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Abstract This paper considers the statistical inference of the
class of asymmetric power-transformed GARCH(1,1) models in pres-
ence of possible explosiveness. We study the explosive behavior of
volatility when the strict stationarity condition is not met. This al-
lows us to establish the asymptotic normality of the quasi-maximum
likelihood estimator (QMLE) of the parameter, including the power
but without the intercept, when strict stationarity does not hold. Two
important issues can be tested in this framework: asymmetry and
stationarity. The tests exploit the existence of a universal estimator
of the asymptotic covariance matrix of the QMLE. By establishing
the local asymptotic normality (LAN) property in this nonstationary
framework, we can also study optimality issues.
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1. Introduction. Following more than twenty years of tremendous de-
velopment of the theory of unit roots in linear time series models (see the
seminal papers by Dickey and Fuller (1979), and Phillips and Perron (1988)),
there has been, in the last decade, much interest in the statistical analysis
of non linear time series models under non stationarity assumptions (see e.g.
Karlsen and Tjøstheim (2001), Karlsen, Myklebust and Tjøstheim (2007),
Ling and Li (2008), Aue and Horvàth (2011)). In the framework of GARCH
(Generalized Autoregressive Conditional Heteroscedasticity) models, Jensen
and Rahbek (2004a, 2004b) were the first to establish an asymptotic the-
ory for the quasi-maximum likelihood estimator (QMLE) of non-stationary
GARCH(1,1), assuming that the intercept is fixed to an arbitrary value.
Aknouche, Al-Eid and Hmeid (2011), Aknouche and Al-Eid (2012) stud-
ied the properties of weighted least-squares estimators. Francq and Zakoïan
(2012) established the asymptotic properties of the standard QMLE of the
complete parameter vector: they showed that, while the intercept cannot be
consistently estimated, the QMLE of the remaining parameters is consistent
(in the weak sense at the frontier of the stationarity region, and in the strong
sense outside) and asymptotically normal with or without strict stationarity.

Financial series are well-known to present conditional asymmetry features,
in the sense that large negative returns tend to have more impact on future
volatilities than large positive returns of the same magnitude. This stylized
fact, known as the leverage effect, was first documented by Black (1976), and
led to various generalizations of the GARCH models of the first generation
(see among others, Glosten, Jaganathan and Runkle (1993), Rabemananjara
and Zakoïan (1993), Higgins and Bera (1992), Li and Li (1996), Francq
and Zakoïan (2010)). Motivated by the Box-Cox transformation, Hwang and
Kim (2004) introduced a power transformed ARCH model, and the GARCH
extension was studied by Pan, Wang and Tong (2008). In this paper we
consider an asymmetric power-transformed GARCH(1,1) model defined, for
a given positive constant δ, by

(1.1)

{
ǫt = h

1/δ
t ηt

ht = ω0 + α0+(ǫ
+
t−1)

δ + α0−(−ǫ−t−1)
δ + β0ht−1

with initial values ǫ0 and h0 ≥ 0, where ω0 > 0, α0+ ≥ 0, α0− ≥ 0, β0 ≥ 0,
and using the notation x+ = max(x, 0), x− = min(x, 0). In this model, (ηt)
is a sequence of independent and identically distributed (iid) variables such
that

(1.2) Eη21 = 1 and P (η21 = 1) < 1.
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Most commonly used extensions of the standard GARCH of Engle (1982)
and Bollerslev (1986) can be written in the form (1.1).

The first goal of the present paper is to derive a strict stationarity test in
the framework of Model (1.1). In this model, strict stationarity is character-
ized by the negativity of the so-called top Lyapunov exponent (see Bougerol
and Picard (1992)), which depends on the parameters (except ω) and the
errors distribution. By deriving the asymptotic behavior of the QMLE of
the top-Lyapunov exponent, under stationarity and non stationarity, a strict
stationarity test can be derived. The second goal of the paper is to propose
a test for the symmetry assumption in Model (1.1), namely α0+ = α0−. Ex-
isting tests, to our knowledge, rely on the stationarity assumption. Our aim
is to derive a test which can be used without bothering about stationarity.

The rest of the paper is organized as follows. In Section 2, we study the
convergence of the volatility to infinity, in a model encompassing (1.1), when
stationarity does not hold. Section 3 is devoted to the asymptotic proper-
ties of the QMLE. In Section 4, we consider strict stationarity testing and
asymmetry testing. In Section 5, the LAN property is established and used
to derive the local asymptotic power of the proposed tests. Local alternative
allowing for an arbitrary rate of convergence with respect to ω0 are consid-
ered. Optimality issues are discussed. Necessary and sufficient conditions on
the noise density are derived for the tests to be uniformly locally asymptot-
ically most powerful. Section 6 is devoted to the case where the power δ is
unknown and is jointly estimated with the volatility coefficients. Proofs and
technical lemmas are in Section 7. The possibility of extensions is discussed
in Section 8. Due to space restrictions, several lemmas and proofs, along with
a study of the finite sample performance of the stationarity and asymmetry
tests and an empirical application, are included in the appendix.

2. Explosivity in the augmented GARCH(1,1). In this section, we
analyze the convergence of the volatility to infinity, for a class of augmented
GARCH processes encompassing (1.1) and many GARCH(1,1) models in-
troduced in the literature (see Hörmann, 2008). Given a sequence (ξt)t≥0, let
(ǫt)t≥1 be defined by

(2.1)

{
ǫt = h

1/δ
t ξt, t = 1, 2, . . .

ht = ω(ξt−1) + a(ξt−1)ht−1

where δ is a positive constant, h0 ≥ 0 is a given initial value, and the functions
ω(·) and a(·) satisfy ω : R → [ω,+∞) and a : R → [0,+∞), for some ω > 0.
When (ξt) is assumed to be a white noise, (ǫt) is called an augmented GARCH
process. We purposely use a different notation for ξt in (2.1) and ηt in (1.1)
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because, for the moment, we only assume that (ξt) is stationary and ergodic.
Define in R ∪ {+∞} the top Lyapunov exponent

γ = E log a(ξ1).

The following proposition is an extension of results proven for the standard
GARCH(1,1) by Nelson (1990) and completed by Klüppelberg, Lindner, and
Maller (2004), and Francq and Zakoïan (2012).

Proposition 2.1. For the process (ǫt) satisfying (2.1), the following
properties hold.

i) When γ > 0, ht → ∞ a.s. at an exponential rate: for any ρ > e−γ ,

ρtht → ∞ and, if E| log(ξ21)| <∞, ρtǫ2t → ∞ a.s. as t→ ∞.

ii) When γ = 0 and (ξt) is time reversible (i.e. for all k the distributions
of (ξt, ξt−1, . . . , ξt−k) and (ξt−k, . . . , ξt−1, ξt) are identical), the following
convergences in probability hold as t→ ∞,

ht → ∞ and, if E| log(ξ21)| <∞, ǫ2t → ∞.

Moreover, if ψ is a decreasing bijection from (0,∞) to (0,∞), if
Eψ(h1) <∞ (resp. Eψ(ǫ21) <∞ and E| log(ξ21)| <∞), then

(2.2) ψ(ht) → 0 (resp. ψ(ǫ2t ) → 0) in L1.

The main ideas of the proof are as follows. The a.s. convergence
of ht to infinity in the case γ > 0 follows from the minoration
log ht ≥ log ω +

∑t−1
i=1 log a(ξt−i), and the fact that the latter sum is

strictly increasing, in average, as t goes to infinity. The argument is in
failure when γ = 0, the expectation of the sum being equal to zero.
The key argument in this case is that the sequence (ht) is increas-
ing in distribution. Indeed, taking h0 = 0 we have h1 = ω(ξ0) and

h2 = ω(ξ1) + a(ξ0)ω(ξ0)
d
= ω(ξ0) + a(ξ1)ω(ξ1) > h1 under the reversibility

assumption, and the same argument applies for any t > 0.

In the rest of the paper, these results will be applied with ξt = ηt to Model
(1.1), for which the top Lyapunov exponent is given by

γ0 = E log a0(η1), a0(x) = α0+(x
+)δ + α0−(−x−)δ + β0.
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3. Asymptotic properties of the QMLE. We wish to estimate ϑ0 =
(α0+, α0−, β0)′ from observations ǫt, t = 1, . . . , n, in the stationary and the
explosive cases under mild assumption. Denote by θ = (ω,α+, α−, β)′ the
parameter and define the QMLE as any measurable solution of
(3.1)

θ̂n = (ω̂n, α̂n+, α̂n−, β̂n)
′ = argmin

θ∈Θ
1

n

n∑

t=1

ℓt(θ), ℓt(θ) =
ǫ2t

σ2t (θ)
+ log σ2t (θ),

where Θ is a compact subset of (0,∞)4 containing the true value θ0 =
(ω0, α0+, α0−, β0)′, and σδt (θ) = ω + α+(ǫ

+
t−1)

δ + α−(−ǫ−t−1)
δ + βσδt−1(θ) for

t = 1, . . . , n (with initial values for ǫ0 and σδ0(θ)). The rescaled residuals are
defined by η̂t = ηt(θ̂n) where ηt(θ) = ǫt/σt(θ) for t = 1, . . . , n.

Write ϑ = (α+, α−, β)′ and let ϑ̂n =
(
α̂n+, α̂n−, β̂n

)′
.

3.1. Consistency and asymptotic normality of ϑ̂n. The following theorem
extends, to the non stationary framework, results obtained for the stationary
case (see Hamadeh and Zakoïan (2011) and the references therein), which
we recall for convenience. We introduce the assumptions:

A1: The support of (ηt) contains at least 3 points and is not concentrated
on the positive or the negative line.

A2: When t tends to infinity,

E

{
1 +

t−1∑

i=1

a0(η1) . . . a0(ηi)

}−1

= o

(
1√
t

)
.

Note that A2, which is only required in the case γ0 = 0, is obviously satisfied
in the degenerate case when a(ηt) = 1, a.s., since the expectation is then
equal to 1/t.

To handle initial values we introduce the following notation. For any
asymptotically stationary process (Xt)t≥0 let E∞(Xt) = limt→∞E(Xt) pro-

vided this limit exists. Let also
◦
Θ denote the interior of Θ.

Theorem 3.1. Let (1.1)-(1.2) and A1 hold. Then the QMLE defined in
(3.1) satisfies the following properties.

i) Stationary case. When γ0 < 0, and β < 1 for all θ ∈ Θ,

θ̂n → θ0, a.s. as n→ ∞.

If, in addition, κη = Eη41 ∈ (1,∞) and θ0 ∈
◦
Θ, we have

(3.2)
√
n
(
θ̂n − θ0

)
d→ N

{
0, (κη − 1)J −1

}
, as n→ ∞,
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where

(3.3) J =
4

δ2
E∞

(
1

σ2δt

∂σδt
∂θ

∂σδt
∂θ′

(θ0)

)
.

ii) Explosive case. When γ0 > 0, if P (η1 = 0) = 0,

ϑ̂n → ϑ0, a.s. as n→ ∞.

If, in addition, κη ∈ (1,∞), E| log η21 | <∞ and θ0 ∈
◦
Θ,

(3.4)
√
n
(
ϑ̂n − ϑ0

)
d→ N

{
0, (κη − 1)I−1

}
,

as n→ ∞, where I is a positive definite matrix.
iii) At the boundary of the stationarity region. When γ0 = 0, if

P (η1 = 0) = 0, and ∀θ ∈ Θ, β < ‖1/a0(η1)‖−1
p for some p > 1,

ϑ̂n → ϑ0, in probability as n→ ∞.

If, in addition, θ0 ∈
◦
Θ, κη ∈ (1,∞), E| log η21| <∞ and A2 is satisfied,

then (3.4) holds.

