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1 Introduction

Since the influential work by Bates and Granger (1969), forecasters are aware that combining

forecasts obtained from two or more models can yield more accurate forecasts, in the sense that

the forecast error variance of the combined forecasts is not larger than the smaller variance

of the individual forecasts.1 Nevertheless, as claimed by Diebold (1989), there is no role for

forecast combinations in a world where information sets can be instantaneously and costlessly

combined. Furthermore, under such assumptions “it is always optimal to combine information

sets rather than forecasts” (Diebold, 1989, p. 590). Recently, this claim has been challenged by

Huang and Lee (2010), who find some simulation evidence of forecast combinations superiority,

compared to the pooled information strategy, whether the model combining the information is

correctly specified or not. One rationale for this result can be found in the bias-variance trade-off

between small and large models in finite samples.2 Yet, the individual forecasting models used in

forecast combinations are usually parsimoniously specified, whereas the model combining all the

available and relevant information is typically large. Further, as noted by Diebold (1989, p. 591),

“when the user of the forecasts is in fact the model builder, the possibilities for combination

of information sets — as opposed to forecasts — are greatly enhanced”. Hence, the debate

about combining either forecasts or information sets might well be still open within forecasting

institutions, such as Central banks and National statistical institutes, which are often both

model builders and data collectors.

The forecast combination literature is strongly related to the encompassing paradigm de-

scribed in Mizon (1984), Mizon and Richard (1986) and Hendry and Richard (1989), among

others. As summarized in Chong and Hendry (1986, p. 677), “...the composite artificial model

which might be considered for forecast encompassing essentially coincides with the ‘pooling of

forecasts’ formula... Note that the need to pool forecasts is prima facie evidence of a failure to

encompass, and if H1 is an econometric model and H2 a univariate time series model (say) then

if H1 does not encompass H2 it seems highly suggestive of the possibility that H1 is dynamically

misspecified...”. As noted by Diebold (1989), there is little room for forecast combinations within

this encompassing paradigm. Basically, given an exhaustive information set, this approach aims

at detecting the encompassing model in a way that is akin to the “general-to-specific” selection

approach described in Krolzig and Hendry (2001): if a first-guess model (a general-unrestricted-

model, for instance) turns out to be misspecified, the selection process is iterated following a

reduction algorithm until a satisfactory in-sample alternative is found, from which optimal fore-

casts follow directly. Hence, the information combination strategy should always dominate the

1This result is derived by Bates and Granger (1969) under the assumptions that the individual forecast errors
are stationary and that the forecasts are unbiased, and provided that they are not too strongly correlated.
Moreover, the weights used in the combination are chosen so as to minimize the overall variance of errors in the
combined forecasts. For comprehensive surveys on forecast combinations, the reader is referred to Clemen (1989)
and Timmermann (2006).

2In econometrics, the well-known bias-variance dilemma refers to the trade-off arising from the inconclusive
attempt of simultaneously reducing two estimation errors: the error due to the difference between the expected
predictions of a model and the correct values (bias), and the error due to the variability of a model prediction for
a given observation (variance).
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forecast combination strategy. However, this would be true in the absence of the bias-variance

trade-off between small and large models affecting the estimator in finite samples.3

This paper aims at comparing the two approaches, namely the forecast and the information

combinations, by illustrating the particular case of nowcasting the first release of French GDP.

A similar question is raised and explored empirically by Clements and Galvão (2006) for the

US. These authors combine forecasts from simple models, each one including a single explana-

tory variable selected among the leading indicators composing the Conference Board Leading

Economic Index, which is a mix of hard- and soft-data. Beside, they combine the whole informa-

tion set by implementing a relatively simple model selection strategy. Their empirical findings

suggest that pooling forecasts from single-indicator models leads to more accurate forecasts of

the GDP than pooling the available information, although the results on the predictability of

macroeconomic recessions appear less conclusive. Our approach departs from theirs along two

dimensions. First, we are interested in predicting the first release of French GDP by using

soft-data only. Indeed, the peculiarity of the French case is that, in addition to the Markit

Purchasing Managers Index (PMI) survey, the National statistical institute (National Institute

of Statistics and Economic Studies, INSEE hereafter) and the Central Bank of France (BDF

hereafter) also collect their own survey data on business conditions in the manufacturing sector

(Monthly business surveys). Yet, surveys are usually the earliest monthly-released data convey-

ing information on the current quarter’s economic activity, and thus they have often proven to be

useful for nowcasting (Banbura et al., 2013). Second, in this paper we consider only a bunch of

partial-information forecasting models, namely a model for each survey database. This strategy

amounts to estimating only three restricted forecasting models (using either the INSEE, or the

BDF, or the PMI data), plus a super-model exploiting all the available information conveyed by

the three surveys. Nevertheless, the restricted forecasting models are specified in the same way

as the full-information model, i.e., by implementing the “general-to-specific” selection approach

described above. As a result, careful attention is paid to the construction of the individual

forecasting models within a reasonably restricted information environment. It follows that, by

reducing the probability of selecting misspecified models, we deliberately set a strong prior in

favor of the forecast combination strategy (i.e., the restricted models are not penalized, com-

pared to the full-information model), so that very strong results would be obtained in the event

this strategy is dominated, in terms of predictive accuracy, by the information combination

approach.4

3Boivin and Ng (2006) show that the forecasting performance of dynamic factor models deteriorates when
highly correlated additional series are included in the information pool. These findings, based on simulation
experiments, suggest to pay careful attention to the characteristic of the data used to build the information
pool, and seem to postulate against the theoretical result in Diebold (1989). In the present contribution, we
assume that each survey data does not provide an exhaustive information, so that there should be some gain in
pooling them. However, we verify this assumption by selecting our full-information models accurately through
the “general-to-specific” approach. In practice, this strategy should be akin to the one recommended by Boivin
and Ng (2006), because the model selection is consistent with the exclusion of redundant information. It follows
that the proposition in Diebold (1989) holds in our empirical application if (well-specified) full-information models
outperform partial-information models in terms of predictive accuracy.

4By contrast, other studies, such as Clements and Galvão, 2006, and Huang and Lee, 2010, retain quite crude
small forecasting models.
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Preliminary results are broadly in line with the theoretical findings reported in Chong and

Hendry (1986): when the individual models fail to encompass, there is a forecasting accuracy gain

in combining them. Further, we provide additional support to the widely documented empirical

evidence on the outperformance of simple forecast combination methods over more sophisticated

ones, although we can find some noticeable exceptions. However, our main findings are clear-

cut regarding the comparison of the two competing combination strategies: the full-information

models encompass the restricted-information models, and the former outperform the latter in

terms of forecast accuracy, whatever predictions are either taken individually or in combination.

The paper is organized as follows. Section 2 discusses various forecast combination ap-

proaches, with emphasis on the ones used in the application. In Section 3 we describe the

real-time analysis and we explain how the the mixed-frequency issue is handled. Section 4

presents the empirical application on nowcasting French GDP: it describes the data and the

modeling strategy, and reports empirical results for partial- and full-information models. Sec-

tion 5 reports results on forecast encompassing tests and compares the predictive performance

of the forecast combination vs the information combination strategy. Section 6 concludes.

2 Forecast combination schemes

The rationale for combining a set of forecasts relies on the existence of sizeable diversification

gains. These gains are expected to become significant when a predictive model generating smaller

forecast errors than its competitors cannot be found, as well as when forecast errors cannot be

hedged by other models’ forecast errors. This is usually the case when all the information sets

used to compute the individual forecasts cannot be instantaneously and costlessly combined or

when, due to the finite sample nature of the setup, the forecasting models may be considered as

local approximations, subject to misspecification bias, so that it is unlikely that the same model

outperforms all others at all points in time. Using the same notation as in Timmermann (2006),

let us assume that at time t we wish to forecast the h-period ahead value of some variable denoted

y, with y ∈ R. Let us also assume that N different forecasts are available at time t, so that the

information set available at that time includes ŷt+h,t = (ŷt+h,t,1, ŷt+h,t,2, . . . , ŷt+h,t,N )′ on top of

the history of these forecasts and of the realizations of y up to time t, as well as a set of additional

information variables, xt, so that Ft = {ŷt+1,1, . . . , ŷt+h,t, y1, . . . , yt,xt}. As emphasized in

Timmermann (2006), most studies on forecast combinations deal with point forecasts, which

amounts here to focusing on ŷct+h,t = C(ŷt+h,t;ωt+h,t), i.e., the combined point forecast as

a function of the N individual forecasts ŷt+h,t and the combination weights ωt+h,t ∈ Wt, a

compact subset of RN :

ŷct+h,t =

N∑
i=1

ωt+h,t,iŷt+h,t,i. (1)

Note that the vector of weights ωt+h,t can be time-varying. Many forecast combination methods

coexist, each one defining a different ωt+h,t. Only a few of them is implemented in our empirical
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analysis. In what follows, we describe the methods which assume constant weights, and the we

explain how this assumption can be relaxed.

