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Liquidation Equilibrium with Seniority and Hidden CDO

Abstract

The aim of our paper is to price credit derivatives written on a single name
when this name is a bank. Indeed, due to the special structure of the balance
sheet of a bank and to the interconnections with other institutions of the
financial system, the standard pricing formulas do not apply and their use
can imply severe mispricing. The pricing of credit derivatives written on a
single bank name requires a joint analysis of the risks of all banks directly
or indirectly interconnected with the bank of interest. Each name cannot be
priced in isolation, but the banking system must be treated as a whole. It
is necessary to analyze the contagion of losses among banks, especially the
equilibrium of joint defaults and recovery rates at liquidation time. We show
the existence and uniqueness of such an equilibrium. Then the standard
pricing formulas are modified by adding a premium to capture the contagion
effects.

Keywords : Collateralized Debt Obligation, Contagion, Solvency Risk,
Value-of-the Firm Model, Liquidation Equilibrium, Contagion premium, Sys-
temic Risk, Stress-Test.

1 Introduction

The aim of our paper is to price credit derivatives written on a single name
when this name is a bank. Indeed, due to the special structure of the balance
sheet of a bank and to the interconnections with other institutions of the
financial system, the standard pricing formulas do not apply and their use
can imply severe mispricing.
Two alternative approaches are usually followed to price credit derivatives. In
the structural approach, introduced by Merton (1974), and used for instance
in Basel 2 (Vasicek (1991)), the default of a firm is assumed to occur when
the asset component of the balance sheet becomes smaller than its liability
component. Then the probability and the price of default are deduced from
the historical and risk-neutral properties of these two underlying variables.
An alternative is the reduced form or intensity approach, in which the balance
sheet is not taken into account and the historical (or risk-neutral) default
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intensities are directly analyzed [see e.g. Duffie, Garleanu (2001), or Duffie,
Singleton (1999)]. We focus on the standard pricing formulas based on the
structural approach in a two period setup.
Let us consider a digital Credit Default Swap (CDS) written on a single name
i. Its payoff is equal to 1, if the asset is below the liability, i.e. if log(Ai) <
log(Li), and equal to 0, otherwise. Up to the discounting, its price is deduced
from the risk-neutral probability of this default event. It is usually computed
by assuming a deterministic level of liability and a Gaussian random log-asset,
with a distribution depending on individual characteristics of the name, such
as its rating, the expected return and the volatility of its stock. This single
factor model, where the factor is the log-asset log(Ai), is not appropriate
when the name is a bank. Indeed, the asset component of the bank’s balance
sheet includes debts of the other banks, and therefore is also sensitive to
the risk situations of these banks. In other words, a CDS written on a
bank is a CDS written on a portfolio of debts and has to be considered as a
more complex multiple name product, e.g. a Collateralized Debt Obligation
(CDO). Let us now recall how such a CDO is usually priced. First the
composition of the portfolio of interest is described, that is, the log-asset of
bank i as a function of the underlying risks is defined:

log(Ai) = g (log(Aj), log(Lj), j ∈ J) ,

where J is the set of institutions appearing in the balance sheet of bank i.
Then, the joint distribution of the underlying factors log(Aj), j ∈ J , is speci-
fied taking into account their possible dependence by means of a copula (see
e.g. Schönbucher, Schubert (2001) or Burtschell, Gregory, Laurent (2009))
not necessarily Gaussian (see the discussion on Li’s Copula [Li, (2000)] by
Wired (2009) or MacKenzie, Spears (2012)) or by means of unobservable
common factor (see Sections 3.1-3.2).
However, this pricing approach of a CDO is also inappropriate in case of
banks. Indeed, this approach implicitly assumes an exogenous dependence
between the underlying risk factors log(Aj), j ∈ J (and log(Ai)). This does
not take into account the fact that the asset component of the balance sheet
of another bank j can also depend on log(Ai) for instance. The pricing of
credit derivatives written on a single bank name requires a joint analysis of
the risks of all banks directly or indirectly interconnected with the bank of
interest. We cannot price each name considered in isolation, but we have to
treat the banking system as a whole. We have to analyze the contagion of
losses among banks, especially the equilibrium of joint defaults and recovery
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rates at liquidation date.
In Section 2, we describe the balance sheets of the banks, including stocks
and debts with two levels of seniority, and define the bilateral exposure ma-
trices, which characterize the interconnections. We consider the possible
defaults of institutions in the system. Due to the interconnections, these
defaults have to be considered jointly and this leads to the so-called liqui-
dation equilibrium. The liquidation equilibrium provides the state (either
defaulted, or non defaulted) of each institution together with its equilibrium
firm value and its junior and senior equilibrium debt values. We prove the
existence and uniqueness of an equilibrium in the general case. As an illus-
tration, the special case of two institutions is described in detail in Appendix
1. In Section 3, we focus on the pricing of the junior and senior tranches of
the debts of the financial institutions. We adopt a progressive approach of
this question. We first consider a financing project in the framework of the
Value-of-the-Firm model, then a system of unconnected financial institutions
exposed to a common exogenous risk factor and finally we analyze a system
of banks, which are interconnected by means of their debt crossholdings. We
note that junior and senior tranches written on a given institution, that is, on
a single name, are in fact tranches written on several names due to the debt
holdings. This explains why the pricing of such a tranche is equivalent to
the pricing of a (hidden) Collateralized Debt Obligation (CDO). Moreover,
the prices of these hidden CDO’s have to take into account the liquidation
equilibrium. We show how these CDO’s prices under equilibrium can be
decomposed in order to highlight the components of these prices due to the
presence of interconnections, called contagion premium. In Section 4, we
produce numerical illustrations. We provide the dynamics of the sequence of
liquidation equilibria when the exogenous asset components are driven by a
single common factor and we examine how the prices of hidden CDO’s, and
their contagion components, depend on the design of the exposure matrices.
Section 5 concludes. Proofs are gathered in Appendices.
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2 Liquidation Equilibrium

