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Abstract

We consider endogenous attrition in panels where the probability of attrition may

depend on current and past outcomes. We show that this probability is nonparamet-

rically identified provided that instruments affecting the outcomes but not directly

attrition, and whose distribution is identified, are available. We thus complement

Hirano et al. (2001)’s framework, which does not rely on such instruments. Contrary

to their approach, neither a refreshment sample nor an additive decomposition on

the probability of attrition are needed. We also show that the exclusion restriction

has testable implications. We propose an efficient estimation and a test of the ex-

clusion restriction when the outcome and instruments are discrete. The continuous

case, which shares some similar features with nonparametric instrumental variable

additive models, is also investigated. Finally, we apply our results to the French la-

bor force survey, and provide evidence that attrition is related to transitions on the

employment status.
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1 Introduction

Panel data are very useful to distinguish between state dependence and unobserved het-
erogeneity (see, e.g., Heckman, 2001), to analyze the dynamics of variables such as income
(see, e.g., Hall & Mishkin, 1982) or spells in duration analysis (see, e.g., Lancaster, 1990).
However, these advantages may be counterbalanced by attrition, which can be especially
severe when units are observed over a long period of time. Besides, attrition is often con-
sidered more problematic than standard nonresponse, because the reasons of attrition are
often related to the outcomes of interest, or variations in these outcomes. Several solutions
have been considered in the literature to handle this issue. A first is to suppose that attri-
tion is exogenous, i.e. depends on lagged values that are observed by the econometrician
(see, e.g., Little & Rubin, 1987). This, however, rules out a dependence between attrition
and current outcomes, and is thus likely to fail in many cases. A second model takes the
opposite point of view by assuming attrition to depend on contemporaneous values only
(see Hausman & Wise, 1979). To handle more complex attrition patterns, Hirano et al.
(2001) generalize the two previous models by allowing attrition to depend both on con-
temporaneous and lagged values. This generalization is made possible when a refreshment
sample, i.e. a sample of new units surveyed at each period, is available. Hirano et al.
(2001) also impose that the probability of attrition depends on past and current outcomes
through a binary model excluding any interaction between these two variables.

In this paper, we consider still another approach, based on instruments. Contrary to
Hirano et al. (2001), we do not impose any functional restrictions on the probability of
attrition conditional on lagged and contemporaneous values. Refreshment sample are not
needed either. On the other hand, an instrument independent of attrition conditional
on past and contemporaneous outcomes is supposed to be available. A rank condition
between the instrument and the contemporaneous outcome, which can be stated in terms
of completeness, is also needed. Hence, the instrument is typically a lagged variable that
affects the contemporaneous outcome but not directly attrition. We can use for instance
past outcomes obtained from a retrospective questionnaire. We show that under a nonlinear
fixed effect model, such a variable is likely to meet the nonparametric rank condition, and
satisfies also the conditional independence condition if attrition only depends on transitions
on the outcome.

An advantage of our method is that even if no more instruments than outcomes are avail-
able, we can test for implications of the conditional independence assumption. Another
way of testing this assumption is to use refreshment samples, even though they are unneces-
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sary in our setting. With such samples, the marginal distribution of the contemporaneous
outcome is directly identified. We can then compare this distribution with the one obtained
under our identifying restriction.

We also conduct inference under such an attrition process. In the case of discrete out-
comes and instruments, the model is parametric and a straightforward constrained max-
imum likelihood estimation procedure is proposed. In the continuous case, the model is
semiparametric and estimation is more involved. We show that our setting is closely re-
lated to the one of additive, nonparametric, instrumental variable models. Similarly to
Severini & Tripathi (2012), we provide a necessary and sufficient condition for the semi-
parametric efficiency bound to be finite, and derive the bound in this case. We also adapt,
under this condition, an estimator recently proposed by Santos (2011) for nonparametric,
instrumental variable models.

Finally, we apply our results to study transitions on the French labor market, using the la-
bor force survey of the French national institute of statistics (INSEE). This survey, which
interviews people in the same housings during eighteen months, is one of the most im-
portant one of INSEE. An important issue however is that the survey does not follow
individuals but housings. Thus, attrition is closely related to moving of individuals. We
provide evidence that these movings are themselves related to transitions on the labor mar-
ket in a way that violates the additive restriction considered by Hirano et al. (2001). With
either the test described above or the refreshment sample, we do not reject the conditional
independence assumption with past employment status used as an instrument. Our esti-
mates confirm that attrition is highly related to transitions in the labor market. We show
that this has important implications for the estimation of the probabilities of transition on
the labor market.

The paper is organized as follows. In the second section, we study identification and
testability under endogenous attrition, and compare our model with the existing literature.
In the third section, we develop inference for both discrete or continuous outcomes. The
fourth section is devoted to our application. Finally, the fifth section concludes. All proofs
are gathered in the appendix.
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2 Identification

2.1 The setting and main result

For simplicity, we consider a panel dataset with two dates t = 1, 2, and also suppose that
there is no or ignorable nonresponse at date 1. We let D = 1 if the unit is observed
at date 2, D = 0 otherwise. We let Yt denote the outcome at t and Y = (Y1, Y2). We
also consider an instrument Z1 whose role will be explained below, and let Z = (Y1, Z1).
For the sake of simplicity, we do not introduce covariates here, though the extension with
covariates would be straightforward. We focus hereafter on the identification of either the
joint distribution of (D, Y, Z) or on a parameter β0 = E(g(Y, Z)). Our first assumption
states the observational problem.

Assumption 1 The distribution of (D,DY2, Z) is identified.

To satisfy this requirement, Z1 can be observed at the first period, or at the second period
if some information on nonrespondents is available at the second period. It also holds if Z1

(together with Y ) is observed only when D = 1, provided that the distribution of (Z1, Y1)

is identified for instance through another dataset. Of course, to achieve full identification
of the distribution of (D, Y, Z), restrictions are needed. If attrition directly depends on the
outcome Y , the usual assumption of exogenous selection fails, and it may be difficult to
find an instrument that affects the selection variable but not the outcome. On the other
hand, a variable Z1 related to Y but not directly to D may be available in this case. We
thus assume the following:

Assumption 2 D ⊥⊥ Z1|Y .

This assumption is identical to the one considered by D’Haultfœuille (2010) in the case
of endogenous selection. It was also considered by Chen (2001), Tang et al. (2003) and
Ramalho & Smith (2013) in a nonresponse framework. Intuitively, it states that the at-
trition equation depends on Y1 and Y2 but not on Z1. If Y2 was endogenous (but always
observed) in this equation, we could instrument it by Z1 to identify the causal effect of Y2

on D. Here the problem is actually slightly different: Y2 is observed only when D = 1.
The identification strategy is similar, however, as we use the instrument to recover the
conditional distribution of attrition.

Let P (Y ) = Pr(D = 1|Y ). Because identification is based on inverse probability weighted
moment conditions, we assume the following:
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Assumption 3 P (Y ) > 0 almost surely.

This assumption is similar to the common support condition in the treatment effects lit-
erature. It does not hold if D is a deterministic function of Y , as in simple truncation
models where D = 1{g(Y ) ≥ y0}, y0 denoting a fixed threshold.

Before stating our main result, let us introduce some notations. For any random variable U
and p > 0, let Lp(U) (respectively Lp(U |D = 1)) denote the space of functions q satisfying
E(|q(U)|p) < +∞ (respectively E(|q(U)|p|D = 1) < +∞). Note that 1/P ∈ L1(Y |D = 1)

because E(1/P (Y )|D = 1) = 1/E(D). For any set A ⊂ L1(U |D = 1), let also

A⊥ = {q ∈ L1(U |D = 1) : ∀a ∈ A,E(|q(U)a(U)||D = 1) <∞, E(q(U)a(U)|D = 1) = 0}.

The following operator will be important for identification issues:

T : L1(Y |D = 1) → L1(Z|D = 1)

q 7→ (z 7→ E(q(Y )|D = 1, Z = z)) .
(2.1)

Because Y is observed when D = 1, T is identified. Besides, and as indicated previously,
identification hinges upon dependence conditions between Y2 and Z, which are actually re-
lated to the null space Ker (T ) of T . Let F = {q ∈ L1(Y |D = 1) : q(Y ) ≥ 1− 1/P (Y ) a.s.}
and for f ∈ L1(Y, Z),

Ff =
{
q ∈ L1(Y |D = 1) : q(Y ) ≥ 1− 1/P (Y ) a.s. and E(|q(Y )f(Y, Z)||D = 1) <∞

}
.

Finally, in the case where g ∈ L1(Y, Z) we denote β(Y ) = E[g(Y, Z)|Y ]. Our main result
is the following.

Theorem 2.1 If assumptions 1-3 hold, then:

1. The distribution of (D, Y, Z) is identified if and only if Ker (T ) ∩ F = {0}.

Moreover, if g ∈ L1(Y, Z),

2. The set of identification of β0 is {β0 + E(D)E [β(Y )h(Y )|D = 1] : h ∈ Ker (T ) ∩ Fg}.

3. β0 is identified if and only if β(.) ∈ (Ker (T ) ∩ Fg)⊥.

Let us provide the intuition for the easiest result, i.e. the “if” part of the first statement.
We rely on the fact that under Assumptions 2 and 3, it is sufficient to identify P (Y ) to
recover the whole distribution of (D, Y, Z). Besides, we show that this function satisfies

T

(
1

P

)
= w, (2.2)
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where w(Z) = 1/Pr(D = 1|Z). Because T and w are identified, P is identified if there is
a unique solution in (0, 1] of this equation. This uniqueness can be established if
Ker (T ) ∩ F = {0}.

