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Abstract

The increase of the expected lifetime, that is the longevity phenomenon, is accompanied

by an increase of the number of seniors with a severe loss of autonomy. Because of the

significant costs of long-term care (LTC) facilities, it is important to analyze the time spent

in LTC state, as well as the probability of entering into this state during its lifetime, and

how they evolve jointly with longevity across the different cohorts. Our paper considers

such questions, when lifetime data are available, but LTC data are either unavailable, or

available on too short periods, or too aggregated, or unreliable, as it is frequently the case.

We specify joint structural models of LTC, mortality, and longevity, and explain why

parameters of these models are identifiable from only the lifetime data under reasonable

assumptions. More precisely, we model the potential entry into LTC as a latent state, which

creates a dynamic unobserved heterogeneity in the population when only the lifetime is

observed. The methodology is applied to the cohort mortality data of French males, first

with a deterministic trend and then with a dynamic and stochastic common latent factor.

Prediction formulas for the hypothetical date of entry into LTC or the time spent in this

state are then provided and illustrated using the same dataset.

Keywords: Longevity, Long-Term Care (LTC), Semi-Competing Risks, Treatment ef-

fect, Unobserved Heterogeneity, Dynamic Frailty, Partial Observability, Identification.
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1 Introduction

The general increase of human lifetime, that is the longevity phenomenon, has been largely

illustrated in the demographic and insurance literatures [see e.g. Lee and Carter (1992)]. In

average we observe an increase of 3 months per annum of the life expectancy [see e.g. Oeppen

and Vaupel (2002)]. This increase is accompanied by an increase of the number of old people

who potentially need long-term care (LTC henceforth)1, but also a decrease of the probability

of entering into LTC at any given age [see e.g. Manton et al. (1998)], as well as a decrease

of the mortality intensity for individuals in LTC ceteris paribus2. A person enters into LTC

when he/she becomes unable to live independently, measured by the ability to do some special

Activities of Daily Living (ADL). This entry into LTC state is in general irreversible and is

accompanied by a huge increase of mortality intensity. Because of the significant costs of LTC

facilities, it is important to analyze this probability of entry, the time spent in this state as well

as how they evolve with longevity. Are they almost independent of the longevity feature or do

they increase at a similar rate? Our paper answers these questions, when the lifetime data are

available, but the LTC data are either unavailable, or available on too short periods, or weakly

reliable.

We introduce in this paper joint models of LTC and mortality, based on the intensity of entry

into LTC state and on the mortality intensities. The model disentangles the mortality intensities

according to the time spent in LTC state. Moreover we assume that these intensities depend on

an unobservable dynamic factor (or dynamic frailty) with nonstationary features, able to capture

the longevity phenomenon and its potential impact on both mortality and LTC. This longevity

factor can be assumed deterministic, or stochastic.

Such a joint model would be simple to estimate if individual data on both mortality and

LTC were available [see e.g. Levantesi and Menzietti (2012), Majer et al. (2013)]. However

data on LTC are often missing or not very reliable when they exist. Indeed, there does not

even exist a universal definition of the LTC state. In the literature, the very terminology is

often confounded3 with “losing autonomy”, “disability”, “morbidity” or “nursing/home care” and

differs by both country and insurance company; further more, it is subject to changes across

time. In the US, insurers consider six limitations of Activities of Daily Livings, that are Eating,

Dressing, Walking, Bathing, Toileting, and Maintaining Continence, respectively, while their

1Also called nursing care in the literature.
2That is, when all other parameters, for instance the current age, as well as the age of entry are equal.
3For instance, Levantesi and Menzietti (2012) propose to price private LTC contracts using national disability

benefit data.
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European peers, use only four of them called Instrumental Activities of Daily Living (IADL) [see

e.g. Rice (1989), Kessler (2008) for a review of the LTC insurance market]. This discrepancy is

even larger between public LTC insurance plans in different countries (often Western European),

where it is a pillar of the social security system. An OECD disability indicator even include extra

criteria such as hearing and reading small letters [see McWhinnie (1980)]; French public databases

based on different population samples show different trends of the LTC/disability prevalence4

[see Lafortune and Balestat (2007)]. Finally, current data often measure the actual LTC use,

instead of the need of LTC. There are various reasons for the two to differ in practice, such as

administrative delay5, the lack of self-diagnosis capacity of the disabled, or budget constraint, or

even the incentive of false claim6.

Moreover, even when data exist, they often lack accuracy. Indeed, collecting LTC data is

a much more demanding task than collecting mortality data since it requires the knowledge of

the entire history of each individual, especially the time(s) at which an IADL is lost, identified

by accredited physicians. Most of the time, available public data of the national population

only exist for a few years when there is either a census, or a sample population survey7 with

a large time spell between neighbouring surveys; their quality are quite limited because of the

voluntary nature of the survey responses and the fact that surveys conducted in different years do

not necessarily concern the same individuals. Another problem is that most datasets are cross-

sectional, either by nature, or because the observation period is too short to deliver longitudinal

information. So from the very beginning they are not suited for the understanding of the evolution

of the LTC risk. Indeed, by using such a cross-sectional database one will in general ignore the

evolution in cohort of the different transition probabilities at given ages [see Keiding (1991) for a

discussion on the limits of this stationary approach]; this is unrealistic and dangerous given the

potentially large impact of the longevity on both LTC and mortality risks. This uncertainty on

the future evolution and its poor understanding is a serious obstacle to the further development

4That is, the proportion of people in LTC.
5For instance, it is common practice for insurance companies to acknowledge the entry into LTC of a policy-

holder (and begin periodic benefit payment) only six months after the effective entry, to make sure that the entry
is really permanent.

6For instance, Dienst (1972) states that during past severe economic crisis, the number of people declaring
disabled increased. This effect is produced mainly by people who have been medically disabled long time ago and
in addition by people with relatively minor medical problems who would not consider themselves disabled in good
times, but who in both instances are induced to claim insurance benefits only in case of a crisis.

7This is for instance the case for the survey “Handicaps-Incapacité-Dépendances” in France (literally the
Disability-Incapacity-Long-Term Care Survey, this survey has been conducted in 1998/1999 and then in
2008/2009.), as well as the National Long-Term Care Survey (NLTCS) database in the US (which is based
on surveys conducted in 1982,1984,1989,1994,1999, 2004 on a representative sample of the US population, see its
official website http://www.nltcs.aas.duke.edu/). These two countries are also by far the two largest markets
for private LTC insurance.
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of the private LTC insurance market in many countries, in a period when the sustainability of the

Welfare States is more and more questioned and the public’s appetite for private LTC insurance

is steadily increasing.

Our paper develops a methodology to estimate this joint model of risks using only the mor-

tality data. Rather than relying on data with an ad hoc definition of the LTC state, we consider

the autonomy state as a latent state variable and the entry into LTC is characterized by an

unobservable mortality jump8. The assumption that we can capture an individual’s aging his-

tory by such a model with two regimes, and interpret one of them as the entry into LTC is not

just for identification convenience. Indeed, physiologically speaking, the entry into LTC is not

an independent event, but is often caused by random events such as the onset of a disease or

an accident9. Not all such events result in LTC, which becomes necessary only when there is a

significant deterioration of the health, accompanied by a major rise of the mortality intensity.

Thus it seems appropriate to regard the entry of LTC as the reaching of a critical stage of one’s

aging process, and the drastic change of the mortality rate spells a change of regime upon entry.

This change of regime is by nature latent, and is only imperfectly captured by various existing

data on LTC. Furthermore, given the definition and data quality issues discussed above, using

an ad hoc definition of LTC state to define a regime split might not be optimal. Therefore, it is

useful to introduce this latent, yet “canonical” LTC state which we will “filter” out of the lifetime

data.

Due to the higher mortality for people in LTC, when the mortality is analyzed using only

lifetime data, the autonomy state at a given age10 is a time-dependent unobserved heterogeneity.

Therefore there is a spurious duration dependence as in a population with static unobserved

heterogeneity, or static frailty [see e.g. Vaupel et al. (1979) and Elbers and Ridder (1982)].

This effect should be identified in order to study the true duration dependence, that is, the age

dependence of the mortality evolution, and how this dynamics changes between different cohorts,

that is the longevity phenomenon. Under reasonable assumptions, the possibility to identify the

characteristics of LTC from the mortality data is due to the jumps in mortality intensity arising

when entering into LTC and to the assumed effects of the unobserved longevity factor on both

mortality and LTC across different cohorts. Thus, such a model allows us to predict jointly the

8The idea of introducing latent state variables is recently also proposed by Wouterse et al. (2013). With
observations of a large number of health indicators including the LTC status, they construct a latent state
variable as a synthetic measure of the individual’s health status. However, in their framework, LTC is observable
and their methodology does not allow for an analysis of the evolution of various risks across different cohorts.

9For instance, Kessler (2008) claims that more than 70 % of LTC entries is caused by chronic diseases such as
cancer and dementia, others being triggered by events such as accidents or mental diseases.

10Either autonomous, or in LTC.
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future evolution of the LTC entry probabilities and the mortality intensities.

The paper is organized as follows. In Section 2, we introduce a joint modeling of LTC

and mortality risks. This modeling is used in Section 3 to derive the joint distribution of the

lifetime and of the date of entry into LTC. To derive this distribution we follow a progressive

approach. We first consider the case of“observable” intensities, then we render them stochastic by

introducing a static frailty. In Section 3 we consider a basic model with constant intensities and

discuss its identification. Section 4 introduces semi-parametric specifications for the intensities

and the frailty dynamics, discuss the way of introducing a nonstationary longevity generation

effect, solve the identification issues, and derive the form of the log-likelihood function when

the lifetimes are observed with right censoring. The models are estimated for the French male

population in Section 5. We first consider a model with deterministic factor in the spirit of the

Lee-Carter model, but allowing for non degenerate intensities in a far future. We allow for either

Markov or semi-Markov mortality intensity functions. Then the model is extended to include

the uncertainty on the longevity factor by means of a dynamic frailty process. We also explain

how to filter out this frailty process once the model is estimated. In Section 6 we implement

the model for prediction purpose. Section 7 concludes. Proofs and other technical details are

gathered in Appendices.

2 Structural versus reduced form approach

Let us consider a situation where an individual can either experience first a non terminal event

and then fail, or can fail directly. In both situations the failure is called the terminal event.

In the second case, the terminal event censors the non terminal event. The corresponding model

is called semi-competing risks11 in the literature [see e.g. Fine et al. (2001), Xu et al. (2010)].

In our framework, the non terminal event is the potential entering into LTC and the terminal

event is the death. The migration from the autonomous state to the LTC is assumed irreversible.

Thus there is an asymmetry between both types of events.

We first introduce a structural approach with latent variables corresponding to the times

elapsed up to the potential events and describe how the ideally observable variables depend on

the latent duration variables. Then we derive an alternative methodology in terms of intensities.

In the literature, most multivariate survival models are written in continuous time. The main

11In the microeconometric literature, the effect of the non terminal event on the terminal event is also called
”treatment effect” [see e.g. Abbring and Van den Berg (2003b)], even if the exogenous entry in LTC cannot really
be interpreted as a treatment as in other types of economic applications.
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reason is that in the continuous time intensity-based setting, the probability of observing tied

events is naturally null. In our example, we would like to avoid the simultaneous arrival of both

the non terminal and the terminal event. Thus we follow the continuous time approach, at least

for the theoretical model. The continuous time model is discretized when it comes to numerical

estimation of the model with dynamic frailty.

We begin our analysis by considering only one cohort (generation). In this case and without

left censoring (which we also assume for the time being), we can use either the terminology

“age” or “time” to denote the elapsed duration. From Section 4 on, when the cohort effect is

introduced, we will more frequently use the term “age” for the elapsed duration, that is, the age

of an individual since its birth. To describe the period effect, we use the term “calendar time”

and we have the following relationship between the three time measures:

Cohort birth date + Age = Calendar time.

2.1 Structural approach

Semi-competing risks are traditionally written on the two duration variables Y ∗1 and Y2, where Y2

is the failure time and Y ∗1 is the potential time of entering into LTC. Therefore, the variable Y ∗1

is latent since it is not observable when we observe first the variable Y2, that is, when Y2 < Y ∗1 .

Then the dependence between the two variables is often modeled via a survivor copula C [see

e.g. Fine et al. (2001) and Hsieh et al. (2008)], that is,

P(Y ∗1 > y1, Y2 > y2) = C(S1(y1), S2(y2)), (1)

where C is assumed to belong to some specific parametric families, e.g. Archimedean copulas or

other factor copulas and S1, S2 denote the marginal survivor functions of Y ∗1 and Y2, respectively.

This bivariate copula approach is partly borrowed from the literature on competing risks models

[see e.g. Zheng and Klein (1995)]. The model is often written with restrictions such as a continu-

ous copula density, and a positive, symmetric dependence structure. But such a direct modeling

is not flexible enough to capture the peculiarities of semi-competing risks data. First, they are

not adapted to characterize the “regime switching” nature that an individual may experience.

Intuitively, if the individual enters into the LTC during its lifetime, then his residual lifetime

distribution will be very different from the case when he never experiences the LTC. Therefore,

using solely one variable Y2 to model the lifetime is probably not enough. Besides, the idea
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behind equation (1) is that instead of being latent, the variable Y ∗1 is treated as observable (and

is only censored when Y2 < Y ∗1 instead of being nonexistant). This confusion explains also the

decades-long debate on the physical meaning of the latent variables in (semi)-competing risks

models [see Prentice et al. (1978) and Andersen and Keiding (2012)]. We consider below an

alternative approach with an extra latent variable. More precisely, let us introduce:

• X1 the potential time of entry in LTC,

• X2 the (potential) time of death for an individual which has not experienced LTC,

• X3 the residual lifetime up to the death once the individual experienced LTC.

Some of these variables are really latent even for an econometrician with the maximal available

information. Indeed an individual dying before the potential entry in LTC will never experience

spell X1, or X3. At most the observations include the indicator variable Z defined by: Z =

1X1≤X2 , that is, whether or not the individual experiences the LTC before the death, and the

duration variable(s):  Y ∗1 = X1 and Y2 = X1 +X3, if Z = 1,

Y2 = X2, if Z = 0.
(2)

In regime 1, we ideally observe the time Y ∗1 up to the entry into LTC and the lifetime Y2. In

regime 0, we observe the lifetime only.

The ideally observable model can be rewritten in another form, which avoids the explicit

distinction between the regimes. For this purpose, we introduce a variable Y1 defined by Y1 = Y ∗1 ,

if Z = 1, and Y1 = 0, otherwise, which captures both the regime and the duration up to the non

terminal event, if the latter is observed. We get: Y1 = X1Z,

Y2 = (X1 +X3)Z +X2(1− Z).
(3)

The first equation corresponds to a standard Tobit model [see e.g. Amemiya (1984)] and is

completed by an equation providing the observed lifetime depending on the regime.