The key ideas of the proof can be summarized as follows. First, we note
that θ̂n can be equivalently defined as the minimizer of 1

n

∑n
t=1{ℓt(θ) −

ℓt(θ0)}, where ℓt(θ)− ℓt(θ0) is a function of η2t and the ratio σδt (θ)/ht. While
the numerator and the denominator explode to infinity as t increases, the
ratio is close to a stationary process for t sufficiently large. For instance
in the symmetric ARCH(1) case (α+ = α− = α and β = 0), we have
σδt (θ)/ht → α/α0, a.s. in the strictly explosive case (in probability in the
case γ = 0). The situation is much more intricate when β 6= 0 but we can
show that, when γ > 0,

∣∣∣∣
σδt (θ)

ht
− vt(ϑ)

∣∣∣∣→ 0 a.s. as t→ ∞.

uniformly on some compact set included in Θ, where (vt(ϑ)) is a strictly
stationary and ergodic process. The a.s. convergence is replaced by a Lp

convergence in the case γ = 0. The consistency results are established by
showing that the criterion in which σδt (θ)/ht is replaced by vt(ϑ) produces
an estimator which is consistent to ϑ0. Similar arguments are used to prove
the asymptotic normality results, but we now show that

∥∥∥∥
1

σδt (θ)

∂σδt
∂ϑ

(θ0)− dt

∥∥∥∥→ 0 in Lp as t→ ∞,
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for some strictly stationary and ergodic process dt.
An explicit expression of I is given in the appendix. To conclude the

section, it can be noted that no asymptotically valid inference on ω0 can
be done in the nonstationary case (see Propositions 2.1 and 3.1 in Francq
and Zakoïan (2012), denoted hereafter FZ, for the standard GARCH(1,1)
model).

3.2. A universal estimator of the asymptotic variance of ϑ̂n. In view of
(3.2)-(3.3), when γ0 < 0 the asymptotic distribution of the QMLE ϑ̂n of ϑ0
(the parameter without ω0) is given by

(3.5)
√
n
(
ϑ̂n − ϑ0

)
d→ N

{
0, (κη − 1)I−1

∗
}
, as n→ ∞,

with

(3.6) I∗ = Jϑ,ϑ − Jϑ,ωJ −1
ω,ωJω,ϑ,

Jω,ω = 4
δ2
E∞

(
1
h2
t

∂σδ
t

∂ω
∂σδ

t

∂ω (θ0)
)
, Jϑ,ϑ = 4

δ2
E∞

(
1
h2
t

∂σδ
t

∂ϑ
∂σδ

t

∂ϑ′ (θ0)
)

and Jω,ϑ =

J ′
ϑ,ω = 4

δ2
E∞

(
1
h2
t

∂σδ
t

∂ω
∂σδ

t

∂ϑ′ (θ0)
)
. Letting

Ĵϑ,ϑ =
4

δ2
1

n

n∑

t=1

1

σ2δt (θ̂n)

∂σδt
∂ϑ

∂σδt
∂ϑ′

(θ̂n),

and defining Ĵϑ,ω, Ĵω,ω and Ĵω,ϑ accordingly, it can be shown that

Î∗ = Ĵϑ,ϑ − Ĵϑ,ωĴ −1
ω,ωĴω,ϑ,

is a strongly consistent estimator of I∗ in the stationary case γ0 < 0. The
following result shows that this estimator also provides a consistent estimator
of the asymptotic variance of ϑ̂n in the nonstationary case γ0 ≥ 0.

Theorem 3.2. Let the assumptions required for the consistency results
in Theorem 3.1 hold, assume κη ∈ (1,∞) and let κ̂η = n−1

∑n
t=1 η̂

4
t , where

η̂t = ǫt/σt(θ̂n).

i) When γ0 < 0, we have κ̂η → κη and Î∗ → I∗ a.s as n→ ∞.

ii) When γ0 > 0, we have κ̂η → κη and Î∗ → I a.s.

iii) When γ0 = 0, we have κ̂η → κη and, if A2 is satisfied, Î∗ → I in
probability.

In any case, (κ̂η−1)Î−1
∗ is a consistent estimator of the asymptotic variance

of the QMLE of ϑ0.
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It follows that asymptotically valid confidence intervals for the parameter
ϑ0 can be constructed without knowing if the underlying process is stationary
or not. This theorem also has interesting applications for testing problems,
which we now consider.

4. Testing. In this section we consider testing stationarity and testing
asymmetry.

4.1. Strict stationarity testing. Consider the strict stationarity testing
problems

(4.1) H0 : γ0 < 0 against H1 : γ0 ≥ 0,

and

(4.2) H0 : γ0 ≥ 0 against H1 : γ0 < 0.

Let γ̂n = γn(θ̂n) be the empirical estimator of γ0, with for any θ ∈ Θ,

(4.3) γn(θ) =
1

n

n∑

t=1

log
[
α+

{
η+t (θ)

}δ
+ α−

{
−η−t (θ)

}δ
+ β

]
,

where ηt(θ) = ǫt/σt(θ). The following result shows that the asymptotic dis-
tribution of γ̂n is particularly simple in the nonstationarity case.

Theorem 4.1. Let ut = log a0(ηt)− γ0, and σ2u = Eu2t . Then, under the
assumptions of Theorem 3.1,

(4.4)
√
n(γ̂n − γ0)

d→ N
(
0, σ2γ

)
as n→ ∞

where

σ2γ =

{
σ2u + (κη − 1){a′J−1a− (1− ν1)

2} when γ0 < 0,
σ2u when γ0 ≥ 0,

with a = (0, ν̃1,+, ν̃1,−, ν1/β0)′ and

ν̃1+ = E

{
(η+1 )

δ

a0(η1)

}
, ν̃1− = E

{
(−η−1 )δ
a0(η1)

}
, ν1 = E

{
β0

a0(η1)

}
.

Let σ̂2u be the empirical variance of log
{
α̂n+

(
η̂+t
)δ

+ α̂n−
(
−η̂−t

)δ
+ β̂n

}
,

for t = 1, . . . , n. Under the assumptions of Theorem 4.1, it can be shown
that σ̂2u is a weakly consistent estimator of σ2u. The statistics

Tn =
√
nγ̂n/σ̂u
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is thus asymptotically N (0, 1) distributed when γ0 = 0. For the testing
problem (4.1) (resp. (4.2)), at the asymptotic significance level α, this leads
to consider the critical region

(4.5) CST =
{
Tn > Φ−1(1− α)

}
(resp. CNS =

{
Tn < Φ−1(α)

}
).

4.2. Asymmetry testing. It is of particular interest to test the existence
of a leverage effect in stock market returns. In the framework of model (1.1),
this testing problem is of the form

(4.6) H0 : α0+ = α0− against H1 : α0+ 6= α0−.

Consider the test statistic for symmetry

T S
n :=

√
n(α̂n+ − α̂n−)

σ̂TS

, σ̂TS =

√
(κ̂η − 1)e′Î−1

∗ e.

with e′ = (1,−1, 0). The following result is a direct consequence of (3.4),
(3.5) and Theorem 3.1.

Corollary 4.1. Assume that θ0 ∈
◦
Θ and the assumptions of Theorem

3.1 hold. For the testing problem (4.6), the test defined by the critical region

(4.7) CS =
{
|T S

n | > Φ−1(1− α/2)
}

has the asymptotic significance level α and is consistent.

We emphasize the fact that this test for symmetry does not require any
stationarity assumption. The somewhat surprising output is that the usual
Wald test, based on the asymptotic theory for the stationary case, also works
in the non stationary situation.1

5. Asymptotic local powers. The section investigates the asymptotic
behavior under local alternatives of the asymmetry test (4.7) and of the strict
stationarity test (4.5). We first establish the LAN of the power-transformed
GARCH model without imposing any stationarity constraint. This LAN
property will be used to derive the asymptotic properties of our tests, but the
result is of independent interest (see van der Vaart (1998) for a general refer-
ence on LAN and its applications, and see Drost and Klaassen (1997), Drost,
Klaassen and Werker (1997) and Ling and McAleer (2003) for applications
to GARCH and other stationary processes).

1For instance in ARMA models, Wald tests on the parameters are not the same in the
stationary and non stationary cases.



INFERENCE IN NON STATIONARY ASYMMETRIC GARCH 9

5.1. LAN without stationarity constraint. Assume that ηt has a density
f which is positive everywhere, with third-order derivatives such that

(5.1) lim
|y|→∞

yf(y) = 0 and lim
|y|→∞

y2f ′(y) = 0,

and that, for some positive constants K and δ,

(5.2) |y|
∣∣∣∣
f ′

f
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′
(y)

∣∣∣∣+ y2
∣∣∣∣
(
f ′

f

)′′
(y)

∣∣∣∣ ≤ K
(
1 + |y|δ

)
,

(5.3) E |η1|2δ <∞.

These regularity conditions are satisfied for numerous distributions, in par-
ticular for the gaussian distribution with δ = 2, and entail the existence of
the Fisher information for scale

ιf =
∫
{1 + yf ′(y)/f(y)}2 f(y)dy <∞.

Given the initial values ǫ0 and h0, the density of the observations (ǫ1, . . . , ǫn)
satisfying (1.1) is given by Ln,f (θ0) =

∏n
t=1 σ

−1
t (θ0)f

{
σ−1
t (θ0)ǫt

}
. Around

θ0 ∈
◦
Θ, let a sequence of local parameters of the form

(5.4) θn = θ0 + τn/
√
n,

where (τn) is a bounded sequence of R4. Without loss of generality, assume
that n is sufficiently large so that θn ∈ Θ. Under the strict stationarity condi-
tion γ0 < 0, Drost and Klaassen (1997) showed that, for standard GARCH,
the log-likelihood ratio Λn,f (θn, θ0) = logLn,f(θn)/Ln,f (θ0) satisfies the LAN
property

(5.5) Λn,f (θn, θ0) = τ
′
nSn,f(θ0)−

1

2
τ
′
nIfτn + oPθ0

(1),

where Sn,f(θ0)
d−→ N {0,If} under Pθ0 as n → ∞. Note that the so-called

central sequence Sn,f is conditional on the initial values. In the stationary
case, Lee and Taniguchi (2005) showed that the initial values have no influ-
ence on the LAN property. The following proposition shows that (5.5) holds
regardless of γ0.

Proposition 5.1. When θ0 ∈
◦
Θ, under (5.1)-(5.3) we have the LAN

property (5.5). When γ0 < 0, we have Jf =
ιf
4 J , where J is defined in

(3.3). When γ0 ≥ 0, the Fisher information is the degenerate matrix

(5.6) If =
ιf
4

(
0 0′3
03 I

)
,

where I is the positive definite matrix introduced in (3.4).
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5.2. Near-global alternatives with respect to ω0. We now show that, in
the non stationary case, LAN continues to hold when the local alternative
allows for an arbitrary rate of convergence with respect to ω0. To this aim
we assume that

(5.7) θn = θ0 + υne1 +
τn√
n

where e1 = (1, 0, 0, 0)′ , (τn) is as in (5.4), and (υn) is a deterministic sequence
converging to zero. The next result shows that, in the non stationary case,
(5.5) which was established under (5.4), continues to hold under the more
general alternatives (5.7). For simplicity, take τn = τ = (τ1, τ̃

′)′ and τ̃
′ =

(τ2, τ3, τ4).

Proposition 5.2. Let θ0 ∈
◦
Θ with γ0 ≥ 0. Then, under (5.1)-(5.3) and

(5.7), we have the LAN property

Λn,f (θn, θ0)
d−→ N

(
− ιf

8
τ̃
′I τ̃ , ιf

4
τ̃
′I τ̃
)
, under Pθ0 as n→ ∞.

Note that this Gaussian law is the distribution of the log-likelihood ratio
in the statistical model N

{
τ̃ , 4I−1/ιf

}
of parameter τ̃ , or equivalently in

the statistical model N {ιfI τ̃/4, ιfI/4}. To interpret this result in terms of
convergence of statistical experiments (see van der Vaart (1998) for details),
assume that υn = υνn where υ ∈ R and (νn) is a given sequence converging to
zero as n→ ∞. Denoting by T a subset of R4 containing a neighborhood of 0,
the so-called local experiments {Ln,f (θ0 + υνne1 + (0, τ̃ ′)/

√
n), (υ, τ̃ ′) ∈ T }

converge to the gaussian experiment
{
N
(
τ̃ , 4I−1/ιf

)
, (υ, τ̃ ′) ∈ T

}
.

Interestingly, the parameter υ vanishes in the limiting experiment. Con-
sequently, in the limit experiment there exists no test on the parameter υ
(except of trivial power equal to the level). On the other hand, the limit
of any converging sequence of power functions in the local experiments is
a power function in the Gaussian limit experiment, by the asymptotic rep-
resentation theorem. We can conclude that there exists no test with a non
trivial asymptotic power, for local alternatives on the parameter υ at the
rate 1/νn. Given that the rate of convergence of νn to zero is arbitrary, the
LAN approach shows that no asymptotically valid inference can be made on
the parameter ω0.