2.1 Two examples

i) The equilibrium for a single bank
Let us first present the standard value-of-the-firm model developed in Merton
(1974) and Vacisek (1991), here extended to a unique firm that issued both
junior and senior debts. As usual, we distinguish the contractual (or face)
value of a debt fixed at the initial date t = 0 from its actual value at date
t = 1 of reimbursement. Indeed, at the date of reimbursement the actual
value of the debt can be strictly smaller than the face value, when there is
default. Three types of stakeholders are involved: the shareholders whose
interest is the net value of the assets over the total value of the debt, that is
the so-called value-of-the-firm; the senior debtors, who hold the senior debt
and are entitled a right over the assets up to the contractual value of senior
debt; finally, the junior debtors have a right on the net value of asset over
the contractual senior debt up to the contractual junior debt.
More precisely, let us denote by LS and LJ (respectively L∗S and L∗J) the
actual (respectively, contractual) values of senior and junior debts, Y the
value of the firm and A the asset value. Following Merton’s analysis, the
lines of the balance sheet are constrained by the following equations:

LS = min(A;L∗S), (2.1)

LJ = min(A− LS;L∗J), (2.2)

Y =
(
A− (LJ + LS)

)+
. (2.3)

This system of equations defines a continuous piecewise linear system in the
values of debts and the value of the firm. To invert this system, we have to
express the value of the firm Y , and the values of the junior and senior debts
LJ and LS, as functions of asset value A. The invertibility of this system can
be analyzed recursively: equation (2.1) provides the value of the senior debt
LS; this value can be plugged in equation (2.2) to get the value of the junior
debt LJ and finally equation (2.3) gives the value of the firm Y using the
two debt values already computed. Therefore this piecewise linear system
(2.1)− (2.3) is invertible. The explicit solution is:

LS =

{
A, if A ≤ L∗S,
L∗S, if L∗S < A,

(2.4)

4



LJ =


0, if A ≤ L∗S,
A− L∗S, if L∗S < A ≤ L∗S + L∗J ,
L∗J , if L∗S + L∗J < A,

(2.5)

Y =

{
0, if A ≤ L∗S + L∗J ,
A− L∗S − L∗J , if L∗S + L∗J < A.

(2.6)

We get piecewise linear functions of A, solutions of the piecewise linear sys-
tem (2.1) − (2.3). The values LS, LJ and Y are expressed as functions of
asset value A (see Figure 1 given for L∗J > L∗S). One can identify three
situations depending on the relative position of asset value A with respect of
the contractual senior debt value L∗S and the total contractual debt value
L∗S + L∗J :

• situation 0: the institution does not default, that is, LS = L∗S, LJ =
L∗J and Y > 0; since the institution is not in default, debtors get
full repayment of the debt and shareholders get a positive value; the
situation is called ”alive”.

• situation 1: the institution defaults only on its junior debt, that is
LS = L∗S, LJ < L∗J and Y = 0. Since the institution is in default, the
shareholders get zero and the total debt is not fully repaid; but, the
default is not very severe since senior debtors are fully repaid, whereas
the junior debtors are not. We call this situation ”partial default”.