To our best knowledge, the idea of introducing explicitly a regime change dates back to Freund

(1961), who considered only the case of constant hazards; it is later generalized to the previous

general form by Tosch and Holmes (1980). Recently this latent model has been generalized to

include static frailty [see Abbring and Van den Berg (2003b)] and an extended version applied
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to the pricing of joint insurance contracts for couples [see Gouriéroux and Lu (2013)]. The aim

of our paper is to introduce dynamic (common) frailty featuring trends and able to capture the

stochastic longevity phenomenon.

In general, latent variables X1, X2, X3 are specified by means of their hazard functions as

well as some assumptions on the dependence between them. The next subsection gives a natural

interpretation of these hazard functions in terms of transition intensities of an individual between

different health states.

2.2 Reduced form approach

The model can also be defined by a chain with the three following states:

• state A: the individual is autonomous,

• state B: the individual is under LTC,

• state C: the individual is dead. State C is the unique absorbing state.

The transitions are possible only from state A to state B, from state B to state C and from state

A to state C. The history of the individual is represented by the qualitative process S = (St)

which takes value in the state space {A,B,C}. The scheme below gives the possible paths of an

individual’s lifetime.

A C

B

Figure 1: The potential transitions of an individual during its lifetime.

Let us denote by St the information on past individual history up to time t: St = {Su, 0 ≤

u ≤ t}, then we define the following transition intensities:

If St = A,µ1(t) = lim
du→0+

{ 1
du

P(St+du = B|St)
}
,

If St = A,µ2(t) = lim
du→0+

{ 1
du

P(St+du = C|St)
}
,

If Ss = St = B,Ss− = A,µ3(t|s) = lim
du→0+

{ 1
du

P(St+du = C|St)
}
, ∀t > s.

8



Due to the qualitative nature of process (St), the knowledge of St is equivalent to the knowledge

of its current state, of its previous state (if it exists) and of the corresponding transition time.

Therefore we can rewrite the transition intensities as follows:

µ1(t) = lim
du→0+

{ 1
du

P(St+du = B|St = A)
}
,

µ2(t) = lim
du→0+

{ 1
du

P(St+du = C|St = A)
}
,

µ3(t|s) = lim
du→0+

{ 1
du

P(St+du = C|Ss− = A,Ss = St = B)
}
.

The conditions on intensities µ1 and µ2 are Markov conditions. The condition on µ3 is a semi-

Markov condition since the transition also depends on the time of entry into LTC. This reduced

form approach is more commonly called the illness-death model. Its usefulness in modeling

semi-competing risks has only been rediscovered recently by Xu et al. (2010).

It is easily checked that (see Section 3.1) this reduced form specification is equivalent12 to

the structural model we defined in Section 2.1, if we carefully specify the intensity functions

of the latent variables and the dependence structures between them. This should diminish the

considerable confusion in the literature that the reduced form approach is different from the

structural approach and that it should be preferred [see e.g. Imai and Soneji (2007)]. However,

in some applications, one approach may be more convenient than the other one. To quote a

summary from Han and Hausman (1990): “While econometricians have emphasized the presence

of unobserved heterogeneity” (and therefore prefer the structural approach), “statisticians have

instead emphasized the use of semi-parametric models which do not require parametric specifi-

cation of the baseline hazard” (hence the choice of reduced form approach, often written without

unobserved heterogeneity).

3 The distribution of the potentially observable variables

Let us now derive the explicit expressions of the joint distribution of variables (Y1, Y2), and also

of the marginal distribution of Y2. We consider the case in which the latent variables X1, X2

are independent. Then we discuss the structural model with constant intensities to highlight the

identification issues.

12The only difference is that in the latent variable approach, the variable X3 is defined even if X1 > X3. But
in such cases the value of X3 is not important.
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3.1 The basic model

3.1.1 Joint distribution of the latent variables

Let us first assume that the latent variables X1, X2 are independent. Their joint distribution is

characterized by their marginal intensities:

λ1(x1) = lim
du→0+

{ 1
du

P(X1 ≤ x1 + du|X1 ≥ x1)
}
,

λ2(x2) = lim
du→0+

{ 1
du

P(X2 ≤ x2 + du|X2 ≥ x2)
}
.

The variable X3 is in general defined conditional on the values of X1 and X2, and is often

assumed independent of X2. Therefore we denote by λ2|1(x3|x1) its intensity given the value of

X1 = x1, which depends both on the non terminal event time x1 and the time elapsed since the

non terminal event x3.:

λ2|1(x3|x1) = lim
du→0+

{ 1
du

P(x3 ≤ X3 + du|X3 > x3, X1 = x1)
}
.

When this function depends on x1, x3 only via x1 + x3, the model is Markov; otherwise, it is

semi-Markov.

The joint density function of the latent variables (X1, X2, X3) is:

g(x1, x2, x3) = e−Λ1(x1)−Λ2(x2)−Λ2|1(x3|x1)λ1(x1)λ2(x2)λ2|1(x3|x1),

where Λ1,Λ2,Λ2|1 are the cumulated intensities associated with λ1, λ2, λ2|1, respectively. There-

fore the joint survival function of the latent variables (X1, X2, X3) is:

S(x1, x2, x3) =
∫ ∞
x1

∫ ∞
x2

∫ ∞
x3

e−Λ1(t1)−Λ2(t2)−Λ2|1(t3|t1)λ1(t1)λ2(t2)λ2|1(t3|t1)dt1dt2dt3

= e−Λ2(x2)
∫ ∞
x1

∫ ∞
x3

e−Λ1(t1)−Λ2|1(t3|t1)λ1(t1)λ2|1(t3|t1)dt1dt3

= e−Λ2(x2)
∫ ∞
x1

e−Λ1(t1)−Λ2|1(x3|t1)λ1(t1)dt1.

10



Under these independence assumptions, we get:

If St = A, µ1(t) = − ∂

∂y1
logS12(t, t) = λ1(t),

If St = A, µ2(t) = − ∂

∂y2
logS12(t, t) = λ2(t),

If Ss = St = B,Ss− = A, µ3(t|s) = λ2|1(t− s|s), ∀t > s,

where S12 is the joint survivor function S12(t1, t2) = P[X1 > t1, X2 > t2]. Therefore the struc-

tural approach with latent variables is equivalent to the reduced form approach. This equivalence

is easily extended when (possibly unobserved and/or time-varying) stochastic factors are intro-

duced, if we assume that (X1, X3) and X2 are independent given the whole history of the factors

and we define the transition intensities conditional on the whole history of the factors. The rest

of the paper will use the structural approach, but keeping in mind this equivalence can certainly

help the reader better understand certain formulas.

3.1.2 Distribution of the ideally observable variables

Let us now derive the joint distribution of the ideally observable variables (Y1, Y2). The couple

(Y1, Y2) has a bi-dimensional continuous component on domain D1 = {(y1, y2) : y1 < y2},

and a one-dimensional continuous component on D0 = {(y1, y2) : y1 = 0, y2 > 0}. The joint

distribution of (Y1, Y2) admits a density with respect to the dominating measure λD1 + λD0 ,

where λD denotes the Lebesgue measure on domain D. This density is:

f(y1, y2) = λ1(y1)λ2|1(y2−y1|y1)e−Λ1(y1)−Λ2(y1)−Λ2|1(y2−y1|y1), on domain D1 = {(y1, y2) : y1 < y2},

(4)

and

f(0, y2) = λ2(y2)e−Λ1(y2)−Λ2(y2), on domain D0 = {(y1, y2) : y1 = 0, y2 > 0}. (5)

Many authors write instead the joint distribution of (X1, Y2) [see also Xu et al. (2010) for a

discussion], in which case there will be no point mass, but instead a continuous component on

the unobservable domain {X1 > Y2} and the restriction of the density function adds up to

P[X1 > Y2] = P[Y1 = 0] there. These two approaches are equivalent, since in any application the

latent variable should be integrated out. Nevertheless, as explained at the beginning of Section

2.1, studying directly (Y1, Y2) is preferred in order to distinguish explicitly the ideally observable

information, that is (Y1, Y2), from the really latent one (X1, X2, X3).
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We deduce the marginal survival function and the p.d.f. of the lifetime Y2, which is later on

the only really observable duration variable:

Proposition 1. The survival function of the lifetime Y2 is:

S2(y2) = P(Y2 > y2) =
∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2), (6)

and its p.d.f. is:

f2(y2) =
∫ y2

0
λ1(t)λ2|1(y2 − t|t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ λ2(y2)e−Λ1(y2)−Λ2(y2). (7)

Proof. See Appendix 1.

3.2 Identification in a model with constant intensities

For illustration purpose, let us assume a model with constant intensities λ1, λ2, and λ2|1, that is

with independent exponential latent variables. This simplified framework is useful to highlight

the identification issue when only the lifetime variable Y2 is observed.

For constant intensities the joint density becomes:

f(y1, y2) = λ1λ2|1e
−λ1y1−λ2y1−λ2|1(y2−y1), on domain D1 = {(y1, y2) : y1 < y2},

and

f(y1, y2) = λ2e
−(λ1+λ2)y2 , on domain D0 = {(y1, y2) : y1 = 0, y2 > 0}.

The marginal survivor function of lifetime Y2 becomes:

S2(y2) = λ1

λ1 + λ2

[ λ1 + λ2

λ1 + λ2 − λ2|1
e−λ2|1y2 −

λ2|1

λ1 + λ2 − λ2|1
e−(λ1+λ2)y2

]
+ λ2

λ1 + λ2
e−(λ1+λ2)y2 , if λ1 + λ2 6= λ2|1, (8)

and

S2(y2) = λ1

λ1 + λ2

[
1 + (λ1 + λ2)y2

]
e−(λ1+λ2)y2 + λ2

λ1 + λ2
e−(λ1+λ2)y2 , if λ1 + λ2 = λ2|1. (9)

Both functions:

y 7→ λ1 + λ2

λ1 + λ2 − λ2|1
e−λ2|1y −

λ2|1

λ1 + λ2 − λ2|1
e−(λ1+λ2)y,
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and

y 7→
[
1 + (λ1 + λ2)y

]
e−(λ1+λ2)y,

are survivor functions (see Appendix 2). In both cases (λ1 + λ2 − λ2|1 = 0, or 6= 0), the

distribution of lifetime Y2 is a mixture of an exponential distribution with parameter λ1 + λ2,

and a gamma distribution, γ(2, λ1 + λ2), when λ2|1 = λ1 + λ2. This decomposition has the

following interpretation:

P(Y2 > t) = P(Z = 0)P(Y2 > t|Z = 0) + P(Z = 1)P(Y2 > t|Z = 1),

with P(Z = 1) = P(X1 < X2) = λ1
λ1+λ2

.

Let us now discuss the identification of all parameters including the parameter λ2|1 driving the

time spent in LTC, when only the lifetime is observed. The following Proposition is a consequence

of equations (8) and (9):

Proposition 2. Consider the model with constant intensities and assume that the lifetime Y2 is

the only observable variable.

i) If λ1 + λ2 − λ2|1 6= 0 and λ2 6= λ2|1,

the mixture representation has two distinct components and the three parameters λ1, λ2, λ2|1

can be identified from the distribution of lifetime Y2 given in equation (8).

ii) If λ2 = λ2|1,

the non terminal event has no effect on the mortality intensity. We get S2(y2) = e−λ2|1y.

The parameter λ2 = λ2|1 is identifiable, but not the parameter λ1.

iii) If λ1 + λ2 − λ2|1 = 0,

the expression of S2(y2) is given by equation (9), and the three parameters λ1, λ2, λ2|1 can

all be identified.

Therefore, under the assumption of constant intensities, the possibility of identifying the

parameters is based on the jump in mortality intensity upon entry into LTC, that is, on the

regime switch. Such a jump exists if and only if the point process associated with the LTC state

causes the point process corresponding to mortality [see e.g. Abbring and Van den Berg (2003b)].

However, Proposition 2 iii) has to be interpreted carefully. The three parameters are identi-

fiable, only if it is known ex-ante that the constraint λ1 + λ2 − λ2|1 = 0 is satisfied.

13



4 Model with longevity effect

4.1 An identification issue

The model with constant intensity is not appropriate for modeling longevity effects in lifetime

and LTC analysis. The longevity factor can be represented by introducing in the latent intensities

a positive variable F indexed by calendar time. More precisely, let us consider a generation of

individuals indexed by the birth date t0, that is, the (stochastic) calendar date of death of an

individual of this generation is t0 + Y2. The three intensities given the whole history F of the

longevity factor are of the following form:
λ1(x1|F , t0) = λ1(x1, Ft0) = a1(x1) + b1(x1)Ft0+x1 ,

λ1(x2|F , t0) = λ2(x2, Ft0) = a2(x2) + b2(x2)Ft0+x1 ,

λ2|1(x3|F , x1, t0) = λ2|1(x3|x1, Ft0) = a3(x3|x1) + b3(x3|x1)Ft0+x1+x3 .

(10)

where a1(·), a2(·),a3(·|·), b1(·), b2(·),b3(·|·) are positive (hazard) functions.

The specification (10) disentangles the effect of age and of the current date in the intensities.

The longevity factor is introduced as usual in a linear way. Since the factor is expected with a

(deterministic or stochastic) trend, the linearity assumption implies cointegration between the

different intensities with cointegrating vectors depending on age. This cointegration feature

is introduced to capture the extension of lifespan going hand in hand with an extension or a

diminution (according to the countries) of the amount of life spent in LTC. To get interpretable

intensities for any generation, especially when t0 tends to infinity, we consider a trend effect

such that lim
t→∞

Ft = 0. Under this condition, when t0 goes to infinity, the intensities converge to

a1(x1), a2(x2) and a3(x3|x1), respectively. Thus these functions can be interpreted as long term

intensities, that are intensities in a far future. This is one difference with the basic Lee-Carter

model [Lee and Carter (1992)] where in a far future the intensities are assumed equal to zero,

that is, where the individual will necessarily become eternal.

Model (10) is semi-parametric with unknown functions a1(x1), a2(x2), a3(x3|x1), b1(x1),

b2(x2), b3(x3|x1), and the dynamics of the longevity factor, which will be parameterized in the

next subsection. This is a constrained structural model, but these constraints are not sufficient

to identify all unknown parameters from just the observation of the lifetime Y2, even if we have

jump in the intensities and the generation can be viewed as a covariate. Indeed, in the limiting

case when the generations have infinite sizes and all generations are observed, the observable

14



distribution summary is the survivor function indexed by the generation S2(y2; t0) [see Equation

(13) for a typical expression of this function]. This is a function on ]0,∞[2, but the set of functions

to be estimated already includes two functions a3(x3|x1) and b3(x3|x1) defined on the same space.

Then the order condition for identification is not satisfied. Such a lack of identification is standard

in models with treatment effects [see e.g. Abbring and Van den Berg (2003b)]. It is here observed

despite restrictions already introduced on the models and the effect of two exogenous variables,

i.e., the observed indicator of the cohort and the unobserved longevity factor.

Thus to recover the identification of the joint distribution of the latent intensities (X1, X2, X3),

we need additional restrictions. We will assume that the conditional intensities a3(x3|x1) and

b3(x3|x1) can be written in terms of univariate functions defined on ]0,∞[.