2.1 Constant weights

The most simple weighting scheme assigns the same weight to each individual model, so that

ŷct+h,t is the simple average of the N available individual forecasts:

ŷct+h,t =
1

N

N∑
j=1

ŷt+h,t,j , (2)

This Näıve combination of individual forecasts (ωi,Näıve = 1/N) is often found in the empiri-

cal literature to outperform more sophisticated combination schemes. As discussed in Smith

and Wallis (2009), inter alia, the so-called forecast combination puzzle stems from the finite-

sample estimation error of combination weights. For this reason, the Näıve approach of forecast

combinations is considered in the following empirical analysis, along with two additional simple

combination methods belonging to the Mean Squared Forecast Errors (MSE)-based class of com-

bination weights proposed by Bates and Granger (1969). The first one posits the combination

weights as the inverse of relative MSE of the forecasts (Bates and Granger, 1969; Stock and

Watson, 1999):5

ωi,IMSE =
σ−2
i∑N
j σ
−2
j

=
MSE−1

i∑N
j MSE−1

j

. (3)

The second one posits the weights as the inverse of the models’ rank (Aiolfi and Timmerman,

2006):

ωi,IR =
R−1
i∑N

j R
−1
j

, (4)

where Ri is the rank of model i as obtained in terms of absolute MSE.

Another widely used approach is the one proposed by Granger and Ramanathan (1984),

which consists in estimating the combination weights by ordinary or constrained Least Squares.

Basically, these authors propose three linear regressions to achieve this goal:

yt+h = ω0h + ω′hŷt+h,t + εt+h, (5a)

yt+h = ω′hŷt+h,t + εt+h, (5b)

yt+h = ω′hŷt+h,t + εt+h, s.t.

N∑
j=1

ωh,j = 1. (5c)

5The reader is referred to the Appendix for a short review of this approach.
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These regressions differ by the way they account or not for a bias in the individual forecasts.

Equation (5a) allows for biased forecasts, since the bias is accounted for by the intercept ω0h.

By contrast, Equations (5b) and (5c) assume the unbiasedness of individual forecasts, either

spontaneously or after correction for the bias, if any. Equations (5a) and (5b) can be thus

estimated by OLS, while Equation (5c) requires the constrained least squares estimator, due to

the constraint that the weights sum to one. This constraint imposes the desirable property that

the combined forecast is also unbiased, but it may lead to efficiency losses since the orthogonality

property between the regressors in ŷt+h,t and the residuals εt+h may not hold. Nevertheless, as

shown by Diebold (1988), relaxing this assumption as in Equation (5b) generates a combined

forecast that is serially correlated and hence predictable. For these reasons, only Equation (5c),

using bias-corrected individual forecasts, and Equation (5a) are considered in the empirical

analysis below. Since they lead to very similar outcomes, only combination weights obtained

from the constrained least squares estimate of Equation (5c) are used in practice (ωi,OLS).

A growing number of studies implements Bayesian approaches to estimate the combination

weights (see, e.g., Jackson and Karlsson, 2004, and Eklund and Karlsson, 2007). From the

Bayesian model averaging literature, forecast combinations can be obtained by averaging over

individual forecasts and using posterior model probabilities as weights:

ŷct+h,t =

N∑
i=1

ŷt+h,t,ip(Mi|y), (6)

where

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
=

p(y|Mi)p(Mi)∑N
j=1 p(y|Mj)p(Mj)

(7)

is the posterior model probability p(Mi|y), which is proportional to the prior model probability

p(Mi) times the marginal likelihood of the model p(y|Mi) (i.e., the probability of the data

given the model Mi, once parameters θi are integrated out),

p(y|Mi) =

∫
Θ
p(y|θi,Mi)p(θi|Mi)dθi. (8)

In this work, we focus on the predictive likelihood p(ỹ|y∗,Mi) of each individual model for

the computation of the posterior model probability p(Mi|y). The predictive likelihood can be

obtained by splitting the data into two parts, namely a hold-in (y∗) and a hold-out (ỹ) sub-

samples, and computing the posterior predictive density:

p(ỹ|y∗,Mi) =

∫
Θ
p(ỹ|y∗,θi,Mi)p(θi|y∗,Mi)dθi. (9)

The predictive density in (9) is the distribution of future observations ỹ conditional on the

observed sample y∗, and indicates how well the model predicts the realized observations. By

replacing the marginal likelihood in (7) with the predictive likelihood in (9), we have a posterior
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model probability calibrated on the predictive performance of the models. The combination

weights are then computed as:

ωi,PLIK =
p(ỹ|y∗,Mi)p(Mi)∑N
j=1 p(ỹ|y∗,Mj)p(Mj)

, (10)

where the prior model probability is set to p(Mi) = 1/N .6

2.2 Time-varying weights

As noted by Bates and Granger (1969) and Newbold and Granger (1974), one desirable property

of the combination weights is that they should adapt quickly to new values if, for instance, there

is a lasting change in the success of one of the forecasts. The simplest way to obtain adapting

weights is proposed by Bates and Granger (1969). It basically consists in computing weights

according to the inverse of MSE (IMSE) as in system (3) above, but instead of using the whole

sample, we restrict it to the last υ observations. The resulting rolling window weights are given

by:

ωRolt,t−h,i =

(∑t
τ=t−υ+1 e

2
τ,τ−h,i

)−1

∑N
j=1

(∑t
τ=t−υ+1 e

2
τ,τ−h,i

)−1 . (11)

An additional adapting weighting scheme can be obtained from Equation (11) by setting υ to t.

In this case, an expanding window is used at each date and the corresponding recursive sample

estimates of the weights are given by:

ωRect,t−h,i =

(∑t
τ=1 e

2
τ,τ−h,i

)−1

∑N
j=1

(∑t
τ=1 e

2
τ,τ−h,i

)−1 . (12)

These adapting strategies can of course be applied to other weighting schemes. In particular, it

is straightforward to compute rolling and recursive weights for the inverse rank in the MSE (IR),

the OLS regression (OLS), and the Bayesian predictive likelihood methods (PLIK). So, instead

of restraining the analysis to one particular ad hoc sample, three types of weighting samples are

considered in this study:

- the full sample (denoted FS), which assumes that the weights are fixed at the same value

for all forecasts,

- a sample rolling (denoted Rol) with υ = 8 quarters in Equation (11), and

- a recursive sample (denoted Rec).