• situation 2: the institution defaults on its senior debt, that is, LS <
L∗S, LJ = 0 and Y = 0; being in default implies that the value of
the firm is zero; in this regime, the situation is serious enough to have
erased the junior debt: only the senior debtors have not lost everything;
we call this situation ”complete default”.

ii) The equilibrium for two unconnected banks
In the case of two unconnected institutions, we can write system (2.1)−(2.3)
for each institution. The balance sheets are constrained by:

LS1 = min(A1;L
∗S
1 ),

LJ1 = min(A1 − LS;L∗J1 ),

Y1 =
(
A1 − (LJ1 + LS1 )

)+
,

LS2 = min(A2;L
∗S
2 ),

LJ2 = min(A2 − LS2 ;L∗J2 ),

Y2 =
(
A2 − (LJ2 + LS2 )

)+
.

(2.7)

5



A
L∗S L∗J + L∗S

Y, LJ , LS

LS

LJ

Y

L∗S

L∗J

Complete default Partial default Alive

Figure 1: Merton’s Model With Two Seniority Levels

The invertibility of this piecewise linear system derives directly from the sin-
gle institution analysis. Due to the absence of interconnections, the thresh-
olds characterizing the situations of each bank are L∗Si and L∗Si + L∗Ji for
institution i = 1, 2. They are independent of the situation of the other bank.
Since there are three situations for each institution defined by the relative
position of their specific asset value with respect to their specific thresholds,
there are 32 = 9 regimes for the financial system (see Table 1). These regimes
are illustrated in the space of asset values A1 and A2 in Figure 2.

Bank 1
Alive Partial Default Complete Default

Alive Regime C1 Regime C4 Regime C7
Partial

Bank 2 Default Regime C2 Regime C5 Regime C8
Complete
Default Regime C3 Regime C6 Regime C9

Table 1: The Nine Regimes in Case of Two Institutions
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A1

A2

L∗S1 L∗S1 + L∗J1

L∗S2

L∗S2 + L∗J2

C1

C2

C3

C4

C5

C6

C7

C8

C9

Figure 2: The Regimes for Two Unconnected Institutions

2.2 The balance sheets

Let us now extend the analysis above to any set of interconnected institutions.
The structure of the balance sheet of bank i is given in Table 2, the upper
index either S, or J , denoting the seniority of the debt, that is, senior and
junior, respectively. We denote by Yi, L

S
i , LJi , i = 1, ..., n, the value of bank

i and its amount of senior and junior debt, respectively. The proportion of
shares (resp. senior, junior debt) of bank j held by bank i is denoted by πi,j
(resp. γSi,j, γ

J
i,j). These proportions are expressed in number of shares (resp.

volume), not in value. The exposures πi,j, γ
S
i,j, γ

J
i,j, i = 1, ..., n, are gathered

in exposure matrices Π, ΓS, ΓJ , respectively (see Gourieroux, Heam, Monfort
(2012) for examples of exposures matrices for the French banking system).
Thus, we implicitly assume that the value of the debt of bank j is allocated
in proportion to its initial exposure in case of default. These exposures are
nonnegative and the sums of exposures on the financial institutions may be
smaller than 1. Thus fractions of the stocks, junior and senior debts can be
hold outside the financial system. For instance, a large fraction of the senior
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Asset Liability

interbank
cross

shareholdings
↔
{ πi,1Y1

...
πi,nYn

LSi ↔ senior debt

interbank
senior

lendings
↔
{ γSi,1L

S
1

...
γSi,nL

S
n

LJi ↔ junior debt

interbank
junior

lendings
↔
{ γJi,1L

J
1

...
γJi,nL

J
n

Yi ↔ value of the firm

external assets ↔ Axi

Table 2: Balance Sheet of Bank i

debt can correspond to the deposits on the bank accounts. We consider a
unique maturity of the debt, which means in particular that we focus on
solvency risk and are not concerned with liquidity features, including market
and funding liquidity risks.

The exogenous variables are the contractual debt levels L∗Si , L
∗J
i , i =

1, . . . , n, for both senior and junior debts, the matrices of bilateral exposures
Π,ΓS,ΓJ (with nonnegative elements) and the external asset components
Axi, i = 1, . . . , n. They define the state of the system S = {L∗S, L∗J ,Π,ΓS,ΓJ , Ax}.