4.2 Constrained specifications

In the application we will consider two constrained specifications.

4.2.1 Specification of the baseline intensities

The first specification corresponds to the Markov case, where the intensity λ2|1(x3|x1, t0) depends

on x3 and x1 through the current age x3 + x1 only: a3(x3|x1) = a3(x3 + x1),

b̃3(x3|x1) = b̃3(x3 + x1).
(11)

We will also consider the following semi-Markov model, a3(x3|x1) = a4(x3) + a5(x1),

b̃3(x3|x1) = b4(x3) + b5(x1)
(12)

with additive decomposition of the conditional intensities. For instance, under the Markov model

(11), the survivor function of the observed variable y2 given the future factor path F t0 = {Fτ , τ ≥

t0} is:

S2(y2, t0) =
∫ y2

0
[a1(x) + b1(x)Ft0+x] exp

(
−
∫ x

0
[a1(s) + b1(s)Ft0+s]ds

−
∫ x

0
[a2(s) + b2(s)Ft0+s]ds−

∫ y2,i

x

[a3(s) + b3(s)Ft0+s]ds
)
dx

+ exp
(
−
∫ y2

0
[a1(x) + b1(x)Ft0+x]dx−

∫ y2

0
[a2(x) + b2(x)Ft0+x]dx

)
. (13)
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4.2.2 Specification of the factor dynamics

i) Deterministic factor. Let us first assume a deterministic factor (Ft), with exponential

pattern:

Ft = exp(−mt), (14)

where m > 0. The factor is known up to the value of the parameter m.

Under the exponential specification (14), the age-calendar time model (10) can be equivalently

written as an affine age-cohort model13:
λ1(x1|F , t0) = λ1(x1, Ft0) = a1(x1) + b̃1(x1)Ft0 ,

λ2(x2|F , t0) = λ2(x2, Ft0) = a2(x2) + b̃2(x2)Ft0 ,

λ2|1(x3|F , x1, t0) = λ2|1(x3|x1, Ft0) = a3(x3|x1) + b̃3(x3|x1)Ft0 .

(15)

with, say, b̃1(xj) = bj(xj)e−mx, j = 1, 2, b̃3(x3|x1) = b3(x3|x1)e−mx1−mx3 .

In the age-calendar time model, the shocks on the factors depend on date t, whereas in

the age-cohort model the factor has an impact at birth with consequences during the whole

cohort lifetime. Thus, for exponential factor, it is not possible to distinguish between both

interpretations of longevity, that is to say if longevity is associated with time, or with generation

[see also Heckman and Robb (1985)].

The affine age-cohort specification is very similar to the popular proportional hazard models

in survival analysis, in which the effect of the exogenous covariates, here the cohort t0, appears

often in a multiplicative way in the conditional intensity given the covariate. This model is math-

ematically easier to handle for nonparametric identification (see Appendix 7). The coefficient

b̃j , j = 1, 2, 3 measure the persistence of different intensities with respect to the generation effect

Ft0 .

However, the age-calendar time specification is also widely used in demography and finance. It

assumes that the longevity phenomenon is instead more influenced by calendar year fluctuations

which incorporates, besides a general decrease of mortality (due to e.g. the progress in medicine),

temporary effects such as pandemic, natural disasters, etc. The nonparametric identification of

an age-calendar time model, with an unconstrained F , is more difficult to study. Indeed, for

a same cohort t0, the intensity of the observed variable y2 depends on the age x via both the

13It is only in this exponential case that we have both an affine age-cohort model and an equivalent affine
age-period model. Indeed, if we have both λ1(x1|F , t0) = a1(x1) + b1(x1)Ft0+x1 and λ1(x1|F , t0) = ã1(x1) +
b̃1(x1)Ft0 , it is easily shown that, given continuity assumptions on the function t 7→ Ft, this function is necessarily
an exponential function of time t.
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baseline hazards aj and bj , j = 1, 2, 3 and the whole path of F between time t0 and t0 + y2 (see

the discussions in Section 4.3.2).

ii) Stochastic factor. Because of the stochastic nature of the longevity, we would also like to

model the common factor (Ft) as an unobserved stochastic process, often called dynamic frailty

since Duffie et al. (2009). For the comparison with the deterministic exponential specification

above, we will assume in applications that the dynamics of the stochastic factor F is a Cox-

Ingersoll-Ross (CIR) process [see Cox et al. (1985)]:

dFt = −mFtdt+ σ
√
FtdWt, (16)

where σ > 0, m > 0, W is a standard Brownian motion, and the initial condition is Fmin t0 = 1,

where min t0 := 0, say, is the birth date of the first cohort.

This CIR model includes the deterministic model as a limiting case. If σ = 0, then the solution

of the differential equation (16) is Ft = exp(−mt). Thus the CIR model is just introducing

uncertainty around the deterministic exponential model. Therefore, this CIR process still has a

nonstationary feature, which reflects the longevity phenomenon.

The advantage of introducing a stochastic specification of the factor over a deterministic,

say, exponential specification, is that we can quantify the uncertainty of both the model fit

and the future evolution. These uncertainties should be taken into account when pricing LTC

insurance contracts, computing the regulatory required capitals and performing stress tests [see

the discussion in Keilman et al. (2002) for macropolicy implications].

The choice of a CIR process has several other advantages. Firstly, it guarantees the positivity

of the intensity functions λ1, λ2, λ2|1 when functions aj , b̃j , j = 1, 2, 3 are nonnegative. Sec-

ondly, it allows for closed form expressions of the log-likelihood function under an appropriate

approximation scheme by using the affine property of the process.

Appendix 5 summarizes the basic properties of this CIR process, including its existence, the

potential hitting time at 0 and its behavior afterwards, as well as its discrete time counterpart,

which is an autoregressive gamma process (ARG).

4.3 Nonparametric identification

Let us now discuss the identification issue. For expository purpose, we consider the Markov

specification (11).
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4.3.1 Deterministic exponential factor

Let us first consider the case where the factor F is deterministic and exponential, and the intensity

of X3 given X1 is Markov. Assume that for each cohort, at the age origin y2 = 0, the proportion

of people already in LTC is null, and Ft0 = 1 for some pre-specified value of t0.

Proposition 3. Assume that we observe the lifetime of a continuum of cohorts of individuals

indexed by t, where t varies in an open set ]t0 − ε, t0 + ε[ for ε > 0, that the six functions

aj , bj , j = 1, 2, 3 are continuous and positive. Then, the parameter m is identified, and we have

the following identification results for the six functions:

1. If b1 + b2 = b3 for all y, then b3 can be globally nonparametrically identified; the others

cannot be identified.

2. If there exists constants c, c′ such that b1 + b2 − b3 ≥ c > 0, and |b2 − b3| > c′ for each

age y, then b1 + b2 is globally nonparametrically identified; the other functions are at least

locally identified.

3. If there exists a constant d such that b1 + b2 − b3 ≤ −d < 0 for all y, then functions b3, a3

are globally identified; the other functions are at least locally identified.

Proof. See Appendix 7.

In other words, the repeated measurement across different cohorts of the nonlinear effect of

the longevity factor on the aggregated lifetime behavior allows for identifying both the functional

parameters and the longevity factor. The assumption that at origin, the proportion of people

already in LTC is null is an implicit condition of our model and is already used in Equation

(7). The assumption that all the functions are continuous means that, the entry into LTC is

the only possible mortality jump during one’s lifetime. The observation of a continuous-valued

covariate t is also a standard assumption in the identification literature of survival models [see

e.g. Abbring and Van den Berg (2003a)] and of treatment effects [see Abbring and Van den

Berg (2003b) Proposition 2.3.4]. Indeed the proof of identification of m relies on the same

“identification at zero” argument as in these papers. Nevertheless our identification result is not

a consequence of theirs. Indeed this literature assumes that the time of treatment is observable

and usually consider the mixed proportional hazard (MPH) specifications. For longevity models,

the specification of the intensities cannot be multiplicative in the observable regressor, due to

the need of a limiting model for the far future [see e.g. system (15)].
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4.3.2 Stochastic factor

Let us now consider the identification of the Markov model with a stochastic factor. Loosely

speaking a (functional) parameter is identifiable if it can be consistently estimated. Thus the

notion of identification depends on the assumed asymptotics. For our problem, this is a double

asymptotics, in which both the number T0 of observed generations and the number of individuals

observed in each generation tend to infinity. In the limiting case of this double asymptotics, the

family of survivor functions S2(y, t0) given in (13) is asymptotically known, that is, we can

reconstitute the set of survivor functions given the existing factor path14. To summarize we have

the following Proposition.

Proposition 4. It is equivalent to consider the identification of the intensity components a1, b1, ...

in a model with stochastic factor, or to consider the identification problem for a model with

(unconstrained) deterministic factor, where the factor path coincides with the realized path.

Let us now consider system (10). This is a system of equations indexed by y2 and t0, which

has to be solved w.r.t. functions a1, b1, a2, b2, a3, b3, Ft. This system is in general over-identified,

except for some special factor paths such as deterministic exponential path. But since (Ft) is a

diffusion process, the probability of reduced rank is zero. Thus we have the following Proposition:

Proposition 5. Functions a1, b1, a2, b2, a3, b3 are locally identifiable, a.s., that is except for a

negligible set of factor paths.

The analysis of identification with unobserved stochastic dynamic frailty is completely dif-

ferent from the analysis in standard treatment effect models. Indeed, in models with treatment

effects, the unobserved heterogeneity is individual and represented by a scalar or vector random

variable. In our framework the longevity factor is a process, therefore much more complex. Nev-

ertheless, the cross-sectional asymptotics allows for eliminating the uncertainty on this factor,

that is for replacing the process by its underlying trajectory (Proposition 4). Then the observa-

tion of a large number of cohorts introduce the orthogonal dimensions leading to identification

(Proposition 5).

Finally, wherever aj , bj , j = 1, 2, 3 are identifiable, from granularity theory [see e.g. Gagliar-

dini and Gouriéroux (2014)], we can also identify the realized factor path, and then the parameters

of the factor dynamics.

14For an asymptotics in T0, with one observed individual in each cohort, say, it would only be possible to
reconstitute the integrated survivor function S2(y, t0) := E[S2(y, t0)], where the expectation is taken with respect
to the stochastic future factor path.
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5 Applications

Under the restrictions introduced in Section 4.2, the scalar and functional parameters of the joint

model for longevity and LTC are in general identifiable from lifetime data only. However the

lifetimes are also partially observed due to censoring phenomena. In this section we consider

the different specifications for models with deterministic or stochastic factors, and derive the

likelihood functions, when the entry into LTC is unobserved and the lifetime is right censored.

In our model, the intensity function of the observed variable Y2 depends in a non Markovian

way on all the past of factor F . But under the specifications of the factor that we consider, the

likelihood function admits closed form formula when an appropriate discretization scheme is used.

We also approximate the functionals aj , bj , j = 1, 2, 3 by parametric splines. We denote by θ the

set of all parameters including both the splines parameters and the parameters characterizing

the factor dynamics.

5.1 The likelihood function

5.1.1 Model with deterministic factor

Let us first consider the basic model with a deterministic factor Ft = e−mt. We denote by i, i =

1, ..., n, the individuals and assume that the set of latent variables (X1,i, X2,i, X3,i), i = 1, ..., n

are independent with identical joint distribution, which depends on the generation only. Then

the individual lifetimes Y2,i, i = 1, ..., n are also independent with a distribution depending on t0

only. Taking into account the right censoring of the lifetimes, the log-likelihood function is:

log l(Y2, θ) =
∑
t0

{ ∑
i∈Iu

t0

log f2(y2,i, t0, θ) +
∑
i∈Ic

t0

logS2(y2,i, t0, θ)
}
, (17)

where Iut0 (respectively Ict0) is the set of uncensored (resp. censored) individuals in generation

t0, y2,i denotes either the observed failure time if the individual is not censored, the censoring

time, otherwise, and θ denotes the parameter.

5.1.2 Model with dynamic frailty

The expression of the log-likelihood is similar as (17), except that the terms f2, S2 should be

integrated with respect to the path of factor (Ft). More precisely, we define S2(y2,i, t0, θ) =

E[S2(y2,i, t0, F )] the integrated survivor function, where S2(y2,i, t0, F ) is the survivor function
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conditional on the path of the factor (Ft) and with expression given by (13). Similarly we define

f2(y2,i, t0, θ) = E[f2(y2,i, t0, F )]. Then we get:

log l(Y2, θ) =
∑
t0

{ ∑
i∈Iu

t0

log f2(y2,i, t0, θ) +
∑
i∈Ic

t0

logS2(y2,i, t0, θ)
}
. (18)

This expression can be theoretically calculated in continuous time, but at the cost of numerically

solving ordinary Riccati differential equations15. A simpler way is to approximate the continuous

time model with its time-discretized version. This is useful when the available data are collected

in discrete time, which is actually the case. More precisely, assume that the intensity functions

are constant16 between two neighboring integer dates: for all x and the integer part of x, n = bxc,

say, we have:

λ1(x) = λ1(n), λ2(x) = λ2(n), λ2|1(x) = λ2|1(n).

Then we get the link between the intensities in continuous and discrete time:

P[X1 > n+ 1 | X1 > n] = 1− exp(−λ1(n)),

and similarly for the other duration variables. The log-likelihood function is therefore approxi-

mately:

log l(Y2, θ) =
∑
t0

{ ∑
i∈Iu

t0

log fdisc2 (y2,i, t0, θ) +
∑
i∈Ic

t0

logSdisc
2 (y2,i, t0, θ)

}
, (19)

where fdisc2 and Sdisc
2 are discrete time approximations of the p.d.f. and the survival function,

respectively. They are calculated by first writing the corresponding p.d.f. and survival function

fdisc2 (y2,i, t0, θ, F ) and Sdisc
2 (y2,i, t0, θ, F ) conditional on factor path F . Then the dynamic frailty

F is integrated out:

fdisc2 (y2,i, t0, θ) = E[fdisc2 (y2,i, t0, θ, F )], Sdisc
2 (y2,i, t0, θ) = E[Sdisc

2 (y2,i, t0, θ, F )].

15This treatment is standard in the literature of term structure of interest rates and credit spreads with affine
underlying factors, see e.g. Duffie et al. (2000).

16This necessitates also to replace the continuous time CIR process with its time-discretized version, which is
an ARG process. See Appendix 5.
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We give in Appendix A.3.2 the expressions of these expectations. They can be written in terms

of the Laplace transform of process F , and have closed form for affine processes such as the CIR

process (otherwise, the calculation of the log-likelihood requires simulation of the factor paths

and is numerically cumbersome).

5.2 The data

The methodology of the previous subsections is now applied to a set of observations from the

Human Mortality Database (HMD). The HMD was created to provide detailed mortality and

population data to researchers, students, policy makers, and others, interested in the history

of human longevity. It is maintained by the University of California, Berkeley, and the Max

Planck Institute for Demographic Research in Rostock, Germany (see the official website http:

//www.mortality.org).

