incentive to take risk at the beginning; equivalently, introducing more frequent reset times

with rather small B0 can be an incentive to take risk regularly (ceteris paribus, i.e. for

fixed gamma).

In addition to this size effect, there is the optional feature since account B is a portfolio

in the underlying asset and a call written on this asset. As noted in Hodder, Jackwerth

(2007), this ”generates risk-taking below the HWM, when the manager tries to assure that

his/her incentive option will finish in the money”. But ”at performance levels modestly

above the HWM, he/she reverses that strategy and opts for very low risk positions to lock

in the option payoff”.
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iii) If the account of interest is account A, the efficient allocation is:

Atδ
∗
A,t =

1

η

E[y∗t+1 − α(y∗t+1)
+]

V [y∗t+1 − α(y∗t+1)
+]
. (4.7)

This allocation depends on the evolution of account A only. The change in account value

is:

At+1 −At = Atδ
∗
A,t[y

∗
t+1 − α(y∗t+1)

+]

= cst [y∗t+1 − α(y∗t+1)
+].

If the risky return is i.i.d. Gaussian, this change in value is still i.i.d., but no longer Gaus-

sian.

iv) Finally, the fund manager can also own at date t a fraction νt of the fund, i.e. of

account A [see e.g. the discussion in Fung, Hsieh (1999), or Kouwenberg, Ziemba (2007)].

Then his/her account of interest is νtAt+1 + Bt+1, which leads to a mix of cases ii) and

iii) above, if νt is taken exogenous.

In practice, it is difficult to know what is really the criterion selected by the fund

manager. This is likely a mix, which takes into account his/her individual wealth, that is

account B, and probably a fraction of account A. But he/she has also to account for the

rankings of fund managers, which are regularly published in the press, and are a strong

incentive for considering the preferences of fund investors27. To illustrate the consequences

of these portfolio managements on accounts returns, we consider risky returns following

a Gaussian distribution with mean m = 1%, and volatility σ = 3.46%. We set the

performance fee rate at α = 25%, with unitary reset time and the absolute risk aversion

at η = 0.08. The initial values of the accounts are A0 = 100, B0 = 10. The length of the

simulation period is T = 72. The explicit expressions of the mean and variance-covariance

matrix of [y∗t+1, (y
∗
t+1)

+] are derived in Appendix 2. They are used to compute the optimal

allocations.

Figure 6 displays the dynamics of efficient allocation in risky asset for the three strategies,

that are δ∗t , δ
∗
A,t, δ

∗
B,t.

[Insert Figure 6: Efficient Allocation in Risky Asset]

27see Chevalier, Ellison (1997) for a deeper discussion of the agency conflict between fund investors and
fund companies.
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The size effect is dominant in the three situations, where the allocation in risky asset

diminishes in time. This shows the main role of the reset frequencies. If this frequency

is the year, this might explain the empirical fact around Christmas discussed in Agarwal,

Daniel, Naik (2011). We provide in Figure 7 the historical distributions of account A

return when the managed portfolio is the market itself [δt = 1], and for endogenous

portfolio management with objectives A+B and A, respectively. An endogenous portfolio

management has clearly two effects: an increase of the discontinuity at zero and a more

concentrated distribution.

[Insert Figure 7: Historical Distribution of Returns]

However, the myopic mean-variance behaviour is not sufficient to create highly signifi-

cant short term correlation on returns as shown on Figure 8. The serial correlation, which

can be observed on real data, are more likely due to either the nonlinear dynamics of the

basic assets introduced in the portfolio, or a non myopic, intertemporal portfolio manage-

ment [see Darolles, Gourieroux (2013)]. In this respect, it could be interesting to reproduce

the same simulation exercice with a market return conditionally Gaussian, but including

an ARCH effect. Indeed, this volatility effect could create linear serial correlation after

passing by the nonlinear filter of HWM and provision account.

[Insert Figure 8: ACF on Return]

5 Conclusion

The selected HWM scheme for allocating gains and profits between the investor’s account

and management account has a significant impact on the performance of the investor’s

account. This effect is twofold. There is a direct effect on account A return due to

the nonlinear scheme, especially the barrier effect included in the HWM. There is an

additional indirect effect, when the fund manager ajusts his/her portfolio management to

this scheme. These effects explain a part of the empirical facts observed on hedge fund

returns, such as the skewness of the return distribution, its discontinuity at zero, or some

cyclical serial correlation. The special type of nonlinearity involved in this scheme can

also lead to misleading interpretations for the analysis using thresholds effect, such as

the study of market timing ability, or the comparison of unconditional correlations with
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correlations restricted to period of poor (or large) performances.