2.3 The equilibrium conditions

Let us now focus on solvency risk by considering that all assets are perfectly
liquid and that the value of a given asset is the same when the bank i is alive,
or is under liquidation. We follow the standard Merton’s model [see Merton
(1974), Vasicek (1991)].
The equilibrium conditions have to account for the recovery of the senior debt
before the recovery of the junior debt in case of default. For each bank, the
values of the lines of the balance sheet are constrained by the three following
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equations:

LSi = min(Ai;L
∗S
i ), i = 1, . . . , n, (2.8)

LJi = min(Ai − LSi ;L∗Ji ), i = 1, . . . , n, (2.9)

Yi = (Ai − Li)+, i = 1, . . . , n, (2.10)

with Li = LSi + LJi and Ai is the total asset of bank i for i = 1, ..., n.
The third equation shows the value of the firm as the payment of a call written
on asset Ai with strike liability Li. The other equations provide the endoge-
nous recovery rates for the senior and junior debts, equal to min(1, Ai/L

∗S
i )

and min(1, (Ai − LSi )/L∗Ji ), respectively.
For a given bank i and a given Ai, these equations could be applied in a se-
quential order. The senior debt is paid first, if possible [equation (2.8)]; then,
the junior debt is considered based on the remaining amount after payment
of the senior debt [equation (2.9)]. Finally, the value of the firm is computed
[equation (2.10)]. However, this recursive approach cannot be used to solve
system (2.8) − (2.10), since the total asset Ai depends on the values Yj, L

S
j

and LJj of the other banks.
For each bank, we have three possible regimes:

• regime 0: no default of the bank, that is, Yi > 0, LSi = L∗Si , L
J
i = L∗Ji .

• regime 1: partial default of the bank : Yi = 0, LSi = L∗Si , L
J
i < L∗Ji .

• regime 2: complete default of the bank : Yi = 0, LSi < L∗Si , L
J
i = 0.

There is a partial default if the bank defaults on its junior debt, but does
not default on the senior debt. There is a complete default, when the default
occurs for both types of debts (with different recovery rates). Thus, there
exist 3n possible joint regimes for the banking system.
By introducing the expressions of the total assets Ai, i = 1, ..., n in system
(2.8)− (2.10), we get the equilibrium conditions:

LSi = min
( n∑
j=1

πi,jYj +
n∑
j=1

γJi,jL
J
j +

n∑
j=1

γSi,jL
S
j + Axi;L

∗S
i

)
, i = 1, . . . , n,

(2.11)

LJi = min
( n∑
j=1

πi,jYj+
n∑
j=1

γJi,jL
J
j +

n∑
j=1

γSi,jL
S
j +Axi−LSi ;L∗Ji

)
, i = 1, . . . , n.

(2.12)
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Yi =
( n∑
j=1

πi,jYj +
n∑
j=1

γJi,jL
J
j +

n∑
j=1

γSi,jL
S
j +Axi−LJi −LSi

)+
, i = 1, . . . , n,

(2.13)
The framework above extends the existing structural literature by in-

creasing the number of asset categories through which the financial institu-
tions are interconnected. The major part of the literature, following Furfine
(1999), Eisenberg, Noe (2001) and Upper, Worms (2004)4 consider connec-
tions through debts only with a single seniority level and debts totally held
within the system. Recently, Gourieroux, Heam, Monfort (2012) considered
the case of stocks and debts, but with a single seniority level.

2.4 Equilibrium for two interconnected banks

The existence and uniqueness of the equilibrium is equivalent to the invert-
ibility of the piecewise linear system (2.11) − (2.13). We first consider the
case of two interconnected banks in order to compare with the case of two
unconnected banks discussed in subsection 2.1.ii). The analysis is detailed in
Appendix 1. We derive the conditions for invertibility (see Proposition A.1)
and characterize the regimes in the space of the external asset components
Ax1, Ax2. The regimes are provided in Figure 3. Compared with Figure 2,
we note that the regimes are still defined by means of linear affine bound-
aries. However, these affine boundaries are no longer parallel to either the
x−axis, or the y−axis. Their slopes depend on the exposure matrices Π, ΓS

and ΓJ (see Appendix 1).
Let us discuss some situations on Figure 3. Point A represents the following

situation. Bank 1 suffered a loss for its non-banking assets, and on its own
it should (partially) default, since Ax1 < L∗S1 + L∗J1 . But, at the same time,
the non-banking assets of bank 2 is such that Ax2 > L∗S2 + L∗J2 , so that the
shareholders of bank 2 get a surplus. Since bank 1 is a shareholder of bank
2, this large surplus does more than compensate its own loss. Consequently,
bank 2 is alive since it has made a surplus and despite its bad result bank
1 is alive too due to its participation in bank 2. In some sense, the cross-
participation enables the financial system to share risk.
Let us now consider point B. The non-banking assets of bank 1 have per-
formed (since Ax1 > L∗S1 +L∗J1 ), while bank 2 is in complete default due to an