For instance, for France, the database gives, for each gender and each cohort t0 since 1737,

the size of the Population-at-Risk and the number of deaths17 at each integer age, from 0 to

min(2009− t0, 110). We use data from age 50 until age 110, and for cohorts starting from 1900.

For the oldest cohort (1900), our period of observation begins in 1950 to avoid the period of

World War II, and finishes in 2010; for the youngest cohort (1958), the observation begins in

2009 and finishes in 2010, which creates the right censoring effect.

Let us now provide summary statistics of the French male population. Because of the

longevity phenomenon, the distribution of lifetime is shifting to higher ages. This can be il-

lustrated by the increase of cross-sectional life expectancy18. Because of the right censoring,

the computation of the real, cohort-based longitudinal life expectancy involves the choice of a

predictive model (and will be calculated in Section 6), while the cross-sectional quantities are

model-free, but they do not measure the real expected duration for any cohort. Nevertheless

they are still widely used for simplicity. We plot in Figure 2 the mean age at death observed in

a same calendar year.

17As a consequence, the corresponding estimates of the mortality intensity function are available as well.
18Also called period life expectancy in demography.
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Figure 2: Evolution of the life expectancy at birth for deaths occurring in the same year.

During the past 40 years, the cross-sectional life expectancy for French males has been steadily

rising at a rate of approximately 0.25 years, that is 3 month per year. For year 2011, the cross-

sectional life expectancy is around 78 years for male, which is about 6 years lower than that of

French females’, and the latter is also rising at a similar pace.

The longevity phenomenon results in a significant increase of the proportion of seniors in

the population, which will potentially need LTC. Figure 3 shows, for each year, the dependency

ratio, that is, the ratio between the size of the old people population (aged 65 or above) and that

of the productive population (aged between 15 and 64). This statistics is widely used to measure

the pressure on the productive population.

1950 1960 1970 1980 1990 2000 2010

0.0
0.1

0.2
0.3

0.4
0.5

Year

Pro
po

rtio
n o

f s
en

ior
 am

on
g a

du
lt

Figure 3: The dependency ratio by year.
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The dependency ratio has consistently increased during the last three decades. This is ex-

pected to continue as the Baby Boomers reach their retirement ages. This phenomenon spells a

huge threat to the sustainability of the social security system and of the pension funds.

5.3 Markov model with deterministic exponential factor

We estimate the model introduced in Section 5.1.1 on the French male data. We consider the

population of males who survive up to age 50. As we suppose an homogeneous population19,

the left censoring is easily taken into account in the log-likelihood function by changing the date

origin, which is now 50 instead of age 0.

The model is completed by approximating the functions aj , bj , j = 1, 2, 3 by linear splines:

Assumption 1. Markov model

i) The function a1(x1) is a linear spline for x1 ∈]50, 110[ with two knots at 60 and 70 and is

null on the interval ]50, 60].

ii) The function b1(x1) is such that b̃1(x1) = b1(x1) exp(−mx1) is a linear spline on ]50, 110]

with two knots at 60 and 70 and is null on the interval ]50, 60].

iii) The function a2(x2) is a linear spline for x2 ∈]50, 110[ with two knots at 80 and 90.

iv) The function b2(x2) is such that b̃2(x2) = b2(x2) exp(−mx2) is a linear spline on ]50, 110[

with two knots at 80 and 90.

v) The function a3(x3|x1) = a3(x3 + x1) is a linear function of the current age x3 + x1, for

x3 + x1 ∈]60, 110[.

vi) The function b3 is such that b̃3(x3|x1) = b3(x3|x1)e−m(x3+x1) is a linear function of x3 + x1

function for x3 + x1 ∈]60, 110[.

Let us now comment on these assumptions. We specify the baseline hazards under the age-

period decomposition [see equation (11)]. The linear spline specification is a nonparametric

method to approximate the baseline functions. It would be possible to choose more knots, but

numerical experiments show that this offers little benefit and may induce over-parameterization

and less robust results. Empirically we find that other parametric specifications, such as expo-

nential splines, can also fit the model relatively well. We show in Appendix 3 that the linear

19By homogeneous population we mean a population without multiplicative unobserved heterogeneity as in
Vaupel et al. (1979). Since we assume that at the beginning of the observation (y = 50) nobody is in LTC, there
is no heterogeneity linked to the initial autonomy status neither.
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spline specification provides closed form expressions of the log-likelihood function in some spe-

cial cases. Assumptions v) and vi) written on the transition intensity function λ3 are Markov

conditions.

Let us now discuss the choice of the age range used in our estimation. We only look at people

who survive age 50, since the mortality pattern at younger ages is significantly different from

that of higher ages. In general, there are very few people in LTC before age 60; therefore we

assume that functions a1 and b1 are null between 50 and 60. Our model is written up to age 110,

which is approximately the current limit age of the human being20. It would equally be possible

to restrict the observation window to, say, ages 50-90: this would (very slightly) improve the fit

of the model, but will prevent us from predicting the residual life expectancy.

The following Lexis diagram illustrates the relationship between the cohort, age and calendar

years. The observed part of the history of each cohort is represented by a full 45◦ line whose left

and right boundaries are respectively the age of the beginning and end of the observation (due

to either right censoring). As for the censored parts, they are plotted in thick dashed lines. Of

all the cohorts, we distinguish two cases:

• Cohorts born before 1900 (for instance cohort 1870 in the plot) are not taken into account

in the estimation. Indeed, their post age 50 history is impacted by the second world war,

the aftermath of which marks a strong regime switch in terms of mortality improvement.

• Cohorts after 1900 are right censored, and the censoring age equals min(110, 2010− t0) for

a cohort born in t0. For instance, for cohort 1930, only the data from age 50 to 80 are used.

20The oldest living human is currently a 116 years old man.

25



Calendar time

Age

Cohort 1900 Cohort 1930

· · · · · · · · ·

Cohort 1870

y2 = 50

y2 = 80

Year 1950 Year 2010

y2 = 110

Figure 4: Lexis diagram of cohorts and their observability. The study period ranges from year
1950 to 2010.

The following table gives a summary of the linear splines a1, b̃1, a2, b̃2, a3, b3 in terms of their

value at origin as well as their slopes between different knots.

Table 1: Parameters of the linear spline functions

value at slope slope slope slope slope
between between between between between

50 50, 60 60, 70 70, 80 80, 90 90, 110
a1(x) 0 0 w1 w2 w2 w2
a2(x) w3 w4 w4 w4 w5 w6
b1(x) 0 0 w7 w8 w8 w8
b̃2(x) w9 w10 w10 w10 w11 w12
a3(x) w13 w14 w14 w14 w14 w14
b̃3(x) w15 w16 w16 w16 w16 w16

Under Assumption 1, the set of all parameters is θ = (w1, w2, ..., w16,m). For brevity the

value of the estimator, the goodness of fit, as well as the discussion of this model are given in

Appendix A.4.1. We first compute the model implied intensity function of Y2 and compare it to

the historical data. Besides, we can also plot the evolution of the latent hazard functions, as well

as the implied evolution of the proportion of people in long term care (i.e. prevalence), that is,

the distribution of the unobserved heterogeneity.
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5.4 Semi-Markov model with deterministic exponential factor

In the previous Markov model, we have assumed that the mortality intensity for a person in LTC

depends only on its current age. A more realistic and intuitive assumption is that it depends

also on the age of entry into LTC z, or equivalently, on the time elapsed since this entry x− z.

Therefore, in this section, we consider the following semi-Markov assumption:

Assumption 2. Semi-Markov model

i) Functions a1(x), b1(x), a2(x) and b2(x) are specified in the same way as in Assumption 1.

ii) Function a3(x− z|z) and b3(x− z|z) exp(−mx) are linear both in x and z: a3(x− z|z) = c0,a + c1,a(x− z) + β1(z − 60),

b3(x− z|z) exp(−mx) = c0,b + c1,b(x− z) + β2(z − 60).

The additional parameters β1, β2 characterize the non Markovian feature. For this semi-

Markov model, the set of parameters becomes:

θ = (w1, w2, ..., w12, c0,a, c1,a, c0,b, c1,b, β1, β2,m).

The estimation and discussion are gathered in Appendix A.4.2.

5.5 Model with dynamic frailty

Let us finally replace, in the previous semi-Markov model, the deterministic dynamic factor

by a (common) dynamic frailty, as explained in Subsection 5.1.2. The parameters of the model,

including those of the CIR process [equation (16)], m,σ, and those of the baseline hazard functions

aj , bj , j = 1, 2, 3, are estimated jointly by maximizing the log-likelihood function given by

equation (19). Since the model with deterministic factor is the limiting case of the model with

dynamic frailty, we can choose the initial value of the numerical algorithm used to optimize the

likelihood function as w = (w∗, 0), where w∗ is the value of the maximum likelihood estimator

of the semi-Markov model with deterministic factor derived in Section 5.4. We report in Table

2 the value of the estimator w.
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Table 2: Estimator of the model with dynamic frailty, all parameters are significant at 1% level.

variable estimator
w1 0.000693 (***)
w2 0.002568 (***)
w3 0.005693 (***)
w4 0.000168 (***)
w5 0.003672 (***)
w6 0.018114 (***)
w7 0.000425 (***)
w8 0.002639 (***)
w9 0.002827 (***)
w10 0.001485 (***)
w11 0.002958 (***)
w12 0.023078 (***)
c0,a 0.177399 (***)
c0,b 0.009781 (***)
c1,a 0.003288 (***)
c1,b 0.005822 (***)
β1 0.004991 (***)
β2 0.004737 (***)
σ 0.020561 (***)
m 0.034579 (***)

To look at the goodness of fit, we compute the intensity function of the lifetime variable Y2

for each cohort, when the dynamic frailty is integrated out. More precisely, we first compute the

survivor function of the lifetime at different times by integrating out the whole history of the

dynamic frailty, and then we calculate the hazard function by computing its minus log-derivative:

h(y2) = lim
h→0

P[y2 ≤ Y2 < y2 + h]
h

= − ∂

∂y2
logE

[
S2(y2|θ, F )

]
=

E
[
f2(y2|θ, F )

]
E
[
S2(y2|θ, F )

] . (20)

We display in Figure 5 the intensity function of Y2 and compare its values to the observed

values from the data.
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Figure 5: Hazard function of the lifetime variable. Dotted line: historical data. Full line: the
model (for both the past and future years).

Once the parameters are estimated, we infer the path of unobserved frailty process (Ft). This

is useful for several reasons. First, after filtering out the unobserved frailty process, we can check

the specification of its dynamics (CIR process), as well as the goodness of fit of the model in

terms of observable mortality rates. Second, its values can be used for predicting the future

mortality and the LTC transition probability, which depend on the frailty process.

There are at least two ways to filter out this unobserved process. First, the observed mor-

tality rates can be written as (nonlinear) functions of the values of the unknown frailty and

of parameters. We may invert these equations to obtain the values of the frailty process after

replacing the parameter by its maximum likelihood estimate. This methodology is widely used

in Finance, [see e.g. Chen and Scott (1993)]. However, since functions f2(y2, t0, θ), S2(y2, t0, θ)

depend on the frailty path in a non Markovian and nonlinear way, and the number of unknown

frailty values is quite large when the process covers the period 1951-2009, this approach is nu-

merically cumbersome. For the same reason, nonlinear filtering methods [see e.g. Gagliardini

et al. (2012)] are equally forbidden.

The second method is based on simulations of the factor path after substituting the estimated

parameters to their true values. More precisely, we simulate a certain number of paths of the

frailty process conditionally on both the estimated value of the parameter and on the observations
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Y2,i, i ∈ Iu ∪ Ic, that are either the dates of death or the right censoring ages of all individuals.

This is done by Gibbs sampling, as in Duffie et al. (2009). Appendix 6 gives the details of

this methodology. In Figure 6, we plot, for each year, the simulated factor mean E[Ft|θ, Y2]

conditional on all the observed Y2,i, i ∈ Iu ∪ Ic. For comparison, we also plot the deterministic

path E[Ft|θ] = e−m(t−1950), where m is the trend parameter of the CIR process.

1950 1960 1970 1980 1990 2000 2010

0.2
0.4

0.6
0.8

1.0

Year

Fra
ilty

 Pr
oc

es
s

Figure 6: Simulated factor mean (full line) and the deterministic path (dotted line).

As expected, the path features a nonstationary (decreasing) trend, which corresponds to the

longevity phenomenon. The filtered factor mean is different from the deterministic path, that is

E[Ft|θ, Y2] 6= E[Ft|θ], because of the conditioning on the information Y2. Indeed for most dates t,

we observe empirically that E[Ft|θ, Y2] < E[Ft|θ]. This result was expected, since the longevity

phenomenon favors paths of the CIR process that feature a more pronounced decrease. The

filtered paths of the factor can also be used to calculate the conditional intensity of Y2, that is

λ2(y2|θ, F ), where the values of factor F are replaced by their filtered values. Not surprisingly,

for each of its simulated paths, we get very satisfactory fit to the observed lifetime intensity

similarly as in Figure 5. These figures are omitted due to lack of space.

This factor does not have the same influence on the different latent intensities λ1(x1, t0),

λ2(x2, t0), λ2|1(x3, t0|x1); indeed these effects depend on the ratios a1(x1)/b1(x1), a2(x2)/b2(x2),

a3(x3|x1)/b3(x3|x1), who depend themselves on the values of x1, x2, x3. These values can be

used to compare the improvement speed of different intensity functions. This was also true for

the two previous models with deterministic factor. For instance, for the Markov model with

deterministic factor, we see from Figure 14 that the reduction of λ2|1 at age x3 +x1 = 100 is less

important (about 50 %) than that of λ2 (about 67 %).
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5.6 Comparison of the models with deterministic and stochastic factors

The three models, that are the Markov and semi-Markov model with deterministic factor as well

as the semi-Markov model with stochastic factor all provide satisfactory fits. The maximized

log-likelihoods are respectively: -38710240, -38709452, -38704065, and the corresponding values

of the BIC are: 77420764, 77419205 and 77408448. It was expected that the semi-Markov model

with deterministic factor (resp. the semi-Markov model with stochastic factor) has a higher

likelihood than the nested semi-Markov model with deterministic factor (resp. Markov model

with deterministic factor), but the difference is rather small. However, the comparison between

the semi-Markov models with deterministic and stochastic factor requires more care. Indeed the

standard BIC criterion is not necessarily the appropriate measure to compare the performance

of the two models in terms of risk prediction and risk management. For instance we have already

mentioned that a model with deterministic common factor will likely underestimate the risk.

The next section offers a further comparison of these models in terms of prediction.

6 Prediction of individual LTC and mortality risks

Once the model is estimated from the lifetime data, we can infer for each individual the value of

the unobserved variables given the observed ones. We consider below an individual of cohort t0

at calendar date t0 + y2. For a model with deterministic factor, it is rather easy to deduce the

expressions of the predictive distributions; for a model with dynamic frailty, some expectations,

such as the hazard function of the lifetime variable (see Equation (20)), admit explicit forms after

integrating out the frailty process, but confidence intervals have to be computed by simulation.