6In the present paper, the posterior distribution of parameters is estimated using the independent Normal-
Gamma prior and the Gibbs sampler. We set informative priors on model parameters and run the Gibbs sampler
10’000 times, after discarding 1’000 burn-in replications.
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3 Real-time forecasting of GDP from survey opinions

3.1 Dealing with revisions: Forecasting the first-release GDP

It is well known that historical GDP data are usually affected by frequent and sizeable revisions,

usually up to two/three years after their first release. This implies that a “pseudo-true value”

for the GDP at time t, and released at time t+ 1, is only observed in a farther vintage estimate,

say, t+ `. However, even though policy makers are ideally interested in this true value for policy

purposes, the performance of short-term forecasting models is de facto evaluated by comparison

with the corresponding first release of actual data. Further, as claimed by Croushore (2011,

p. 90), “forecasts are affected by data revisions because the revisions change the data that are

input into the model, the change in the data affects the estimated coefficients, and the model

itself may change”.7 Hence, if the aim of the forecaster is to predict first-release outcomes,

efficient estimation of model parameters, leading to the optimal solution of the classic problem

of minimizing the standard squared-error loss function, can be achieved by using the real-time

matrix of GDP releases (i.e., the revision triangle Y t+1
t ). This is the so-called Real-Time Vintage

(RTV) estimation approach (Koenig et al., 2003; Clements and Galvão, 2013), which consists

in matching early-released data (or revisions) by using the vector of observations from the main

diagonal (yt+1
t ) as dependent variable, and the p adjacent diagonals (ytt−1, . . . , y

t
t−p) as lagged

regressors, if any. This framework should ensure that predictions are optimal and unbiased,

even in small samples.8

The models considered here aim at predicting the current quarter of the first-release GDP

growth rate by using monthly information available up to the end of the quarter. This can be

considered as nowcasting, rather than forecasting, because monthly data used here are released

and available for econometric purposes about the end of each reference month. For instance, let

us suppose we observe at the beginning of April 2012 the first release of the GDP growth rate

for 2012Q1, and we are interested in predicting the first release of the GDP growth for 2012Q2.9

For this aim, the latest and coincident news on the current quarter, progressively released at the

end of April, May and June 2012 by different surveyors, is particularly valuable for predicting

the target variable, as pointed out by Banbura et al. (2013). Indeed, survey data represent the

earliest (monthly) information available on the current quarter’s economic activity, when hard-

data are usually not yet available to the forecaster.10 Further, survey data are tipically subject

to small and lump-sum revisions only, occurring at the time of the first revision, so that they

can be considered as unrevised indicators, without loss of generality. As a result, an analysis

7We can assume the existence of two statistical relationships: one between the data used by the forecaster at
time t and the data used by the National statistical agencies to estimate the first release of GDP at time t + 1,
and another one between the data used by the forecaster at time t and the data used by the National statistical
agencies to compute the true value of GDP at time t + `.

8The RTV approach is opposed to the standard End-of-Sample estimation (EOS), which involves the most
recent release of the GDP, i.e., the latest column of the real-time matrix. Although frequently implemented by
forecasters, predictions with the EOS approach can be non-optimal (in a squared-error loss sense) and biased (see
Clements and Galvão, 2013).

9In practice, first estimates of the quarterly GDP are usually released about 45 days after the end of the
quarter, depending on statistical agencies.

10See Banbura et al. (2011) for a review of the literature on this particular point.
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combining the RTV estimation approach with survey data is consistent, by and large, with the

actual real-time nowcasting exercise.

3.2 Dealing with mixed-frequency data: The blocking approach

The use of monthly survey data to nowcast quarterly real GDP in real-time raises two well-

known issues: the mixed-frequency and the ragged edge data problems. The former refers to the

use of variables sampled at different frequencies in the same econometric model, while the latter

refers to the lack of complete information on predictors over the nowcasting period. These issues

are clearly related in our case. Since we target a quarterly variable (the GDP) using predictors

sampled at monthly frequency and released with almost no delay (the survey data), nowcasts can

be released on a monthly basis. However, these predictors are progressively released by statistical

agencies, so that at the beginning of each quarter we have partial information stemming from

survey data, while complete information becomes available at the end of the quarter.

Various approaches have been proposed to deal with these issues. An intuitive solution to

the mixed-frequency problem is to time-aggregate higher frequency data in order to match the

sampling rate of lower-frequency data. Although easy to implement, this approach has the

drawback of assigning the same weight to high-frequency observations across the low-frequency

window, which could be non-optimal compared to a different weighting scheme. In addition,

when the relevant information is not released simultaneously, time-aggregation does not solve

the ragged edge data problem. With this respect, approaches such as MIDAS models (Clements

and Galvão, 2008, 2009; Kuzin et al., 2011), bridge models (Rünstler and Sédillot, 2003; Baffigi

et al., 2004; Diron, 2008), and the Kalman filter (Giannone et al., 2008) have been successfully

implemented for nowcasting and forecasting quarterly GDP growth.

In this paper, we depart from these approaches and implement instead the so-called block-

ing, a technique originating from the engineering literature of signal processing and multirate

sampled-data systems (see Chen, Anderson, Deistler, and Filler, 2012, for a recent review),

but so far disregarded by the economic literature.11 This method consists in splitting the high

frequency information into multiple low frequency time series, which means, in our case, dis-

tributing the monthly survey data into three quarterly series: the first one collects observations

from the first months of each quarter (January, April, July and October), the second one collects

observations from the second months (February, May, August and November), while the last

one collects the remaining observations from the third months (March, June, September and

December). Compared to the approaches cited above, the blocking solution to mixed-frequency

and ragged edge data problems has many advantages. First, the regression model with the

distributed series is linear, which is convenient for the estimation of the predictive model by

standard OLS techniques and the implementation of general-to-specific algorithms for model

selection. Second, this approach allows the nowcaster to directly exploit the partially available

11See Carriero, Clark, and Marcellino (2012) for a very recent example. However, it is worth noticing that
applications using the blocking approach have circulated in non-academic French circles since a few years. The
(french-speaking) reader is referred to a few contributions issued by French national institutions (INSEE and the
Ministry of Finance), such as Dubois and Michaux (2006), Bessec (2010), and Minodier (2010).
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data at any time, with no need to extrapolate the missing information, unlike bridge models.

Third, the blocking approach allows the forecaster to readily evaluate and interpret the signals

provided by changes in the current economic activity in terms of GDP growth.

More formally, let’s consider the following ARDL(p,d) class of models for the quarterly first-

release GDP growth rate, denoted yt+1
t hereafter:

yt+1
t = β0 +

p∑
j=1

βjy
t
t−j +

d∑
l=0

θlx
(q)
t−l + εt, (13)

where x
(q)
t denotes the quarterly observations of the relevant information available at time t. For

ease of exposition, only one explanatory variable is introduced in (13), but the subsequent anal-

ysis generalizes straightforwardly to the case where x
(q)
t is in fact a vector of variables. Assume

now that x
(q)
t is released at higher frequency, say monthly (xt), than the target variable yt+1

t :

hence, provided that the quarterly dependent variable and the coincident monthly information

are linked through a regression model, the nowcast can be released at higher frequencies. In

order to match the frequencies, the monthly series xt is converted into a vector of 3 quarterly

series x
(m)
t =

(
x

(m)′
t− 2

3

, x
(m)′
t− 1

3

, x
(m)′
t

)′
, collecting respectively observations from the first, second

and third month of each quarter. Let’s also assume that the quarterly regressor x
(q)
t in Equation

(13) is an aggregation of the monthly variable xt and can be written as a weighted average of

the vector of blocked series, x
(q)
t = ω′x

(m)
t , where ω = (ω1, ω2, ω3)′ is the vector of weights.

Assuming d = 0 without loss of generality, we set the following three predictive equations:

yt+1
t = β0 +

p∑
j=1

βjy
t
t−j + γ1x

(m)

t− 2
3

+ ε1,t (14a)

yt+1
t = β0 +

p∑
j=1

βjy
t
t−j + γ2x

(m)

t− 1
3

+ γ1x
(m)

t− 2
3

+ ε2,t (14b)

yt+1
t = β0 +

p∑
j=1

βjy
t
t−j + γ3x

(m)
t + γ2x

(m)

t− 1
3

+ γ1x
(m)

t− 2
3

+ ε3,t (14c)

Equations (14a) and (14b) model the dependent variable conditional on the partial information

available at the end of the first and the second months of the quarter, while Equation (14c) is

equivalent to Equation (13), with population parameters (γ∗1 , γ
∗
2 , γ
∗
3)′ ≡ γ∗ = θ0ω. It is nev-

ertheless worth noticing that the missing information in Equations (14a) and (14b), i.e., the

second and/or the third month values for xt, leads the parameters γ∗1 and γ∗2 to be potentially

affected by an omitted-variable bias. For instance, let us suppose we dispose of survey infor-

mation up to the second month of the quarter, x̃
(m)
t =

(
x

(m)′
t− 2

3

, x
(m)′
t− 1

3

)′
. From Equation (14b),

population parameters γ̃∗ = (γ̃∗1 , γ̃
∗
2)′ are given by:

γ̃∗ = θ0ω̃ + b
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where ω̃ = (ω1, ω2) and b = (x̃
(m)′
t x̃

(m)
t )−1(x̃

(m)′
t x

(m)
t γ3) is the omitted-variable bias. The

magnitude of the bias crucially depends on the weighting structure ω, because the more the

weight attached to the information at the beginning of the quarter, the less the impact of

omitting late monthly information. It follows that b → 0 when ω3 → 0. However, if the

forecaster has a diffuse prior on the weighting structure ω, such as equally distributed weights,

a simple way to attenuate the bias consists in including in the regression model an additional

coincident indicator, say k
(m)

t− 1
3

, but strongly correlated with x
(m)
t . This indicator, if available,

would play the role of a short-term leading indicator for the monthly survey data and it would

partially replace the missing information, leading to a reduction of the bias. We shall see in

Section 4.3 how this solution naturally applies to our selected predictive models.