4See also Sheldon, Maurer (1998), Blavak, Nimander (2002), Wells (2002), Degryse,
Nguyen (2004), Lubloy (2005).
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Ax1

Ax2

u1

u2

u3

u4

u1

u3

u6

u2

u5

u4

u5

u6

L∗S1 L∗S1 + L∗J1

L∗S2

L∗S2 + L∗J2

+A

B+

C1

C2

C3

C4

C5

C6

C7

C8

C9

Figure 3: The Regimes for Two Connected Institutions

important loss of its non-banking asset. The situation of (complete) default
of bank 2 hits bank 1 in three ways, that is a loss on stock, a loss on junior
debt and a loss on senior debt. The interbank asset of bank 1 is sufficiently
reduced to lead bank 1 to (partial) default. In this case, cross-participation
and cross-lending enhance risk.
This model is consistent with the previous literature on interconnectedness:
a high level of interconnectedness helps protecting against the effect of small
systematic shocks, but can jeopardize the whole system for extreme shocks.
This is also compatible with the theoretical literature saying that a more
symmetric structure of interconnections can make the system less vulnerable
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[see e.g. Allen, Gale (2000)].

2.5 General case

The previous analysis, namely the detailed case of two interconnected banks,
is extended to a general framework and sufficient conditions for existence and
uniqueness of the liquidation equilibrium are given below.

Proposition 1 : For two seniority levels, the liquidation equilibrium exists
and is unique if :

n∑
i=1

πi,j < 1,
n∑
i=1

γJi,j < 1,
n∑
i=1

γSi,j < 1, j = 1, . . . , n.

Proof : See Appendix 2.

This result completes the result in Gourieroux, Heam, Monfort (2012),
where there exist only stocks and one type of debt, but requires a specific
proof to treat the seniority feature. Elsinger [(2009) Theorem 8] has derived
the existence and uniqueness of the liquidation equilibrium under a set of
similar conditions on the exposure matrices by a different approach. The
similar results obtained in Eisenberg, Noe (2001), or in Demange (2012)
are special cases of Proposition 1. First, a common feature of these two
papers is the absence of interconnections through stocks, that is : Π =
0. Second, their model have a single seniority level. In this respect let us
discuss more carefully Demange (2012): in her paper, seniority is present
under the term of ”absolute priority”, that is, ”creditors outside the banking
system have priority over those inside”. But this seniority aspect matches
perfectly the difference between external creditors and internal creditors.
In our framework, this means that interbank loans are exclusively junior
(ΓS = 0), but there exists a senior debt (LS > 0). Moreover, the ”junior”
debts are only composed of loans from the banks in the network : in our

setting, this would be written as :
∑
i

γJi,j = 1 for j = 1, ..., n. In a different

perspective, Elliott, Golub and Jackson (2012) propose to consider only cross-
holdings and study integration and diversification effects across institutions.
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3 Pricing bank debts in a CDO perspective

The liability side of the balance sheet of a financial institution can be an-
alyzed in terms of Collateralized Debt Obligation (CDO). The junior and
senior debts of each bank are tranches written on its total debt. Moreover
due to the interconnections between banks, these tranches are implicitly writ-
ten on a portfolio of debts of the other connected banks. We first review the
standard pricing formulas of these tranches for unconnected banks and ex-
plain how a common risk factor affecting the external asset components can
be introduced to capture the exogenous component of default dependence.
However, the defaults of the banks are also related by means of the intercon-
nections existing in the balance sheets. When we consider the more general
framework of connected banks, the derivation of the prices of the tranches
written on a single name requires to solve the liquidation equilibrium dis-
cussed in Section 2. Then we can disentangle in the default dependence and
its effect on prices the component due to the exogenous shocks and the com-
ponent due to the interconnections.
For expository purpose and CDO interpretation, we consider interconnec-
tions through debts only. Indeed, the standard CDO are defined on portfolio
of debts, not on portfolio of debts and stocks. However, it is easily seen that
the general pricing formula is still valid if stocks are also included. The pric-
ing formulas are also derived under the assumption of a deterministic short
term riskfree rate5.

3.1 Pricing tranches in the extended Merton’s model

3.1.1 CDO interpretation

Let us consider a financing project funded by a nominal debt L∗. The debt is
divided into a junior debt and a senior debt of nominal values L∗J and L∗S,
respectively, which have to be reimbursed at the predetermined date t = 1.
We have L∗ = L∗J +L∗S. The project is represented by an asset of value Ax.
The corresponding balance sheet at date t = 1 is given in Table 3 where the
liability components depend on the final state of the project.