More precisely, for each simulated past history of process F obtained from the Gibbs sampler (see

Subsection 5.5), we simulate its future path and obtain the predictive distributions conditional

on the whole factor path, whose formulas are similar as for the model with deterministic factor.

This procedure is repeated to obtain the prediction intervals. The prediction problem depends

on the observed variables. We have the following situations:

i) If the individual is already dead, we know the value of Y2, but have to predict the potential

date of entry into LTC Y1 as well as the latent variables X1, X2, X3.

ii) If the individual is still alive and we have no information on his/her autonomy state, except

that Y2 > y2, we have to predict Y1, X1, X2, X3 and Y2.
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iii) If the individual is autonomous, that is, X1 > y2, X2 > y2, we have to predict Y1, Y2, X1,

X2, X3,

and so on. We first derive explicit prediction formulas for a model with deterministic factor.

Then we consider the prediction of future risks in Case iii) for the French males, by both the

Markov model with deterministic factor and the semi-Markov model with dynamic frailty. These

quantities are calculated for different cohorts, but for expository purpose we omit the cohort

index t0. Since the individual observations are independent, we can perform the computation

independently for each individual. For expository purpose we omit the individual index i.

6.1 Case i)

Let us first consider the case of predicting unobserved variables, which include the variable

Y1, and the latent variables (X1, X2, X3), conditional on the complete observation of Y2. The

expressions of the predictive distributions are derived below.

Conditional distribution of Y1 given Y2. This distribution has a density with respect to

the measure δ0 + λ]0,y2[, where δ0 is the point mass at 0. This density is:

f(Y1 = 0|Y2 = y2) = f(0, y2)

f(0, y2) +
∫ y2

0
f(y1, y2)dy1

= P(Y1 = 0|Y2 = y2), if Y1 = 0,

and

f(Y1 = y1|Y2 = y2) = f(y1, y2)

f(0, y2) +
∫ y2

0
f(y1, y2)dy1

, if Y1 6= 0,

where f(·, ·) is the joint density function [see equations (4) and (5)].

Conditional distribution of (X1, X2, X3) given Y2. This conditional distribution has two

components on domain D3 = {(x1, x2, x3) ∈ R≥0, x1+x3 = y2, x2 ≥ y2}, and D4 = {(x1, x2, x3) ∈

R≥0, x2 = y2, x1 ≥ y2}, respectively. Both domains are subsets of a hyperplane. The joint
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distribution admits a density with respect to the measure λD3 + λD4 . This density is:

g(x1, x2, x3|Y2 = y2) = g(x1, x2, y2 − x1)
f2(y2) , on domain D3,

and

g(x1, x2, x3|Y2 = y2) = g(x1, y2, x3)
f2(y2) , on domain D4.

6.2 Case ii)

Let us now consider the case when only the information Y2 > y2 is available.

Conditional distribution of Y1 given Y2 > y2. This conditional distribution has three

components corresponding to three different cases: Y1 = 0, Y1 < y2 and Y1 > y2. It has a density

with respect to the measure δ0 + λ]0,y2[, and this density is:

f(y1|Y2 > y2) = λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2)

, on domain {y1 ∈]0, y2]},

f(y1|Y2 > y2) = λ1(t)e−Λ1(t)−Λ2(t)∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2)

, on domain {y1 ∈]y2,∞[},

and

f(0|Y2 > y2) =

∫ ∞
y2

λ2(t)e−Λ1(t)−Λ2(t)dt∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2)

, if Y1 = 0.

It is easily checked that this function f(·|Y2 > y2) sums up to 1 and we have:

∫ y2

0
f(y1|Y2 > y2)dy1 = p(y2),

that is the prevalence at age y2 [see Equation (30)].

Conditional distribution of Y2 given Y2 > y2. This is already characterized by the hazard

function of Y2 (see e.g. Equation (29) for the Markov model).
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The conditional distribution of (X1, X2, X3) given Y2 > y2 can be obtained similarly and its

expression is omitted.

6.3 Case iii)

Let us now assume that the available information set is X1 > y,X2 > y. A special case is

when y = 50, since any individual enrolled in the study at this age is autonomous21, and we are

interested in the prediction of Y1 and Y2. First, let us compute the probability that a person

will enter the LTC during his or her lifetime, given autonomy up to age y. For each cohort, this

probability is given by:

P(Y1 > 0|X1 > y,X2 > y) =

∫ ∞
y

λ1(x)e−Λ1(x)−Λ2(x)dx

e−Λ1(y)−Λ2(y) . (21)

This probability is called the cumulative incidence (at age Y2 =∞).

Other interesting quantities include the residual life expectancy with (potential) LTC.

e1(y) = E[Y2 − y|X1 > y,X2 > y]

=

∫ ∞
y

(x2 − y)λ2(x2)e−Λ1(x2)−Λ2(x2)dx2

e−Λ1(y)−Λ2(y)

+

∫ ∞
y

(
x1 +

∫ ∞
0

x3λ2|1(x3|x1)e−Λ2|1(x3|x1)dx3 − y
)
λ1(x1)e−Λ1(x1)−Λ2(x1)dx1

e−Λ1(y)−Λ2(y) ,

as well as the residual life expectancy without LTC (or Healthy Life Years22) defined by:

e2(y) = E[min(X1, X2)− y|X1 > y,X2 > y] =

∫ ∞
y

(x− y)
(
λ1(x) + λ2(x)

)
e−Λ1(x)−Λ2(x)dx

e−Λ1(y)−Λ2(y) .

This term is very popular among sociologists. Indeed, the issue of increasing life expectancy in

good health has become a huge concern for policy makers in recent years in developed countries.

Then we can compute the difference of these two terms, which is the expected duration spent

in the potential LTC state23. It is of particular interest to insurance companies or public social

21Since the transition intensity into LTC is null before age 60.
22This term is introduced by Eurostat, the statistical service of the European Commission. It is calculated in a

cross-sectional way while our e1(y), e2(y) are longitudinal measures. An alternative terminology is the Disability-
Free Life Expectancy (DFLE) [see e.g. Imai and Soneji (2007)].

23For a person who never entered LTC during its lifetime, this duration is zero.
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security plans, since it impacts the expected cost of an LTC insurance policy in a direct way. We

have:

e1(y)− e2(y) = E[X31Y1>0|X1 > y,X2 > y]

=

∫ ∞
y

(∫ ∞
0

x3λ2|1(x3|x1)e−Λ2|1(x3|x1)dx3

)
λ1(x1)e−Λ1(x1)−Λ2(x1)dx1

e−Λ1(y)−Λ2(y) . (22)

In general, the term

∫ ∞
0

x3λ2|1(x3|x1)e−Λ2|1(x3|x1)dx3, that is, the expected residual lifetime

upon entry at age x1, depends on x1 and cannot be factored out.

Let us now calculate the three quantities above for different values of age y and cohort t0.

For expository purpose, we use the Markov model with deterministic factor and the semi-Markov

model with dynamic frailty. For the latter one, 90% confidence bounds are also provided, that

are, the 5% and 95% quantiles of the variable P[X1 < X2|X1 > y,X2 > y, F ], which is calculated

for each simulated factor path F . Figure 7 displays the evolution of the probability of entering

into LTC during its lifetime given survival up to age 50 as a function of the cohort t0. The value

of y is set to 50 years.
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Figure 7: Evolution of the probability of entering into LTC during its lifetime as a function of the
cohort. Left panel: the Markov model with deterministic factor, right panel: the semi-Markov
model with dynamic frailty; full line: the expected value, that is when frailty is integrated out,
dashed lines: the 90% confidence bounds.

The Markov model predicts a slightly higher probability of entering into LTC than the semi-

Markov model with dynamic frailty, but in both cases, this probability is increasing in cohort.

For instance, the latter predicts that this probability is around 0.33 for the oldest cohort (born

in 1900) and will be around 0.43 for the cohort 1980. Theses probabilities are in line with the
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projection based on LTC use history of a sample of Americans by Spillman and Lubitz (2002),

who predict that in 2020, the probability of a 65-year-old24 ever entering a nursing home to

will increase to 46 %. The result is also to be compared to Figure 18 in Appendix, where we

plot the proportion of people in LTC at any ages, which is decreasing in cohort25. For the

semi-Markov model with dynamic frailty, the uncertainty, measured by the bandwidth of the

confidence interval, is increasing in cohort: for the cohort 1900, the bandwidth is very close

to (but not strictly equal to) zero, and becomes quite large for, say, cohort 1980. Indeed, the

variation of the filtered past path is considerably smaller than the variation of its predicted

future path because of the conditioning with respect to the information of Y2. For cohort 1900,

its history depends only on the filtered past history of the factor F , whereas for cohort 1980 it

depends also on the future evolution of the path.

Let us now plot in the same figures the evolution of the residual life expectancies (with and

without LTC) for an individual in good health at age 50, for cohorts born from 1900 to 1988.
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Figure 8: Evolution in t0 of the residual life expectancy, with potential LTC (dashed line) and
without (full line) LTC, at age 50. Left panel: the Markov model, right panel: the semi-Markov
model with dynamic frailty; full lines: the expected values, dashed lines: the 90% confidence
bounds; the three upper curves are for the life expectancy with potential LTC.

For a French male aged 50 in 2010, the residual life expectancy with potential LTC is around

33 years with the semi-Markov model. The curve of the residual life expectancy with potential

LTC is slightly concave, and increases with an average improvement rate of around 0.1 year per

annum. The difference between the two curves, which directly impacts the expected cost of an

LTC insurance contract, is (slowly) increasing.

24Which is roughly of the same order than the probability for a 50-year-old given the relatively lower intensities
between age 50 and 65.

25Similarly, the probability of surviving until a given age, either with or without disability, is increasing.
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Finally, let us calculate the uncertainty of the following quantities for a finite population:

1
n

n∑
i=1

Y2,i,t0 ,
1
n

n∑
i=1

min(X1,i,t0 , X2,i,t0), (23)

where Y2,i,t0 [resp. min(X1,i,t0 , X2,i,t0)] is the future death age (resp. age of either losing auton-

omy or dying directly) for the individual i aged 50 in, say, year τ = 2010. In other terms, these

two sums correspond to the average residual lifetime with (resp. without) LTC for a homoge-

neous portfolio of n individuals. We are interested in calculating their Value-at-Risk V aR(α),

where α ∈]0, 1[.

The computation of these VaR can be done by simulation, but this is very time consuming

when the size of the portfolio is large. Nevertheless, it can be approximated by using the gran-

ularity theory [see e.g. Gagliardini and Gouriéroux (2014)]. For the model with deterministic

factor factor, the distribution of the quantities in (23) are approximately Gaussian by the Cen-

tral Limit Theorem. For the model with dynamic frailty, conditional on each simulated factor

path, these quantities are still approximately Gaussian; therefore their unconditional distribu-

tion is approximately a mixture of, say, M Gaussian distributions, where M is the number of

simulated factor paths. When the size of the portfolio goes to infinity, the asymptotic VaR,

i.e. cross-sectional asymptotic (CSA) VAR, provides the undiversifiable component of the risk.

This CSA VaR is easily calculated: for the model with deterministic factor, it is equal to zero;

for the model with dynamic frailty, it equals the 95% quantile of the conditional expectation

e1(y|F ) = E[Y2|X1 > y,X2 > y, F ] (resp. e2(y|F ) = E[min(X1, X2)|X1 > y,X2 > y, F ]). These

quantities have already been calculated (see Figure 8).

To illustrate this approach, let us take n = 10, 100,∞, and α = 0.05, 0.95. The confidence

bounds are displayed in Table 3.

Table 3: 90% confidence bounds for the average residual lifetime for a portfolio of n individuals
who are 50 years old in 2010.

Empirical mean of Y2 n = 10 n = 100 n =∞
Markov model without frailty 33.12, 33.60 33.29, 33.44 33.36 ± 0

Semi-Markov model with frailty 31.95, 33.86 32.03, 33.85 32.18, 33.78
Empirical mean of min(X1, X2) n = 10 n = 100 n =∞
Markov model without frailty 30.98, 31.47 31.15,31.30 31.22 ± 0

Semi-Markov model with frailty 30.45, 32.10 30.47, 32.16 30.59, 32.08
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For both empirical means, the confidence interval is larger for the model with (common)

frailty, which incorporates the uncertainty of the frailty process (both its future and past),

whereas the Markov model without frailty assumes it equal to zero. The model with frailty

is therefore more reliable from the insurer point of view.

6.4 Comparison with real data on LTC

Let us finally compare the model-based prediction with data on LTC from a large insurance

company. Such private proprietary database usually concern the customers and are not repre-

sentative of the whole population. They are subject to selection biases due to both the behavior

of the company and of the customers. Let us discuss the expected bias for the analysis of LTC.

• Since the LTC insurance market is young and small, products are not very differentiated.

Thus the insurance company will try, for a given price of the contract, to select the least

risky customers26. Thus we expect that in this database, the time spent in LTC is smaller

than for the whole population.

• On the other hand, the standard economic literature insists on the role of adverse selection

which tends to increase the average risk profile of the customers. However, this standard

argument seems to be not valid in the LTC framework, a finding also confirmed by Finkel-

stein and McGarry (2006). They attribute this to the offsetting effect of selection into the

market and find evidence that wealthier individuals and individuals who exhibit more cau-

tious behavior are both more likely to have LTC insurance coverage and less likely to use

LTC. Indeed, in insurance problems with irreplacable objects, individuals’ utility function

is in general state-dependent [see e.g. Dionne (1982), Karni (1983)], i.e. with a higher risk

aversion in the LTC state. The preference to be better covered in this state will imply

an increased demand. On the other hand, the weak effect of the adverse selection could

also be partially explained by the long-term nature of the risk, which makes it difficult

for individuals to exploit asymmetric information. In the same direction will be the bias

coming from the income effect since the customers who can afford a private insurance are

likely to have a higher income than the national average.

To summarize, we expect that the endogenous selection by both the insurance company and

the customers are going in the same direction of overweighting of the best risks, i.e. smaller

26For instance, many insurance companies believe that living with one’s partner, as well as being smoker, are
indicators of small time spent in LTC.
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probability of entering into in LTC in the database w.r.t. the whole population.

The database concerns a specific insurance product with only one LTC state; it has been

launched in 1994 and sales continued up to27 2000, but the database is maintained even after

that date. There are about 15000 male policyholders28, the majority of whom were born between

1925 and 1940 (see Figure 9 for a histogram of the cohort of all policyholders) and bought the

contract in their 60’s. Thus they are quite young at the end of the observation period, that is

2014. As a consequence, observations are heavily right censored. Indeed, 20 % individuals died

without LTC and only 5 % entered into LTC before the end of the observation period, with a

potentially further censored final death date; the other observations are completely censored.

No events are observed beyond age 90. The portfolio size is not sufficient to conduct a real

cohort-specific analysis and the individuals from different cohorts are aggregated.
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Figure 9: Histogram of birth cohort of all policyholders.