4 Nowcasting French real GDP

4.1 Data

In this work, we employ a set of survey data released by three different sources: the French

National Statistical Institute (INSEE), the Bank of France (BDF) and the Markit Purchasing

Managers Index (PMI). These three surveys share important features: they collect managers and

entrepreneurs’ opinions about past and expected activity; they sample a large share of represen-

tative firms in the manufacturing industry, according to the NAF-NACE rev. 2 nomenclatures

(i.e., food products, coke and refined petroleum products, machinery and equipment, transport

equipment, and other manufactured products); they are released on a monthly basis. However,

they differ on several aspects.

First, monthly release dates do not coincide: by the end of the current month for the INSEE

and PMI surveys, and in the first week of the following month for the BDF survey. This means

that a fair comparison between predictive models cannot be made until the latest survey (i.e.,

the BDF survey) is released, which could be an issue for a real-time forecaster. Second, questions

entering the survey sheet are usually very close across sources, but remarkable differences are

worth noticing. For instance, managers are asked by the INSEE to supply opinions about

both the evolution and the expectation of production over the past and following three months,

which is a tantamount for a quarter-on-quarter change. On the other hand, both the BDF

and PMI surveys are designed to collect opinions about the month-on-month evolution of past

and expected activity. A trade-off between horizon and precision of the opinions can be then a

relevant issue. Further, the number of answer modalities differs across surveys. For instance, the

BDF survey proposes seven modalities, while the INSEE and PMI surveys only allow for three

modalities. This feature is not trivial, because the broadest variety of responses can result in a

better picture of the current economic activity. Third, the sample of surveyed firms is different

across data collectors: around 9000 firms in the BDF survey, 4000 firms in the INSEE survey,

and 400 firms in the PMI survey.

A synthetic, or composite, index conveying valuable information for the evaluation of the

current business cycle is released by the three surveyors. However, in this work we consider

10



the information stemming directly from disaggregated data (i.e., the pool of opinion balances).

This is more attractive than the composite indicators, because the resulting econometric models

have a clear economic interpretation in terms of the evolution of current and expected activity,

firms’ stocking behavior and market tensions. The BDF survey includes 14 balances of opinion,

the INSEE survey includes 7 balances, while the PMI survey only includes 4 balances. However,

some of these time series are constructed in such a way that they are either unfit for our modeling

purpose (potential non-stationarity, trending behaviour of the series) or expected not to convey

any useful information about the supply-side of the current economic activity (prices, evolution

of employment). For this reason, we consider a subset of main balances of opinions from the

BDF survey (6 series) and the INSEE survey (5 series). As for the PMI survey, we do not

discard any series. A list and short description of these variables can be found in Table 1.

[Table 1 about here]

4.2 Models selection

Compared to a large model combining all the available information, each small model considered

in our empirical application is constrained to be sourced from a restricted information set,

i.e., a single survey dataset. This is consistent with the fact that business climate indicators,

usually used by analysts for the conjunctural diagnosis of the current state of the economy and

short-run forecasts of supply aggregates (for instances, GDP and IPI), are based on individual

surveys.12 Nevertheless, small and large models are selected through the general-to-specific

approach discussed in Krolzig and Hendry (2001). It is worth noticing that this selection strategy

is at odd with the approach followed in Clements and Galvão (2006), who arbitrarily restrict

the information set of the small models and the way this information is chosen: their small

models are constrained to include one and only one explanatory variable. As mentioned in the

Introduction, we claim that our modeling strategy does not penalize the small models and does

favor indeed the forecast combination strategy, so that meaningful conclusions can be drawn

from the comparison exercise with the information combination strategy.

The general-to-specific model selection is achieved through the Autometrics algorithm (Doornik,

2009). As summed up in Hendry and Nielsen (2007, p. 292), the general, unrestricted model is

“tested for misspecification, usually that the residuals are well behaved in terms of being approx-

imately normal, homoskedastic and independent, and that the parameters are constant. If so,

the stage of model reduction commences. Since all 2N paths cannot be investigated in reasonable

time for a large N (number of explanatory variables), even on a computer, any algorithm would

have to focus on some of these paths only. Such a subselection of paths can be chosen efficiently

though. The algorithm checks whether the least significant variable can be eliminated given a

critical value cα and if so, whether the simplified equation remains congruent.” The last step is

re-iterated until either no additional variables can be eliminated or a diagnostic test rejects the

hypothesis of misspecification.

12Hence, for the case of France, three business climate indicators, referring to the three surveys, are available
on a monthly basis.
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We only impose three important constraints to the model selection approach. First, the

selected models should be economically, rather than purely statistically, interpretable. We are

hence allowed to appeal to the “expert opinion” of the forecaster on the consistency of the auto-

matically selected equations, mainly when the selected indicators enter the models with odd and

unexpected signs, or when their economic interpretation appears not trivial. Second, each model

should embed some indicators conveying the most recent information available on the current

quarter, whenever possible. For instance, the second-month equations are supposed to include

balances of opinions on the second month of the quarter, among others. This constraint reflects

the preferences of both professional forecasters and conjunctural analysts, who are obviously

reluctant to discard coincident information over the quarter under review. We nevertheless re-

lax this restriction if no coincident indicators are found statistically significant in our regression

models, or when honoring the constraint comes into significant detriment of both in-sample and

out-of-sample performances. Third, variables entering the regressions should display some pa-

rameter stability and statistical significance over time. We checked for this requirement through

a battery of recursive regressions and Chow tests over a window spanning from 2005 to the end

of the sample. When a balance of opinion is found to accomodate a particular feature of the

regression models, we test whether the presence of this series in our models is robust to the

introduction of simple dummy variables, supposed to capture the same feature. If it is not the

case, we replace the series with the dummy variables, which have clearly no impact on the fore-

cast results.13 In other words, we limit the automatic selection of ad hoc variables by penalizing

those indicators which appear strongly correlated with few outlier observations.

4.3 The restricted- and full-information models

The variables retained in each final restricted-information model, as well as in the full-information

models, are reported in Tables 2 to 5. Looking at the estimation results, it can be noticed that

the right-hand side variables for the first- and second-month equations (M1 and M2, hereafter)

are often related to expected activity indicators, along with past activity indicators, in contrast

with the third-month equations (M3, herafter). This is particularly the case for the restricted-

information models using BDF and INSEE survey data, although the M3 equation using INSEE

data also includes expectations (personal and general) surveyed during the quarter (but not

during the third month). As for the PMI models, coincident variables hardly enter the selected

equations, and the M2 model appears the best specification also for the third-month equation.