The identifying condition Ker (T ) ∩ F = {0} is related to various completeness condi-
tions considered in the literature (see, e.g., Newey & Powell, 2003, Severini & Tripathi,
2006, Blundell et al., 2007, D’Haultfœuille, 2011, Andrews, 2011 and Hu & Shiu, 2013).
Our condition is intermediate between the stronger “standard” completeness condition
Ker (T ) = {0} and the bounded completeness condition Ker (T )∩B = {0}, where B is the
set of bounded functions. When Y and Z have a finite support (respectively by (1, ..., I)

and (1, ..., J)), this assumption is satisfied if rank(M) = I, where M is the matrix of typ-
ical element Pr(Y = i|D = 1, Z = j) (see Newey & Powell (2003)).1 Hence, the support
of Z must be at least as rich as the one of Y (J ≥ I) and the dependence between the
two variables must be strong enough for I linearly independent conditional distributions
to exist. Because the matrix M is identified, it is straightforward to test for this condition,
using for instance the determinant of MM ′ (see Subsection 3.1 below). When Y and Z

are continuous, it is far more difficult to characterize them. Conditions have been provided
by Newey & Powell (2003), D’Haultfœuille (2011), Andrews (2011) and Hu & Shiu (2013).
We consider below another example, related to our panel framework, where the restriction
Ker (T ) ∩ F = {0} is satisfied.

The third statement of Theorem 2.1 shows that when we consider only one parameter
rather than on the full distribution of (D, Y, Z), identification is achieved under weaker
restrictions. To see this, note that Fg ⊂ F and then (Ker (T ) ∩ F)⊥ ⊂ (Ker (T ) ∩ Fg)⊥.
Thus, Ker (T )∩F = {0} implies that β(.) ∈ (Ker (T )∩Fg)⊥. On the other hand, we may
have β(.) ∈ (Ker (T )∩Fg)⊥ and Ker (T )∩F 6= {0}. This result is closely related to Lemma
2.1 of Severini & Tripathi (2012), who consider identification of linear functionals related
to a nonparametric instrumental regression. Finally, the second statement of Theorem 2.1
describes the identification set of β0 in general.

As an illustration of Theorem 2.1 with continuous outcomes, suppose that we observe at
the first date a past outcome Y0, thanks to a retrospective questionnaire. This will be the
case in the application considered in Section 4. Suppose also that the outcomes satisfy the
following nonlinear fixed effect model:

Λ(Yt) = U + εt, (2.3)
1It is not equivalent to this full rank conditions because of the inequality constraints induced by F .

One can show however that both are equivalent when P (Y ) < 1.
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where Λ(.) is a strictly increasing real function and (U, ε0, ε1, ε2) are independent. Such a
model generalizes standard linear fixed effect model Yt = U + εt and is close to the accel-
erated failure time model in duration analysis. Note that we do not introduce covariates
here for simplicity, but our result can be extended to the more realistic model considered
by Evdokimov (2011), namely Λ(Yt, Xt) = ψ(U,Xt) + εt with Λ strictly increasing in Yt,
provided that the covariates Xt are always observed at each period. We also suppose that
attrition only depends on current outcomes and transitions:

D = g(Y1, Y2, η), η ⊥⊥ (Y0, Y1, Y2). (2.4)

Finally, we impose the following technical restriction on U, ε0 and ε2. For any random
variable V , we let ΨV denote its characteristic function.

Assumption 4 U admits a density with respect to the Lebesgue measure, whose support
is the real line. Ψε0 vanishes only on isolated points. The distribution of ε2 admits a
continuous density fε2 with respect to the Lebesgue measure. Moreover, fε2(0) > 0 and
there exists α > 2 such that t 7→ tαfε2(t) is bounded. Lastly, Ψε2 does not vanish and is
infinitely often differentiable in R\A for some finite set A.

The assumption imposed on the characteristic function of ε0 is very mild and satisfied by
all standard distributions. The conditions on ε2 are more restrictive but hold for many
distributions such as the normal, the Student with degrees of freedom greater than one2

and the stable distributions with characteristic exponent greater than one. The following
proposition shows that under these conditions, the model is fully identified using Y0 as the
instrument.

Proposition 2.2 Let Z = (Y0, Y1), and suppose that Assumptions 3, 4, Equations (2.3)
and (2.4) hold. Then Assumption 2 holds and Ker (T ) ∩ F = {0}. Thus, the distribution
of (D, Y, Z) is identified.

2.2 Partial identification and testability

Apart from point identification under various completeness conditions, our attrition model
displays two interesting features. First, Assumption 2 is refutable, contrary to the ignor-
able attrition assumption D ⊥⊥ Y2|Y1 discussed below. Second, we can obtain bounds on

2See e.g. Mattner (1992) for a proof that the conditions on the characteristic function of Student
distributions are indeed satisfied.
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parameters of interest when the model is underidentified, i.e. when the above completeness
condition fails to hold. Both are due to the fact that solutions to Equation (2.2) must lie in
[0, 1]. These inequality constraints can be used both for testing and bounding parameters
of interest.

To see this, consider the case where (Y, Z) has a finite support. If Y and Z take respectively
I and J distinct values, then (2.2) can be written as a linear system of J equations with I
unknown parameters and the inequality constraints:

Pr(D = 0, Z = j) =
I∑
i=1

bi Pr(D = 1, Y = i, Z = j), bi ≥ 0.

Of course, the model is overidentified and thus testable when I > J , but we can also
test for the inequality constraints when I ≤ J . We derive a formal statistical test of this
condition in Subsection 3.1 below. We can also partially identify parameters of interest in
the underidentified case I < J , still using the fact that the (bi)i=1...I are positive.

Finally, a stronger test of the conditional independence assumption can be derived if a
refreshment sample is available, as in Hirano et al. (2001). In this case, the marginal
distribution of Y2 is identified. Then we can reject the conditional independence assumption
if for all Q satisfying T (1/Q) = w, there exists t such that

E

[
D1{Y2 ≤ t}

Q(Y )

]
6= Pr(Y2 ≤ t).

2.3 Comparison with the literature

We compare our approach with the most usual models of attrition.

2.3.1 Missing at random attrition

This model, which has been considered by, e.g., Rubin (1976) and Abowd et al. (1999),
posits that D only depends on Y1:

D ⊥⊥ Y2|Y1. (2.5)

Identification of the joint distribution of (Y1, Y2) follows directly from the fact that, letting
fD,Y1,Y2 denote the density of (D, Y1, Y2) with respect to an appropriate measure,

fY1,Y2(y1, y2) =
fD,Y1,Y2(1, y1, y2)

Pr(D = 1|Y1 = y1)
.

Condition (2.5) is the equivalent, in a panel setting, of the so-called missing at random
assumption (see, e.g., Little & Rubin, 1987) or the unconfoundedness assumption in the
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treatment effect literature (see for instance Imbens, 2004). Because it rules out any de-
pendence between attrition and current outcomes, it is likely to fail in many cases. In a
labor force survey, for instance, house moving is a common source of attrition, and is itself
related to changes in employment and/or earnings.

2.3.2 Dependence on current values

Compared to the first, the logic of this model is the opposite, as attrition is related to
current values only:

D ⊥⊥ Y1|Y2. (2.6)

This assumption has been considered by Hausman & Wise (1979) in a parametric model.
This assumption takes into account nonignorable attrition, but in a special way. It rules
out in particular the possibility that transitions (namely, functions of Y1 and Y2) explain
attrition. Abstracting from the parametric restrictions of Hausman & Wise (1979), iden-
tification can be proved along the same lines as previously. It suffices to solve in g the
functional equation

E [g(Y2)|D = 1, Y1] = 1/Pr(D = 1|Y1).

Under completeness conditions similar to the one above, this equation admits a unique
solution in g, namely 1/Pr(D = 1|Y2 = .).

2.3.3 Standard instrumental strategy

Attrition can be considered a particular selection problem, and thus be treated using the
same tools. A classical solution (see, e.g., Heckman, 1974, Angrist et al., 1996, or Heckman
& Vytlacil, 2005) is to use an instrument Z that affects attrition but not directly the current
outcome:

Y2 ⊥⊥ Z|Y1.

Such an exclusion restriction may be credible if for some exogenous reasons, some indi-
viduals were less likely to be interviewed at the second period. However, as pointed out
by Manski (2003), an important drawback of this assumption is that it is not sufficient in
general to point identify the distribution of Y2. Basically, this can be achieved only if there
exists some z such that the probability of attrition Pr(D = 1|Z = z, Y1 = y1) is equal to
zero, or is arbitrarily close to zero under continuity conditions. With limited variations in
this probability, the distribution of Y2 can only be set identified.
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2.3.4 Additive restriction on the probability of attrition

Hirano et al. (2001) propose a two-period framework that generalize both previous examples
in the sense that D may depend on both Y1 and Y2. This generalization is possible when a
refreshment sample, which allows one to identify directly the distribution of Y2, is available.
Note that because, the distribution of Y1 is also identified from the panel at date 1, the
problem reduces to recover the copula of (Y1, Y2). For that purpose, Hirano et al. (2001)
also suppose that

1/Pr(D = 1|Y1, Y2) = g(k1(Y1) + k2(Y2)), (2.7)

where g is a known function while k1(.) and k2(.) are unknown. They show that k1(.) and
k2(.) are identified by the knowledge of the marginal distributions of Y1 and Y2. This allows
them to recover the joint distribution of (Y1, Y2), since, by Bayes’ rule,

fY1,Y2(y1, y2) = fY1,Y2|D=1(y1, y2) Pr(D = 1)g(k1(y1) + k2(y2)).

Compared to our approach, Hirano et al. (2001) do not rely on any exclusion restriction.
This comes at the cost of imposing the additive restriction on Pr(D = 1|Y1, Y2), which may
be restrictive (see below), and having a refreshment sample, which is not needed in our
case.

Though the identification proof of Hirano et al. (2001) is much different from ours, the two
frameworks are actually related. As shown by Bhattacharya (2008), identification in this
additive model can be directly obtained from the functional equations

E [g(k1(Y1) + k2(Y2))|D = 1, Yi] = 1/Pr(D = 1|Yi).