The values LS and LJ of the debts at t = 1 are derived from Merton’s

5Or at least the assumption of a short term rate independent of the other variables
under the risk-neutral dynamics.
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Asset Liability
Ax LJ

LS

Y

Table 3: Balance Sheet of a Financing Project with Two Seniority Levels

1

L∗S

L∗

Table 4: Normalized Debt Side of a Financing Project with Two Seniority
Levels

model :

LS = min(L∗S;Ax), (3.1)

LJ = min(L∗J ;Ax− LS). (3.2)

In a CDO pricing perspective, let us normalize the debt side as in Table 4.
The ratio L∗S/L∗ defines the detachment point. From this CDO perspective,
we can define the payoff of the zero-coupon of junior debt (respectively, senior
debt), denoted ZCJ (respectively, ZCS), in the following way:

ZCS =

{
1, if L∗S < Ax,
Ax

L∗S
, otherwise.

(3.3)

ZCJ =


1, if L∗J + L∗S < Ax,
Ax− L∗S

L∗J
, if L∗S < Ax < L∗J + L∗S,

0, if Ax < L∗S.

(3.4)
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Thus, the associated normalized losses, denoted by LJ and LS, are :

LS = 1− ZCS =

(
1− Ax

L∗S

)+

,

LJ = 1− ZCJ = 1−
(
Ax

L∗J
− L∗S

L∗J

)+

+

(
Ax

L∗J
− L∗S + L∗J

L∗J

)+

.

3.1.2 Decomposition of the prices of the tranches in PD and
ELGD

The prices of the tranches are deduced from the expected value of the loss
under the risk-neutral probability Q. The riskfree short term rate is assumed
deterministic and the riskfree zero-coupon bond is denoted by Brf .

i) Price of the senior tranche
The difference between the price Brf of the riskfree bond and the price BS

of the senior zero-coupon is :

Brf −BS = Brf × PDS × ELGDS, (3.5)

where PDS = Q(Ax < L∗S) is the risk-neutral probability of default on the

senior debt and ELGDS = EQ
(

1 − Ax

L∗S

∣∣∣Ax < L∗S
)

is the expected loss

given default on the senior debt.

ii) Price of the junior tranche
Let us now consider the price, BJ , of the junior zero-coupon. We have :

Brf −BJ = Brf ×
(
PDS + PDJ,SELGDJ,S

)
, (3.6)

where PDJ,S = Q(L∗S < Ax < L∗S + L∗J) is the risk-neutral probability of
the junior tranche with no default on the senior tranche, and ELGDJ,S =

EQ
(Ax− L∗S

L∗J
|L∗S < Ax < L∗S + L∗J

)
is the associated expected loss given

default.

In the Basel 2 regulation terminology, the price of the junior (defaultable)
zero-coupon ZCJ would be written as:

Brf −BJ = Brf × PDJ × ELGDJ , (3.7)
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where PDJ denotes the probability of default on the junior debt and ELGDJ

the associated expected loss given default. Comparing equations (3.6) and
(3.7), we see how to switch from a tranche approach to the Basel 2 approach.
We get :

PDJ = PDS + PDJ,S and ELGDJ =
PDS

PDJ
+
PDJ,S

PDJ
ELGDJ,S. (3.8)

The probability of default on the junior debt, PDJ , and the expected loss
given default, ELGDJ , are decomposed in two terms, depending on the de-
fault on the senior debt. The decompositions directly derive from the fact
that a default on the senior debt implies a total default on the junior debt.

iii) Price of a portfolio of tranches
Let us finally consider a mixed investment with a share γ of senior payoff
ZCS and a share (1−γ) of junior payoff ZCJ . The price of this portfolio is :

B(γ) = γBS + (1− γ)BJ . (3.9)

Therefore we have :

Brf−B(γ) = Brf×
(
γ×PDS×ELGDS+(1−γ)×PDJ×ELGDJ

)
. (3.10)

In the Basel 2 terminology, it would be written as :

Brf −B(γ) = Brf × PD(γ)× ELGD(γ). (3.11)

For γ < 1, the portfolio has a strictly positive allocation in junior tranche. So
it suffers loss as soon as the junior tranche does. Therefore, PD(γ) = PDJ .
The probability of default of the portfolio is the probability of default on the
junior debt. Moreover, we have :