These findings may be explained by the potential omitted-variable bias issue in the first- and

second-month equations raised in Section 3.2: the expected activity variables may be considered

as leading indicators for the second- and/or third-month survey data and hence their presence

amongst the explanatory variables may attenuate the possible bias. Together with the finding

that coincident third-month survey data hardly contribute to explain the GDP growth rate

in the third-month equations, this result gives support to the use of the blocking approach,

13Additional dummy variables can also reveal necessary to obtain well specified regressions, in terms of constant
parameters and good residuals diagnostic. The joint selection of indicators and dummy variables is carried out
through the saturated regression approach described by Santos, Hendry, and Johansen (2008).
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compared to the simpler (equally weighted monthly releases) time-aggregation solution to the

mixed-frequency issue. Quite surprisingly, the fit of the models does not generally improve as

we get closer to the end of the quarter. The restricted-information model relying on INSEE

survey data is the only one displaying a R2 (resp. σε) steadily increasing (resp. decreasing)

across monthly equations. As for the full-information models, the selected equations include

at least one indicator from each survey, with a rather dominant presence of BDF and INSEE

balances of opinions. It can be noticed again that the right-hand side variables for the first-

and second-month equations are often related to expected activity indicators, and that this

feature disappears for the third-month equation. It is also worth noticing that most of the vari-

ables entering the restricted-information models are recurrently selected for the full-information

models, meaning that only a few balances of opinions convey fundamental information on the

current state of the economy. This can also be interpreted as some evidence of complementarity

of the survey data used here, rather than their substitutability, which justifies the information

combination approach.

[Tables 2 to 5 about here]

The root mean squared forecast error (RMSE) and mean average forecast error (MAE) cri-

teria are chosen to evaluate the predictive accuracy of our models. To compute these criteria,

one-step ahead forecasts are obtained from a real-time analysis based on recursive regressions

over a hold-out sample spanning from T1=2003Q1 to Tf=2012Q4. Actual forecasts evaluation

starts in Te=2005Q1, while a burn-in sample of the first 8 predictions is used for the initialization

of rolling and recursive combination weights (see Section 2). Then, for all t ∈ {T0, ..., Tf − 1},
we estimate the models over a hold-in sample spanning from the initial observation (Ti=1992Q1

for the BDF and INSEE models and Ti=1998Q2 for the PMI and the full-information mod-

els) to t. We then use these estimates to compute one-step-ahead forecasts (nowcasts), leading

to eight years of quarterly real-time predictions for out-of-sample evaluation (32 observations).

Further, to determine whether the predictive accuracy of the full-information models is statis-

tically equivalent to the accuracy of the restricted-information models, we compute bootstrap

standard errors for the sample RMSE and MAE (see also Stock and Watson, 2002, 2007, and

Clark and McCracken, 2006).14

[Table 6 about here]

Results are reported in Table 6. As expected, the full-information models systematically

outperforms the most accurate restricted-information models (the M2 BDF model, and the

14Since the diagnostic tests reported in the bottom panels of Tables 2 to 5 do not point out major residual
misbehaviors, the bootstrap algorithm implemented here is quite simple (see White, 2000, for an illustration of
alternative bootstrap algorithms based on block resampling). We first estimate the forecasting models over the full
sample. Estimated parameters and resampled residuals are then used to simulate B = 10, 000 artificial samples.
For each artificial sample bi, with i ∈ (1, . . . , B), we compute recursive forecasts and prediction errors. Finally,
we compute the empirical standard errors of the B simulated RMSE and MAE criteria.
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M1 and M3 INSEE model, according to the RMSE criterion).15 Indeed, based on the RMSE

criterion, the maximum average predictive gains obtained within the set of restricted-information

models range between 2% and 6%, while the predictive gains from the full-information models,

compared to the best restricted-information models, range between 11% and 28%. Findings

based on the MAE criterion are quantitatively similar, although less remarkable for the M3

equations. All in all, a substantial gain appears from the information combination strategy.

Figure 1, plotting the prediction errors from the different models, provides a visual illustration

of this result. Standard errors reported in Table 6 are rather narrow, ranging from 0.02 to

0.04 for both RMSE and MAE evaluation criteria. Although they should be interpreted with

care, because in some cases their magnitude could be affected by the short length of both the

estimation and the evaluation period, these figures are broadly in line with findings reported

elsewhere (see, for instance, Stock and Watson, 2002, for an empirical analysis on US data), and

suggest that the predictive gains from the full-information models are statistically relevant.

[Figure 1 about here]

The overall good performance of the full-information model is partly due to a remarkable

predictive accuracy during the Great Recession episode (mainly 2008Q4 and 2009Q1 for France),

when it clearly outperforms its best restricted-information competitors. It is worth noticing from

Table 6 and Figure 1 that a peak in the predictive performance of the full-information model,

as well as for the BDF model, coincides with the second-month exercise.16 Unexpectedly, the

additional information conveyed by the latest survey data over each quarter seems to deteriorate,

although quite slightly, the accuracy of the M3 models, compared to the M2 models. This

evidence reinforces the finding pointed out earlier in this Section, that coincident third-month

survey data hardly contribute to explain, and also predict, the GDP growth rate in the third-

month equations.

5 Information or forecast combinations?

5.1 Preliminary forecast encompassing tests

Chong and Hendry (1986) developed encompassing tests for forecast combinations.17 These

tests allow the researcher to determine whether a specific forecast incorporates all the relevant

information contained in the other competing forecasts. An encompassing test on, say, forecast

1 relies on the joint null hypothesis that β0 = 0, β1 = 1 and β2 = · · · = βN = 0 in:

yt+h = β0 +

N∑
i=1

βiŷt+h,t,i + et+h,t. (15)

15We report evaluation criteria based on prediction errors corrected for a mean-bias, if any, since unbiased
forecasts are used in the forecasts combination exercise. Unbiased forecasts are computed as ˆ̃yt+h,t = yt+h+1

t+h −
(êt+h−E(êt+h)), where êt+h is the forecast error from biased forecasts. Uncorrected RMSE and MAE are available
upon request from the authors.

16As emerges from Tables 2 and 5, the M3 full-information model strongly relies on the M3 BDF model.
17See also Diebold and Lopez (1996) and Timmermann (2006) on this point.
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If the joint hypothesis is not rejected, then forecast 1 encompasses its competitors and forecast

combinations is not appropriate. However, this testing procedure is quite restrictive on the

auxiliary specification employed, since it requires unbiasedness (β0 = 0) and efficient forecasts

(
∑N

i=1 βi = 1). Fair and Schiller (1989) propose a looser version of the previous procedure,

involving only a joint null hypothesis that β2 = · · · = βN = 0 in Equation (15), with β1

supposed to be positive. We report in the top panel of Table 7 the Wald test statistics for the

latter joint null hypothesis of each restricted-information model encompassing the others, so as

to decide whether these models should be combined or not.18

[Table 7 about here]

Test results strongly suggest that the small models are not encompassing each other, since the

null is rejected across models and quarterly-equations, and they should be combined together.

According to Chong and Hendry (1986), the statistical need for combination probably points to

some models misspecification. However, and somewhat expectedly, when the model combining

the information sets is included in the forecast encompassing regression (15), the hypothesis

of encompassing (β1 = · · · = β3 = 0 and β4 > 0) cannot be rejected for this model at any

conventional level (see the bottom line of Table 7). These findings are in line with the evidence

of superior predictive accuracy for the full-information models discussed in Section 4.3, and

suggest an expected superior predictive accuracy even over combined forecasts.

5.2 Are pooled forecasts more accurate than individual forecasts?

As stressed in the previous section, encompassing tests on the restricted-information models

clearly suggest that their forecast combinations should outperform individual forecasts. This

result is expected to hold almost surely in population, but it might not be the case in small

samples. In the latter, the omission of one or more forecasts might still lead to outperforming

predictions, even if the coefficients on the omitted forecasts in regression (15) are asymptotically

non zero, but there is no clear theoretical guidance on the expected outcome.