2

2This is in accordance with the observation that, at least in the explosive case, the
Fisher information with respect to ω0 is bounded as n increases. A proof is available from
the authors.
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5.3. Local asymptotic powers of the tests. The LAN property, with the
help of Le Cam’s third lemma, allows to easily compute local asymptotic
powers of tests. In view of Theorem 4.1,

lim
n→∞

Pθ0

(
CST

)
= lim

n→∞
Pθ0

(
CNS

)
= α,

when θ0 is such that γ0 = 0. For τ such that θ0 + τ/
√
n ∈ Θ, we denote by

Pn,τ the distribution of the observations (ǫ1, . . . , ǫn) when the parameter is
θ0+τ/

√
n. We should use the notation (ǫ1,n, . . . , ǫn,n) instead of (ǫ1, . . . , ǫn)

because the parameter varies with n, but we will avoid this heavy notation.
Let

aτ (η1) =

(
α0+ +

τ2√
n

)(
η+1
)δ

+

(
α0− +

τ3√
n

)(
−η−1

)δ
+ β0 +

τ4√
n
.

Local alternatives for the CST-test (resp. the CNS-test) are obtained for τ

such that E log aτ (η1) > 0 (resp. E log aτ (η1) < 0).

Proposition 5.3. Under the assumptions of Theorem 3.1 and Proposi-
tion 5.1, the local asymptotic powers of the strict stationarity tests (4.5) are
given by

(5.8) lim
n→∞

Pn,τ

(
CST

)
= Φ

{
cf (θ0)− Φ−1(1− α)

}

and, using the notations of Theorem 4.1,

lim
n→∞

Pn,τ

(
CNS

)
= Φ

{
Φ−1(α)− cf (θ0)

}
,

where

cf (θ0) =
(τ2ν̃1+ + τ3ν̃1− + τ4ν1/β0)E log a0(η1)

{
1 + η1

f ′(η1)
f(η1)

}

δσu(1− ν1)
.

We now compute the local asymptotic power of the asymmetry test defined
by (4.7). We thus consider a sequence of local parameters of the form θn =
θ0 + τ/

√
n where θ0 = (ω0, α0, α0, β0)

′ and τ = (τ1, τ2, τ3, τ4)
′ (with τ2 6=

τ3 under a local alternative). We denote by P S
n,τ the distribution of the

observations under the assumption that the parameter is θn.

Proposition 5.4. Let the assumptions of Proposition 5.1 and Theorem
3.1 be satisfied. For testing (4.6), the test defined by the rejection region (4.7)
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has the local asymptotic power

lim
n→∞

P S
n,τ

(
CS
)

= 1− Φ

{
Φ−1

(
1− α

2

)
− τ2 − τ3

σTS

}

+Φ

{
−Φ−1

(α
2

)
− τ2 − τ3

σTS

}
,

where, recalling the notation e′ = (1,−1, 0),

σ2TS =

{
(κη − 1)e′I−1

∗ e when γ0 < 0
(κη − 1)e′I−1e when γ0 ≥ 0.

5.4. Optimality issues. We discuss, in this section, the optimality of the
symmetry test defined in (4.7). Let θ0 = (ω0, α0, α0, β0)

′ be a parameter
value corresponding to a symmetric GARCH. Assume that, at this point,
γ0 ≥ 0. If γ0 < 0, it suffices to replace I by I∗ in the sequel. A sequence of
local alternatives to this symmetric parameter is defined by θ0+τ/

√
n where

τ ′ = (τ1, τ2, τ3, τ4)
′ is such that τ2 6= τ3. The relations (5.5)-(5.6) imply that

Λn,f (θ0 + τ/
√
n, θ0)

d−→ N
(
− ιf

8
τ̃
′I τ̃ , ιf

4
τ̃
′I τ̃
)

under Pθ0 ,

with τ̃ = (τ2, τ3, τ4)
′, which is the distribution of the log-likelihood ratio

in the statistical model N
{
τ̃ , 4I−1/ιf

}
of parameter τ̃ . In other words,

denoting by T̃ a subset of R3 containing a neighborhood of 0, for any τ1, the

so-called local experiments
{
Ln,f (θ0 + (τ1, τ̃

′)/
√
n), τ̃ ∈ T̃

}
converge to the

gaussian experiment
{
N
(
τ̃ , 4I−1/ιf

)
, τ̃ ∈ T̃

}
.

The asymmetry test (4.6) corresponds to the test

e
′
τ̃ = 0 against e

′
τ̃ 6= 0

in the limiting experiment. The uniformly most powerful unbiased (UMPU)
test based on X ∼ N

(
τ̃ , 4I−1/ιf

)
is the test of rejection region

C =

{
|e′X |/

√
4e′I−1e/ιf > Φ−1(1− α/2)

}
.

This UMPU test has the power

(5.9) Pe
′
τ̃ (C) = 1− Φ

{
Φ−1

(
1− α

2

)
− ce′τ̃

}
+Φ

{
−Φ−1

(α
2

)
− ce′

τ̃

}
,

with c
e
′
τ̃ =

e
′
τ̃
√
ιf

2
√
e
′I−1

e

. A test of (4.6) whose level converges to α, which is

asymptotically unbiased, and whose power converges to the bound in (5.9)
will be called asymptotically locally UMPU.
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Figure 1. Optimal asymptotic power (5.9) (in full line) and local asymptotic power
of the asymmetry test (4.7) (in dotted line) when ηt follows a standardized Student
distribution with ν degrees of freedom. The horizontal axis correspond to the local
parameter e′τ .

Proposition 5.5. Under the assumptions of Proposition 5.3, the test
(4.7) is asymptotically locally UMPU for the testing problem (4.6) if and
only if the density of ηt has the form

(5.10) f(y) =
aa

Γ(a)
e−ay2 |y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1e−tdt.

A figure displaying the density (5.10) for different values of a is in the
appendix. Note that the gaussian density is obtained for a = 1/2. The result
was expected because the CS-test is based on the QMLE of θ0, and the
QMLE is obviously efficient in the gaussian case. It can be shown that when
the distribution of ηt is of the form (5.10), the MLE does not depend on a.
The QMLE is then equal to the MLE, which makes obvious the "if part"
of Proposition 5.5. The "only if" part of the proposition shows that there is
necessarily an efficiency loss when the test is not based on the MLE of θ0.

This point is illustrated by Figure 1, in which the local asymptotic power of
the asymmetry test (in dotted lines) is compared to the optimal asymptotic
power given by (5.9). In this figure, the noise ηt is assumed to satisfy a
Student distribution with ν > 2 degrees of freedom, standardized in such a
way that Eη2t = 1. The parameters of the model under the null are α0+ =
α0− = 0.2, β0 = 0.9 and δ = 1, which corresponds to a nonstationary model
with γ0 = 0.045. In the figure, it can be seen that the local asymptotic
power is far from the optimal power when ν is small, but, as expected, the
discrepancy decreases as ν increases.

6. Estimation when the power δ is unknown. In this section, we
consider the case where the power δ, now denoted δ0, is unknown and is
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jointly estimated with θ0. We rewrite the vector of parameters as ζ := (δ, θ′)′,
which is assumed to belong to a compact parameter space Υ ⊂ (0,∞)2 ×
[0,∞)3. The true parameters value is denoted by ζ0 := (δ0, θ

′
0)

′. A QMLE of
ζ is defined as any measurable solution ζ̂n of

(6.1) ζ̂n = (δ̂n, θ̂
′
n)

′ = arg min
ζ∈Υ

1

n

n∑

t=1

ℓt(ζ), ℓt(ζ) =
ǫ2t

σ2t (ζ)
+ log σ2t (ζ),

where

(6.2) σt = σt(ζ) =
(
ω + α+(ǫ

+
t−1)

δ + α−(−ǫ−t−1)
δ + βσδt−1(ζ)

)1/δ
,

for t = 1, . . . , n (with initial values for ǫ0 and σ0(ζ)). The rescaled residuals
are defined by η̂t = ηt(ζ̂n) where ηt(ζ) = ǫt/σt(ζ) for t = 1, . . . , n. For
identifiability reasons, we need to slightly reinforce assumption A1 as follows.

A3: The support of ηt contains at least three points of the same sign,
and at least two points of opposite signs.

We also introduce the following technical assumption to handle the deriva-
tives of ℓt with respect to the exponent δ.

A4: ∀ζ ∈ Υ, β < ‖1/a20(η1)‖−1
p and ‖|η1|δ log |η1|‖p <∞ for some p > 1.

For brevity, we only present results for the non stationary cases.

Theorem 6.1. Let (1.1)-(1.2) and A3 hold. Then, the QMLE defined
in (6.1) satisfies the following properties.

i) Explosive case. When γ0 > 0, if P (η1 = 0) = 0

(δn, ϑ̂
′
n) → (δ0, ϑ

′
0), a.s. as n→ ∞.

If, in addition, κη ∈ (1,∞), E| log η21 | <∞, ζ0 ∈
◦
Υ, and A4 holds, then

(6.3)
√
n
(
(δ̂n, ϑ̂

′
n)− (δ0, ϑ

′
0)
)′ d→ N

{
0, (κη − 1)I−1

δ

}
,

as n→ ∞, where Iδ is a positive definite matrix (see Lemma D.4).
ii) At the boundary of the stationarity region. When γ0 = 0, if

P (η1 = 0) = 0, and ∀ζ ∈ Υ, β < ‖1/a0(η1)‖−1
p for some p > 1,

(δn, ϑ̂
′
n) → (δ0, ϑ

′
0), in probability as n→ ∞.

If, in addition, ζ0 ∈
◦
Υ, κη ∈ (1,∞), E| log η21| <∞ and A2 and A4 are

satisfied, then (6.3) holds.
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The presence of parameter δ induces specific difficulties. It turns out
that the derivative of the criterion with respect to δ involves the process
(∂σδt /∂δ − log σt). A strictly stationary approximation to this process can
then be obtained, but in a more complicated way than for the other param-
eters. To save place, the proofs of this section are given in the appendix.

Obviously, stationarity and symmetry tests could be derived as in Sections
4 and 5. Other tests concerning the exponent δ (for instance testing the
TARCH model (δ = 1) against the GJR model (δ = 2)) could be considered
as well, but we leave this for further investigation.

7. Proofs and complementary results.

7.1. Proof of Proposition 2.1. Writing ωt = ω(ξt) and at = a(ξt), we
have, for all t > 1 and 1 ≤ k < t,

(7.1) ht = ωt−1 +
k∑

j=1

ωt−j−1

j∏

i=1

at−i + ht−k−1

k+1∏

i=1

at−i.

We begin by showing i). Since all the random variables involved in (7.1) are
positive, ht ≥ ω

∏t−1
i=1 at−i. For any constant ρ > e−γ , we thus have, a.s.

lim inf
t→∞

1

t
log ρtht ≥ log ρ+ lim

t→∞
1

t

{
logω +

t−1∑

i=1

log ai

}
= log ρ+ γ > 0,

by the ergodic theorem. It follows that log ρtht, and hence ρtht, tend to +∞
a.s as n → ∞. The second convergence is shown right in the same way,
arguing that E| log ξ21 | <∞ entails log ξ2t /t → 0 a.s. as t→ ∞.

To show ii), first consider the case where h0 = 0. Note that, for all t, the
distribution of ht = ht(ξ0, . . . , ξt−1) is equal to that of

(7.2) h∗t := ht(ξt, . . . , ξ1) = ω1 +
t−1∑

j=1

ωj+1

j∏

i=1

ai.