Thus, identification is actually achieved along similar lines as in our case, the instrument
Z being equal to (Y1, Y2). The difference here is that only the marginal distributions of the
instrument is identified. This is the reason why they have to impose Model (2.7) to the
attrition process. Such a restriction is not innocuous. If attrition depends on transitions,
then their restriction is likely fails to hold. If, as in our application, attrition occurs
for individuals who move, and that moving itself occurs with a large probability when
employment status changes, then Pr(D = 1|Y1, Y2) depends on 1{Y1 = Y2}. Model (2.7)
cannot handle such attrition processes.

2.3.5 Attrition with unobserved heterogeneity

Finally, Sasaki (2012) proposes a very different approach where attrition at time t depends
on Yt and a constant unobserved heterogeneity term U that also affects the dynamics of
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Yt. Such a model is attractive if individual fixed effects affect both the dynamics of Yt
and the decision to respond to the panel. He shows that the dynamics of Yt, the attrition
rule and the initial conditions (the joint distribution of Y1 and U) are identified under,
basically, four restrictions. First, Yt should follow a Markov model of order 1, conditional
on U . Second, attrition at date t should be independent of past outcomes, conditional on
(U, Yt). Third, both the law of dynamics and the attrition rule should be time invariant.
Fourth, the number of periods of observations should be at least three, and a proxy of U ,
independent of other variables conditional on U , should be available. If such a proxy does
not exist, the length of the panel should be at least six.

Even if attractive, his approach is more demanding than ours in terms of data, since it
requires at least three periods. Besides, he also relies on exclusion restrictions, and contrary
to our approach, it is not clear whether these restrictions are testable or not.

3 Estimation

We now turn to inference within our framework of endogenous attrition. As previously,
we focus on the estimation of the distribution of (D, Y, Z), but also on the parameter
β0 = E(g(Y, Z)), which can be estimated under restrictions detailed before. We first posit
an i.i.d. sample of n observations.

Assumption 5 We observe an iid sample of size n of (D,DY2, Z).

We consider two cases subsequently. The first one, in line with our application, assume that
the support of (Y, Z) is finite. In this setting, we derive a simple and efficient estimator and
a test of the rank condition and exclusion restriction. We then turn to the continuous case,
where we investigate conditions for root-n estimability of β0, derive the semiparametric
efficiency bound when it exists and propose an estimator under this condition.

3.1 The discrete case

We denote the support of Yt and Z1 by respectively {1, ..., I} and {1, ..., J}, with I ≤ J .
In this case, the data (D,DY2, Z) are distributed according to a multinomial distribution.
To obtain asymptotically efficient estimators, we consider constrained maximum likelihood
estimation hereafter.
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For a fixed y, let p1ij = Pr(D = 1, Y2 = i, Z1 = j|Y1 = y) and p0.j = Pr(D = 0, Z1 =

j|Y1 = y) denote the probabilities corresponding to the observations, and define p1 =

(p111, ..., p1IJ), p0. = (p0.1, ..., p0.J) and p = (p1, p0.). Note that we let the dependence in
y implicit hereafter. p is the natural parameter of the statistical model here, as it fully
describes the distribution of (D,DY2, Z1) conditional on Y1. However, it does not directly
allow us to recover the whole distribution of (D, Y2, Z1). This is why we also introduce
p0ij = Pr(D = 0, Y2 = i, Z1 = j|Y1 = y), and p0 = (p011, ..., p0IJ) as p1. Then any
parameter θ0 of the distribution of (D, Y2, Z1) is a function of (p0, p1), and we write θ0 =

g(p0, p1). We thus consider here implicitly parameters that depend on the distribution of
(D, Y2, Z1) conditional on Y1. Unconditional parameters depend on all the different (p0, p1)

corresponding to different values of Y1, and on the marginal distribution of Y1. We can
estimate them similarly, using the empirical distribution of Y1. Because Assumption 2 does
not impose any restriction on the distribution of Y1, such estimators are also asymptotically
efficient.

Finally, we adopt the same notations for the constrained maximum likelihood estimator p̂ as
for p. We let n1ij =

∑
k:Y1k=yDk1{Y2k = i}1{Z1k = j} and n0.j =

∑
k:Y1k=y(1−Dk)1{Z1k =

j}. The following proposition shows how to compute p̂ and an efficient estimator of θ0 in
our attrition model.

Proposition 3.1 Suppose that Assumptions 1-3 hold. Then the maximum likelihood esti-
mator p̂ satisfies

(p̂, b̂) = arg max
(q,b)∈[0,1](I+1)J×RI

J∑
j=1

[
n0.j ln q0.j +

I∑
i=1

n1ij ln q1ij

]

s.t.

∣∣∣∣∣∣∣∣∣
∑J

j=1

[
q0.j +

∑I
i=1 q1ij

]
= 1,

bi ≥ 0 i = 1, ..., I,∑I
i=1 q1ijbi = q0.j j = 1, ..., J.

(C)

Suppose moreover that the matrix P1 of typical element p1ij has rank I, (P1P
′
1)−1P1p0 > 0

(where the inequality should be understood componentwise) and g is differentiable. Then
θ0 is identifiable and θ̂ = g(p̂0, p̂1), with p̂0 = (p̂011, ..., p̂0IJ) and for all (i, j), p̂0ij = b̂ip̂1ij,
is asymptotically normal and efficient.

Proposition 3.1 establishes that the maximum likelihood of p can be obtained by a con-
strained maximization with quite simple (although nonlinear) constraints. It also shows
how to compute an asymptotically efficient estimator of θ0. The idea behind the introduc-
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tion of the (bi)1≤i≤I is that, by Bayes’ rule and Assumption 2,

p0ij =
Pr(D = 0|Y1 = y, Y2 = i)

Pr(D = 1|Y1 = y, Y2 = i)
p1ij,

and bi represents the odds Pr(D = 0|Y1 = y, Y2 = i)/Pr(D = 1|Y1 = y, Y2 = i). The
inequality constraints bi ≥ 0 then ensure that Pr(D = 1|Y1 = y, Y2 = i) is indeed a
probability, while the equality constraints are a rewriting of Equation (2.2) in this discrete
context (see the proof of Proposition 3.1 in the appendix).

The condition rank(P1) = I implies Ker (T ) ∩ F = {0}, and is thus sufficient for the
identification of θ0 by Theorem 2.1. It can be easily tested in the data because under
the null hypothesis that rank(P1) < I, we have µ0 ≡ det(P1P

′
1) = 0. Then, letting

µ̂ = det(P̂1P̂
′
1),
√
nµ̂ tends to a zero mean normal variable under the null by the delta

method. We use this result to test for the rank condition in our application (see Section 4
below).

θ̂ is asymptotically normal and efficient when (P1P
′
1)−1P1p0 > 0 . When (P1P

′
1)−1P1p0 =

0, the true parameters lie at the boundary of the parameter space. θ̂ is still a root-n
consistent estimator in this case. However, it is not asymptotically normal anymore (see,
e.g., Andrews, 1999, for a thorough study of such cases). Moreover, the standard bootstrap
typically fails to be valid (see Andrews, 2000, for an illustration). Subsampling remains
valid, on the other hand. We use it in the application when the estimator is at the boundary
or close to it.

Finally, as noted before, we can test Assumption 2 by two ways. The first and standard
one is that the equality constraints in (C) may not hold when J > I, because there is no
(bi)1≤i≤I such that

∑I
i=1 bip1ij = p0.j. Basically, this arises when the different values of Z

are not “compatible”, as with the Sargan test in linear IV models. The second is that the
(bi)1≤i≤I satisfying these equality constraints must be nonnegative. This may not hold in
general, even when I = J . To test for both conditions simultaneously, we use the same
Wald statistic as the one considered by Kodde & Palm (1986). In our framework, the
unconstrained model where Assumption 2 does not necessarily hold is simply the multi-
nomial model on (D,DY2, Z) parameterized by p, and the maximum likelihood estimator
p̂U simply corresponds to the sample proportions. The constraints (C) corresponding to
Assumption 2 hold if and only if there exists b ≥ 0 (understood componentwise) such that
P ′1b = p0.. If P1 is full rank, the latter equation has a unique solution, the least square
solution (P1P

′
1)−1P1p0.. Therefore, if rank(P1) = I, Assumption 2 is equivalent to[

P ′1(P1P
′
1)−1P1 − Id

]
p0. = 0, (P1P

′
1)−1P1p0. ≥ 0, (3.1)
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where Id is the identity matrix. The idea, therefore, is to see whether
[
P ′1(P̂U

1 P
′
1)−1P̂U

1 − Id
]
p̂U0.

is close to zero and (P̂U
1 P

′
1)−1P̂U

1 p̂
U
0. is positive componentwise, where P̂U

1 and p̂U0. are the
estimators of P1 and p0. obtained from p̂U .

Let us rewrite the two constraints of (3.1) as h1(p) = 0 and h2(p) ≥ 0, and let h(p) =

(h1(p), h2(p)). Let also H0 = {0}J × R+I denote the set of h = (h1, h2) satisfying these
constraints. Denote by Σii (resp. Σ12) the asymptotic variance of ĥi ≡ hi(p̂

U) (resp.
covariance of h1(p̂U) and h2(p̂U)), and by Σ the asymptotic variance of ĥ ≡ h(p̂U). Finally,
let Σ̂ denote a consistent estimator of Σ. The test statistic Wn is then defined as

Wn = n min
h∈H0

(
h− ĥ

)′
Σ̂−
(
h− ĥ

)
, (3.2)

where Σ̂− denotes the Moore-Penrose inverse of Σ̂. Σ̂ is not full rank because the rank of
Σ11 is J − I, while h1(p) ∈ RJ . This is logical, since we only have J − I overidentifying
equality constraints here. ComputingWn is straightforward as it corresponds to a quadratic
programming problem.