Empirical evidence on the superior forecast accuracy of the forecast combination strategy,

compared to uncombined individual forecasts, is reported in Table 8. The evaluation of out-

of-sample predictions (RMSE and MAE) confirms the recommendation drawn from the encom-

passing tests, that is combining the individual forecasts systematically yields to some predictive

gain, regardless of the weighting scheme implemented. Indeed, based on either the RMSE or

the MAE criterion, the maximum average predictive gains from the best combined forecasts,

compared to the best restricted-information models, range between 8% and 13%. Table 8 also

reveals that, unlike the restricted-information models, the accuracy of the M3 combined fore-

casts do improve, compared to the M2 combined forecasts. This result suggests that a rationale

for taking fruitfully advantage of the information conveyed by the latest survey data can be here

provided by the forecast combination strategy. It is also worth noticing that our results are

broadly in line with the literature on forecast combinations, because the Näıve approach, which

18Test results based on unbiased forecasts are qualitatively similar and available upon request from the authors.
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assigns the same fixed weight to each model, seems to outperform quite often the more sophis-

ticated approaches considered here. In addition, standard errors seem to strongly suggest that

the predictive accuracy obtained through the Näıve weighting scheme is statistically equivalent

to the best predictive accuracy observed across combination methods, models and evaluation

criteria.19 A visual illustration of these findings is provided by Figures 2, 3 and 4, which plot

the forecast errors obtained from each combination method.

[Table 8 about here]

Nonetheless, following Diebold (1989), the predictions stemming from the full-information

models are expected to outperform the best combined forecasts. Although this theoretical

result has been recently recalled into question by Huang and Lee (2010), our empirical results

are quite clear-cut: compared to the best combined forecasts challengers, the full-information

models display a systematic superior predictive performance, with gains ranging between 4% and

17% according to RMSE. These results are thus consistent with the encompassing tests on the

whole set of models (restricted- plus full-information models).20 Figure 5 compares the forecast

errors obtained from the full-information model and the best combined forecasts challenger (here

the Näıve weighting scheme, for ease of exposition). From a visual inspection of these plots, we

can note that the two series are strongly correlated up to the Great Recession episode, but some

differences arise thereafter. These intuitive findings are somewhat consistent with the magnitude

of the standard errors, which seem to suggest a statistical equivalence between predictions.

[Figure 2 to 5 about here]

In light of these results, we can hence conclude that, consistently with Diebold (1989),

the information combination strategy outperforms in terms of predictive accuracy the forecast

combination strategy. However, in our empirical empirical application, this superior performance

is not as strong as expected, and the two strategies appear almost equivalent in statistical terms.

6 Concluding remarks

This paper investigates empirically the accuracy of two alternative forecasting strategies, namely

the forecast combinations and the information combinations. Theoretically, there should be no

role for forecast combinations in a world where information sets can be instantaneously and

costlessly combined. However, following some recent works (Clements and Galvão, 2006; Huang

and Lee, 2010), which bring into question this result in small samples, we investigate whether

the theoretical predictions hold for the nowcast of the quarterly French GDP. Based on this

application, we show that when the model combining the information sets is carefully specified -

19For ease of computation, we only report standard errors for the Näıve approach. However, we expect these
standard errors to be strongly representative of the order magnitude that should be observed across weighting
schemes and windows.

20It is worth noticing that, according to MAE criterion, combined forecasts from the M1 models appear some-
what more accurate than those from the full-information model.
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here using a general-to-specific strategy and the unconstrained weighting scheme for regressors

given by the blocking approach - a forecast encompassing model, yielding optimal forecasts, can

be found. This result holds even if the restricted-information models are specified as carefully

as the full-information, encompassing, models.

This empirical study also reveals that, given a set of predictive models involving coincident

survey data, a simple average of individual forecasts outperforms individual forecasts, as long

as no individual model encompasses the others. Furthermore, the simple average of individual

forecasts outperforms, or it is statistically equivalent to more sophisticated forecast combina-

tion schemes. Expectedly, when a predictive encompassing model is obtained by combining

information sets, this model outperforms the most accurate forecast combination strategy.

In main economic institutions, such as Central banks, where information is available and the

forecaster is also the model builder, it would be hence worth raising the question of combining

forecasts versus combining the information. In a finite sample world, we believe that this

question can be only answered empirically.
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Boivin, J., Ng, S., 2006. Are more data always better for factor analysis? Journal of Econometrics
132 (1), 169–194.

Carriero, A., Clark, T. E., Marcellino, M., 2012. Real-time nowcasting with a Bayesian mixed
frequency model with stochastic volatility. Working Paper 12-27, Federal Reserve Bank of
Cleveland.

Chen, W., Anderson, B. D. O., Deistler, M., Filler, A., 2012. Properties of blocked linear systems.
Automatica 48 (10), 2520–2525.

Chong, Y. Y., Hendry, D. F., 1986. Econometric evaluation of linear macro-economic models.
Review of Economic Studies 53 (4), 671–690.

Clark, T. E., McCracken, M. W., 2006. The predictive content of the output gap for inflation: Re-
solving in-sample and out-of-sample evidence. Journal of Money, Credit, and Banking 38 (5),
1127–1148.

Clemen, R. T., 1989. Combining forecasts: A review and annotated bibliography. International
Journal of Forecasting 5 (4), 559–583.

Clements, M. P., Galvão, A. B., 2006. Combining predictors and combining information in
modelling: Forecasting us recession probabilities and output growth. In: Milas, C., Rothman,
P., van Dijk, D. (Eds.), Nonlinear Time Series Analysis of Business Cycles. Amsterdam (The
Netherlands): Elsevier, pp. 55–74.

Clements, M. P., Galvão, A. B., 2008. Macroeconomic forecasting with mixed-frequency data:
Forecasting output growth in the United States. Journal of Business and Economic Statistics
26 (4), 546–554.

Clements, M. P., Galvão, A. B., 2009. Forecasting US output growth using leading indicators:
An appraisal using MIDAS models. Journal of Applied Econometrics 24 (7), 1187–1206.

18



Clements, M. P., Galvão, A. B., 2013. Real-time forecasting of inflation and output growth
with autoregressive models in the presence of data revisions. Journal of Applied Econometrics
28 (3), 458–477.

Croushore, D., 2011. Frontiers of real-time data analysis. Journal of Economic Literature 49 (1),
72–100.

Diebold, F. X., 1988. Serial correlation and the combination of forecasts. Journal of Business
and Economic Statistics 6 (1), 105–111.

Diebold, F. X., 1989. Forecast combination and encompassing: reconciling two divergent litera-
tures. International Journal of Forecasting 5 (4), 589–592.

Diebold, F. X., Lopez, J. A., 1996. Forecast evaluation and combination. In: Maddala, G. S.,
Rao, C. R. (Eds.), Statistical Methods in Finance (Handbook of Statistics, Volume 14). Am-
sterdam (The Netherlands): North-Holland, pp. 241–268.

Diron, M., 2008. Short-term forecasts of Euro Area real GDP growth: an assessment of real-time
performance based on vintage data. Journal of Forecasting 27 (5), 371–390.

Doornik, J. A., 2009. Autometrics. In: Castle, J. L., Shephard, N. (Eds.), The Methodology and
Practice of Econometrics: A Festschrift in Honour of David F. Hendry. Oxford (UK): Oxford
University Press, pp. 88–121.
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Appendix

The MSE-based class of combination weights

Let us consider the simple example presented in Bates and Granger (1969), where two different

individual forecasts of y are available. These forecasts generate the unbiased forecast errors

e1 = y− ŷ1 and e2 = y− ŷ2, whose variances are respectively σ2
1 and σ2

2 and where σ12 = ρ12σ1σ2

denotes the covariance between e1 and e2, with ρ12 their correlation. Assuming that the vector

of weights is ω = (ω, 1−ω), the forecast error from the corresponding combination of ŷ1 and ŷ2

is:

ec = ωe1 + (1− ω)e2, (A-1)

which has zero mean and the following variance:

σ2
c (ω) = ω2σ2

1 + (1− ω)2σ2
2 + 2ω(1− ω)σ12. (A-2)

The optimal combination weights ω∗ are then found as the ones minimizing the objective func-

tion (A-2), which gives:

ω∗ =
σ2

2 − σ12

σ2
1 + σ2

2 − 2σ12
, (A-3a)

1− ω∗ =
σ2

1 − σ12

σ2
1 + σ2

2 − 2σ12
. (A-3b)

By substituting ω∗ in (A-2), we obtain the following optimal combination forecast error variance:

σ2
c (ω
∗) =

σ2
1σ

2
2(1− ρ2

12)

σ2
1 + σ2

2 − 2ρ12σ1σ2
. (A-4)