Note that, contrary to (ht), the sequence (h∗t ) increases with t. The
Chung-Fuchs theorem applied to the random walk

∑t
i=1 log ai entails that

lim supt→∞
∏t

i=1 ai = +∞ a.s. It follows that h∗t → +∞ as t→ ∞. We thus
have P (ht ≥ A) = P (h∗t ≥ A) → 1 for all A > 0, from which the first part
of ii) easily follows. To prove the first convergence of (2.2), note that the
dominated convergence theorem entails

Eψ(ht) =

∫ ∞

0
P
{
h∗t < ψ−1(u)

}
du→

∫ ∞

0
lim
t→∞

P
{
h∗t < ψ−1(u)

}
du = 0.
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The second convergence is shown similarly. Now consider the case where the
initial value is not equal to zero. It is clear from (7.1), with k = t− 1, that
ht is an increasing function of h0. So the convergences to infinity obtained
when h0 = 0, and the convergences in (2.2), hold a fortiori when h0 > 0. 2

7.2. Asymptotic behavior of the QMLE of ϑ0. Define the [0,∞]-valued
process

vt(ϑ) =
∞∑

j=1

{α+(η
+
t−j)

δ + α−(−η−t−j)
δ}

a0(ηt−j)

j−1∏

k=1

β

a0(ηt−k)

with the convention
∏j−1

k=1 = 1 when j ≤ 1. Let Θ0 = {θ ∈ Θ : β < eγ0} and
Θp = {θ ∈ [0,∞)4 : β < ‖1/a0(η1)‖−1

p }.

Lemma 7.1. i) When γ0 > 0, for any θ ∈ Θ0 the process vt(ϑ) is sta-
tionary and ergodic. Moreover, for any compact Θ∗

0 ⊂ Θ0,

sup
θ∈Θ∗

0

∣∣∣∣
σδt (θ)

ht
− vt(ϑ)

∣∣∣∣→ 0 a.s. as t→ ∞.

Finally, for any θ /∈ Θ0 it holds that σδt (θ)/ht → ∞ a.s.
ii) When γ0 = 0, for any θ ∈ Θp with p ≥ 1, the process vt(ϑ) is stationary

and ergodic. Moreover, for any compact Θ∗
p ⊂ Θp,

sup
θ∈Θ∗

p

∣∣∣∣
σδt (θ)

ht
− vt(ϑ)

∣∣∣∣→ 0 in Lp.

Proof. Assuming, with no generality loss, that σ0(θ) = 0, we have σδt (θ) =∑t
j=1 β

j−1zt−j where zt = ω + α+(ǫ
+
t )

δ + α−(−ǫ−t )δ and

σδt (θ)

ht
=

t∑

j=1

βj−1

{
j∏

k=1

ht−k

ht−k+1

}
zt−j

ht−j
.(7.3)

Noting that

(7.4)
ht−k

ht−k+1
=

ht−k

ω0 + a0(ηt−k)ht−k
≤ 1

a0(ηt−k)
,

the rest of the proof follows from arguments similar to those used in the
proof of Lemma A.1 in FZ. Therefore is it omitted. 2

Lemma 7.2. If θ ∈ Θ0, we have vt(ϑ) = 1, a.s. iff ϑ = ϑ0.
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Proof. Straightforward algebra shows that

(7.5) vt(ϑ)a0(ηt−1) = βvt−1(ϑ) + α+(η
+
t−1)

δ + α−(−η−t−1)
δ.

Hence

{vt(ϑ)−1}a0(ηt−1) = βvt−1(ϑ)−β0+(α+−α0+)(η
+
t−1)

δ+(α−−α0−)(−η−t−1)
δ.

It follows that vt(ϑ) = 1 a.s. iff

β − β0 + (α+ − α0+)(η
+
t−1)

δ + (α− − α0−)(−η−t−1)
δ = 0.

Thus, if ϑ 6= ϑ0, ηt takes at most two values of different signs, in contradiction
with Assumption A1. The conclusion follows. 2

Let ω = inf{ω | θ ∈ Θ}, α = inf{α+, α− | θ ∈ Θ}, β = inf{β | θ ∈ Θ},
ω = sup{ω | θ ∈ Θ}, α = sup{α+, α− | θ ∈ Θ}, β = sup{β | θ ∈ Θ}. Denote
by K any constant whose value is unimportant and can change throughout
the proofs. Let Θ̌ be the compact set of the ϑ’s such that (ω, ϑ′)′ ∈ Θ.

Lemma 7.3. Suppose that P (ηt = 0) = 0. Then, for any k > 0

E sup
ϑ∈Θ̌

(
1

vt(ϑ)

)k

<∞ and E sup
θ∈Θ

(
ht

σδt (θ)

)k

<∞.

Proof. Let ε > 0 such that p(ε) := P (|ηt| ≤ ε) ∈ [0, 1). If |ηt−1| > ε, since
the sum vt(ϑ) is greater than its first term, we have,

1

vt(ϑ)
≤ a0(ηt−1)

α+(η
+
t−1)

δ + α−(−η−t−1)
δ
≤ max(α0+, α0−)

α
+

β0
αεδ

:= K(ε).

Iterating this method, we can write

sup
ϑ∈Θ̌

1

vt(ϑ)
≤ K(ε)

∞∑

i=1

1l|ηt−1|≤ε . . . 1l|ηt−i+1|≤ε1l|ηt−i|>ε

(
a0(ε)

β

)i−1

.

where a0(ε) = max(α0+, α0−)ǫδ + β0. It follows that, for any integer k,

E sup
ϑ∈Θ̌

(
1

vt(ϑ)

)k

≤ {K(ε)}k{1 − p(ε)}
∞∑

i=1

p(ε)i−1

(
a0(ε)

β

)k(i−1)

.

Noting that limε→0 p(ε) = 0 and limε→0 a0(ε) = β0 we have p(ε)
(
a0(ε)
β

)k
< 1

for ε sufficiently small. The first result of the lemma is thus proven.
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Similarly, we have for |ηt−1| > ε,

ht

σδt (θ)
≤ ω0

ω
+
α

α
+

β0
αεδ

:= H(ε),

and for |ηt−1| ≤ ε and |ηt−2| > ε,

ht

σδt (θ)
≤ ω0

ω
+
a0(ε)

β
H(ε).

More generally,

sup
θ∈Θ

ht

σδt (θ)
≤

∞∑

i=1

1l|ηt−1|≤ε . . . 1l|ηt−i+1|≤ε1l|ηt−i|>ε

×


ω0

ω

i−2∑

j=0

(
a0(ε)

β

)j

+

(
a0(ε)

β

)i−1

H(ε)


 .

The conclusion follows by the same arguments as before. 2

Proof of the consistency results in the cases ii) and iii) of The-
orem 3.1. Note that (ω̂n, ϑ̂

′
n) = argminθ∈ΘQn(θ), where Qn(θ) =

n−1
∑n

t=1 {ℓt(θ)− ℓt(θ0)} . We have

Qn(θ) =
1

n

n∑

t=1

η2t

{(
ht

σδt (θ)

)2/δ

− 1

}
+ log

(
σδt (θ)

ht

)2/δ

= On(ϑ) +Rn(θ)

where

On(ϑ) =
1

n

n∑

t=1

η2t

{
1

v
2/δ
t (ϑ)

− 1

}
+ log v

2/δ
t (ϑ)

and

Rn(θ) =
1

n

n∑

t=1

η2t

{(
ht

σδt (θ)

)2/δ

− 1

v
2/δ
t (ϑ)

}
+ log

(
σδt (θ)

htvt(ϑ)

)2/δ

.

It suffices to consider the case θ ∈ Θ∗
0 where Θ∗

0 is an arbitrary compact
subset of Θ0, because by Lemma 7.1 i) Qn(θ) → ∞ a.s. if θ /∈ Θ0. We have
by stationarity and ergodicity of vt(ϑ), a.s.

lim
n→∞

On(ϑ) = E

{
1

v
2/δ
1 (ϑ)

− 1 + log v
2/δ
1 (ϑ)

}
≥ 0
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because log x ≤ x−1 for x > 0. The inequality is strict except when v1(ϑ) = 1
a.s. By Lemma 7.2 we thus have E{On(ϑ)} ≥ 0, with equality only if ϑ = ϑ0.

By Lemma 7.3 we prove, as in FZ, that

(7.6) lim
n→∞

sup
θ∈Θ∗

0

|Rn(θ)| = 0 a.s. (resp. lim
n→∞

sup
θ∈Θ∗

p

|Rn(θ)| = 0 in L1),

when γ0 > 0 (resp. γ0 = 0) and Θ∗
0,Θ

∗
p are defined in Lemma 7.1, which

completes the proof. 2

We now need to introduce new [0,∞]-valued processes. Let a(ηt) =
α+(η

+
t )

δ + α−(−η−t )δ + β and

d
α+

t =
∞∑

j=1

(η+t−j)
δ

a0(ηt−j)

j−1∏

k=1

β0
a0(ηt−k)

, d
α−

t =
∞∑

j=1

(−η−t−j)
δ

a0(ηt−j)

j−1∏

k=1

β0
a0(ηt−k)

dβt =
∞∑

j=2

(j − 1){α0+(η
+
t−j)

δ + α0−(−η−t−j)
δ}

β0a0(ηt−j)

j−1∏

k=1

β0
a0(ηt−k)

.

Lemma 7.4. Assume γ0 ≥ 0 and Eη4t <∞. We have

1√
n

n∑

t=1

∂ℓt
∂ϑ

(θ0)
d→ N {0, (κη − 1)I} as n→ ∞,

where I = 4
δ2
Ed1d

′
1 and d′t =

(
d
α+

t , d
α−

t , dβt

)
. Moreover, I is non singular.

Proof. Since E log β0/a0(η1) < 0, by the Cauchy root test, the processes

d
α+

t , d
α−

t and dβt are stationary and ergodic. Still assuming σ20 = 0, we have

∂σδt
∂(α+, α−)

(θ) =

t∑

j=1

βj−1({ǫ+t−j}δ, {−ǫ−t−j}δ),
∂σ2t
∂β

(θ) =

t∑

j=2

(j−1)βj−2zt−j .

Thus, using a direct extension of (7.4)

1

σδt (θ0)

∂σδt
∂(α+, α−)

(θ0) =
t∑

j=1

βj−1

{
j∏

k=1

σδt−k(θ0)

σδt−k+1(θ0)

}
{(ǫ+t−j)

δ, (−ǫ−t−j)
δ}

σδt−j(θ0)

≤ (d
α+

t (ϑ0), d
α−

t (ϑ0)),

1

σδt (θ0)

∂σδt
∂β

(θ0) =
t∑

j=2

(j − 1)βj−2
0

{
j∏

k=1

σδt−k(θ0)

σδt−k+1(θ0)

}
zt−j

σδt−j(θ0)

≤ dβt (ϑ0),
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where the first inequality stands componentwise. Moreover, we have

0 ≤ d
α+

t (ϑ0)−
1

σδt

∂σδt
∂α+

(θ0) ≤ st0 + rt0 ,

where

st0 =

t0∑

j=1

(η+t−j)
δ

a0(ηt−j)

j−1∏

k=1

β0
a0(ηt−k)

−
(ǫ+t−j)

δ

β0σ
δ
t−j(θ0)

j∏

k=1

β0σ
δ
t−k(θ0)

σδt−k+1(θ0)
,

rt0 =

∞∑

j=t0+1

(η+t−j)
δ

a0(ηt−j)

j−1∏

k=1

β0
a0(ηt−k)

.

For all p ≥ 1, ‖rt0‖p → 0 as t0 → ∞ because ‖β0/a0(η1)‖p < 1 and
‖(η+1 )δ/a0(η1)‖p < 1/α0+. Since, in addition, ‖β0σδt−1(θ0)/σ

δ
t (θ0)‖p < 1, and

∥∥∥∥∥
β0

a0(ηt−1)
− β0σ

δ
t−1(θ0)

σδt (θ0)

∥∥∥∥∥
p

=

∥∥∥∥
β0ω0

a0(ηt−1)σ
δ
t (θ0)

∥∥∥∥
p

→ 0

as t → ∞ by the dominated convergence theorem, st0 = st0(t) converges to
0 in Lp as t → ∞. The same derivations hold true when d

α+

t is replaced by

d
α−

t and dβt . Therefore, d
α+

t , d
α−

t and dβt have moments of any order, and

(7.7)

∥∥∥∥
1

σδt

∂σδt
∂ϑ

(θ0)− dt

∥∥∥∥→ 0

in Lp for any p ≥ 1.
Using (7.7) and the ergodic theorem, we thus have, as n→ ∞,

Var
1√
n

n∑

t=1

∂

∂ϑ
ℓt(θ0) =

4

δ2
κη − 1

n

n∑

t=1

E(dtd
′
t) + o(1) → (κη − 1)I.

Moreover, it can be shown as in FZ that the Lindeberg condition is satis-
fied, allowing to apply the Lindeberg central limit theorem for martingale
differences (see Billingsley, 1995, p. 476).