27After 2000, the company launched a new product with significant changes of policy terms; therefore the new
product cannot be compared directly to the original one.

28The size of the portfolio is rather reduced with respect to the French population. Nevertheless, it is believed to
be one of the largest and most reliable databases from one of the largest reinsurance companies in the world. This
illustrates the difficulties of the insurance industry in providing comparable LTC products, and in maintaining
quality databases.
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Figure 10: Comparison between the intensity of entry into LTC implied by the model (for general
population) and that observed on the insurance data. Dashed line: the model; full line: the data.
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Figure 11: Comparison between the observed mortality intensity of the two populations.

Figure 10 compares the intensities of entering into LTC computed for the set of policyholders

and deduced from the estimated model for the general population. For the insurance portfolio,

the estimated intensity is λ̂1(x) = − d
dx log Ŝ1(x), where Ŝ1(x) is the Kaplan-Meier estimator

of the marginal survivor function of the entry into LTC. For the model based intensity at each

age x, we took a weighted sum of
(
λ1(x|t0)

)
for different cohorts t0, where the weights are
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determined by the share of each cohort among individuals that survive up to age x. This allows

us to correct the longevity bias of the aggregated portfolio. Figure 10 shows that our model

predicts a slightly higher intensity of entry into LTC for general population than that observed

from the insurance data, especially for lower ages. This difference can be partly explained by the

endogenous selection of policyholders by the insurance company and the choice of individuals

to buy such a contract. Whereas the entry in LTC is exogenous, the enrollment in a private

LTC coverage is endogenous (see the discussion at the beginning of the current subsection). To

further confirm the selection effects, Figure 11 plots the aggregated mortality intensity (without

distinguishing the autonomy state) for both the policyholders and the general population. The

huge discrepancy between the two curves suggests that the insured population has a much better

health than the general population, and, therefore are likely to have a lower intensity of entry into

LTC29. This comparison shows the difficulty in taking into account the available LTC insurance

data, when estimating the models, due to the poor data quality and the endogenous selection.

7 Conclusion

In this paper we proposed a new methodology to predict the probabilities of entering into LTC

along with the mortality intensities with or without LTC using solely the lifetime data. In this

modeling, the entry into LTC is characterized by a jump in the mortality intensity. In some

sense we get a model based implied LTC state which can be used as long as the data on LTC

are either unavailable, or weakly reliable, or under endogenous selectivity. This implicit state

may differ from that of a specific LTC database30 and it would be interesting to compare the

hypothetical date of entry in LTC with the different dates of losing Eating, Dressing, ... abilities,

when longitudinal data will become available and reliable. This may lead to change the definition

of the Instrumental Activities of Daily Living, as well as the design of LTC insurance products.

Our model is based on minimal31 observability and thus assumes a single LTC state. In

some cases it may be attempting to include other observed information, such as the regular

measurement of various individual health indicators, or even direct observation of the LTC use.

The inclusion of such information is theoretically possible, but since it often comes from a different

database for a smaller population sample and/or a shorter period, its effective use requires

29In other words we assume a positive correlation between LTC and mortality risks. See the beginning of this
subsection or Murtaugh et al. (2001) for a discussion of this assumption.

30Which is logical, especially given the lack of a universal definition and the poor quality of existing databases.
31Although repeated across different cohorts.
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additional, case-dependent care. This can be an area of further research when appropriate

database becomes available.

Finally, the joint statistical analysis of entry into LTC and mortality is a requested step, before

checking if individual LTC risk is really insurable by insurance companies, or if it is profitable

to combine mortality and LTC risks into a joint insurance product32.

Appendices

Appendix 1 : Expressions of the survivor function and the

p.d.f. of the lifetime variable Y2

The expression of the p.d.f. of Y2 is obtained by integrating out the joint density with respect

to y1. We get:

f2(y2) =
∫
f2(y1, y2)dy110<y1<y2 + f(0, y2)

=
∫ y2

0
λ1(t)λ2|1(y2 − t|t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ λ2(y2)e−Λ1(y2)−Λ2(y2).

Let us now check the expression of the survivor function by computing its derivative. We get:

−dS2(y2)
dy2

= −λ1(y2)e−Λ1(y2)−Λ2(y2)

+
∫ y2

0
λ1(t)λ(y2 − t|t)e−Λ1(t)−Λ2(t)−Λ(y2−t|t)dt

+
[
λ1(y2) + λ2(y2)

]
e−Λ1(y2)−Λ2(y2)

= f2(y2).

Appendix 2 : Technical lemmas

Lemma 1. Given a, b, α, β > 0, let us consider the function g defined by:

g(y) = a exp(−αy)− b exp(−βy), y ∈]0,∞[;
32For instance, Murtaugh et al. (2001) argue that based on the assumption that the two risks are positively

correlated, then combining the two risks would significantly lower the overall insurance premium, increase the
attractiveness of the products, and thus also limit the adverse selection.

42



then g is a survivor function if and only if a = b+ 1 and b
b+1β < α < β.

Proof. The necessary and sufficient condition for g to be a survivor function is g(0) = 1 and g is

decreasing. The first condition gives a = b + 1. Let us now focus on the second condition. The

derivative of g is:
d

dy
g(y) = −αa exp(−αy) + bβ exp(−βy).

Therefore g is a survivor function if and only if:

a = b+ 1 and
aα

bβ
≥ exp((α− β)y), ∀y > 0,

or equivalently a = b+ 1 and b
b+1β < α < β.

Lemma 2. Given a, b > 0, let us consider the function g defined by:

g(y) = (1 + by)e−ay, y ∈]0,∞[;

then g is a survivor function if and only if a ≥ b.

Proof. The condition g(0) = 1 is satisfied. Therefore g is a survivor function if and only if:

dg

dy
= −e−ay(aby + a− b) ≥ 0, ∀y > 0,

or equivalently a ≥ b.

As an illustration, we plot below the corresponding p.d.f. of the survivor function:

S(y) := λ1 + λ2

λ1 + λ2 − λ2|1
e−λ2|1y −

λ2|1

λ1 + λ2 − λ2|1
e−(λ1+λ2)y,

where we set the parameters as following: λ1 = 0.1, λ2 = 0.3, λ2|1 = 0.35.
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Appendix 3 : Expression of the log-likelihood function

A.3.1 Model with deterministic factor

In this section we give the detailed expression of the log-likelihood function (17) in the model

with deterministic factor. For expository purpose let us start by considering the Markov model.

The semi-Markov case is slightly more complicated but is based on the same principle. By using

the age-cohort decomposition, we have,

f2(y2,i, t0, θ)

=
(
a3(y2,i) + b̃3(y2,i)Ft0

)∫ y2,i

0
[a1(x) + b̃1(x)Ft0 ] exp

(
−
∫ x

0
[a1(s) + b̃1(s)Ft0 ]ds

−
∫ x

0
[a2(s) + b̃2(s)Ft0 ]ds−

∫ y2,i

x

[a3(s) + b̃3(s)Ft0 ]ds
)
dx

+
(
a2(y2,i) + b̃2(y2,i)Ft0

)
exp

(
−
∫ y2,i

0
[a1(x) + b̃1(x)Ft0 ]dx−

∫ y2,i

0
[a2(x) + b̃2(x)Ft0 ]dx

)
,

(24)

and

S2(y2,i, t0, θ) =
∫ y2,i

0
[a1(x) + b̃1(x)Ft0 ] exp

(
−
∫ x

0
[a1(s) + b̃1(s)Ft0 ]ds

−
∫ x

0
[a2(s) + b̃2(s)Ft0 ]ds−

∫ y2,i

x

[a3(s) + b̃3(s)Ft0 ]ds
)
dx

+ exp
(
−
∫ y2,i

0
[a1(x) + b̃1(x)Ft0 ]dx−

∫ y2,i

0
[a2(x) + b̃2(x)Ft0 ]dx

)
, (25)

where we have changed the time origin (t = 0 corresponds to age 50) to account for the left

censoring.

Let us now derive the closed form expression of these functions under the linear spline As-

sumption 1. For any integer value of y2,i, consider the interval [y2,i − 1, y2,i]. On this interval,

functions aj , b̃j , j = 1, 2, 3 are all linear in x and the factor Ft0 = e−mt0 does not depend on x, we

can write a1(x)+ b̃1(x)Ft0 = s1x+i1, a2(x)+ b̃2(x)Ft0 = s2x+i2, and a3(x)+ b̃3(x)Ft0 = s3x+i3,

where s1, s2, s1, i1, i2, i3 are constants and can be expressed by the coefficients of the linear splines
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and of Ft0 = exp(−mt0). Let us now write:

S2(y2,i, t0, θ) = e
−
∫ y2,i

0
[a3(s)+b̃3(s)Ft0 ]ds

∫ y2,i

0
[a1(x) + b̃1(x)Ft0 ] exp

(
−
∫ t

0
[a1(s) + b̃1(s)Ft0 ]ds

−
∫ t

0
[a2(s) + b̃2(s)Ft0 ]ds+

∫ t

0
a3(s) + b̃3(s)Ft0ds

)
dx

+ exp(−s3y
2
2,i/2− i3y2,i), (26)

where we factored the term e
−
∫ y2,i

0
[a3(s)+b̃3(s)Ft0 ]ds

out of the first integral so that the integrand

of the remaining integral does not depend on the upper bound y2,i. This new integral can be

calculated recursively by using the relationship:

∫ y2,i

0
=
∫ y2,i−1

0
+
∫ y2,i

y2,i−1
. We get:

∫ y2,i

y2,i−1
[a1(x) + b̃1(x)Ft0 ] exp

(
−
∫ t

0
[a1(s) + b̃1(s)Ft0 ]ds−

∫ t

0
[a2(s) + b̃2(s)Ft0 ]ds+

∫ t

0
a3(s) + b̃3(s)Ft0ds

)
dx

= e−s3y
2
2,i/2−i3y2,i

∫ y2,i

y2,i−1
(s1x+ i1) exp

(
− (s1 + s2 − s3)(x− y2,i + 1)2/2− (i1 + i2 − i3)(x− y2,i + 1)

)
dx

+ exp(−s3y
2
2,i/2− i3y2,i).

The first term is of the form

∫
A(x)e−B(x)dx with A (respectively B) linear (respectively

quadratic). If s1 + s2 − s3 > 0, which is often the case, then this term can be expressed in

terms of the cumulative distribution function of the normal distribution, therefore S2(y2,i, t0, θ)

and f2(y2,i, t0, θ) can be expressed in (quasi) explicit form33. For the semi-Markov model, we

cannot factor out the term e
−
∫ y2,i[a3(s)+b̃3(s|x)Ft0 ]ds

0 because of the dependence on x. As a con-

sequence the recursive formula is not valid, but for fixed y2,i, the integrand of the integral in

(24) and (25) is still of the form

∫
A(x)e−B(x)dx, where A and B are piecewise linear (resp.

quadratic) therefore the integral can be calculated in explicit form by dividing the integration

interval into several subintervals where A and B are linear (resp. quadratic).

A.3.2 The model with dynamic frailty

Let us adopt the discretization scheme described in Subsection 4.2.2, and replace the continuous

time process (Ft) by its time discretized version (F[t]). whose values at integer times is an ARG

33Indeed, the cumulative distribution function has no closed form, but its computation is rather fast using
standard softwares.
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process (see Appendix 5).

f
disc

2 (y2,i, t0, θ) = P[Y2,i = y2,i] = E
[
E[Y2,i = y2,i | F ]

]
= E

[
y2,i−1∑
i=0

[
1− e−a1(i)−b1(i)Ft0+i

][
1− e−a3(y2,i|i)−b3(y2,i|i)Ft0+y2,i

]

exp
(
−

i−1∑
j=0

[a1(j) + b1(j)Ft0+j ]−
i−1∑
j=0

[a2(j) + b2(j)Ft0+j ]−
y2,i−1∑
j=i+1

[a3(j|i) + b3(j|i)Ft0+j ]
)]

+ E

[(
1− e−a2(y2,i)−b2(y2,i)Ft0+y2,i

)
exp

(
−
y2,i−1∑
i=0

[a1(i) + b1(i)Ft0+i]−
y2,i−1∑
i=0

[a2(i) + b2(i)Ft0+i]
)]
,

(27)

and

S
disc

2 (y2,i, t0, θ) = P[Y2,i > y2,i] = E
[
E[Y2,i > y2,i | F ]

]
= E

[
y2,i∑
i=0

[
1− e−a1(i)−b1(i)Ft0+i

]
exp

(
−

i−1∑
j=0

[a1(j) + b1(j)Ft0+j ]−
i−1∑
j=0

[a2(j) + b2(j)Ft0+j ]

−
y2,i∑
j=i+1

[a3(j|i) + b3(j|i)Ft0+j ]
)]

+ E

[
exp

(
−

y2,i∑
i=0

[a1(i) + b1(i)Ft0+i]−
y2,i∑
i=0

[a2(i) + b2(i)Ft0+i]
)]
. (28)

These terms are lagged Laplace transform of the process (Ft) and can be calculated in explicit

form by iterating the equation:

E[e−uFt+1 |Ft] = exp
(
− e−mu

1 + cu
Ft

)
,

where c = 1−e−m

2m σ2 and u is a nonnegative argument. Again, as for the model with deterministic

factor, the computation is faster for the Markov model than for the semi-Markov model, since

in the first case, we can factor out the term exp(−
∑y2,i

j=0[a3(j|i) + b3(j|i)Ft0+j ]), which does not

depend on i and both f2(y2) and S2(y2) can be calculated recursively.
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Appendix 4 : Estimation results

A.4.1 Markov model with deterministic exponential factor

The model is estimated by maximum likelihood using the R package DEoptim. We report

below the value of the maximum likelihood estimator, and derive the standard deviation of its

components by calculating numerically the inverse of the Fisher Information matrix.

Table 4: Estimation of the Markov model with deterministic exponential factor. All parameters
are significant at 1% level.

variable estimator standard deviation t-statistics
w1 0.000398 0.0000158 25.1 ***
w2 0.001441 0.0000338 42.7 ***
w3 0.006955 0.0000256 271.3 ***
w4 0.00024 0.0000051 47.2 ***
w5 0.005047 0.0001091 46.3 ***
w6 0.004713 0.0010629 4.4 ***
w7 0.000285 0.0000225 12.7 ***
w8 0.002342 0.0000385 60.8 ***
w9 0.002037 0.0000408 50 ***
w10 0.000784 0.0000071 110.7 ***
w11 0.00259 0.0001255 20.6 ***
w12 0.015769 0.0010415 15.1 ***
w13 0.228108 0.0166392 13.7 ***
w14 0.242871 0.0192654 12.6 ***
w15 0.005123 0.0007004 7.3 ***
w16 0.004978 0.0006665 7.5 ***
m 0.036432 0.0003179 114.5 ***

With the estimated value of parameter θ, we can derive the estimated intensity function for

the lifetime variable Y2 for a given cohort t0 and a given age y2 by using the following formula:

λ(y2, t0, θ) = f2(y2, t0, θ)/S2(y2, t0, θ).