It is worth noticing that σ2
c (ω
∗) ≤ min(σ2

1, σ
2
2): this result grounds the diversification argument

usually put forward in this literature (See the Appendix in Bates and Granger (1969) for a

proof). Here, the strict equality holds if and only if i) σ1 = 0 or σ2 = 0, i.e., one individual

forecast clearly outperforms the other one, ii) σ1 = σ2 and ρ12 = 1, i.e., the individual forecasts

are equally good and highly (perfectly) correlated, or iii) ρ12 = σ1/σ2. It can also be seen from

(A-3) that by setting ρ12 to zero, we obtain a combination scheme that weighs the forecasts

inversely to their relative MSE:

ωσ2 =
σ2

2

σ2
1 + σ2

2

, (A-5a)

1− ωσ1 =
σ2

1

σ2
1 + σ2

2

. (A-5b)

If ρ12 = 0, then ωσ2 and (1 − ωσ1) are optimal weights. Yet, due to difficulties in precisely

estimating σ12 from short samples of time series, many authors such as Bates and Granger
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(1969), Newbold and Granger (1974), Stock and Watson (1999), Aiolfi and Timmerman (2006)

or Smith and Wallis (2009), simply recommend to ignore correlations across forecast errors and

to express the weights in the following alternative form:

ωIMSE =
σ−2

1

σ−2
1 + σ−2

2

, (A-6a)

1− ωIMSE =
σ−2

2

σ−2
1 + σ−2

2

. (A-6b)

Note that the latter is also optimal if σ1 = σ2, in which case ωIMSE = ω∗ = 1/2. This implies

that the Näıve forecast combination scheme is optimal when the two forecasts are equally good,

no matter how correlated they are.

Generalizing Equations (A-6a) and (A-6b) to N forecasts, we obtain the following expression

for the combination weights:

ωi,IMSE =
σ−2
i∑N
j σ
−2
j

=
MSE−1

i∑N
j MSE−1

j

. (A-7)
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Table 1: Survey Data

Name Label Balance of Opinion Time Source

Production evpro Change in output mt/mt−1 bdf
Total orders evcom Change in overall level of new orders mt/mt−1 bdf
Total foreign orders evcome Change in overall level of new orders mt/mt−1 bdf

from abroad
Past deliveries evliv Evolution of past deliveries of mt/mt−1 bdf

finished products
Order books prevpro Expected production mt/mt+1 bdf
Stocks evstpf Evolution of stocks of mt/mt−1 bdf

finished products

Recent changes in output pastprod Change in production mt/mt−3 insee
Demand and total order levels carnet Level of the current total order intake mt/E[m] insee
Finished-goods inventory level stocks Level of the current total finished mt/E[m] insee

products inventories
Personal production expectations persexp Expectations about the evolution of mt/mt+3 insee

production volume
General production expectations genexp Expectations about the evolution of mt/mt+3 insee

production volume for French
manufacturing industries

Output output Volume of units produced mt/mt−1 pmi
New Orders neworders Level of new orders received (units) mt/mt−1 pmi
Stocks of Finished Goods invent Level of finished products come off mt/mt−1 pmi

the production line and awaiting
shipment/sales (units)

Suppliers Delivery suppliers Average length of time agreed to mt/mt−1 pmi
deliver the goods

Notes: mt/mt±j denotes a balance of opinions over the current month compared with the situation in the previous
(next) j month(s). mt/E[m] denotes a balance of opinions over the current month compared with a norm.
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Table 2: BDF models (1992Q1-2012Q4)

M1 M2 M3
Var Coeff Var Coeff Var Coeff
β0 0.165

(0.044)

∗∗∗ β0 0.082
(0.042)

∗ β0 0.091
(0.044)

∗∗

yt−1 -0.414
(0.083)

∗∗∗ yt−1 -0.371
(0.076)

∗∗∗ yt−1 -0.392
(0.081)

∗∗∗

evliv
(m)
t 0.019

(0.005)

∗∗∗ evliv
(m)
t 0.021

(0.004)

∗∗∗ evliv
(m)
t 0.009

(0.004)

∗∗

prevpro
(m)
t 0.041

(0.007)

∗∗∗ evliv
(m)
t 0.019

(0.005)

∗∗∗ evliv
(m)
t 0.022

(0.004)

∗∗∗

prevpro
(m)
t 0.022

(0.007)

∗∗∗ evliv
(m)
t 0.025

(0.004)

∗∗∗

d09Q1 -1.032
(0.284)

∗∗∗ d09Q1 -0.827
(0.268)

∗∗∗ d09Q1 -0.964
(0.274)

∗∗∗

Adj-R2 0.67 Adj-R2 0.71 Adj-R2 0.69
σε 0.26 σε 0.24 σε 0.25
SIC 0.33 SIC 0.22 SIC 0.28
Normality 3.24

[0.19]
Normality 0.99

[0.61]
Normality 0.61

[0.73]

AR(4) 0.59
[0.67]

AR(4) 3.23
[0.02]

AR(4) 1.56
[0.19]

Hetero 0.42
[0.79]

Hetero 0.25
[0.94]

Hetero 0.29
[0.91]

Notes: Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ denote statistical significance at the
1, 5 and 10% levels, respectively. Normality is the Bera-Jarque test for residual normal
distribution. AR(p) is the Breusch-Godfrey test for residual serial correlation up to or-
der p = 4. Hetero is the Breusch-Pagan-Godfrey test for heteroskedasticity. p-values in
brackets.
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Table 3: INSEE models (1992Q1-2012Q4)

M1 M2 M3
Var Coeff Var Coeff Var Coeff
β0 0.505

(0.053)

∗∗∗ β0 0.491
(0.055)

∗∗∗ β0 0.488
(0.049)

∗∗∗

yt−1 -0.369
(0.084)

∗∗∗ yt−1 -0.345
(0.084)

∗∗∗ yt−1 -0.362
(0.077)

∗∗∗

∆ 2
3
carnet

(m)
t 0.011

(0.004)

∗∗∗

∆prodpass
(m)
t 0.011

(0.003)

∗∗∗ ∆prodpass
(m)
t 0.009

(0.003)

∗∗∗ ∆prodpass
(m)
t 0.009

(0.003)

∗∗∗

prodprev
(m)
t 0.012

(0.004)

∗∗∗ prodprev
(m)
t 0.015

(0.004)

∗∗∗ prodprev
(m)
t 0.014

(0.003)

∗∗∗

persgen
(m)
t 0.007

(0.002)

∗∗∗ persgen
(m)
t 0.007

(0.002)

∗∗∗ persgen
(m)
t 0.006

(0.002)

∗∗∗

d96Q1 1.028
(0.246)

∗∗∗ d96Q1 0.689
(0.237)

∗∗∗ d96Q1 0.727
(0.228)

∗∗∗

d08Q2 -0.721
(0.247)

∗∗∗ d08Q2 -0.569
(0.233)

∗∗ d08Q2 -0.517
(0.224)

∗∗

d08Q4 -0.707
(0.255)

∗∗∗ d08Q4 -0.511
(0.253)

∗∗

d09Q1 -0.873
(0.277)

∗∗∗ d09Q1 -0.902
(0.267)

∗∗∗ d09Q1 -0.797
(0.253)

∗∗∗

Adj-R2 0.71 Adj-R2 0.73 Adj-R2 0.75
σε 0.24 σε 0.23 σε 0.22
SIC 0.33 SIC 0.26 SIC 0.18
Normality 0.55

[0.76]
Normality 0.20

[0.90]
Normality 0.15

[0.93]

AR(4) 0.77
[0.55]

AR(4) 0.84
[0.50]

AR(4) 1.53
[0.20]

Hetero 1.21
[0.30]

Hetero 0.69
[0.69]

Hetero 0.72
[0.67]

Notes: see Table 2. ∆z denotes a difference operator, where z = 1 means a quarter-on-quarter first-
difference (same month, across quarters), and z < 1 is a month-on-month difference, with order given
by the value of z (z = 1

3
means one-month difference and z = 2

3
means two-months difference).
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Table 4: PMI models (1998Q2-2012Q4)

M1 M2 M3
Var Coeff Var Coeff Var Coeff
β0 -1.617

(0.365)

∗∗∗ β0 -2.774
(0.303)