We now indicate how to compute critical values that are asymptotically valid under the
null. We do not rely on the asymptotic result of Kodde & Palm (1986) here as they only
compute the critical value corresponding to the least favorable case of the null hypothesis.
Namely, they compute c such that suph∈H0

limn→∞ Prh(Wn ≥ c) = α. This leads to a
conservative test, and therefore to low power if the null hypothesis is violated. By contrast,
we compute here a critical value corresponding to the most plausible DGP satisfying the
null hypothesis, given the data. Therefore, our test is not conservative for a whole range
of DGP satisfying the null hypothesis (see Proposition 3.2 below).

Let (h10, h20) = h0 = h(p1, p0.) denote the true parameter. The asymptotic distribution of
Wn depends on whether the components (h20i)1≤i≤I are equal to zero or not. Let Rj be
equal to R+ if h20j = 0, and to R otherwise. Then let

H(h0) = {0}J ×R1 × ...×RI .

We show in the proof of Proposition 3.2 below that

lim
n→∞

Pr(Wn > w) = Pr

(
min

h∈H(h0)
(h− U)′Σ− (h− U) > w

)
(3.3)

where U ∼ N (0,Σ). To compute the level of the test based on this asymptotic distribution,
we need to estimate H(h0). Following, e.g., Rosen (2008) or Andrews & Soares (2010), we
consider a sequence (cn)n∈N such that cn →∞ and cn/

√
n→ 0. We let R̂j be equal to R+

if ĥ2j ≤ cn/
√
n, and to R otherwise, and

Ĥ(h0) = {0}J × R̂1 × ...× R̂I .
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Finally, let ĉα satisfy

ĉα = inf

{
c > 0 : Pr

(
min

h∈Ĥ(h0)

(
h− Û

)′
Σ̂−
(
h− Û

)
> c

)
≤ α

}
, (3.4)

where Û ∼ N (0, Σ̂). ĉα or, similarly, the p-value of the test, can be obtained easily by
simulations.

Proposition 3.2 For any α ≤ 1/2, the test defined by the critical region {Wn > ĉα} is
consistent. Its asymptotic level is α if J > I or Ri = R+ for some i ∈ {1, ..., I}, and 0
otherwise.

Note that the asymptotic distribution of Wn is degenerated when I = J and Ri = R for all
i, which is logical since there is no overidentifying equality constraints and the inequality
constraints are not binding. In this case, the asymptotic level of the test will be 0 rather
than α, as could be expected. In all other cases, the test has a non-degenerated distribution
and its asymptotic level is exactly α. Following the analysis of Kodde & Palm (1986), it
is also possible to express this asymptotic distribution as a mixture of chi-square. The
corresponding weights, however, do not have a closed form in general, so that it is actually
easier to approximate the asymptotic distribution using (3.3). We use such simulations to
compute our p-values in the application below.

3.2 The continuous case

The situation is more involved when (Y, Z) is continuous, because the distribution of (Y, Z)

depends on the nonparametric function P (.) that is identified through an integral equation.
We mostly focus on the estimation of β0 = E[g(Y, Z)] here. The key insight is that this
problem is closely related to the estimation of linear functionals in additive, nonparametric
instrumental variables (IV) models. Recall that such models satisfy

Y = m(X) + ε, E(ε|Z) = 0.

These models have been investigated by, among others, Newey & Powell (2003), Hall &
Horowitz (2005), Santos (2011) and Severini & Tripathi (2012). m is identified through
the integral equation E(Y − m(Z)|X) = 0. This identifying equation is similar to ours,
namely E(1 − D/P (Y )|Z) = 0. Rather than m itself, one may be interested in linear
functionals of m, θ0 = E[φ(X)m(X)], where φ is known. In our context, we also have to
estimate a linear functional of 1/P , since β0 = E[Dβ(Y )/P (Y )]. Given these analogies, it
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is not surprising that a similar methodology can be applied to our setting. An overview of
the relationship between the two problems is given by Table 1.

Table 1: Analogy with additive nonparametric IV problems

Endogeneous Attrition Additive nonparametric IV

Observed variables (D,DY,Z) (Y,X,Z)

Unknown function 1/P (.) m(.)

Exclusion restriction E
(

1− D
P (Y )
|Z
)

= 0 E(Y −m(X)|Z) = 0

Operator T T (f) = E(f(Y )|D = 1, Z = .) T (f) = E(f(X)|Z = .)

Operator T ? T ?(f) = E(f(Z)|D = 1, Y = .) T ?(f) = E(f(Z)|X = .)

Parameter of interest β0 = E
(
Dg(Y )
P (Y )

)
θ0 = E (φ(X)m(X))

Root-n estimability
condition: ∃q ∈ L2(Z) s.t. T ?(q) = β(.) T ?(q) = φ(.)

Estimating equation β0 = E(q(Z)) θ0 = E(Y q(Z))

Estimator β̂ = Ê (q̂(Z)) θ̂ = Ê(Y q̂(Z))

The first issue we investigate is the root-n estimability of β0, that is to say, the existence
of regular estimators converging at the root-n rate to β0 (see, e.g., van der Vaart, 2000,
Chapter 25). Our results are closely related to those of Severini & Tripathi (2012) in the
classical IV framework. Let T ∗ be the adjoint operator of T , defined in (2.1):3

T ∗ : L2(Z|D = 1) → L2(Y |D = 1)

q 7→ (y 7→ E(q(Z)|D = 1, Y = y)) .

Actually, we only need considering the restriction T ∗Y0(q) of T
∗(q) on Y0 = Supp(Y |D = 0),

which is included in Supp(Y |D = 1) under Assumption 3. By Assumptions 2 and 3,
E(q(Z)|D = 1, Y ) = E(q(Z)|D = 0, Y ) P Y |D=0- almost surely. This allows us to extend
T ∗Y0(q) on L

2(Z|D = 0). By a slight abuse of notation, this extension, as well as the restric-
tion of β(.) on Y0, are also denoted by T ∗ and β(.). The condition for root-n estimability
is the following.

Assumption 6 g ∈ L2(Y, Z) and there exists q ∈ L2(Z|D = 0) such that T ∗(q) = β(.)

and
E

[
1− P (Y )

P (Y )
(q(Z)− g(Y, Z)) (q(Z)− g(Y, Z))′

]
<∞.

3We define here our operators on L2 rather than on L1, as in Section 2. This is not really a restriction
since square integrability is required for root-n consistency in the first place.
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The condition g ∈ L2(Y, Z) is standard to derive the asymptotic distribution of 1
n

∑n
i=1 g(Yi, Zi),

even when Y is always observed. The second condition is similar to the one consid-
ered by Severini & Tripathi (2012), namely the existence of q satisfying T ?(q) = φ in
their context. If the standard completeness condition holds, then Ker (T ) = {0} and
R (T ∗) = L2(Y |D = 1), where R (T ∗) denotes the range of T ∗ and A denotes the closure
of A. As a consequence if g ∈ L2(Y, Z), then β(.) lies in R (T ∗). However, when Y is con-
tinuous, R (T ∗) is not closed in general, so that even if the standard completeness holds,
it may happen that β(.) 6∈ R (T ∗). In such a case, the following theorem states that β0

can not be consistently estimated at the root-n rate, as in the additive nonparametric IV
problem. We also provide the semiparametric efficiency bound under Assumption 6.

Theorem 3.3 Suppose that Assumptions 1-3 hold, and β(.) ∈ (Ker (T ) ∩ Fg)⊥. Then
a regular root-n estimator of β0 exists only if Assumption 6 holds and in this case the
semi-parametric efficiency bound of θ0 is:

V ∗ = V (g(Y, Z))+ min
q(.)∈T ∗−1({β(.)})

E

[
1− P (Y )

P (Y )
(q(Z)− g(Y, Z)) (q(Z)− g(Y, Z))′

]
. (3.5)

The second part of the theorem shows that the asymptotic efficiency bound comprises two
terms. The first corresponds to the standard estimation of β0 without any attrition, i.e.
when D = 1. The second accounts for attrition, and is indeed, loosely speaking, increasing
with P (Y ). It is also related to the quality of the approximation of g(Y, Z) by functions
of Z. If g only depends on Z, this term disappears, which makes sense because we can
estimate directly β0 by the sample average of g(Z). On the other hand, if g(Y, Z) only
depends on Y , the expectation on the right-hand side of (3.5) can be rewritten as

E

[
1− P (Y )

P (Y )
V (q(Z)|Y )

]
.

Hence, if there is a strong dependence between Y and Z, we may expect this second term
to be small.

Turning to inference, a key observation for estimating β0 under Assumption 6 is that

β0 = E [β(Y )] = E [E[q(Z)|D = 1, Y ]] = E [E[q(Z)|Y ]] = E[q(Z)],

where the third equality follows by conditional independence. Once more, a similar esti-
mating equation arises in nonparametric IV models, since we have θ0 = E[Y q(Z)]. In a
similar way as Santos (2011), the idea is to estimate q first, and then estimate β0 by taking
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the sample average of the (q̂(Zi))i=1...n. A difficulty is that the q satisfying Equation 6 may
not be unique. Santos (2011) proposes to choose the one with the smallest norm. Adapting
his idea to our context, we consider

q̂ = arg min
q∈Θn

n∑
i=1

q(Zi)
2 s.t.

an
n

n∑
i=1

Ê
(

[β(Y )− q(Z)]f̂Y |D=1(Y )|Y = yi, D = 1
)2

≤ bn.

Θn denotes a sieve space, i.e. a subset of L2(Z) such that Θn ⊂ Θn+1 and q ∈ ∪Θn. f̂X
is a kernel estimator of fX and Ê[U |V = v] is a linear sieve estimator of E[U |V = v], for
any random variables (U, V ).4 The constraint of the program defines the set of functions
q ∈ Θn that approximately satisfy E(q(Z)|Y ) = β(Y ). Among those functions, q̂ is the
one with the smallest norm. Santos (2011) shows that under technical conditions and with
appropriate smoothing parameters, the corresponding estimator of θ0 is root-n consistent
and asymptotically normal. It is unclear, on the other hand, whether this estimator reaches
the semiparametric efficiency bound.