ELGD(γ) = γ
PDS

PDJ
ELGDS + (1− γ)ELGDJ . (3.12)

The expected loss given default of the portfolio is a linear combination of the
expected loss given default on the junior debt and on the senior debt. The
weights are the weights of portfolio allocation combined with the ratio of the
probabilities of default on the junior and senior debts.
If γ = 1, the portfolio is a pure investment in senior tranche. So PD(1) =
PDS, and ELGD(1) = ELGDS.
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3.2 Pricing tranches for unconnected banks

Let us now consider a portfolio of junior and senior tranches of n banks. We
have n balance sheets similar to the balance sheet displayed in Table 3. For
each bank, there are two tranches on its debt, junior and senior, respectively.
Therefore, there is a market of 2n tranches. Each tranche is either a junior, or
a senior tranche on a bank debt. The standard pricing approaches will assume
that the banks are unconnected, but can feature default risk dependence by
means of a common exogenous factor.
To price this set of tranches, we consider the following standard factor model6,
written under the risk-neutral probability :

logAxi = βiF + εi, i = 1, ..., n,

where F is a common factor (or a vector of common factors), βi is the sensitiv-
ity of bank i to the common factor, and εi a shock specific to bank i. We as-
sume that F and ε = (ε1, ..., εn)′ are independent and that ε ∼ N (0, diag(σ2

i ))
where σi is the volatility specific to bank i. We denote by Φ (respectively,
ϕ) the c.d.f. (the p.d.f.) of the standard Gaussian distribution.
The prices of two tranches written on two different banks are linked through
the common factor F , while the prices of the two tranches of a same bank
are linked through both the common factor F and the idiosyncratic shock εi.

3.2.1 Pricing with an observed factor

The prices of the tranches are easily derived if we assume that the specific
shocks are unobserved by the investor, whereas the common factor is. In this
case, the computations are performed conditional on the factor values (see
Appendix 3).
Let us introduce the variables:

Ai =
log(L∗Si )− βiF

σi
and Bi =

log(L∗Si + L∗Ji )− βiF
σi

, (3.13)

which depend on factor F .

6The latent factor is introduced in order to capture the dependence between the external
asset components. When F is non Gaussian, this is a convenient way to get non Gaussian
copulas.
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i) Conditional price of the senior tranche
To price the senior zero-coupon of bank i, we first have to compute PDS

i and
ELGDS

i . We get :
PDS

i = Φ
(
Ai
)
, (3.14)

ELGDS
i = 1−

exp

(
−σiAi +

σ2
i

2

)
Φ(Ai)

Φ(Ai − σi). (3.15)

The price of the senior zero-coupon of bank i is such that :

Brf −BS
i = Brf ×

(
Φ(Ai)− exp

(
−σiAi +

σ2
i

2

)
Φ(Ai − σi)

)
. (3.16)

The pricing formulas are similar to those obtain through the Black-Scholes
model. We can write the payoff of a senior zero-coupon as Axi/L

∗S
i −

(Axi/L
∗S
i − 1)+ and apply the Black-Scholes formula to the second com-

ponent which is the payoff of a European call option. Then, equation (3.16)
becomes:

BS
i = Brfexp

(
−σiAi +

σ2
i

2

)
︸ ︷︷ ︸

prices of Axi/L∗S
i

−Brfexp

(
−σiAi +

σ2
i

2

)
Φ
(
−Ai + σi

)
+BrfΦ

(
−Ai

)
︸ ︷︷ ︸

call option

ii) Conditional price of the junior tranche
To price the junior zero-coupon of bank i, we first have to compute PDJ,S

i

and ELGDJ,S
i . We get :

PDJ,S
i = Φ

(
Bi
)
− Φ

(
Ai
)
, (3.17)

ELGDJ,S
i = 1 +

L∗Si
L∗Ji
− L∗Si
L∗Ji

exp

(
−σiAi +

σ2
i

2

)
Φ
(
Bi − σi

)
− Φ

(
Ai − σi

)
Φ
(
Bi
)
− Φ

(
Ai
) .

(3.18)
We deduce the price of the junior zero-coupon of bank i as:

Brf −BJ
i = Brf ×

[
Φ
(
Ai
)

+
(

Φ
(
Bi
)
− Φ

(
Ai
))
×(

1 +
L∗Si
L∗Ji
− L∗Si
L∗Ji

exp

(
−σiAi +

σ2
i

2

)
Φ
(
Bi − σi

)
− Φ

(
Ai − σi

)
Φ
(
Bi
)
− Φ

(
Ai
) )]

. (3.19)
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3.2.2 Pricing with unobserved factor

Pricing formulas of subsection 3.2.1 have been derived conditional on factor
F . They depend on F through Ai(F ) and Bi(F ). When the factor is not ob-
served by the investor, the conditional pricing formulas have to be integrated
out with respect to F under the risk-neutral probability. This marginalizing
step is needed to take into account the default dependence through the de-
pendence of the asset components of the balance sheet. In other words, this
dependence is introduced through common shocks external to the system.