∗∗∗ β0 -2.774
(0.303)

∗∗∗

yt−1 -0.270
(0.107)

∗∗ yt−1 -0.415
(0.101)

∗∗∗ yt−1 -0.415
(0.101)

∗∗∗

∆ 1
3
suppliers

(m)
t -0.038

(0.015)

∗∗ ∆ 1
3
output

(m)
t 0.075

(0.012)

∗∗∗ ∆ 1
3
output

(m)
t 0.075

(0.012)

∗∗∗

neworders
(m)
t−1 0.058

(0.013)

∗∗ neworders
(m)
t−1 0.063

(0.006)

∗∗∗ neworders
(m)
t−1 0.063

(0.006)

∗∗∗

output
(m)
t−1 -0.059

(0.017)

∗∗∗

neworders
(m)
t−1 0.043

(0.014)

∗∗∗

d08Q4 -0.824
(0.243)

∗∗∗

d09Q1 -1.189
(0.268)

∗∗∗

d10Q4 -0.786
(0.243)

∗∗∗ d10Q4 -0.786
(0.243)

∗∗∗

Adj-R2 0.74 Adj-R2 0.73 Adj-R2 0.73
σε 0.22 σε 0.23 σε 0.23
SIC 0.24 SIC 0.15 SIC 0.15
Normality 1.31

[0.52]
Normality 1.16

[0.56]
Normality 1.16

[0.56]

AR(4) 1.02
[0.41]

AR(4) 0.67
[0.62]

AR(4) 0.67
[0.62]

Hetero 2.21
[0.05]

Hetero 1.51
[0.21]

Hetero 1.51
[0.21]

Notes: see Table 2 and 3.
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Table 5: Full-information models (1998Q2-2012Q4)

M1 M2 M3
Var Coeff Var Coeff Var Coeff
β0 -0.141

(0.250)
β0 -0.396

(0.197)

∗∗ β0 -0.315
(0.201)

yt−1 -0.521
(0.080)

∗∗∗ yt−1 -0.391
(0.072)

∗∗∗ yt−1 -0.459
(0.074)

∗∗∗

prodpass
(m)
t 0.009

(0.004)

∗∗ prodpass
(m)
t 0.022

(0.003)

∗∗∗ evliv
(m)
t 0.010

(0.003)

∗∗∗

prevpro
(m)
t 0.029

(0.006)

∗∗∗ prevpro
(m)
t 0.019

(0.005)

∗∗∗ evliv
(m)
t 0.021

(0.003)

∗∗∗

persgen
(m)
t 0.007

(0.002)

∗∗ evliv
(m)
t 0.022

(0.003)

∗∗∗ prodpass
(m)
t 0.025

(0.003)

∗∗∗

evliv
(m)
t 0.015

(0.005)

∗∗∗ evliv
(m)
t 0.009

(0.004)

∗∗ evliv
(m)
t 0.014

(0.004)

∗∗∗

suppliers
(m)
t−1 0.011

(0.006)

∗ suppliers
(m)
t−1 0.011

(0.004)

∗∗ suppliers
(m)
t−1 0.009

(0.004)

∗∗

prodpass
(m)
t−1 -0.007

(0.003)

∗∗∗ prodpass
(m)
t−1 -0.010

(0.002)

∗∗∗ prodpass
(m)
t−1 -0.010

(0.002)

∗∗∗

d06Q2 0.532
(0.175)

∗∗∗ d06Q2 0.455
(0.151)

∗∗∗ d06Q2 0.481
(0.156)

∗∗∗

d07Q3 0.475
(0.178)

∗∗∗

d09Q1 -0.866
(0.209)

∗∗∗

Adj-R2 0.86 Adj-R2 0.89 Adj-R2 0.88
σε 0.16 σε 0.15 σε 0.15
SIC -0.21 SIC -0.55 SIC -0.51
Normality 1.25

[0.53]
Normality 1.86

[0.39]
Normality 2.25

[0.32]

AR(4) 0.80
[0.53]

AR(4) 0.69
[0.60]

AR(4) 0.34
[0.85]

Hetero 0.51
[0.87]

Hetero 0.61
[0.76]

Hetero 1.26
[0.28]

Notes: see Table 2 and 3.
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Table 6: Individual forecasts: one-step-ahead evaluation (2005Q1-2012Q4)

RMSE MAE
BDF INSEE PMI Full BDF INSEE PMI Full

M1 0.302
(0.036)

0.285
(0.037)

0.325
(0.040)

0.253
(0.029)

0.211
(0.027)

0.216
(0.026)

0.226
(0.022)

0.186
(0.019)

M2 0.242
(0.032)

0.255
(0.035)

0.261
(0.029)

0.175
(0.019)

0.170
(0.025)

0.185
(0.025)

0.212
(0.022)

0.145
(0.015)

M3 0.247
(0.034)

0.242
(0.030)

0.261
(0.029)

0.182
(0.020)

0.156
(0.026)

0.173
(0.023)

0.212
(0.022)

0.147
(0.016)

Notes: Criteria computed over mean-bias corrected forecast errors. Standard errors
(in parentheses) are computed by non-parametric bootstrap with 10,000 draws. Bold
entries denote the smallest RMSE and MAE, for each indicated monthly equation.

Table 7: Forecast encompassing tests

Model M1 M2 M3
N = 3, i = BDF, INSEE, PMI in Eq.(15)

BDF 21.1 [0.00] 12.8 [0.00] 15.7 [0.00]

INSEE 12.9 [0.00] 14.2 [0.00] 14.8 [0.00]

PMI 29.4 [0.00] 23.4 [0.00] 12.1 [0.00]

N = 4, i = BDF, INSEE, PMI, Full in Eq.(15)

Full 7.79 [0.05] 1.35 [0.72] 3.33 [0.34]

Notes: The table reports Wald test statistics and their associated p-values
(in brackets).
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Table 8: Combined forecasts: one-step-ahead evaluation (2005Q1-2012Q4)

RMSE MAE
M1 M2 M3 M1 M2 M3

Näıve 0.270
(0.025)

0.212
(0.021)

0.209
(0.020)

0.181
(0.017)

0.152
(0.016)

0.150
(0.016)

IMSE
FS 0.269 0.212 0.209 0.182 0.151 0.149
Rol 0.265 0.231 0.227 0.178 0.159 0.160
Rec 0.269 0.216 0.213 0.182 0.152 0.148

IR
FS 0.269 0.217 0.212 0.187 0.152 0.151
Rol 0.263 0.226 0.226 0.180 0.156 0.158
Rec 0.273 0.226 0.219 0.189 0.151 0.148

OLS
FS 0.269 0.211 0.209 0.187 0.154 0.151
Rol 0.263 0.261 0.255 0.181 0.183 0.176
Rec 0.284 0.240 0.234 0.198 0.162 0.152

PLIK
FS 0.297 0.236 0.237 0.211 0.167 0.154
Rol 0.318 0.247 0.251 0.231 0.186 0.170
Rec 0.315 0.240 0.241 0.226 0.168 0.161

Notes: see Table 6.
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Figure 1: Individual forecast errors (2005Q1-2012Q4)
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Figure 2: Combined forecast errors - full sample weights (2005Q1-2012Q4)
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Figure 3: Combined forecast errors - recursive weights (2005Q1-2012Q4)

2005 2006 2007 2008 2009 2010 2011 2012 2013
-1.5

-1

-0.5

0

0.5

1

Time

First month

 

 

 Naive
 IMSE
 IR
 OLS
 PLIK

2005 2006 2007 2008 2009 2010 2011 2012 2013
-1.5

-1

-0.5

0

0.5

1

Time

Second month

 

 

 Naive
 IMSE
 IR
 OLS
 PLIK

2005 2006 2007 2008 2009 2010 2011 2012 2013
-1.5

-1

-0.5

0

0.5

1

Time

Third month

 

 

 Naive
 IMSE
 IR
 OLS
 PLIK

32



Figure 4: Combined forecast errors - rolling weights (2005Q1-2012Q4)
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Figure 5: Full-information forecast errors vs Näıve combined forecast errors (2005Q1-2012Q4)
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