This is the mortality intensity, when the unobserved heterogeneity of autonomy status is inte-

grated out. Therefore, it is a weighted average of the intensity functions of the two subgroups:

autonomous and non autonomous. Indeed, using the expression of the p.d.f. f2 and of the
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survivor function S2, we have:

λ(y2) = λ2|1(y2)

∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2)

+ λ2(y2) e−Λ1(y2)−Λ2(y2)∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2)

= λ2|1(y2)p(y2) + λ2(y2)
(

1− p(y2)
)
, (29)

where we have omitted the cohort index t0, as well as the parameter θ to simplify the notations.

The weight p(y2) is the proportion of people in LTC among the whole Population-at-Risk who

survive up to a given age y2 and is given by:

p(y2) =

∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t|t)dt+ e−Λ1(y2)−Λ2(y2)

= P[0 < Y1 < y2, y2 < Y2]
P[y2 < Y2]

= P[0 < Y1 < y2|Y2 > y2]. (30)

This probability is the prevalence at age y2 and depends also on the cohort t0.

Then we can compare the values of this intensity function of Y2 at each integer age to the

historical values of the dataset for the corresponding cohort and age, to look at the goodness of

fit of the model in terms of the observed intensity, first by cohort (see Figure 12), then by age

(see Figure 13). These figures show a rather good fit for the mortality intensities. Then we plot

the latent baseline hazard functions λ1, λ2, and λ2|1 (see Figure 14). The model predicts that

the mortality intensity of dependent people is larger than that of autonomous people (λ2|1 > λ2),

which is often the case in reality.

We plot also the evolution of the prevalence function p(y2, t0) for different cohorts (see Figure

15).
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Figure 12: Fit of the observable mortality rates, for six different cohorts. Dotted line: historical
data. Full line: the model (for both the past and future years). The x coordinate represents the
age.
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Figure 13: Fit of the observable mortality rates, for nine different ages. Dotted line: historical
data. Full line: the model (for both the past and future years). The x coordinate represents the
cohort.
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Figure 14: Evolution of the model based baseline hazard functions, respectively λ1(x) (for the
intensity of entry, dashed line), λ2(x) (for mortality without LTC, full line) and λ3(x) (mortality
of person in LTC, dotted line).
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Figure 15: Evolution of the model based proportion of dependent people at a given age for each
cohort.

The model predicts that the prevalence begins from 0 at young ages to around 40 percent at
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age 110 for the cohort 1900, which corresponds roughly to the observed cross-sectional statistics.

This prevalence decreases in t0 for each given age. This proportion reaches 10% at age 82, 85

and 88 for the following cohorts: 1900, 1920, 1940, respectively. This corresponds approximately

to an increase of 1.8 months per annum for the age of entry into LTC to be compared with the

3-month increase for the cross-sectional life expectancy.

A.4.2 Semi-Markov model with deterministic exponential factor

As the previous Markov model, the parameter is estimated by maximizing the log-likelihood

function. The estimated parameters are reported below:

Table 5: Estimation of the semi-Markov model with deterministic exponential factor; all param-
eters are significant at 1% level.

w1 0.000647 (***)
w2 0.001983 (***)
w3 0.005249 (***)
w4 0.000234 (***)
w5 0.003322 (***)
w6 0.014902 (***)
w7 0.000354 (***)
w8 0.003278 (***)
w9 0.002738 (***)
w10 0.001389 (***)
w11 0.003532 (***)
w12 0.020574 (***)
c0,a 0.234175 (***)
c0,b 0.010442 (***)
c1,a 0.0037 (***)
c1,b 0.006254 (***)
β1 0.014494 (***)
β2 0.020769 (***)
m 0.034201 (***)

To illustrate the fit of the model, we compare for different cohorts the value of the estimated

intensity λ(y2, t0, θ) with the historical mortality intensity function given by the data (Figure

16).
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Figure 16: Fit of the observable mortality rates, for six different cohorts. Dotted line: historical
data. Full line: the model (for both the past and the future years). The x coordinate represents
the age.

The semi-Markov model provides also a very good fit. Then we plot (see Figure 17), for

different cohorts, the baseline hazard functions λ1 and λ2, since they depend only on the age y2.

For the mortality intensity of people in LTC, we plot, for each cohort, the averaged mortality

intensity of all the people aged y2 in LTC : ¨λ2|1, say. It is defined for each cohort by:

¨λ2|1(y2) =

∫ y2

0
λ1(z)λ2|1(y2 − z|z)e−Λ1(z)−Λ2(z)−Λ2|1(y2−z|z)dz∫ y2

0
λ1(z)e−Λ1(z)−Λ2(z)−Λ2|1(y2−z|z)dz

.

Then we can check that equations (29) and (30) still hold when we replace λ2|1(y2) by ¨λ2|1(y2).

Figure 18 plots, for several cohorts, the evolution of the proportion of people in LTC.
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Figure 17: Evolution of the baseline hazard functions, respectively, λ1(x) (for the probability of
entering into LTC, dashed line), λ2(x) (for mortality without LTC, full line) and λ̈3 (mortality
of people in LTC, dotted line).
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Figure 18: Evolution of model based proportion of people in LTC, for each cohort.
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Appendix 5 : Properties of the latent CIR process

This section provides a brief summary of the properties of the CIR process satisfying:

dFt = −mFt + σ
√
FtdWt.

Lemma 3. The stochastic differential equation (SDE) defines a unique strong solution. With

probability 1, this solution attains 0 in a stochastic finite time, and remains at 0 once it reaches

it.

Proof. The SDE verifies the condition that both the drift function and the diffusion function are

Liptschitz with at most linear growth; therefore the SDE has a unique strong solution. Let us

denote by τ the potential hitting time at 0.

The proof that τ < 0 almost surely involves the knowledge that a CIR process is a time-changed

squared Bessel process [see e.g. Revuz and Yor (1999)].

Once the solution hits 0, it remains at 0 thereafter, as a consequence of the uniqueness of the

solution from that date on.

It is also useful to recall the link between the continuous time CIR process and the discrete

time autoregressive gamma process [ARG, see e.g. Gouriéroux and Jasiak (2006)], both of which

are affine processes. Let us first give the definition of an ARG process.

Definition 1. A random variable F follows a noncentered gamma distribution γ̃(δ, β, c) if and

only if there exists a Poisson variable with parameter β, Z ∼ P(β) such that:

F ∼ cγ(δ + Z),

where γ is the standard gamma distribution.

Definition 2. A process (Ft, t = 1, 2, ...) is an autoregressive gamma process (of order 1, with

constant coefficients δ, β and c) if the conditional distribution of Ft given Ft−1 is γ̃(δ, βFt−1, c).

Lemma 4. The CIR process defined by (16) is such that the discrete time process (Ft, t = 1, 2...T )

is an autoregressive gamma (ARG) process with coefficients δ = 0, c = σ2 1−e−m

2m , β = e−m/c.

The ARG process is positive before the hitting time τ of the CIR process, and remains null

afterwards.

Proof. See Gouriéroux and Jasiak (2006).
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Since δ = 0, and Z is a Poisson variable, there is a non zero probability that this ARG process

hits zero at each date t. But this probability is negligible when the value of the process is large,

or when σ is small.

Appendix 6 : Simulating the unobserved paths

The methodology used in this section is similar to that by Duffie et al. (2009). For simplicity, let

us denote the unobserved frailty process by F = (F1, F2, ..., FT ) where T is the number of values

of the dynamic factor process F .

A.6.1 The Gibbs sampler

In order to generate samples of the path (F1, ..., FT ) conditional both on the value of parameter

θ and all the observations Y2, we can define a Markov chain M = (Mk) =
(

(F1,k, F2,k, ..., FT,k)
)

with values on the T -dimensional domain (R+)T . If this multivariate chain is stationary with

stationary distribution F | θ, Y2, then for large k, Mk will correspond to a drawing from this

distribution. Such a chain can be constructed by the multi-step Gibbs sampler. The following

theorem explains its principle:

Theorem 1 (Hammersley and Clifford (1968)). Let (X1, X2, ..., Xp) be a distribution with joint

density function f(x1, x2, ..., xp) then for all (ξ1, ξ2, ..., ξp) ∈ supp(f), we have:

f(x1, ..., xp) =
p∏
i=1

f(−j)(xj |x1,...xj−1,ξj+1,...,ξp)

f(−j)(ξj |x1,...xj−1,ξj+1,...,ξp)
,

where f(−j)(· | x1, ...xj−1, xj+1, ..., xp) is the conditional distribution function of Xj given all

other Xi for i 6= j. These conditional distributions are called full conditional and the theorem

states that they fully determine the joint distribution.

Now let us explain how to define the multivariate Markov chain (Mk):

i) Initialize the value M1 = (F1,1, F2,1, ..., FT,1). For instance we set Ft,1 = exp(−m(t−1)) for

all t = 1, ..., T , which corresponds to a deterministic factor as in the model with deterministic

factor.

ii) Given the k−th value of the chain Mk = (F1,k, F2,k, ..., FT,k), draw recursively the values
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F1,k+1, F2,k+1, ..., FT,k+1 in the following conditional univariate distributions:

F1,k+1 | F2,k, ..., FT,k, Y2, θ

F2,k+1 | F1,k+1, F3,k..., FT,k, Y2, θ

F3,k+1 | F1,k+1, F2,k+1, F4,k, ..., FT,k, Y2, θ

· · ·

FT,k+1 | F1,k+1, F2,k+1, ..., FT−1,k+1, Y2, θ (31)

In other words, the chain is updated component by component, by drawing at each iteration

in a univariate distribution of the Ft,k+1 conditional on the parameter θ, the current values

of other components of F , as well as the observation Y2. This approach above cannot be

used directly since the conditional distributions do not have forms appropriate for such a

drawing34. Indeed, only the p.d.f. is easily calculable, up to a multiple constant (see below).

But samples from these distributions can be approximated by means of the Metropolis-

Hasting algorithm. This is explained in the next subsection.

iii) Store the new value of the chain Mk+1 = (F1,k+1, F2,k+1, ..., FT,k+1) and return to step ii).

To generate each of the T distributions given by (31), we employ a Metropolis-Hasting algorithm.

Thus to generate the first K values of the Markov chain (Mk), we need to use KT times the

Metropolis-Hasting algorithm.

A.6.2 The Metropolis-Hasting algorithm

Now let us explain the Metropolis-Hasting algorithm we used in the previous step ii). For each

t, we should draw from the distribution

Ft,k+1 | F1,k+1, ..., Ft−1,k+1, Ft+1,k, ..., FT,k, Y2, θ,

or Ft | F(−t), Y2, θ for simplicity, where F(−t) denotes the vector (F1, F2, ..., Ft−1, Ft+1, ..., FT ).

Let us first explain how to calculate the p.d.f. of this conditional distribution.

Using the same proof as in Duffie et al. (2009), especially the Markov property of F , we have:

p(Ft | F(−t), Y2, θ) ∝ L(θ | Y2, F )p(Ft | Ft−1, θ)p(Ft | Ft+1, θ). (32)

34More precisely, the corresponding cumulative distribution function, which should be used when simulating
from a given distribution, cannot be calculated.
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The right hand side is the product of two terms. The first is L(θ | Y2, F ), which is the likelihood

of the lifetime data with given values F of the frailty process, that is,

L(θ | Y2, F ) = exp
∑
t0

{ ∑
i∈ηu

t0

log f2(y2,i, t0, F ) +
∑
i∈ηc

t0

logS2(y2,i, t0, F )
}
,

where the expressions of f2(y2,i, t0, F ) and S2(y2,i, t0, F ) are the integrand in the right hand side

of equations (27) and (28), respectively. This can be calculated for given values of θ and F . The

second term is p(Ft | Ft−1, θ)p(Ft | Ft+1, θ), which involves only the one-step transition density

of the process (Ft) (given θ). Since it is an autoregressive gamma process, this transition density

can be calculated in an exact way. Therefore the second term is equally easy to calculate. Thus

the density function given by (32) can be evaluated at each point up to a multiple constant.

Instead of drawing directly from this distribution, we can define an auxiliary univariate Markov

chain denoted by (F (n)
t,k , n = 1, 2, ...), or F

(n)
t for simplicity. This chain is also stationary and

its stationary distribution is given by (32). Thus we can approximate Ft,k+1 by F
(n)
t for a large

value of n. The transition rule of this Markov chain F
(n)
t is described as follows:

1. Initialize the chain by setting F
(1)
t = 1.

2. For n = 2, 3, ..., draw a candidate from a proposal distribution, for instance, we can choose

the log-normal distribution35:

f ∼ F (n−1)
t N (0, σ),

where the standard deviation of the proposal density is chosen arbitrarily, say, σp = 0.01.

3. Compute

α =
p(Ft = f | F(−t), Y2, θ)

p(Ft = F
(n−1)
t | F(−t), Y2, θ)

, (33)

where both the numerator and the denominator can be calculated by equation (32).

4. Draw a uniform variable u ∼ U([0, 1]) and set the n−th value Fnt by the following rule: 36

F
(n)
t =

 f, if u < α

F
(n−1)
t , otherwise

35This choice is mainly motivated by simplicity reasons. Indeed it allows for a symmetric conditional density

since p(f |F (n−1)
t ) = p(F (n−1)

t |f), so that there is no need to compute the ratio
p(f |F (n−1)

t
)

p(F
(n−1)
t

|f)
. Besides, we should

use a positive distribution, (since the factor F is nonnegative), which is the case for the log-normal distribution.
36The equation B4 in Duffie et al. (2009)[Appendix C] is not correct since their α does not depend on the factor

p(Ft | Ft−1, θ)p(Ft | Ft+1, θ).
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To ensure the convergence of this univariate Markov chain to its stationary distribution

(32), we take, say, the 300 th value of the chain as a sample from this distribution, which

is used in step ii) of the Gibbs sampling algorithm.

Appendix 7 : Identification proof of Proposition 3

Remind that with a deterministic exponential factor, the age-cohort and age-calendar time models

are equivalent and that the survivor function for cohort t0 is given by:

S2(y2, t0) =
∫ y2

0
[a1(x) + b̃1(x)Ft0 ] exp

(
−
∫ x

0
[a1(s) + b̃1(s)Ft0 ]ds

−
∫ x

0
[a2(s) + b̃2(s)Ft0 ]ds−

∫ y2,i

x

[a3(s) + b̃3(s)Ft0 ]ds
)
dx

+ exp
(
−
∫ y2

0
[a1(x) + b̃1(x)Ft0 ]dx−

∫ y2

0
[a2(x) + b̃2(x)Ft0 ]dx

)
. (34)

A.7.1 Identification of m.

When y2 → 0, we have, for t1 6= t0 6= t2 6= t1,

lim
y2→0

λ(y2, t2)− λ(y2, t0)
λ(y2, t1)− λ(y2, t0) = e−mt2 − e−mt0

e−mt1 − e−mt0
.