4 Application

4.1 Introduction

In this section, we apply the previous results to estimate transitions on employment status
in the French labor market. Beyond the unemployment rate, measuring such transitions is
important to assess, for instance, the importance of short and long-term unemployment.
We use for that purpose the Labor Force Survey (LFS) conducted by the French national
institute of statistics (INSEE). This survey is probably the best tool to measure such
transitions in France. Compared to administrative data or other surveys, it properly
measures unemployment with respect to the standard ILO definition, has a comprehensive
coverage of the population and has a large sample size. Since 2003, the French LFS is
a rotating panel with approximately 5,900 new households each quarter. Each household
is interviewed during six waves. On the first and sixth wave, interviews are face to face,
while on the others they are conducted by telephone. It has been argued that the use of
phone may introduce specific measurement errors (see, e.g., Biemer, 2001), so we focus on
the first and last interrogations hereafter. We also restrict ourselves to people between 15
and 65 and pool together all labor force surveys on the period 2003-2005.

4Here, we have supposed that β(Y ) is known, which is the case in the common situation where g(Y,Z)
does not depend on Z. Otherwise, β(Y ) should also be estimated with a nonparametric estimator of
E(g(Y, Z)|D = 1, Y ).
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Table 2: Summary statistics on the French LFS.

Statistics All Men Women

Main sample:
Number of individuals 107,031 52,245 54,786
Attrition rate on last waves 21.78% 22.26% 21.31%
Participation rate on first waves 68.17% 73.91% 62.69%
(Uncorrected) participation rate on last waves 67.38% 72.75% 62.32%
Unemployment rate on first waves 9.68% 9.05% 10.39%
(Uncorrected) unemployment rate on last waves 8.02% 7.22% 8.90%
Refreshment sample for last waves:
Number of observations 109,404 53,337 56,067
Participation rate on the refreshment sample 67.92% 73.31% 62.78%
Unemployment rate on the refreshment sample 9.97% 9.43% 10.57%

Sources: French LFS, first waves between 2003 and 2005, individuals between 15 and 65 year

old.

Table 2 provides some summary statistics on our dataset, which emphasize that attrition
may be problematic in the LFS survey. This is especially striking when we compare the
(uncorrected) participation and unemployment rate on last waves and the one on the
refreshment sample, which corresponds to entrants interviewed at the same time. We
observe differences around 1.5 percent points on participation rates, and around 2 percent
points on unemployment rates. To understand these differences, recall that in the French
LFS, moving households are not followed by interviewers, who stick instead on housings
which were selected in the first waves. This is likely to affect activity rates and transition
estimates on the labor market, because transitions are very different for moving and non-
moving households.

This latter fact can be illustrated using the French sample of the European Survey on
Income Living Conditions (SILC). Contrary to the LFS, this panel follows individuals even
if they move. It is therefore possible to estimate the difference in the transition matrix
for those who have moved and the others. Note, on the other hand, that it is difficult
to use its results as a benchmark, for several reasons. First, and most importantly, the
status on the labor market is not obtained with the same questions as in the LFS, and it is
well-known that this matters much for defining in particular unemployment (for evidence
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on this issue in France, see, e.g., Guillemot, 1996, and Gonzalez-Demichel & Nauze-Fichet,
2003). Second, still around 40% of the individuals in the French sample of SILC that
move from one year to another are lost, so the bias stemming from such nonrespondents
may still be substantial. That said, Table 3 shows that the difference in the transitions on
the labor market between individuals who have moved and the others are substantial. In
particular, the diagonal of the transition matrix is much smaller for individuals who move.
The difference reaches around 30 percentage points for inactive people. This suggests that
the MAR and HIRR methods may overestimate the diagonal of the transition matrix.

Table 3: Comparison moving and non moving people in SILC

Non moving Moving
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV-MAR
Y1 = Empl. 92.86

(0.34)
3.50
(0.27)

3.64
(0.23)

90.53
(1.34)

3.99
(0.95)

5.48
(0.99)

Y1 = Unempl. 30.48
(1.84)

51.31
(2.05)

18.21
(1.60)

38.32
(6.33)

41.55
(6.60)

20.13
(0.52)

Y1 = Out L.F. 7.40
(0.48)

5.83
(0.45)

86.77
(0.64)

34.64
(3.67)

8.05
(2.13)

57.30
(3.77)

Sources: French sample of SILC 2004/2005, individuals between 15 and 65.

Notes: standard error in parentheses.

As suggested in Section 2, we propose to correct for potentially endogenous attrition by
using past employment status, measured by a retrospective question asked on the first
waves. The underlying assumption is that attrition depends on the current transition
on this outcome, but not on previous ones. This assumption is plausible if most of the
endogeneity in attrition stems from the moving of households. The instrument Z we use
is employment status six months before the first wave. We choose to divide this variable
in three categories (unemployed, employed, and out of labour force), in the same way as
our outcome, which is contemporary employment status.

4.2 The results

We first check the rank condition between Z1 and Y2 conditional on gender and Y1, relying
on the determinant test proposed in Subsection 3.1. Results are displayed in Table 4.
The p-value of the rank test associated to any state Y1 are always smaller than 10% for
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both men and women. We also implement the test developed in the Proposition 3.2, using
cn = ln(n). Though some inequality constraints are binding with Y1 = Unempl., we do not
reject the independence assumption Z ⊥⊥ D|Y1, Y2 here, the p-value being close to 0.50.
The p-values equal to one that we obtain correspond to situations where the inequality
constraints are not binding. In such a case, Wn = 0 and we accept the null hypothesis at
any level.

Table 4: Rank test between Z and Y2 conditional on gender and Y1.

P-value P-value
(Men) (Women)

Y1 = Empl. 0.004 0.001
Y1 = Unempl. 0.077 0.057
Y1 = Out L.F. 0.059 0.091

Sources: French LFS (2003-2005).

Notes: the p-values are obtained by bootstrap

with 1,000 bootstrap samples.

Table 5: Test of Z ⊥⊥ D|Y1, Y2 by gender.

P-value P-value
(Men) (Women)

Y1 = Empl. 1 1

Y1 = Unempl. 0.491 0.488
Y1 = Out L.F. 1 1

Sources: French LFS (2003-2005).

Notes: we use the test based on Wn and ĉα defined

in (3.2) and (3.4).

Second, we estimate the probabilities of attrition (or non-attrition) conditional on (Y1, Y2).
Our results, displayed in Table 6, confirm that attrition is related to transitions on em-
ployment status. People who remain stable on the labor market have always a significant
larger probability to respond in the second wave than people who change. In particular,
we observe a large attrition for those who move from employment to unemployment or
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inactivity whereas attrition seems negligible for those who remain unemployed at both pe-
riods. As suggested above, such transitions are likely to be related to house movings. For
instance, transitions from inactivity to employment or unemployment mostly correspond to
students who enter the labor market and move at the same time. Such features cannot be
captured under the missing at random (MAR) scheme D ⊥⊥ Y2|Y1, or the additive model of
Hirano et al. (2001). In particular, they tend to underestimate the probability of attrition
for people whose status change on the labor market, and to overestimate them for stable
trajectories (see Table 7 for the tests on the difference between our IV models and the two
others). Note also that we estimate the probability of attrition to be zero for people who
remain unemployed. This indicates that for those people, the inequality constraint bi ≥ 0

is binding. This could suggest that the exclusion restriction is violated. However, the test
conducted previously shows that the unconstrained estimator, if negative, is actually close
to zero, and we cannot reject at standard levels that the true value is actually positive.
That b̂i = 0 for individuals initially unemployed also indicates that the true value of bi may
be equal to zero, in which case the estimator is not asymptotically normal. We therefore
use subsampling rather than the bootstrap or the normal approximation for inference on
this subpopulation.
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Table 6: Estimation of P (D = 1|Y1, Y2) by gender under various assump-
tions.

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV
Y1 = Empl. 84.33

(0.83)
34.33
(3.93)

46.31
(7.11)

85.72
(0.92)

46.45
(6.17)

44.57
(4.42)

Y1 = Unempl. 55.56
(4.73)

100
(4.6)

51.01
(7.13)

52.46
(4.88)

100
(4.45)

76.38
(6.15)

Y1 = Out L.F. 54.83
(10.91)

55.85
(11.15)

85.72
(2.01)

56.43
(11.88)

67.1
(17.22)

84.34
(1.11)

MAR
Y1 = Empl. 78.22

(0.22)
78.22
(0.22)

78.22
(0.22)

79.00
(0.22)

79.00
(0.22)

79.00
(0.22)

Y1 = Empl. 65.9
(0.81)

65.9
(0.81)

65.9
(0.81)

69.77
(0.78)

69.77
(0.78)

69.77
(0.78)

Y1 = Empl. 79.52
(0.35)

79.52
(0.35)

79.52
(0.35)

79.77
(0.28)

79.77
(0.28)

79.77
(0.28)

HIRR
Y1 = Empl. 79.01

(0.29)
59.98
(2.13)

76.44
(2.17)

79.57
(0.3)

66.59
(2.18)

77.57
(2.01)

Y1 = Empl. 75.84
(1.4)

55.55
(1.25)

73.01
(2.06)

76.04
(1.45)

61.89
(1.37)

73.81
(1.75)

Y1 = Empl. 82.41
(1.68)

65.09
(2.33)

80.15
(0.45)

82.01
(1.68)

69.99
(2.01)

80.18
(0.37)

Sources: French LFS (2003-2005).