Now we show that I is nonsingular. Suppose there exists x =
(x1, x2, x3)

′ ∈ R
3 such that x′Ix = 0. Then we get x′dt = 0, that is,

∞∑

j=1

(
x1

(η+t−j)
δ

a(ηt−j)
+ x2

(−η−t−j)
δ

a(ηt−j)
+ x3(j − 1)

α+(η
+
t−j)

δ + α−(−η−t−j)
δ

βa(ηt−j)

)

×
j−1∏

k=1

β

a(ηt−k)
= 0, a.s.
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It follows that x1(η
+
t−1)

δ +x2(−η−t−1)
δ = zt−2, a.s. where zt−2 is a measur-

able function of the ηt−j with j > 1. Because ηt−1 is independent of zt−2,
this variable must be a.s. constant. In view of Assumption A1, this entails
x1 = x2 = 0 and then x3 = 0. Therefore, I is nonsingular. 2

Lemma 7.5. Let ̟ be an arbitrary compact subset of [0,∞). Assume that
E log η21 <∞. When γ0 > 0 we have, a.s.

∞∑

t=1

sup
θ∈Θ0

∣∣∣∣
∂

∂ω
ℓt(θ)

∣∣∣∣ < ∞,
∞∑

t=1

sup
θ∈Θ0

∥∥∥∥
∂2

∂ω∂θ
ℓt(θ)

∥∥∥∥ <∞,

sup
ω∈̟

∣∣∣∣∣
1

n

n∑

t=1

∂2ℓt(ω, ϑ0)

∂θi+1∂θj+1
− Iij

∣∣∣∣∣ = o(1) for all i, j ∈ {1, 2, 3},

1

n

n∑

t=1

sup
θ∈Θ

∣∣∣∣
∂3

∂θi∂θj∂θk
ℓt(θ)

∣∣∣∣ = O(1) for all i, j, k ∈ {2, 3, 4}.

When γ0 = 0 we have, for all i, j, k ∈ {2, 3, 4},

sup
ω∈̟

∣∣∣∣∣
1

n

n∑

t=1

∂2ℓt(ω,α0, β0)

∂θi+1∂θj+1
− Iij

∣∣∣∣∣ = oP (1),(7.8)

1

n

n∑

t=1

sup
θ∈Θ4

∣∣∣∣
∂3

∂θi∂θj∂θk
ℓt(θ)

∣∣∣∣ = OP (1).(7.9)

Proof. This is similar to that of Lemma A.5. in FZ, therefore is it omitted.
2

Proof of the asymptotic normality in the case ii) of Theorem 3.1.
An expansion of the criterion derivative gives

(
1√
n

∑n
t=1

∂
∂ω ℓt(θ̂n)

0

)
=

1√
n

n∑

t=1

∂

∂θ
ℓt(θ0) + Jn

√
n(θ̂n − θ0)(7.10)

where Jn is a 4× 4 matrix whose elements have the form

Jn(i, j) =
1

n

n∑

t=1

∂2

∂θi∂θj
ℓt(θ

∗
i ),

where θ∗i = (ω∗
i , α

∗
i+, α

∗
i−, β

∗
i )

′ is between θ̂n and θ0. Moreover, it can be
shown that, for i, j = 1, 2, 3,

(7.11) Jn(i+ 1, 1) = o(1/
√
n), Jn(i+ 1, j + 1) → I(i, j) a.s.
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The conclusion follows from the last rows of (7.10) and Lemma 7.4. 2

Proof of the asymptotic normality in the case iii) of Theorem 3.1.
Note that (7.10) continues to hold. In view of (7.8)-(7.9), we have

Jn(i+ 1, j + 1) → I(i, j) in probability as n→ ∞.

To conclude, by the arguments used in the case ii), it suffices to show that,

(7.12) for i = 2, 3, 4, E|Jn(i, 1)
√
n(ω̂n − ω0)| → 0 as n→ ∞.

Noting that

(7.13)
1

σδt (θ)

t∑

j=1

βj−1(ǫ+t−j)
δ ≤ 1

α+
,

and β∗2 < 1 for n large enough, and using the compactness of Θ, we obtain

|Jn(2, 1)
√
n(ω̂n − ω0)|

≤ K√
n

n∑

t=1

(
2h

2/δ
t η2t

σ2t (θ
∗
2)

+ 1

) {∑t
j=1 (β

∗
2)

j−1 (ǫ+t−j)
δ
}{∑t

j=1 (β
∗
2)

j−1
}

σ2δt (θ∗2)

≤ K√
n

n∑

t=1

(
2h

2/δ
t η2t

σ2t (θ
∗
2)

+ 1

)
ht

σδt (θ
∗
2)

1

ht
.

Hence, by Lemma 7.3 and Hölder’s inequality

E|Jn(2, 1)
√
n(ω̂n − ω0)| ≤ K√

n

n∑

t=1

E
1

h1+τ
t

,

for any τ > 0. The same bound is obtained when Jn(2, 1) is replaced by
Jn(3, 1) and Jn(4, 1). Moreover,

ht = ω0(1 + Zt−1 + Zt−1Zt−2 + · · ·+ Zt−1 . . . Z1) + Zt−1 . . . Z0σ
2
0.

Hence

1

h1+τ
t

≤ 1

ω1+τ
0 (1 + Zt−1 + Zt−1Zt−2 + · · · + Zt−1 . . . Z1)

By Assumption A2, the conclusion follows. 2

Proof of Theorem 3.2. To save space, this is displayed in the appendix.
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7.3. Stationarity test. Proof of Theorem 4.1. In the stationary case
γ0 < 0, standard arguments show that

(7.14) γ̂n = γn(θ0) +
∂γn(θ0)

∂θ′
(θ̂n − θ0) + oP (n

−1/2),

with

∂γn(θ0)

∂θ
=

−1

n

n∑

t=1

1

a0(ηt)


{a0(ηt)− β0}

1

ht

∂σδt (θ0)

∂θ
−




0
(η+t )

δ

(−η−t )δ
1







= −Ψ+ oP (1),(7.15)

where Ψ = (1−ν1)Ω−a and Ω = E∞ 1
ht

∂σδ
t (θ0)
∂θ . Moreover the QMLE satisfies

(7.16)
√
n(θ̂n − θ0) = −J−1 1√

n

n∑

t=1

(1− η2t )
2

δht

∂σδt (θ0)

∂θ
+ oP (1).

In view of (7.14), (7.15) and (7.16), we have

√
n(γ̂n − γ0) =

1√
n

n∑

t=1

ut +Ψ′J −1 1√
n

n∑

t=1

(1− η2t )
2

δht

∂σδt (θ0)

∂θ
+ oP (1).

Note that

Cov

(
1√
n

n∑

t=1

ut, Ψ
′J −1 1√

n

n∑

t=1

(1− η2t )
2

δht

∂σδt (θ0)

∂θ

)
=

2c

δ
Ω′J −1Ψ,

where c = Cov(ut, 1−η2t ). The Slutsky lemma and the central limit theorem
for martingale differences thus entail

√
n(γ̂n − γ0)

d→ N
(
0, σ2u + 4

c

δ
Ω′J −1Ψ+ (κη − 1)Ψ′J −1Ψ

)
.

Now let θ0 = (ω0, α0+, α0−, 0)′. Noting that θ0
′
∂σδt (θ0)/∂θ = ht almost

surely, we have

E

{
1

ht

∂σδt (θ0)

∂θ

(
1− 1

ht

∂σδt (θ0)

∂θ′
θ0

)}
= 0,

which entails δ2

4 J θ0 = Ω and Ω′J−1Ω = δ2

4 . It follows that

Ω′J−1Ψ = (1− ν1)
δ2

4
− δ2

4
θ0

′
a =

δ2

4
(1− ν1 − α0+ν̃1+ − α0−ν̃1−) = 0.
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We also have Ψ′J −1Ψ = a′J −1a − (1 − ν1)
2, which completes the proof of

the asymptotic distribution (4.4) in the case γ0 < 0.
Now consider the case γ0 ≥ 0. Let θ∗n be a sequence such that ‖θ∗n− θ0‖ ≤

‖θ̂n− θ0‖. By Proposition 2.1 (using Assumption A2 when γ0 = 0), we have

1√
n

n∑

t=1

1

σδt (θ
∗
n)

∂σδt (θ
∗
n)

∂ω
= o(1), a.s. (resp. in probability) as n→ ∞

when γ0 > 0 (resp. when γ0 = 0). It can be deduced that, under the same

conditions,
√
n∂2γn(θ∗n)

∂ω∂θ = o(1), and
√
n(θ̂−θ0)′ ∂

2γn(θ∗n)
∂θ∂θ′ (θ̂−θ0) = o(1), which

entails that (7.14) still holds. The previous arguments show that (7.15) holds
with

Ω = E




0
d
α+

t (θ0)
d
α−

t (θ0)

dβt (θ0)


 =

1

1− ν1




0
ν̃1+
ν̃1−
ν1/β


 and Ψ =




0
0
0


 .

The conclusion follows. 2

7.4. Asymptotic local powers. Proof of Proposition 5.1. The LAN of
GARCH models has already been established in the stationary case (see
Drost and Klaassen (1997), Lee and Taniguchi (2005)). The non stationary
case will be studied under more general assumptions in the proof of Propo-
sition 5.2. 2

Proof of Proposition 5.2. Let the functions

g1(y) = 1 + y
f ′

f
(y) and g2(y) = 1 + 2y

f ′

f
(y) + y2

(
f ′

f

)′
(y).

Introduce also the notations

∆1,t(θ) =
1

σt(θ)

∂2σt(θ)

∂θ∂θ′
, ∆2,t(θ) =

1

δ2σ2δt (θ)

∂σδt (θ)

∂θ

∂σδt (θ)

∂θ′
.

A Taylor expansion of θn 7→ Λn,f (θn, θ0) around θ0 yields

(7.17) Λn,f (θn, θ0) = τ
′Sn,f(θ0)−

1

2
τ
′In(θ

∗
n)τ +Rn,

where θ∗n is between θ0 and θn,

(7.18) Sn,f(θ0) =
−1√
n

n∑

t=1

g1(ηt)
1

δht

∂σδt (θ0)

∂θ
,
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In(θ) =
1

n

n∑

t=1

g1

(
ǫt

σt(θ)

)
∆1,t(θ)−

1

n

n∑

t=1

g2

(
ǫt

σt(θ)

)
∆2,t(θ),

and Rn is a reminder which is displayed below. As in the proof of Lemma 7.4,
it can be seen that

Sn,f (θ0) =
−1

δ
√
n

n∑

t=1

g1(ηt)dt(ϑ0) + oP (1), dt(ϑ) =




0
d
α+

t

d
α−

t

dβt


 .

Using (5.1), it is easy to see that Eg1(η1) = 0, and thus Eg21(η1) = ιf . The
Lindeberg central limit theorem for martingale differences then shows that

(7.19) Sn,f (θ0)
d−→ N (0,If ) .

Turning to the second term of (7.17) we first note that, similarly to (7.7),
∣∣∣∣
1

ht

∂σδt (θ0)

∂θ
− dt(ϑ0)

∣∣∣∣→ 0 in L2 as t→ ∞.

Moreover, integrations by parts show that, under (5.1),
∫
y2f ′′(y)dy =

−2
∫
yf ′(y)dy = 2. It follows that Eg2(η1) = −ιf . We thus have, using

Eg1(η1) = 0,

In(θ0) =
1

n

n∑

t=1

−g2(ηt)
δ2

dt(ϑ0)d
′
t(ϑ0)+oPθ0

(1) → If in probability as n→ ∞.

Next, it can be shown that, as n→ ∞,

(7.20) ‖In(θ∗n)− In(θ0)‖ → 0 in probability.

Finally, we show the convergence in probability to zero of

Rn = υn

n∑

t=1

g1(ηt)
1

δht

∂σδt (θ0)

∂ω
− υn

√
nτ ′

In(θ
∗
n)e

′
1 −

1

2
nυ2ne1In(θ

∗
n)e

′
1.