The hedge fund industry is known for its lack of transparency. Surprisingly, a lot of

information is available in the prospectus of a fund, especially the scheme of allocation

between the different accounts. A wise investor should analyse the consequences of these

schemes on the performance of his own account before any investment in hedge funds.

Similarly, it is important to take into account these schemes in the academic study of HF

returns and of the behaviour of HF portfolio managers. In other terms, we have to correct

the results for the management account bias and the provision account bias, and these

corrections will differ due to the variability of schemes followed by individual hedge funds.
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Appendix 1

Long term analysis of HWM allocation scheme

In HWM scheme (2.8), the dynamics of A account does not depend on the periodic

reset of B account. The Net Asset Value (NAV) dynamics can be written as:

At+1 =
[
1 + yt+1 − α(yt+1 − yh,t)+

]
At, (1.1)

and (At) is an autoregressive process with stochastic autoregressive coefficient. Let us

assume yh,t = 0, and i.i.d. portfolio returns, with yt > −1/(1− α). We can write:

At+1 = exp
[
log(1 + yt+1 − αy+t+1)

]
At, (1.2)

and by recursive substitution:

At = A0 exp

[
t∑

τ=1

log(1 + yτ − αy+τ )

]
. (1.3)

Following the approach used in Nelson (1990), Bougerol, Picard (1992), we can deter-

mine the Lyapunov exponent of process (At) as follows. We have:

At = A0 exp

[
t
1

t

t∑
τ=1

log(1 + yτ − αy+τ )

]
(1.4)

' A0 exp
[
tE log(1 + yt − αy+t )

]
, (1.5)

for large t, by the Law of Large Number. Thus, the long term return on class A account

is:

r∞,A = lim
t→∞

1

t
log(At/A0) = E log(1 + yt − αy+t ). (1.6)

Since log(1 + x) ≤ x, we note that:

r∞,A ≤ E(yt − αy+t ) = Eyt − αEy+t ≤ (1− α)Eyt. (1.7)

As expected, this rate is strictly smaller than the long term rate on the portfolio crudely

adjusted for performance rate α, i.e. (1− α)Eyt. It can also be significantly smaller than

Eyt − αE(y+t ), with a difference which increases with the variability on (yt).
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Appendix 2

First- and Second-Order Moments of the Truncated Normal

Let us consider a Gaussian variable with mean m and unitary variance 1. The variable

can be written as: Y = m+ U , U ∼ N(0, 1).

i) First-Order Moments

We have:

E[Y +] = E[(m+ U)+]

=

∫ ∞
−m

(m+ u)ϕ(u)du

= m

∫ ∞
−m

ϕ(u)du+

∫ ∞
−m

uϕ(u)du

= m[1− Φ(−m)]−
∫ ∞
−m

dϕ(u)

du
du

= mΦ(m) + ϕ(m),

where ϕ [resp. Φ] is the pdf [resp. cdf] of the standard normal, by using the symmetry of

the standard normal. Therefore: [EY,EY +] = [m,mΦ(m) + ϕ(m)].

ii) Second-Order Moments

Let us consider the expected squared variables, that are: E[Y 2], E[Y Y +], E[(Y +)2], and

introduce Y − = Max(−Y, 0). We have: Y = Y + − Y − and E[Y −Y +] = 0. Thus:

E[Y 2] = 1 +m2

E[Y Y +] = E[(Y +)2].

Therefore, all second-order moments are directly deduced from the quantity E[(Y +)2].

We get:

E[(Y +)2] = E[((m+ U)+)2]

=

∫ ∞
−m

(m+ u)2ϕ(u)du

= m2
∫ ∞
−m

ϕ(u)du+ 2m

∫ ∞
−m

uϕ(u)du+

∫ ∞
−m

u2ϕ(u)du

= m2Φ(m) + 2mϕ(m)−
∫ ∞
−m

udϕ(u)

= m2Φ(m) + 2mϕ(m)− uϕ(u)]∞−m +

∫ ∞
−m

ϕ(u)du,

= m2Φ(m) +mϕ(m) + Φ(m).
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We deduce:

V

[
Y
Y +

]
= E

[(
Y
Y +

)(
Y, Y +

)]
− E

(
Y
Y +

)
E
(
Y, Y +

)
=

(
1 Φ(m)