Notes: the standard errors, in parentheses, are computed with the bootstrap except for Y1 =

Unempl. in the IV case, where we use subsampling.
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Table 7: Comparison between our method and other ones on P̂ (D =

1|Y1, Y2)

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV-MAR
Y1 = Empl. 6.11

(<0.001)
−43.89
(<0.001)

−31.91
(<0.001)

6.72
(<0.001)

−32.55
(<0.001)

−34.43
(<0.001)

Y1 = Unempl. −10.34
(0.018)

34.1
(<0.001)

−14.9
(0.009)

−17.31
(<0.001)

30.23
(<0.001)

6.61
(0.322)

Y1 = Out L.F. −24.69
(0.024)

−23.67
(0.034)

6.2
(0.002)

−23.33
(0.049)

−12.66
(0.462)

4.58
(<0.001)

IV-HIRR
Y1 = Empl. 5.32

(<0.001)
−25.64
(<0.001)

−30.13
(<0.001)

6.15
(<0.001)

−20.14
(0.002)

−33
(<0.001)

Y1 = Unempl. −20.28
(<0.001)

44.45
(<0.001)

−22.01
(<0.001)

−23.58
(<0.001)

38.11
(<0.001)

2.57
(0.862)

Y1 = Out L.F. −27.58
(0.012)

−9.24
(0.415)

5.57
(0.005)

−25.57
(0.033)

−2.89
(0.867)

4.16
(<0.001)

Sources: French LFS (2003-2005).

Notes: the p-values, in parentheses, are computed with the bootstrap (Y1 = Empl. and Out L.F.)

and subsampling (Y1 = Unempl.).

Before presenting our results on transitions, we estimate the distribution of Y2 with our
IV method and compare it with the one of the refreshment sample. We also estimate this
distribution supposing that data are missing at random (MAR), i.e. D ⊥⊥ Y2|Y1. Table
8 shows that on the five statistics related to the distribution of Y2, our estimator is close,
and not statistically significant at usual levels, to the one based on the refreshment sample.
Those based on the MAR assumptions, on the other hand, do differ significantly for several
features of Y2. In other words, we can reject, using the refreshment sample, the hypothesis
that attrition only depends on past outcomes, while our independence condition is not
rejected in the data. Note that we cannot use the refreshment sample to properly compare
our method with the one of Hirano et al. (2001) because by construction, their estimator
exactly matches the distribution of Y2 on the refreshment sample.
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Table 8: Comparison of the methods with the refreshment sample

Men Women
REF. MAR IV REF. MAR IV

P (Y2 = Empl.) 66.4 67.47
(<0.0001)

64.59
(0.055)

56.15 56.81
(0.0054)

55.07
(0.159)

P (Y2 = Unempl.) 6.92 5.62
(<0.0001)

7.53
(0.235)

6.63 5.78
(<0.0001)

6.51
(0.801)

P (Y2 = Out L.F.) 26.69 26.92
(0.2641)

27.88
(0.159)

37.22 37.4
(0.4243)

38.42
(0.127)

Participation rate 73.31 73.08
(0.2641)

72.12
(0.159)

62.78 62.6
(0.4243)

61.58
(0.127)

Unemployment rate 9.43 7.68
(<0.0001)

10.44
(0.146)

10.57 9.24
(<0.0001)

10.58
(0.982)

Sources: French LFS (2003-2005).

Notes: the p-values of the difference with the refreshment sample, in parentheses,

are obtained using the bootstrap (MAR) and subsampling (IV).

Finally, we compute transitions on the labor market using our IV method, the MAR
assumption and the additive method of Hirano et al. (2001) (see Table 9). Not surprisingly
given the discrepancies on the probabilities of attrition, our results differ significantly
from those obtained by the other methods. Other methods lead in particular to a higher
stability on the labor market. This is not surprising, given the assumptions underlying
these methods. Table 3 suggests that there is a specific effect of being in the diagonal
on the transition matrix on attrition, but neither the MAR assumption nor the additivity
condition of Hirano et al. (2001) can incorporate such effects. The final results suggest
that this could lead to important biases on the estimation of transitions.
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Table 9: Estimated probability of transitions by gender under various
assumptions

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV
Y1 = Empl. 85.86

(0.83)
6.12
(0.69)

8.02
(1.11)

83.46
(0.9)

4.73
(0.62)

11.81
(1.15)

Y1 = Unempl. 49
(2.97)

25.85
(2.33)

25.15
(2.86)

52.61
(2.9)

25.3
(2.25)

22.08
(2.6)

Y1 = Out L.F. 13.81
(2.59)

6.48
(1.15)

79.72
(1.81)

12.74
(2.24)

5.92
(1.49)

81.34
(1.07)

MAR
Y1 = Empl. 92.56

(0.16)
2.69
(0.1)

4.75
(0.13)

90.56
(0.18)

2.78
(0.1)

6.66
(0.16)

Y1 = Empl. 41.31
(1.03)

39.23
(0.97)

19.46
(0.82)

39.56
(0.99)

36.27
(0.94)

24.18
(0.86)

Y1 = Empl. 9.52
(0.28)

4.55
(0.21)

85.93
(0.34)

9.02
(0.22)

4.98
(0.17)

86
(0.27)

HIRR
Y1 = Empl. 91.64

(0.2)
3.5

(0.12)
4.86
(0.14)

89.92
(0.22)

3.3
(0.12)

6.79
(0.18)

Y1 = Empl. 35.9
(0.93)

46.54
(0.92)

17.57
(0.79)

36.29
(0.94)

40.87
(0.88)

22.85
(0.84)

Y1 = Empl. 9.19
(0.28)

5.56
(0.23)

85.26
(0.36)

8.77
(0.22)

5.68
(0.17)

85.55
(0.29)

Sources: French LFS (2003-2005).

Notes: the standard errors, in parentheses, are computed with the bootstrap except for Y1 =

Unempl. in the IV case, where we use subsampling.

5 Conclusion

In this paper, we develop an alternative method to correct for endogenous attrition in
panel. We allow for both dependence on current and past outcomes and, thanks to the
availability of an instrument, do not need to impose functional restrictions on the probabil-
ity of attrition. The application suggests that our method may do a good job for handling
attrition processes which mostly depend on transitions.

The paper raises challenging issues, related to our main conditional independence assump-
tion. The first is whether the refreshment sample could be used to weaken this assumption,
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rather than to test for it. This may be useful in settings where this condition is considered
too stringent. The second is whether one can build bounds on parameters of interest if the
conditional independence assumption is replaced by weaker conditions such as monotonic-
ity ones. Finally, an issue that also arises for nonparametric additive IV models would
be to obtain efficient estimators for linear functionals under Assumption 6, and consistent
estimators without such an assumption.
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A Appendix: proofs

Theorem 2.1

The distribution of (Y, Z,D) is identified if and only if the distribution of Y |Z,D = 0 is
identified. We have:

fY |Z=z,D=0(y) =
fD,Y,Z(0, y, z)

fD,Z(0, z)

=
1

fD,Z(0, z)
P (D = 0|Y = y, Z = z)fY,Z(y, z)

=
1

fD,Z(0, z)

P (D = 0|Y = y, Z = z)

P (D = 1|Y = y, Z = z)
fY,Z|D=1(y, z)

=
1

fD,Z(0, z)

1− P (y)

P (y)
fY,Z|D=1(y, z).

Then we deduce that Y |Z,D = 0 is identified if and only if P is identified. Under assump-
tions 2 and 3 (i), the function P is such that T (1/P ) = w and 1/P ≥ 1. Reciprocally, let
Q a function such that 1/Q ∈ L1(Y |D = 1), T (1/Q) = w and 1/Q ≥ 1. If the unobserved
distribution of Y |Z,D = 0 is such that

fY |Z=z,D=0(y) =
1

fD,Z(0, z)

1−Q(y)

Q(y)
fY,Z|D=1(y, z),

we have P (D = 1|Y ) = Q(Y ) and D ⊥⊥ Z|Y . So the set of identification of P is

{Q : 1/Q ∈ L1(Y |D = 1), T (1/Q) = w, 1/Q ≥ 1} ,

which is reduced to a point if and only if Ker (T )∩F = {0}. This proves the first point of
Theorem 2.1.

For the second and the third points, let Q be such that T (1/Q) = w, 1/Q ≥ 1 and
E(|g(Y, Z)|/Q(Y ) |D = 1) < ∞. Choosing fY |Z,D=0 as above, we can rationalize that
P (D = 1|Y ) = Q(Y ), D ⊥⊥ Z|Y and g ∈ L1(Y, Z). So the set of identification of 1/P is{

1/Q : 1/Q ∈ L1(Y |D = 1), T (1/Q) = w, 1/Q ≥ 1, E(|g(Y, Z)|/Q(Y )|D = 1) <∞
}

or, equivalently,

{1/P + h : h ∈ Ker (T ) ∩ F , E(|gh||D = 1) <∞} = 1/P + Ker (T ) ∩ Fg.

For all h ∈ Fg the quantities E(|g(Y, Z)h(Y )||D = 1), E(g(Y, Z)h(Y )|D = 1), E(|β(Y )h(Y )||D =

1), E(β(Y )h(Y )|D = 1) are well defined and finite. Then the set identification of β0 is

{β0 + E(β(Y )h(Y )|D = 1)E(D) : h ∈ Ker (T ) ∩ Fg} ,
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which reduces to a point if and only if E(β(Y )h(Y )|D = 1) = 0 for every h ∈ Ker (T )∩Fg.
Hence, β0 is identified if and only if β(.) ∈ (Ker (T ) ∩ Fg)⊥ �

Proposition 2.2

First, remark that if η ⊥⊥ (Y0, Y1, Y2), then η ⊥⊥ Y0|Y1, Y2. As a result, D ⊥⊥ Y0|Y and
Assumption 2 holds with Z1 = Y0. Now, suppose that T (h) = 0 for h ∈ F , and let us
prove that h = 0. First, T (h) = 0 rewrites as

0 = E(Dh(Y1, Y2)|Y0, Y1) = E(h̃(Y1, Ỹ2)|Y0, Y1),

with Ỹt = Λ(Yt) and h̃(y1, y2) = h(y1,Λ(y2))× P (y1, y2). As a result, for all t ∈ R,

E(h̃(Y1, Ỹ2)eitỸ0 |Y1) = 0

Because ε0 ⊥⊥ (U, Y1, Y2),
E(h̃(Y1, Ỹ2)eitU |Y1)Ψε0(t) = 0.