Noting that ∂σδt (θ0)/∂ω is constant and that 1/ht converges to 0 in L2 by
Proposition 2.1, the first term in the right-hand side converges to zero in
probability. The two other terms can be handled similarly. The conclusion
then follows from (7.17)–(7.20). 2

Proof of Proposition 5.3. For simplicity, write P instead of Pn,0. In the
proof of Theorem 4.1 we have seen that

Tn =
1√
n

n∑

t=1

ut
σu

+ oP (1).
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By (5.5) and (7.18), it follows that under P

(
Tn

Λn,f (θ0 + τ/
√
n, θ0)

)
d−→ N

{(
0

− ιf
8 τ̃

′I τ̃

)
,

(
1 c
c

ιf
4 τ̃

′I τ̃

)}
,

where τ̃
′ = (τ2, τ3, τ4), c = −τ

′Ed1(ϑ0)
δσu

Eu1g1(η1) = cf (θ0). Le Cam’s third
lemma (see e.g. van der Vaart, 1998, page 90) shows that

Tn
d−→ N (cf (θ0), 1) , under Pn,τ .

The conclusion easily follows. 2

Proof of Proposition 5.4. First consider the case γ0 ≥ 0. In the proof of
(3.4) it has been shown that

√
n(ϑ̂n − ϑ0) = −2

δ
I−1 1√

n

n∑

t=1

(1− η2t )dt + oP (1).

Moreover

Λn,f (θ0 + τ/
√
n, θ0) = − 1

δ
√
n

n∑

t=1

{
1 + ηt

f ′(ηt)
f(ηt)

}
τ̃
′dt −

ιf
8
τ̃
′I τ̃ + oP (1)

with τ̃
′ = (τ2, τ3, τ4). Note also that, since Eη41 < ∞ implies y3f(y) → 0 as

|y| → ∞, we have

(7.21) E(1− η2t )

{
1 + ηt

f ′(ηt)
f(ηt)

}
= 2.

It follows that under P S
n,0

( √
n(ϑ̂n − ϑ0)

Λn,f

(
θ0 +

τ√
n
, θ0

)
)

d−→ N
{(

03
−ιf
8 τ̃

′I τ̃

)
,

(
(κη − 1)I−1 τ̃

τ̃
′ ιf

4 τ̃
′I τ̃

)}
.

Le Cam’s third lemma (see e.g. van der Vaart, 1998, page 90) shows that

√
n(ϑ̂n − ϑ0)

d−→ N
(
τ̃ , (κη − 1)I−1

)
, under P S

n,τ .

We thus have shown that, in the case γ0 > 0, ϑ̂n is a regular estimator of ϑ0,

in the sense that
√
n
(
ϑ̂n − ϑ0 − τ̃/

√
n
)

converges to a distribution which

does not depend on τ̃ . More precisely

(7.22)
√
n
(
ϑ̂n − ϑ0 − τ̃/

√
n
)

d−→ N
(
0, (κη − 1)I−1

)
, under P S

n,τ .
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When γ0 ≤ 0, the same arguments show that θ̂n is a regular estimator of θ0

√
n(θ̂n − θ0 − τ/

√
n)

d−→ N
(
0, (κη − 1)J −1

)
, under P S

n,τ .

In the case γ0 ≤ 0, we thus have (7.22) with I replaced by I∗. Now, noting

that T S
n = e

′
√
n(ϑ̂n−ϑ0)
σ̂
TS

, and by the same arguments, it follows that T S
n

d−→
N (0, 1) , under P S

n,0 and more generally T S
n

d−→ N (cτ , 1) , under P S
n,τ ,

where cτ = (0, 1,−1, 0)τ /σTS . The conclusion easily follows. 2

Proof of Proposition 5.5. Recall that we assume γ0 ≥ 0. The case γ0 < 0
is obtained similarly, replacing I by I∗. In view of Proposition 5.4 and (5.9),
the CS-test is asymptotically locally UMPU if and only if ce′τ̃ = e′τ̃/σTS ,
which is equivalent to (κη − 1)ιf = 4. By Corollary 1 in Francq and Zakoïan
(2006), the solutions of this equation are given by (5.10). 2

8. Concluding remarks. Our framework covers the most widely used
GARCH models in financial applications. Strictly stationary models are a
special case but symmetry tests, and asymptotically valid confidence in-
tervals for the parameters (except the intercept) can be built without this
assumption. Surprisingly, while the asymptotic covariance matrix of the esti-
mators is sensitive to the stationarity of the underlying process, an estimator
which converges to the appropriate covariance matrix in every situation can
be built. Nevertheless, if the interest is on the whole parameter vector, includ-
ing the intercept, it is important to know whether the observations come from
a stationary process or not. To this aim we derived strict stationarity/non
stationarity tests which are very easy to implement.

Are our results extendable to higher-order models? It seems likely that for
particular extensions involving univariate stochastic recurrence equations for
the volatility, the asymptotic theory derived in this paper can also be estab-
lished. One key problem, to show consistency, is to find stationary approx-
imations to ǫ2t−j/ht for j = 1, 2, . . .. For an ARCH-type model of order q it
suffices to take j ≤ q. Consider standard symmetric GARCH models for sim-
plicity. In the GARCH(1,1) case, the problem can be circumvented because

ǫ2t−j

ht
=
ht−1

ht
. . .

ht−j

ht−j+1
η2t−j

can be approximated by a stationary process, in view of

ht−i

ht−i+1
≈ 1

αη2t−i + β
for large t.
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To have a glimpse of the considerable difficulties encountered when the
orders increase, consider a standard ARCH(2) model

ǫt =
√
htηt, ht = ω + α1ǫ

2
t−1 + α2ǫ

2
t−2.

We have, neglecting ω and for t large enough ht/ǫ
2
t−1 ≈ Xt and ht/ǫ

2
t−2 ≈ Yt

where

Xt = α1 +
α2

Xt−1

1

η2t−1

, Yt = α2 + α1η
2
t−1Xt−1.

It is not difficult to show that the first stochastic recurrence equation admits
a strictly stationary solution (Xt) under mild assumptions on the density of
ηt, whatever the values of α1 and α2. From this solution we deduce a strictly
stationary solution (Yt) to the second equation. We thus believe that, at least
for the consistency, the ARCH(2) model is amenable to a treatment similar
to that developed in this paper, but at the price of increasing technical diffi-
culties. To summarize, the ratio ht/ht−1 is, for large t, close to i) a constant
in the ARCH(1) case, ii) an iid process in the GARCH(1,1) case, iii) the
stationary solution of a nonlinear times series model in the ARCH(2) case.
Whether or not this approach based on the resolution of nonlinear stochastic
recurrence equations could be extended, is left for further investigation.
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Appendix

APPENDIX A: DENSITIES ENSURING LOCAL OPTIMALITY OF
THE ASYMMETRY TEST

Figure 2 shows densities (5.10) for different values of a. For such densities,
the test (4.7) is asymptotically locally UMPU for the testing problem (4.6).

APPENDIX B: NUMERICAL ILLUSTRATIONS

We first simulated N = 1, 000 independent trajectories of size n = 500,
n = 2, 000 and n = 4, 000 of an asymmetric GARCH(1,1) model, with a
parameter of the form θ0 = (0.1, α0+, α0−, 0.8) and the standardized Student
distribution with 7 degrees of freedom for ηt. With such parameters, we have
γ0 = 0 for α0+ = α0− = 0.2575 or for α0+ = 0.22 and α0− = 0.2971,
in particular. Table 1 studies the finite sample properties of the stationarity
and asymmetry tests based respectively on the statistics Tn and T S

n . The first
rows of the table concern tests applied to a symmetric model α0+ = α0−,
and the last rows concern the asymmetric model.

The empirical size of a test of theoretical level α = 5%, over N = 1, 000
independent replications of the null hypothesis, belongs to the interval [3.6%,
6.4%] with probability 95%. In view of this basic result, one can consider that
the error of first kind of the asymmetry test is well controlled. Indeed, except
for three values of α0− when n = 500 (displayed in bold-face in the table),
in the first part of Table 1 the relative frequency of rejection of HS

0 is always
between the significance bounds 3.6% and 6.4%, regardless of the value of γ0.
The empirical frequency of rejection of the stationarity test under the null,
displayed in the rows Hγ

0 of the two gray columns, is also quite satisfactory
when n > 500. Looking at the second part of Table 1, one can note that
the asymmetry test behaves as expected under the alternative. Indeed the
frequency of rejection ofHS

0 increases when α0− moves away from α0+ = 0.22
and when the sample size n increases. As expected from the asymptotic study,
as n → ∞, the frequency of rejection of Hγ

0 tends to zero when γ0 < 0 (on
the left of the gray columns) and tends to one when γ0 > 0 (on the right of
the gray columns).

We then considered applications to financial series. The strict station-
arity and asymmetry tests have been applied to daily returns of various
daily stock indices. We do not report the detailed results of the tests, since
they always lead to the same conclusions for this kind of series. The strict
stationarity can never be rejected because the value of Tn is always very
small when computed on the returns of stock indices. Moreover, a significant
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Table 1

Finite sample behaviors of the stationarity test based on Tn and of the asymmetry test
based on TS

n : relative frequency of rejection of the hypotheses H
γ
0 : γ0 < 0 and

HS
0 : α0+ = α0− at the nominal level α = 5% for a symmetric GARCH(1,1) (for which

α0+ = α0+ = 0.2575 corresponds to γ0 = 0) and for an asymmetric GARCH(1,1) (with
α0+ = 0.22, and for which α0− = 0.2971 corresponds to γ0 = 0). The unexpected

frequencies of rejection are displayed in bold.

Model with α0+ = α0+

α0−

n Null 0.18 0.20 0.22 0.2575 0.28 0.30 0.31
500 H

γ
0 0.0 0.0 0.1 7.3 28.4 62.4 76.2

HS
0 4.5 6.0 6.6 5.6 8.0 7.7 6.1

2, 000 H
γ
0 0.0 0.0 0.0 5.8 67.7 99.1 100.0

HS
0 6.0 5.1 4.5 5.3 4.4 5.2 5.0

4, 000 H
γ
0 0.0 0.0 0.0 4.0 91.8 100.0 100.0

HS
0 6.0 5.3 4.5 5.2 5.7 6.4 4.2

Model with α0+ < α0−

α0−

n Null 0.23 0.26 0.29 0.2971 0.3 0.32 0.34
500 H

γ
0 0.1 0.9 4.8 7.8 7.0 15.0 25.5

HS
0 5.1 7.4 13.9 14.0 16.2 18.4 21.0

2, 000 H
γ
0 0.0 0.0 2.8 6.3 7.0 26.8 59.0

HS
0 7.1 13.8 29.8 39.0 39.1 52.5 66.2

4, 000 H
γ
0 0.0 0.0 1.9 4.1 5.6 42.4 83.7

HS
0 6.6 26.2 55.2 59.5 65.9 82.1 91.7
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Table 2

Test statistic Tn with the p−value of the nonstationarity test, and asymmetry test
statistic T S

n with its p−value for stock returns.

α̂n+ α̂n− β̂n Tn p-val TS
n p-val

ICGN 0.010 (0.022) 0.397 (0.190) 0.870 (0.052) -2.412 0.008 -2.083 0.037
MCBF 0.030 (0.031) 0.021 (0.021) 0.977 (0.011) 0.039 0.515 0.189 0.850
KVA 0.007 (0.042) 0.278 (0.133) 0.928 (0.026) 0.547 0.708 -1.946 0.052
BTC 0.188 (0.183) 0.812 (0.425) 0.771 (0.075) -0.653 0.257 -1.392 0.164
CCME 0.492 (0.155) 0.364 (0.138) 0.744 (0.046) 0.283 0.611 0.670 0.503

negative value of T S
n , indicating the presence of a leverage effect, is often

observed. Different conclusions can be obtained for individual stock returns.
For comparison purposes, we took the series considered in Table VII of FZ.
We estimated asymmetric GARCH(1,1) models on the daily series of Icagen
(NasdaqGM: ICGN), Monarch Community Bancorp (NasdaqCM: MCBF),
KV Pharmaceutical (NYSE: KV-A), Community Bankers Trust (AMEX:
BTC) and China MediaExpress (NasdaqGS: CCME)3. The stationarity re-
sults, shown in Table 2, are in accordance with those obtained in this paper:
we cannot reject explosiveness for four out of five assets. Interestingly, the
symmetry assumption cannot be rejected at the 5% level for these (possibly)
explosive assets. This is very different from the conclusion generally obtained
for stationary series (the leverage effect). For the (probably) stationary asset,
ICGN, the leverage effect is present.