Φ(m) m2Φ(m) +mϕ(m) + Φ(m)− [mΦ(m) + ϕ(m)]2

)
.
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Figure 1: ∆At+1 as a function of yt+1 (unitary reset time)
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Figure 2: ∆Bt+1 as a function of yt+1 (unitary reset time)
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Panel A: T = 24 (2 years)

Incentive fee α level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0116 0.0187 0.4375 0.0082 1.0815 2.0117 -0.0130 0.0472
10% 0.0095 0.0166 0.4028 0.0069 0.9282 1.4905 -0.0132 0.0406
20% 0.0074 0.0147 0.3585 0.0056 0.7649 1.0259 -0.0134 0.0346
50% 0.0020 0.0100 0.1408 0.0018 0.1794 0.0138 -0.0142 0.0188
Sharpe ratio = 1
0% 0.0114 0.0091 0.8867 0.0104 0.5458 0.4780 -0.0021 0.0279
10% 0.0099 0.0081 0.8644 0.0092 0.4594 0.3658 -0.0023 0.0244
20% 0.0084 0.0072 0.8337 0.0079 0.3605 0.2722 -0.0026 0.0211
50% 0.0044 0.0047 0.6541 0.0044 -0.0748 0.2169 -0.0036 0.0121
Sharpe ratio = 1.5
0% 0.0113 0.0060 1.3325 0.0109 0.3794 0.2175 0.0021 0.0220
10% 0.0100 0.0053 1.3234 0.0096 0.3242 0.1782 0.0017 0.0194
20% 0.0087 0.0047 1.3077 0.0084 0.2604 0.1514 0.0013 0.0168
50% 0.0049 0.0030 1.1832 0.0049 -0.0416 0.2505 0.0001 0.0098

Panel B: T = 48 (4 years)

Incentive fee α level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0129 0.0170 0.3809 0.0094 1.4832 3.5525 -0.0073 0.0462
10% 0.0106 0.0145 0.3675 0.0080 1.2944 2.7091 -0.0075 0.0389
20% 0.0085 0.0123 0.3468 0.0066 1.0988 1.9638 -0.0077 0.0322
50% 0.0031 0.0074 0.2141 0.0027 0.4239 0.2953 -0.0082 0.0161
Sharpe ratio = 1
0% 0.0128 0.0081 0.7888 0.0120 0.6983 0.7160 0.0012 0.0280
10% 0.0111 0.0070 0.7901 0.0104 0.6100 0.5503 0.0008 0.0240
20% 0.0094 0.0060 0.7864 0.0090 0.5141 0.4055 0.0005 0.0203
50% 0.0050 0.0035 0.7168 0.0049 0.1242 0.1760 -0.0006 0.0110
Sharpe ratio = 1.5
0% 0.0128 0.0054 1.1905 0.0124 0.4623 0.2722 0.0047 0.0225
10% 0.0112 0.0046 1.2056 0.0109 0.4086 0.2061 0.0041 0.0195
20% 0.0096 0.0039 1.2178 0.0094 0.3512 0.1498 0.0035 0.0166
50% 0.0054 0.0022 1.2134 0.0054 0.1246 0.0832 0.0019 0.0092

Panel C: T = 72 (6 years)

Incentive fee α level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0147 0.0181 0.3325 0.0104 2.1096 8.0992 -0.0046 0.0489
10% 0.0120 0.0148 0.3312 0.0087 1.8247 6.0745 -0.0048 0.0401
20% 0.0096 0.0121 0.3242 0.0073 1.5464 4.3958 -0.0050 0.0326
50% 0.0038 0.0065 0.2424 0.0032 0.6854 0.9820 -0.0056 0.0154
Sharpe ratio = 1
0% 0.0147 0.0084 0.7090 0.0135 0.9212 1.5418 0.0031 0.0302
10% 0.0125 0.0071 0.7227 0.0117 0.8129 1.2204 0.0026 0.0254
20% 0.0105 0.0059 0.7334 0.0099 0.7005 0.9372 0.0021 0.0211
50% 0.0055 0.0031 0.7238 0.0054 0.2917 0.3452 0.0007 0.0109
Sharpe ratio = 1.5
0% 0.0146 0.0056 1.0754 0.0141 0.6007 0.6736 0.0065 0.0245
10% 0.0126 0.0047 1.1035 0.0122 0.5348 0.5452 0.0057 0.0208
20% 0.0107 0.0039 1.1304 0.0104 0.4668 0.4310 0.0049 0.0175
50% 0.0058 0.0020 1.1872 0.0057 0.2266 0.1934 0.0027 0.0092

Table 1: Statistics on yA(T )