Thus, by assumption, t 7→ E(h̃(Y1, Ỹ2)eitU |Y1) is equal to zero except perhaps on a set
of isolated points. Because this function is continuous by dominated convergence, it is
actually equal to zero on the whole line. This implies (see e. g. Bierens, 1982, Theorem 1)

E(h̃(Y1, Ỹ2)|Y1, U) = 0.

Now, ε2 is independent of (Y1, U) and U admits a density with respect to the Lebesgue
measure. Thus, for almost all y1 and almost every u,∫

h̃(y1, u− v)f−ε2(v)dv = 0. (A.1)

Fix y1 so that Equation (A.1) holds for almost every u. Because h ≥ 1−1/P by assumption,
h̃ is bounded below by -1. Letting g = h̃(y1, .) and ? denote the convolution product, we
have (g + 1) ? f−ε2 = 1 almost everywhere. Besides, by the first step of the proof of
Proposition 2.2 of D’Haultfœuille (2010), there exist positive c1, c2 and 0 < α′ < α − 2

such that
c1 ≤ (fε2 ? fα′)(x)× (1 + |x|)α

′+1 ≤ c2, (A.2)

where fα′ denotes the density of an α′-stable distribution of characteristic function exp(−|t|α′).
Moreover, because g + 1, f−ε2 and fα′ are nonnegative, we can apply Fubini’s theorem, so
that

(g + 1) ? (f−ε2 ? fα′) = ((g + 1) ? f−ε2) ? fα′ = 1 ? fα′ = 1.
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Thus, g ? φ = 0, with φ = f−ε2 ? fα′ . In other words, we have a similar result as (A.5) in
the proof of D’Haultfœuille (2010). Applying the third step of this proof shows that the
location family generated by φ is complete. Thus g = 0 almost everywhere. Because this
reasoning holds for almost all y1, h(Y1, Y2) = 0 almost surely. Hence, Ker (T ) ∩ F = {0},
and the result follows by Theorem 2.1 �

Proposition 3.1

For simplicity, we keep hereafter the conditioning on Y1 = y implicit. We first prove that
D ⊥⊥ Z1|Y2 is equivalent to the existence of bi ≥ 0, for i = 1, ..., I such that ∀(i, j), p0ij =

bip1ij. For i ∈ {1, ...I}, let A(i) the set of j such that Pr(Y2 = i, Z1 = j) > 0. Suppose first
that Z1 ⊥⊥ D|Y2. Then for all i and all j ∈ A(i),

[1− Pr (D = 1|Y2 = i, Z1 = j)] /Pr (D = 1|Y2 = i, Z1 = j)

does not depend on j. Thus, there exists bi ≥ 0 such that for all j ∈ A(i),

Pr (D = 0|Y2 = i, Z1 = j) = bi Pr (D = 1|Y2 = i, Z1 = j) .

Multiplying both sides by Pr(Y2 = i, Z1 = j) and remarking that both sides are equal to 0
when j 6∈ A(i), we get, for all j, p0ij = bip1ij. This proves the “only if” part.

Conversely, suppose that there exists bi ≥ 0 such that p0ij = bip1ij. Because
∑

j p1ij =

P (D = 1, Y2 = i) > 0 by Assumption 3, p0ij = bip1ij implies that

p0ij =

∑
j p0ij∑
j p1ij

p1ij =
Pr(D = 0, Y2 = i)

Pr(D = 1, Y2 = i)
p1ij.

In other words, P (Z1 = j|D = 0, Y2 = i) = P (Z1 = j|D = 1, Y2 = i) for all j, implying
that Z1 ⊥⊥ D|Y2 = i.

We deduce that the distribution of (D,DY2, Z1) is compatible with D ⊥⊥ Z1|Y2 if and only
if

∀(i, j),∃p0ij ≥ 0,∃bi ≥ 0 :
∑
i

p0ij = p0.j and p0ij = bip1ij.

This condition is also equivalent to the existence, for all i, of bi ≥ 0 satisfying p0.j =∑
i bip1ij for all j. If such (bi)i=1,...,I exist, indeed, p0ij can always be defined by p0ij = bip1ij.

As a result, the maximum likelihood estimator p̂ of p under Assumptions 2, 3 and 5 is
defined by:
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(p̂, b̂) = arg max
(q,b)∈[0,1](I+1)J×R+I

J∑
j=1

[
n0.j ln q0.j +

I∑
i=1

n1ij ln q1ij

]

s.t.

∣∣∣∣∣∣
∑J

j=1

[
q0.j +

∑I
i=1 q1ij

]
= 1,∑I

i=1 q1ijbi = q0.j j = 1, ..., J.

To complete the proposition, remark that p̂ is an asymptotically efficient estimator of p.
The Fisher information matrix of p is singular because

∑
j,i p1ij +

∑
j p0.j = 1. However

the parameter u defined by the IJ + J − 1 first components of p has a nonsingular Fisher
information matrix. If matrix P1 has rank I then p0 = P ′1(P1P

′
1)−1P1p0., and then p0 = l(u)

and θ = g(p0, p1) = k(u) with l and k being differentiable at u. Because P̂1 has rank i with
probability tending to one, b̂ is equal to (P̂1P̂

′
1)−1P̂1p̂0. with probability tending to one and

then b̂ = m(û) with m differentiable with probability tending to one. It follows that b̂, p̂0

and θ̂ are efficient estimators of (P1P
′
1)−1P1p0., p0 and θ (see for instance van der Vaart,

2000, Section 8.9) �

Proposition 3.2

The proof proceeds in three steps. We first establish that the set Ĥ(h0) approximates
well the set H(h0). Then we establish the asymptotic distribution of Wn under the null.
Thirdly, we compute the asymptotic level of the test, and show that it is consistent.

Step 1. Pr
(
Ĥ(h0) = H(h0)

)
→ 1.

It suffices to show that

Pr
(
ĥ2j ≤ cn/

√
n
)
→ 1 when h20j = 0 (A.3)

Pr
(
ĥ2j > cn/

√
n
)
→ 1 when h20j > 0 (A.4)

We have
√
n
(
ĥ2j − h20j

)
→ Uj ∼ N (0, σ2

j ).

Fix ε > 0, and let cj be such that Pr(Uj ≤ cj) = Pr(Uj > −cj) > 1− ε. Because cn →∞,
we have cn ≥ cj for n large enough. Thus, when h20j = 0,

Pr(ĥ2j ≤ cn/
√
n) ≥ Pr(

√
nĥ2j ≤ cj)→ Pr(Uj ≤ cj) > 1− ε.

This establishes (A.3). When h20j > 0, we have cn −
√
nh20j ≤ −cj for n large enough
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because cn/
√
n→ 0. Thus,

Pr
(
ĥ2j > cn/

√
n
)

= Pr
(√

n(ĥ2j − h20j) > cn −
√
nh20j

)
≥ Pr

(√
n(ĥ2j − h20j) > −cj

)
→ Pr (Uj > −cj) > 1− ε.

Hence, (A.4) also holds, ending the first step.

Step 2. Asymptotic distribution of Wn under the null.

By Step 1, we can suppose without loss of generality that Ĥ(h0) = H(h0). We show here
that (3.3) holds under the null hypothesis. Let h̃ = ĥ2 − Σ̂′12Σ̂−11ĥ1, U2n =

√
n(h̃ − h20),

V = Σ22−Σ′12Σ−11Σ12 and V̂ = Σ̂22− Σ̂′12Σ̂−11Σ̂12. Straightforward computations show that
U2n → U2 ∼ N (0, V ). Besides, we have, following Kodde & Palm (1986),

Wn = nĥ′1Σ̂−11ĥ1 + nmin
x≥0

(
x− h̃

)′
V̂ −1

(
x− h̃

)
= nĥ′1Σ̂−11ĥ1 + min

x≥0

(√
n(x− h20)−

√
n(h̃− h20)

)′
V̂ −1

(√
n(x− h20)−

√
n(h̃− h20)

)
= nĥ′1Σ̂−11ĥ1 + min

t≥−
√
nh20

(t− U2n)′ V̂ −1 (t− U2n) .

Let H2(h0) = R1 × ...×RI and define

W̃n = nĥ′1Σ̂−11ĥ1 + min
t∈H2(h0)

(t− U2n)′ V̂ −1 (t− U2n) .

For a given ε, there exists a compact set K such that Pr((U2n, V̂ ) ∈ K) ≥ 1 − ε for all n
large enough. Let π(u, V ) = arg mint∈H2(h0) (t− u)′ V −1 (t− u). Because H2(h0) is convex,
π is a function rather than simply a correspondence. Moreover, it is continuous by Berge
maximum theorem (see, e.g., Carter, 2001, Theorem 2.3). Thus π(K) is compact. As a
result, for n large enough, π(K) is included in [−

√
nh201,+∞[×... × [−

√
nh201,+∞[. In

other words, for n large enough,

Pr(Wn = W̃n) ≥ Pr((U2n, V̂ ) ∈ K) ≥ 1− ε. (A.5)

Besides, the application Ξ 7→ Ξ− is continuous once restricted to matrices or rank J (see,
e.g., Stewart, 1969). By continuity of π and the continuous mapping theorem, we have,
under the null hypothesis,

W̃n
L−→ U1Σ−11U1 + min

t∈H2(h0)
(t− U2)′ V −1 (t− U2) = min

t∈H(h0)
(t− U)′Σ− (t− U) , (A.6)

where U1 ∼ N (0,Σ11) and U = (U1, U2 − Σ′12Σ−11U1). Note that U ∼ N (0,Σ). Besides,
(A.5) implies that Wn converges to the same distribution as W̃n. Hence, (A.6) implies that
(3.3) holds.
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Step 3. Consistency and asymptotic level of the test.