APPENDIX C: AN EXPLICIT EXPRESSION FOR I
To derive the explicit form of I in (3.4), we introduce additional notations.
Let a0+(ηt) = α0+(η

+
t )

δ + β0, a0−(ηt) = α0−(−η−t )δ + β0, and for i = 1, 2,

νi = E

(
β0

a0(ηt)

)i

, νi+ = E

(
β0

a0+(ηt)

)i

, νi− = E

(
β0

a0−(ηt)

)i

.

Lemma C.1. Under the assumptions of Theorem 3.1, we have I = (Iij)
3The data range from May 31, 2007, August 28, 2007, March 31, 2006, June 29, 2007,

and March 31, 2009, respectively, to February 7, 2011.
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where,

I11 =
4

δ2
(1− 2ν1+ + ν2+)(1 − ν1) + 2 (ν1+ − ν2+) (1− ν1+)

α2
0+(1− ν1)(1 − ν2)

,

I12 =
4

δ2
(ν1+ − ν2+)(1 − ν1−) + (ν1− − ν2−)(1 − ν1+)

α0+α0−(1− ν1)(1− ν2)
= I21,

I13 =
4

δ2
ν2(1− ν1+) + ν1+ − ν2+
β0α0+(1− ν2)(1− ν1)

= I31,

I33 =
4

δ2
ν2(1 + ν1)

β20(1− ν2)(1 − ν1)
,

and I22 (resp. I23 = I32) is obtained by replacing α0+ by α0− and the νi+
by νi− in I11 (resp. I13).

Proof. For ease of notation we will omit the index 0 for the true parameters
and functions in this proof. We have

(C.1) α+d
α+

t + α−d
α−

t =

∞∑

j=1

(
j−1∏

k=1

β

a(ηt−k)

)(
1− β

a(ηt−j)

)
= 1 a.s.

Letting

ν̃i+ = E

(
(η+t )

δ

a(ηt)

)i

= E

(
(η+t )

δ

a+(ηt)

)i

, ν̃i− = E

(
(−η−t )δ
a(ηt)

)i

= E

(
(−η−t )δ
a−(ηt)

)i

we obtain

E
(
d
α+

t

)
=

ν̃1+
1− ν1

, E
(
d
α−

t

)
=

ν̃1−
1− ν1

.(C.2)

Noting that

α+E
(η+t )

δ

a2(ηt)
+
ν+2
β

=
ν+1
β
,

we have

E
(η+t )

δ

a2(ηt)
=
ν1+ − ν2+
βα+

.

It follows that

E
(
d
α+

t

)2
= ν̃2+

∞∑

j=1

νj−1
2 + 2

∞∑

j=1

∞∑

h=1

νj−1
2 βE

(η+1 )
δ

a2(η1)
νh−1
1 ν̃1+

=
ν̃2+

1− ν2
+ 2

1

1− ν2

1

1− ν1

ν1+ − ν2+
α+

ν̃1+

=
ν̃2+α+(1− ν1) + 2 (ν1+ − ν2+) ν̃1+

α+(1− ν1)(1 − ν2)
.
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Symmetrically

E
(
d
α−

t

)2
=

ν̃2−α−(1− ν1) + 2 (ν1− − ν2−) ν̃1−
α−(1− ν1)(1 − ν2)

.

Moreover,

Ed
α+

t d
α−

t =

∞∑

j=1

νj−1
2 βE

(
η+1
)δ

a2(η1)

∞∑

h=1

νh−1
1 ν̃1− +

∞∑

j=1

νj−1
2 βE

(
−η−1

)δ

a2(η1)

∞∑

h=1

νh−1
1 ν̃1+

=
α−(ν1+ − ν2+)ν̃1− + α+(ν1− − ν2−)ν̃1+

α+α−(1− ν1)(1− ν2)
.

Noting that

α+ν̃1+ + ν+1 = 1,

α+ν̃1+ + α−ν̃1− + ν1 = 1

2− ν1+ − ν1− = 1− ν1,

α2
+ν̃2+ + ν2+ + 2(ν1+ − ν2+) = 1

(ν1+ − ν2+) + (ν1− − ν2−) = ν1 − ν2.

we obtain the announced formulas for I11,I12 and I22.
Now

dβt =

∞∑

j=2

(j − 1)

(
j−1∏

k=1

β

a(ηt−k)

)
α+(η

+
t−j)

δ + α−(−η−t−j)
δ

βa(ηt−j)
.

Noting that

E

(
α+(η

+
1 )

δ + α−(−η−1 )δ
a(η1)

)
= E

(
1− β

a(η1)

)
= 1− ν1,

E

(
α+(η

+
1 )

δ + α−(−η−1 )δ
a(η1)

)2

= E

(
1− β

a(η1)

)2

= 1 + ν2 − 2ν1,

and

E
α+(η

+
1 )

δ + α−(−η−1 )δ
a2(η1)

=
ν1 − ν2
β

,
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we have

E
(
dβt

)
=

ν1
(1− ν1)β

,(C.3)

E
(
dβt

)2
=

∞∑

j=2

(j − 1)2νj−1
2

1 + ν2 − 2ν1
β2

+2
∞∑

j=2

∞∑

h=1

(j − 1)(j + h− 1)νj−1
2

ν1 − ν2
β

νh−1
1

1− ν1
β

=
(1− 2ν1 + ν2)ν2(ν2 + 1)

β2(1− ν2)3

+2
(1− ν1)(ν1 − ν2)

β2

∞∑

h=1

ν2(ν2 + 1 + h− ν2h)

(1− ν2)3
νh−1
1 ,

which, in view of I = 4
δ2Ed1d

′
1, gives the formula for I33. Noting that

E
(η+1 )

δ
{
α+(η

+
1 )

δ + α−(−η−1 )δ
}

a2(η1)
= ν̃1+ − ν1+ − ν2+

α+
=

1− 2ν1+ + ν2+
α+

,

we also have

E
(
d
α+

t dβt

)
=

∞∑

j=2

(j − 1)νj−1
2

1− 2ν1+ + ν2+
βα+

+
∞∑

j=1

∞∑

h=1

(j + h− 1)νj−1
2

ν1+ − ν2+
α+

νh−1
1

1− ν1
β

+

∞∑

j=2

∞∑

h=1

(j − 1)νj−1
2

ν1 − ν2
β

νh−1
1 ν̃1+

=
ν2(1− 2ν1+ + ν2+)

βα+(1− ν2)2

+
(1− ν1)(ν1+ − ν2+)

βα+

{ ∞∑

h=1

(
ν2

(1− ν2)2
+ h

1

1− ν2

)
νh−1
1

}

+
(ν1 − ν2)ν̃1+

β

{ ∞∑

h=1

ν2
(1− ν2)2

νh−1
1

}
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=
ν2(1− 2ν1+ + ν2+)

βα+(1− ν2)2

+
(1− ν1)(ν1+ − ν2+)

βα+

{
ν2

(1− ν2)2
1

(1− ν1)
+

1

1− ν2

1

(1− ν1)2

}

+
(ν1 − ν2)(1− ν1+)

βα+

{
ν2

(1− ν2)2
1

(1− ν1)

}
,

which gives the formula for I13. 2

APPENDIX D: PROOFS

D.1. Proof of Theorem 3.2. The convergence results in i) follow from

Taylor expansions of the functions κ̂η = κη(θ̂n) and 1
n

∑n
t=1

1
σ2
t (θ̂n)

∂σ2
t

∂θi

∂σ2
t

∂θj
(θ̂n)

around θ0, and the ergodic theorem together with the consistency of θ̂n. š
Now consider the case ii). For some θ∗ = (ω∗, ϑ∗)′ between θ̂n and θ0 we

have
(D.1)

κ̂η =
1

n

n∑

t=1

η4t −
4

δn

n∑

t=1

ǫ4t
σ4t (θ

∗)

1

σδt (θ
∗)

∂σδt (θ
∗)

∂θ′
(θ̂n − θ0) :=

1

n

n∑

t=1

η4t +Rn.

Write dt(ϑ) = (d
α+

t (ϑ), d
α−

t (ϑ), dβt (ϑ))
′. Let the matrix norm defined by

‖A‖ =
∑ |aij | with standard notations. By Proposition 2.1 and already

given arguments, for some ρ ∈ (0, 1),

|Rn| ≤ K

n

n∑

t=1

η4t
h
4/δ
t

σ4t (θ
∗)

(
ρt|ω̂n − ω0|+ ‖dt(ϑ∗)‖‖ϑ̂n − ϑ0‖

)
= o(1), a.s.

Hence the first part of ii) is proven. Now we have, using (7.13),

nĴω,α+
≤ 4

δ2

n∑

t=1

1

α̂n+

ht

σδt (θ̂n)

∑t
j=1 β̂

j−1
n

ht
≤ K

n∑

t=1

ht

σδt (θ̂n)
ρt,(D.2)

for ρ ∈ (0, 1) when n is large enough, by Proposition 2.1 i). It follows that
nĴω,α+

= O(1) a.s. More generally nĴω,ϑ = O(1) a.s. Moreover, we have

nĴω,ω ≥ 1/σ41(θ̂n) > 0. Thus we have shown that

Ĵϑ,ωĴ −1
ω,ωĴω,ϑ = o(1), a.s.

Now we turn to Ĵϑ,ϑ. Considering the top-left term, a Taylor expansion
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around θ0 gives

Ĵα+,α+
=

4

δ2
1

n

n∑

t=1


 1

σδt (θ̂n)

t∑

j=1

β̂j−1
n (ǫ+t−j)

δ




2

=
4

δ2
1

n

n∑

t=1

{
d
α+

t (ϑ0)
}2

(D.3)

+
4

δ2
1

n

n∑

t=1

[{
1

σδt (θ)

∂σδt
∂α+

(θ0)

}2

−
{
d
α+

t (ϑ0)
}2
]
+ Sn,

where, for θ∗ such that ‖θ0 − θ∗‖ ≤ ‖θ0 − θ̂n)‖,

|Sn|

≤ K

n

n∑

t=1

(∑t
j=1(β

∗)j−1(ǫ+t−j)
δ

σδt (θ
∗)

)2 {
ρt|ω̂n − ω0|+ ‖dt(ϑ∗)‖‖ϑ̂n − ϑ0‖

}

+
K

n

n∑

t=1

(∑t
j=1(β

∗)j−1(ǫ+t−j)
δ

σδt (θ
∗)

)(∑t
j=1(j − 1)(β∗)j−2(ǫ+t−j)

δ

σδt (θ
∗)

)
|β̂n − β0|

= o(1), a.s.

by already used arguments. Moreover, the second term in the right-hand side
of (D.4) converges to 0 a.s. by (7.7), while the first term converges to I11.
We thus have shown that Ĵα+,α+

a.s. converges to I11. The other two terms

in Ĵϑ,ϑ can be handled similarly, which completes the proof of ii).
Turning to iii), we note that ∂σδt (θ

∗)/∂ω ≤ K for n large enough, since
β0 < 1. Moreover, σδt (θ

∗) ≥ ω∗ +α|ǫt−1|δ. Therefore (D.1) continues to hold
with |Rn| bounded by

K

n

n∑

t=1

η4t

(
ht

σ2t (θ
∗)

)2 1

ω∗ + α|ǫt−1|δ
+
K

n

n∑

t=1

η4t

(
ht

σ2t (θ
∗)

)2

‖dt(ϑ∗)‖

×‖ϑ̂n − ϑ0‖.

Therefore |Rn| = oP (1) by Proposition 2.1 iii), the weak consistency of
ϑ̂n and the existence of moments for dt(ϑ

∗) and ht/σ
δ
t (θ

∗). Hence κ̂η →
κ in probability. By arguments already used we have nĴω,ϑ = OP (1),

Ĵϑ,ωĴ−1
ω,ωĴω,ϑβ = oP (1), and the right-hand side of (D.4) converges to I(1, 1)

in probability. 2
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D.2. Proof of Theorem 6.1. Note that ζ̂n = argminζ∈ΥQn(ζ), where

Qn(ζ) =
1

n

n∑

t=1

η2t





(
h
δ/δ0
t

σδt (ζ)

)2/δ

− 1



 + log

(
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h
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t

)2/δ

= On(δ, ϑ) +Rn(ζ)

where
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1

n

n∑
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η2t

{
1

v
2/δ
t (δ, ϑ)

− 1

}
+ log v

2/δ
t (δ, ϑ),
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α+(η
+
t−j)

δ + α−(−η−t−j)
δ

{a0(ηt−j)}δ/δ0
j−1∏
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β

{a0(ηt−k)}δ/δ0
,

and

Rn(ζ) =
1

n

n∑

t=1

η2t





(
h
δ/δ0
t

σδt (ζ)

)2/δ

− 1

v
2/δ
t (δ, ϑ)



+ log

(
σδt (ζ)

h
δ/δ0
t vt(δ, ϑ)

)2/δ

.