Since the LHS in the equation above is observable, m is point identified. Note that the identifica-

tion assertion remains valid even for a general functional parameter (Ft) without the exponential

specification, under the limiting longevity assumption lim
t→∞

Ft = 0. Indeed, under this assump-

tion the ratio
Ft2−1
Ft1−1 is identified, where we remind that Ft0 = 1. If there is another path (F ′t )

such that
Ft2 − 1
Ft1 − 1 =

F ′t2 − 1
F ′t1 − 1 ,

then
Ft2−1
F ′t2
−1 = Ft1−1

F ′t1
−1 is equal to a constant that does not depend on t2, t1. Let t2 go to infinity,

by using the limiting condition lim
t→∞

Ft = 0, we deduce that this constant equals 1. Thus the

path of the process (Ft) is nonparametrically identified. Moreover, the following identification of

functional parameters remains valid for a general form of (Ft) and the age-cohort specification,

but not the age-calendar time model, except with the exponential specification. See also the

discussion in Section 4.2.2.
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A.7.2 Identification of functional parameters a1, a2, a3, b1, b2, b3.

Under the assumption that all functions37 a1, b1, a2, b2, a3, b3 are continuous, the conditional

survivor function S(y2|t0) = S(y2|F ) is an analytic function of F for a given y. Therefore it is

equivalent to know this function or to know all its derivatives for any pre-specified t0. These

derivatives are simpler to deal with, especially if t0 = ∞; equivalently we look at the derivative

at F = 0. The case t0 <∞ is similar38. Thus we obtain, at order 0,

∫ y2

0
a1(x)e−A1(x)−A2(x)−A3(y2)+A3(x)dx+ e−A1(y2)−A2(y2) = S(y2, F = 0), (35)

and at each order n ≥ 1,

∫ y2

0
e−A1(x)−A2(x)−A3(y2)+A3(x)

(
a1(x)(−1)n

n!
[
B1(x) +B2(x) +B3(y2)−B3(x)

]n
+ b1(x)(−1)n−1

(n− 1)!
[
B1(x) +B2(x) +B3(y2)−B3(x)

]n−1
)
dx

+ e−A1(y2)−A2(y2) (−1)n

n!

[
B1(y2) +B2(y2)

]n
= (−1)n ∂S

∂F
(y2, F = 0), (36)

for all y2 ∈ [0, T ], where the capital letters denote the cumulative integrals of the corresponding

lower case functions.

Except in some special cases, one expects that (35) and (36) give a non degenerated infinite

system of functional equations that a1, b1, a2, b2, a3, b3 should satisfy. This raises hopes that the

solution to such a system is generically unique. Let us first look at Case 1 in Proposition 3.

Case 1 (global identification). If b1 + b2 = b3, the n−th equation becomes:

B3(y2)n−1
∫ y2

0
e−A1(x)−A2(x)−A3(y2)+A3(x)

(
a1(x)(−1)n

n! B3(y2)− b1(x)(−1)n−1

(n− 1)!

)
dx

+ e−A1(y2)−A2(y2) (−1)n

n! B3(y2)n = (−1)n ∂S
∂F

(y2, F = 0).

For y > 0, B3(y2) > 0, and large n, the LHS of the equation above is equivalent to:

B3(y2)n−1 (−1)n

n!

∫ y2

0
e−A1(x)−A2(x)−A3(y2)+A3(x)b1(x)dx.

37Strictly speaking, the functional parameters are a1, a2, a3, b̃1, b̃2, b̃3. For ease of exposure, we omit the tilde
symbol on b1, b2, b3 for the rest of this section.

38If t0 < ∞, we should look at the sequence of derivatives of the function S2(y2|Ft0 ) for any given y2 at the
point Ft0 6= 0. Their expressions are more complicated than at point Ft0 = 0.
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ThereforeB3(y2) is globally identified39, as well as the constant (in n)
∫ y2

0 e−A1(x)−A2(x)−A3(y2)+A3(x)b1(x)dx.

Then by suppressing this dominating term, the LHS of the previous n−th equation reduces to

the LHS in (35). Thus the infinite system reduces to only three independent equations and the

model is not identified.

Case 2 (global identification). There exists constants c, c′ > 0 such that b1 + b2 − b3 ≥ c

and |b2 − b3| > c′. For expository purpose let us introduce the following functions:

C(y) = e−A1(y)−A2(y),

D(y) = B1(y) +B2(y),

fn(y) =
∫ y

0
e−A1−A2−A3(y)+A3b1

[
B1 +B2 +B3(y)−B3

]n
dx,

gn(y) =
∫ y

0
e−A1−A2−A3(y)+A3a1

[
B1 +B2 +B3(y)−B3

]n
dx.

Since B1(x)+B2(x)+B3(y)−B3(x) is positive, increasing in x, and the term e−A1−A2−A3(y)+A3b1

is positive and bounded, we can prove that40:

(n+ 1)fn(y) ∼ e−A1(y)−A2(y)b1(y)
b1(y) + b2(y)− b3(y)

[
B1(y) +B2(y)

]n+1
(37)

when n goes to infinity and

(n+ 1)gn(y) ∼ e−A1(y)−A2(y)a1(y)
b1(y) + b2(y)− b3(y)

[
B1(y) +B2(y)

]n+1
.

39By global identification, we refer to the standard definition of identification, that is, a function is identified if
at any point y2, the value of this function is uniquely determined. This notion has to be distinguished from the
concept of local (nonparametric) identification, as in Chen et al. (2014), detailed later on in the proof.

40Intuitively, when n becomes large, the contribution of the integrand at a point x that is away from y2 is

negligible since
[
B1(x) +B2(x) +B3(y)−B3(x)

]n
is much smaller than

[
B1(y) +B2(y)

]n
. Thus the asymptotic

behavior of this integral depends only on the behavior of the integrand in a neighbourhood of point y. To get
another informal explanation of this result, we can use the integration by parts:

(n+ 1)fn(y) =
e−A1(y)−A2(y)b1(y)
b1(y) + b2(y)− b3(y)

[
B1(y) +B2(y)

]n+1
−

e−A3(y)b1(0)
b1(0) + b2(0)− b3(0)

B3(y)n+1

−
∫ y

0

∂

∂x

( e−A1−A2−A3(y)+A3b1

b1 + b2 − b3

)[
B1 +B2 +B3(y)−B3

]n+1
dx

Since
B1(y)+B2(y)

B3(y) > 1, the second term is negligible with respect to the first one; if the partial derivative in

the third term exists and is bounded, then the third term is O(fn(y)) when n goes to infinity. By rearranging
this equation, we get the desired asymptotic equivalent. The formal proof of this result uses solely real analysis
techniques and does not requires the existence of the partial derivative which is needed the integration by parts.
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Then we can study the behavior of the LHS of (36). We have:

(−1)n ∂S
∂F

(y2, F = 0) = (−1)n

n! gn(y) + (−1)n−1

(n− 1)! fn−1(y) + e−A1(y2)−A2(y2) (−1)n

n!

[
B1(y2) +B2(y2)

]n
∼ e−A1(y2)−A2(y2) (−1)n

n!

[
B1(y2) +B2(y2)

]n(
1− b1(y)

b1(y) + b2(y)− b3(y)

)
provided that b2 − b3 is never null. Then B1(y) + B2(y) is globally identified, as well as the

function
e−A1(y)−A2(y)

(
b2(y)−b3(y)

)
b1(y)+b2(y)−b3(y) .

Case 3 (global identification). Similarly, if there exists d > 0 such that b1 + b2 − b3 ≤ −d,

then (n + 1)fn(y) ∼ e−A3(y)b1(0)
b1(0)+b2(0)−b3(0)B3(y)n. B3(y) is globally identified, as well as e−A3(y), up

to an additive constant. Since A1(0) = 0, the constant is uniquely determined. Therefore A3 is

identified as well.

Cases 2,3 (local identification). Let us finally prove that the other functions are locally

identified. We do this by following Chen et al. (2014), who give the definition of local identification

on a functional space. Roughly speaking, a function h is locally identified at h0, if h0 is the unique

solution to a certain system of equations when the unknown function is restricted to be in a certain

neighbourhood of h0 [see Definition 1, Chen et al. (2014)]. In our case the neighborhood has to

be defined on an appropriate functional space and we have to find a functional operator, whose

Gâteaux derivative is non degenerated. This is the infinite dimensional analogue of the standard

full rank condition for local identification of parametric models. As explained in Chen et al.

(2014), on the contrary to the finite dimensional case where the rank condition is also sufficient,

in an infinite dimensional space, this condition alone implies only a rather weak notion of local

identification [see Theorem 2, Chen et al. (2014)].

For expository purpose, let us focus on Case 3. For Case 2, the calculations are slightly more

complicated, but the principle stays the same.

Let us denote by B = C([0, T ]) the space of all continuous functions on the age domain [0, T ],

where T is a fixed constant, that is, we assume that the observations are only available up to

a maximum age, say, T = 110. We have deliberately chosen a fixed upper bound41 so that the

functional space B, topologized by the uniform norm ||f || = max
t∈[0,T ]

|f(t)|, is a Banach space. This

fixed upper bound is not restrictive since, if we can prove local identification for any given T ,

then we will have local identification on the whole age domain [0,∞[. Also remind that on the

41The assumption of a fixed upper bound for the observable attained age is compatible with the previous
assumption t0 =∞, on the observed cohort.
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space B, all functions are bounded, and all positive functions are lower bounded by a positive

constant. Under this framework, we have the following Lemma, which is a direct consequence of

Theorem 2 in Chen et al. (2014):

Lemma 5. The functions (a1, b1, a2, b2) are locally identified in the sense of Theorem 2 in Chen

et al. (2014) if the following four conditions are satisfied:

i) For each n ≥ 1, the LHS of (36) is a continuous operator from A := B4 to space B, with the

corresponding uniform topology for each space. These operators are denoted mn : A 7→ B.

ii) For each order n ≥ 1, the operator mn is Fréchet differentiable [see e.g. Chen et al. (2014)

Equation 2.1]. For each element α ∈ A we denote by h 7→ m′n(h) the Fréchet derivative at

point α, where h is the generic element of the space A, n ≥ 0. This derivative depends on

the point α ∈ A, but we will omit the index α.

iii) The intersection of the null spaces ∩∞n=1Ker m′n is reduced to {0}.

These conditions are quite intuitive. Condition i) is a regularity condition at both infinity

(since y2 ≤ T < ∞) and zero (since the integrands are all bounded at zero). It excludes in

particular mixed proportional hazard (MPH) models with heavy-tailed unobserved heterogeneity

distribution and an intensity function that is equal to infinity at time zero [see e.g. Ridder

(1990)]. Condition ii), that is the differentiability of these operators, is clearly satisfied, since

each operator is a compounding of elementary (Gâteaux−) differentiable operators. Condition

iii) is Assumption 1 in Chen et al. (2014), and is the infinite dimensional analogue of the full

rank condition.

Let us give the proof of the lemma. For given (a3, b3) as well as path of (Ft), the survivor

function S(y|F ) is a bivariate continuous function in arguments (y, F ), that is S(y|F ) ∈ C([0, T ]×

[0, 1]) which is a Banach space. Denote by M the operator from A to C([0, T ] × [0, 1]), which

maps the point (a1, b1, a2, b2) to the corresponding survivor function S(y|F ). Then by Chen

et al. (2014), it suffices to prove that M ′, the Gâteaux derivative of M is nonsingular42. Because

S(y|F ) (as well as its Gâteaux derivative) is analytical in F , M ′(y, F ) = 0 is equivalent to the

derivatives of any order with respect to F being null functions. These derivatives are exactly43

the sequence m′n.

42M ′(
(
da1, db1, da2, db2)

)
is a bivariate function in arguments y and F .

43We have used the fact that it is equivalent to first take derivative with respect to F , then the Gâteaux
derivative with respect to (a1, b1, a2, b2) or conversely.
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Let us finally check that Condition iii) is satisfied in our framework. The expression of m′n(h)

at point (a1, b1, a2, b2), for any h = (da1, db1, da2, db2) ∈ A, is the following:

(−1)n(n− 1)!m′n(h)(y)

=
∫ y

0
e−A1−A2−A3(y)+A3

a1

n

[
B1 +B2 +B3(y)−B3

]n[
− dA1 − dA2

]
dx

+
∫ y

0
e−A1−A2−A3(y)+A3

da1

n

[
B1 +B2 +B3(y)−B3

]n
dx

+
∫ y

0
e−A1−A2−A3(y)+A3a1

[
B1 +B2 +B3(y)−B3

]n−1[
dB1 + dB2

]
dx

−
∫ y

0
e−A1−A2−A3(y)+A3b1

[
B1 +B2 +B3(y)−B3

]n−1[
− dA1 − dA2

]
dx

−
∫ y

0
e−A1−A2−A3(y)+A3db1

[
B1 +B2 +B3(y)−B3

]n−1
dx

−
∫ y

0
e−A1−A2−A3(y)+A3(n− 1)b1

[
B1 +B2 +B3(y)−B3

]n−2[
dB1 + dB2

]
dx

+ e−A1(y)−A2(y)

[
B1(y) +B2(y)

]n−1

n

(
−
[
dA1(y) + dA2(y)

][
B1(y) +B2(y)

]
+ n

[
dB1(y) + dB2(y)

])
,

(38)

where dA1, dA2, .. are cumulative integral of the corresponding lower case functions. Let us

explain this formula: lines 1-3 (resp. lines 4-6 and line 7) are the Gâteaux derivatives of the first

(resp. second and third) term of the LHS of (36).

Assume now that m′n(h) = 0 for a certain function h = (da1, da2, db1, db2) and for all n ≥ 0.

Similarly as (37), when n goes to infinity, m′n(h) is equivalent to:

− C(y)
b1(0) + b2(0)− b3(0)

(
b1(y)dB1(y)− (b2(y)− b3(y))dB2(y)

)
Bn−1

3 (y)

provided that this term is non null. Thus we should have:

b1(y)dB1(y)− (b2(y)− b3(y))dB2(y) = 0 (39)

for all y. Then similarly, m′n(h) is equivalent to:

− C(y)
(n− 1)

[
b1(0) + b2(0)− b3(0)

](a1(y)dB1(y)+a2(y)dB2(y)+b1(y)dA1(y)−(b2(y)−b3(y))dA2(y)
)
Bn3 (y),

63



provided that this term is non null. Therefore:

a1(y)dB1(y) + a1(y)dB2(y) + b1(y)dA1(y)− (b2(y)− b3(y))dA2(y) = 0. (40)

Similarly, we have

a1(y)dA1(y)− a1(y)dA2(y) = 0, (41)

and finally

− C(y)Dn(y)
n

dA2(y) + C(y)Dn−1(y)dA1(y) = 0. (42)

Combining (39) to (42) we can get dA1 = dA2 = 0, and then we have dB1 = dB2 = 0, except

when:
b3 − b2
b1

= a1

a1
= 1,

which is not allowed since Case 3 assumes b1 + b2− b3 < 0. Thus Condition iii) above is satisfied.
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