Let us define, for any positive matrix Ξ of rank J

g(u,Ξ) = min
t∈H(h0)

(t− u)′ Ξ− (t− u) .

Let Û be a random normal variable satisfying Û |Σ̂ ∼ N (0, Σ̂). Because Σ̂
P−→ Σ, we have

(Û , Σ̂)
L−→ (U,Σ). Thus, by Berge maximum theorem once more, g is continuous. As a

result, by the continuous mapping theorem, g(Û , Σ̂)
L−→ g(U,Σ).

Now, suppose first that J > I or Ri = R+ for some i ∈ {1, ..., I}. Then g(U,Σ) is a
mixture of chi-square distributions, and the weight of the chi-square of degree 0 is smaller
than 1/2 (see, e.g., Kodde & Palm, 1986). Therefore, its quantile function is continuous
on the interval (1/2, 1). Combined with the convergence in distribution of g(Û , Σ̂), this
implies (see, e.g., van der Vaart, 2000, Theorem 21.2) that for any α ≤ 1/2, ĉα → cα,
the quantile of order 1 − α of g(U,Σ). Because the convergence of Fn, the cdf of Wn,
towards F , the cdf of g(U,Σ), is uniform (van der Vaart, 2000, Lemma 2.11), we have
Fn(ĉα)→ F (cα) = 1− α. Thus, the test has the asymptotic level α.

Now, if J = I and Ri = R for all i, g(U,Σ) = 0 and the previous reasoning does not apply.
On the other hand, remarking that Wn = 0 when Ĥ(h0) = H(h0), we have

Pr(Wn > ĉα) ≤ Pr(Wn > 0) ≤ Pr
(
Ĥ(h0) 6= H(h0)

)
→ 0.

Thus, the test has asymptotic level 0 in this case.

Finally, under the alternative, h(p) 6∈ H0. Then, by the continuous mapping theorem,

min
h∈H(h0)

(
h− ĥ

)′
Σ̂−
(
h− ĥ

)
P−→ min

h∈H(h0)
(h− h(p))′Σ− (h− h(p)) > 0.

This implies that Wn
P−→ +∞, proving that the test is consistent �

Proof of Theorem 3.3

The proof proceeds in two steps. In the first step we follow the approach of van der Vaart
(2000, Chapter 25), who derive a necessary condition for the existence of a regular root-n
estimator in semiparametric models. Intuitively, we exploit the fact that any score for
the distribution of (D,DY,Z) is a projection of a score for the distribution of (D, Y, Z).
This allows us to obtain a necessary condition for the existence of an influence function.
In the second step, we characterize the set of such influence functions and derive the
semiparametric efficiency bound of β0.
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Let us first introduce some notations. For the random variables U and V , we define L20(U)

and L20(U |V ) as the following sets of functions:

L20(U) = L2(U) ∩ {f |E(f(U)) = 0} ,

L20(U |V ) = L2(U, V ) ∩
{
f |E(f(U, V )2|V ) <∞, E(f(U, V )|V ) = 0 V -almost surely

}
.

For any closed linear space E ⊂ L2(U), we also let PE denote the orthogonal projection on
E .

Step 1. Assumption 6 is a necessary condition for existence of a regular root-n

estimator.

Let T (respectively S) denote the set of score function, for any subparametric model
of the distribution of (D, Y, Z) (respectively of (D,DY,Z)). By Assumption 2, T =

L20(Y ) + L20(Z|Y ) + L20(D|Y ) ⊂ L20(D, Y, Z). Besides, because (D,DY,Z) is a function
of (D, Y, Z), it follows from van der Vaart (2000, Section 25.5) that S = {E(t|D,DY,Z) :

t ∈ T }. Hence, T and S are linear and closed here.

We define the score operator A by

A : T → L20(D,DY,Z)

h 7→ [(d, u, z) 7→ E(h(D, Y, Z)|D = d,DY = u, Z = z)] .

Note that by definition, R(A) = S. The usual adjoint of A is the identity here. But,
following van der Vaart (2000), we define the adjoint score operator A∗ as the adjoint of
A followed by the orthogonal projection onto T :

A∗ : L20(D,DY,Z) → T
ψ 7→ PT ψ.

Because L20(Y ), L20(Z|Y ) and L20(D|Y ) are orthogonal for the usual inner product of
L2(D, Y, Z), PT ψ = PL20(Y )ψ + PL20(Z|Y )ψ + PL20(D|Y )ψ.

Now let us consider a regular parametric submodel indexed by θ whose density with respect
to an appropriate mesure is

fY (y, θ)fZ|Y (z|y, θ)(P (y, θ)d+ (1− P (y, θ)(1− d)).

Let also θ0 denote the parameter corresponding to the true model. Defining µ(θ) =

E(g(Y, Z)|θ), we have

µ(θ) =

∫
g(y, z)fY (y, θ)fZ|Y (z|y, θ)dydz.
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The score of the submodel in θ0 is, with obvious notations, sY (y)+sZ|Y (z|y)+ P ′(y)(d−P (y))
P (y)(1−P (y))

.
Then

∂µ

∂θ
(θ0) = E

(
g(Y, Z)(sY (Y ) + sZ|Y (Z|Y ))

)
.

It follows that the set of influence function is {g(Y, Z)} + L20(Y, Z)⊥. We can check that
the second term is actually the set of constants. Thus, the efficient influence function
corresponding to the complete model where (D, Y, Z) is observed, defined as the unique
influence function that belongs to T , is g(Y, Z)− β0.

Theorem 25.32 of van der Vaart (2000) shows that if a regular root-n estimator exists, then
g(Y, Z)− β0 ∈ R(A∗). Let us now prove that this condition is equivalent to Assumption 6.

Let ψ ∈ L20(D,DY,Z) be such that A∗(ψ) = g(Y, Z)− β0. Because A∗ is a projector and
satisfies A∗ = PL20(Y ) + PL20(Z|Y ) + PL20(D|Y ), we have

(a) PL20(Y )(ψ) = PL20(Y )(g − β0) or equivalently E (ψ|Y ) = β(Y )− β0,

(b) PL20(D|Y )(ψ) = PL20(D|Y )(g − β0) or equivalently E (ψ|D, Y )− E (ψ|Y ) = 0

Let m(Y, Z) = ψ(1, Y, Z) and l(Z) = ψ(0, 0, Z), we have :

E(ψ|D, Y ) = β(Y )− β0 ⇒ DE [m(Y, Z)|Y,D] + (1−D)E [l(Z)|Y,D] = β(Y )− β0 (A.7)

Hence, if g(Y, Z)−β0 ∈ R(A∗), there exists l ∈ L2(Z|D = 0) such that E [l(Z)|Y,D = 0] =

β(Y ) − β0 P
Y |D=0− almost surely and m = 1/P (g − β0 − (1− P )l) ∈ L2(Y, Z|D = 1).

Equivalently, because Pm2 + (1 − P )l2 = (g − β0)2 + 1−P
P

(g − β0 − l)2, there exists
l ∈ L2(Z|D = 0) such that E [l(Z)|Y,D = 1] = β(Y ) − β0 P Y |D=0− almost surely
and E

(
1−P
P

(g − β0 − l)(g − β0 − l)′
)
< ∞ and g ∈ L2(Y, Z). Therefore, there exists

q ∈ L2(Z|D = 0) such that

T ∗(q) = β(.) and E
(

1− P
P

(g − q)(g − q)′
)
<∞.

Step 2. Characterization of the semiparametric efficiency bound.

First, recall that the semiparametric efficiency bound V ∗ satisfies

V ∗ = min
ψ∈I

E [ψψ′] , (A.8)

where the minimum is understood in the partial order of symmetric nonnegative matrices
and I is the set of influence functions, that is to say, the set of ψ satisfying, for all s = A(τ)

(τ ∈ T ), E[ψs] = E[(β(.)− θ0)τ ]. Let us first show that

I = ψ0 + S⊥, (A.9)
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where ψ0 ∈ A∗−1 ({g(., .)− β0}). Such an element exists under Assumption 6. First, for
any u ∈ S⊥,

E[(ψ0 + u)s] = E[ψ0s] = E[ψ0A(τ)] = E[A∗(ψ0)τ ] = E[(β(.)− θ0)τ ].

As a result, ψ0 + S⊥ ⊂ I. Now, let ψ ∈ I. By definition, E[(ψ − ψ0)s] = 0. Thus,
ψ ∈ ψ0 + S⊥ and (A.9) holds. Note that we can also write any ψ ∈ I as PS(ψ0) + u, with
u ∈ S⊥. By orthogonality,

E[ψψ′]− E[PS(ψ0)PS(ψ0)′]

is nonnegative. Thus,
V ∗ = E[PS(ψ0)PS(ψ0)′]. (A.10)

Now, remark that PS⊥(ψ0) ∈ R(A)⊥ = Ker (A∗). Hence, because ψ0 = PS(ψ0) + PS⊥(ψ0),
we have PS(ψ0) ∈ A∗−1 ({g(., .)− β0}). Combined with (A.10), this implies that

V ∗ ≥ min
ψ∈A∗−1({g(.,.)−β0})

E [ψψ′] ≥ V ∗,

where the inequalities correspond to the partial order of symmetric matrices and the second
inequality follows by (A.8) and the fact that A∗−1 ({g(., .)− β0}) ⊂ I.

Finally, note that ψ was associated to l(Z), so that taking the minimum in ψ is equivalent
to taking the minimum in l(.) ∈ T ∗−1 ({g(., .)− β0}), or in q(.) ∈ T ∗−1 ({g(., .)}) (where
q = l + β0). Hence, because V ∗ = E

(
ψ∗ψ∗

′), we have

V ∗ = V (g(Y, Z)) + min
q∈T ∗−1({β(.)})

E

(
1− P (Y )

P (Y )
(q(Z)− g(Y, Z))(q(Z)− g(Y, Z))′

)
�
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