To prove the consistency, in the cases γ0 > 0 and γ0 = 0, it will be sufficient
to establish Lemmas D.1, D.2 and D.3 below.

Let Υ0 = {ζ ∈ Υ : β < e
δ
δ0

γ0} and Υp = {ζ ∈ [0,∞)5 : β <

‖1/aδ/δ00 (η1)‖−1
p }.

Lemma D.1. i) When γ0 > 0, for any ζ ∈ Υ0 the process vt(δ, ϑ) is
stationary and ergodic. Moreover, for any compact Υ∗

0 ⊂ Υ0,

sup
ζ∈Υ∗

0

∣∣∣∣∣
σδt (ζ)

h
δ/δ0
t

− vt(δ, ϑ)

∣∣∣∣∣→ 0 a.s. as t→ ∞.

Finally, for any ζ /∈ Υ0 it holds that σδt (ζ)/h
δ/δ0
t → ∞ a.s.

ii) When γ0 = 0, for any ζ ∈ Υp with p ≥ 1, the process vt(δ, ϑ) is
stationary and ergodic. Moreover, for any compact Υ∗

p ⊂ Υp,

sup
ζ∈Υ∗

p

∣∣∣∣∣
σδt (ζ)

h
δ/δ0
t

− vt(δ, ϑ)

∣∣∣∣∣ → 0 in Lp.

Proof. When γ0 > 0, for ζ ∈ Υ0, by the Cauchy root test, the series vt(δ, ϑ)
in a.s. finite. As a measurable function of {ηu, u < t}, the process vt(δ, ϑ) is
thus stationary and ergodic. When γ0 = 0, since ‖vt(δ, ϑ)‖p <∞ for ζ ∈ Υp,
vt(δ, ϑ) is a.s. finite and the stationarity and ergodicity follow.
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We have, keeping the notation of the proof of Lemma 7.1,

σδt (ζ)

h
δ/δ0
t

=

t∑

j=1

βj−1

{
j∏

k=1

ht−k

ht−k+1

}δ/δ0
zt−j

h
δ/δ0
t−j

.

In view of (7.4) we have

(D.4)

{
ht−k

ht−k+1

}δ/δ0

≤ 1

a0(ηt−k)δ/δ0
,

and the conclusion follows from arguments already used. 2

Lemma D.2. If ζ ∈ Υ0, we have

vt(δ, ϑ) = 1, a.s. iff (δ, ϑ) = (δ0, ϑ0).

Proof. We have

(D.5) vt(δ, ϑ)a0(ηt−1)
δ/δ0 = βvt−1(δ, ϑ) + α+(η

+
t−1)

δ + α−(−η−t−1)
δ.

Thus, vt(δ, ϑ) = 1 a.s. iff

β + α+(η
+
t−1)

δ + α−(−η−t−1)
δ − {β0 + α0+(η

+
t−1)

δ0 + α0−(−η−t−1)
δ0}δ/δ0 = 0.

Straightforward algebra shows that the function x 7→ β + α+x − {β0 +
α0+x

δ0/δ}δ/δ0 , has at most two zeroes on (0,∞), except when δ = δ0, β = β0
and α+ = α0+. Similarly, the function x 7→ β + α−x− {β0 + α0−xδ0/δ}δ/δ0 ,
has at most two zeroes on (0,∞), except when δ = δ0, β = β0 and α− = α0−.
By Assumption A3 we can conclude that (δ, ϑ) = (δ0, ϑ0). 2

To handle Rn(ζ) we prove the following lemma. Let Υ̌ be the compact set
of the (δ, ϑ)’s such that ζ ∈ Υ.

Lemma D.3. Suppose that P (ηt = 0) = 0. Then, for any k > 0

E sup
(δ,ϑ)∈Υ̌

(
1

vt(δ, ϑ)

)k

<∞ and E sup
ζ∈Υ

(
h
δ/δ0
t

σδt (ζ)

)k

<∞.

Proof. Let ε > 0 such that p(ε) := P (|ηt| ≤ ε) ∈ [0, 1). If |ηt−1| > ε, since
the sum vt(δ, ϑ) is greater than its first term, we have,

1

vt(δ, ϑ)
≤ a

δ/δ0
0 (ηt−1)

α+(η
+
t−1)

δ + α−(−η−t−1)
δ

≤
(
max(α0+, α0−)

αδ0/δ
+

β0
αδ0/δεδ0

)δ/δ0

:= K(ε).
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Iterating this method, we can write

sup
(δ,ϑ)∈Υ̌

1

vt(δ, ϑ)
≤ K(ε)

∞∑

i=1

1l|ηt−1|≤ε . . . 1l|ηt−i+1|≤ε1l|ηt−i|>ε

(
a0(ε)

β

)i−1

.

where a0(ε) = max(α0+, α0−)ǫδ0 + β0. The first result of the lemma follows
by the arguments given in the proof of Lemma 7.3.

Similarly, we have for |ηt−1| > ε,

h
δ/δ0
t

σδt (ζ)
≤ {ω0 + a0(ηt−1)ht−1}δ/δ0

ω + h
δ/δ0
t−1 {α+(η

+
t−1)

δ + α−(−η−t−1)
δ}+ βσδt−1(ζ)

≤
(

ω0

ωδ0/δ
+

α

αδ0/δ
+

β0
αδ0/δεδ0

)δ/δ0

:= H(ε),

and for |ηt−1| ≤ ε and |ηt−2| > ε,

h
δ/δ0
t

σδt (ζ)
≤
(

ω0

ωδ0/δ
+
a0(ε)

βδ0/δ
H(ε)

)δ/δ0

.

The conclusion follows by the arguments used for Lemma 7.3. 2

Now we turn to the asymptotic normality. Let, for η ∈ R,

G(η) = log |η|
{
1− β0

a0(η)

}
− 1

δ
log{a0(η)},

with by convention G(0) = − log(β0)/δ, and let

dδt =
∞∑

j=1

G(ηt−j)

j−1∏

k=1

β0
a0(ηt−k)

.

Since E log{β0/a0(η1)} < 0, by the Cauchy root test, the process dδt is sta-
tionary and ergodic.

Lemma D.4. Assume γ0 ≥ 0 and Eη4t <∞. We have

1√
n

n∑

t=1

∂ℓt
∂ζ ′

(ζ0)
d→ N {0, (κη − 1)Iδ} as n→ ∞,

where, letting D′
t =

(
dδt , d

α+

t , d
α−

t , dβt

)
, Iδ = 4

δ2
ED1D

′
1 is nonsingular.
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Proof. We have

∂ℓt(ζ)

∂δ
=

2

δ

{
1− ǫ2t

σ2t

}{
1

σδt

∂σδt
∂δ

− log σt

}
.

Moreover,

(D.6)
∂σδt
∂δ

= α+(ǫ
+
t−1)

δ log(ǫ+t−1) + α−(−ǫ−t−1)
δ log(−ǫ−t−1) + β

∂σδt−1

∂δ
,

with by convention log(0) × 0 = 0. Thus, computation shows that, at ζ0,

Zt :=
1

σδ0t

∂σδt
∂δ

− log σt = G(ηt−1) +
β0

a0(ηt−1)
Zt−1 +Wt,

with

Wt =

(
1− σδ0t

a0(ηt−1)σ
δ0
t−1

)
1

σδ0t

∂σδt
∂δ

− 1

δ0
log

(
σδ0t

a0(ηt−1)σ
δ0
t−1

)

= − ω0

a0(ηt−1)σ
δ0
t−1

1

σδ0t

∂σδt
∂δ

− 1

δ0
log

(
1 +

ω0

a0(ηt−1)σ
δ0
t−1

)
.(D.7)

We will show that

(D.8) Wt → 0 in Lp as t→ ∞.

First note that the second term in the right-hand side of (D.7) converges to
0 in Lp, by Proposition 2.1. Now in view of (D.6) we have

1

σδt

1

σδt−1

∂σδt
∂δ

(ζ0) =

t∑

j=1

βj−1
0

ht−1

ht

{
j∏

k=2

ht−k

ht−k+1

}2

u(ηt−j) log(|ǫt−j |)
ht−j

,

where u(x) = α0+(x
+)δ0 +α0−(−x−)δ0 . The first term in the right-hand side

of (D.7) is thus bounded, in absolute values, by

Mt =
ω0

a20(ηt−1)

∞∑

j=1

{
j∏

k=2

β0
a20(ηt−k)

}
u(ηt−j){| log(ht−j)|+ | log |ηt−j ||}

ht−j
.

Write Mt =
∑t0

j=1Mjt +
∑∞

j=t0+1Mjt. Note that Mjt → 0 because
{| log(ht−j)| + | log |ηt−j ||}/ht−j → 0 in Lp as t → ∞, by Proposition 2.1.
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Hence
∑t0

j=1Mjt → 0 in Lp as t → ∞. Moreover, it can be noted that
{| log(ht−j)|+ | log |ηt−j ||}/ht−j ≤ K(1 + | log |ηt−j ||). Thus

∞∑

j=1

Mjt ≤ K

∞∑

j=1

{
j∏

k=2

β0
a20(ηt−k)

}
u(ηt−j)(1 + | log |ηt−j ||).

Moreover, under A4,
∥∥∥∥∥∥

∞∑

j=1

Mjt

∥∥∥∥∥∥
p

≤ K

∞∑

j=1

∥∥∥∥
β0

a20(η1)

∥∥∥∥
j−1

p

‖u(η1)(1 + | log |η1||)‖p <∞.

It follows that
∑∞

j=t0+1Mjt → 0 in Lp as t0 → ∞. The convergence in (D.8)
is thus established.

On the other hand, (dδt ) is the strictly stationary and non anticipative
solution of the stochastic recurrence equation

dδt = G(ηt−1) +
β0

a0(ηt−1)
dδt−1.

It follows that

Zt − dδt =
β0

a0(ηt−1)
(Zt−1 − dδt−1) +Wt.

and thus

Zt − dδt =

t∑

j=1

{
j∏

k=2

β0
a0(ηt−k)

}
Wt−j .

In view of (D.8) and arguments already used it follows that

(D.9) Zt − dδt → 0 in Lp as t→ ∞.

The conclusion straightforwardly follows.
Finally, we show that Iδ is nonsingular. Suppose there exists x =

(x1, x2, x3, x4)
′ ∈ R

4 such that x′Iδx = 0. By arguments given in the proof
of Lemma 7.4, it follows that

x1G(ηt−1)a0(ηt−1) + x2(η
+
t−1)

δ + x3(−η−t−1)
δ = K, a.s.

whereK is a constant. Letting L(η) = x1G(η)a0(η)+x2(η
+)δ+x3(−η−)δ−K,

we find that for η > 0, the derivative

L′(η) = (η)δ−1

{
x2δ + x1α+ log

(
(η)δ

β0 + α0+(η)δ

)}
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cancels at most once on (0,∞), except if x1 = x2 = 0. It follows that
the equation L(η) = 0 has at most two solutions on (0,∞) if (x1, x2) 6=
(0, 0). The same arguments apply on (−∞, 0). In view of Assumption A3,
we conclude that Iδ is nonsingular. 2

References

Francq, C. and J.M. Zakoïan (2013) Inference in non stationary asymmetric GARCH
models. Annals of Statistics.

BP 60149

59653 Villeneuve d’Ascq cedex

France

E-mail: christian.francq@univ-lille3.fr

15 Boulevard Gabriel Peri

92245 Malakoff Cedex

France

E-mail: zakoian@ensae.fr

mailto:christian.francq@univ-lille3.fr
mailto:zakoian@ensae.fr


INFERENCE IN NON STATIONARY ASYMMETRIC GARCH 45

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

a=1/8
a=1/4
a=1/2
a=1
a=2

Figure 2. Densities (5.10) of ηt for which the asymmetry test (4.7) is asymptotically
optimal.
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