3.3 Connected banks and hidden CDO

The standard pricing formulas of subsection 3.2 are derived under the as-
sumption of unconnected banks. Let us now consider a network of n banks
linked through their junior and senior debts. We will see that the standard
pricing formulas are modified by adding a contagion premium.

3.3.1 The prices of the tranches

The payoffs of junior and senior defaultable zero-coupons must now be jointly
determined. These payoffs are solutions of the following system, which is a
standardized version of the equilibrium system (2.12)− (2.13):

ZCS
i =

LSi
L∗Si

= min
[Axi
L∗Si

+
n∑
j=1

γJi,j
LJj
L∗Si

+
n∑
j=1

γSi,j
LSj
L∗Si

; 1
]
, (3.20)

ZCJ
i =

LJi
L∗Ji

= min
[Axi
L∗Ji

+
n∑
j=1

γJi,j
LJj
L∗Ji

+
n∑
j=1

γSi,j
LSj
L∗Ji
− LSi
L∗Ji

; 1
]
, (3.21)

for i = 1, ..., n and j = 1, ..., n.
Equivalently, they are solutions of:

ZCS
i = min

[Axi
L∗Si

+
n∑
j=1

γJi,j
L∗Jj
L∗Si

ZCJ
j +

n∑
j=1

γSi,j
L∗Sj
L∗Si

ZCS
j ; 1
]
,(3.22)

ZCJ
i = min

[Axi
L∗Ji

+
n∑
j=1

γJi,j
L∗Jj
L∗Ji

ZCJ
j +

n∑
j=1

γSi,j
L∗Sj
L∗Ji

ZCS
j −

L∗Si
L∗Ji

ZCS
i ; 1
]
,(3.23)

for i = 1, ..., n and j = 1, ..., n.
The prices of the tranches are deduced by:
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i) first solving system (3.22)−(3.23) to get the payoffs in terms of external
assets, the nominal debts values and the bilateral exposures. This
requires an appropriate algorithm to find numerically this equilibrium
(see Section 4.1).

ii) Then computing their discounted risk-neutral expectations with respect
to both the common factor F and the specific errors εi, i = 1, ..., n. We
will not get closed form expressions of derivative prices7, but these
prices are easily computed by simulations.

The computation of the prices of the tranches is much more complicated
than in the unconnected framework. In fact, the asset side of the bank
includes different debts of the other banks. Thus, by buying (or selling) a
tranche written on a single bank, that is, on a single name, we buy (or sell)
a portfolio of tranches written on the other banks, that is, a CDO written
on n names if all the banks are connected.
Formulas (3.22) and (3.23) clearly show that a junior or senior zero-coupon
written on bank i involves several names. The involved names are not only
the names directly obtained with the strictly positive exposures of bank i,
which are all the banks j such that γSi,j, or γJi,j are not zero. They are also the
banks connected to these banks through a chain of debt holdings. The hidden
CDO is not a simple pooling of names with exogenous weights. Its design
involves the structure of the network, that is the exposure matrices ΓJ and
ΓS and the structures of the balance sheets, that are the ratios Axj/L

∗S
j and

Axj/L
∗J
j . Moreover, the pricing of these tranches, that are hidden CDO’s,

have to take into account the simultaneity of the liquidation process, that is,
for a contagion effect (see subsection 3.4).

3.3.2 Seniority and rating

The seniority, S or J , of the debt is not a perfect signal of overall risk quality.
It should only be interpreted as an ordering of the debts for each given bank:
the junior debt of a bank is riskier than the senior debt of the same bank.
In other words, the rating of the junior debt of a bank is smaller than the
rating of its senior debt. But, this does not mean that all senior debts (or all
junior debts) have a same rating. The rating of junior debt of bank i might
be greater than the rating of the senior debt of bank j 6= i, since the quality

7Even conditional on F .
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Bank 1 Bank 2 Bank 3
Asset Liability Asset Liability Asset Liability
Ax1 LJ1 Ax2 LJ2 γJ3,1L

J
1 LJ3

LS1 LS2 γS3,1L
S
1 LS3

Y1 Y2 γJ3,2L
J
2 Y3

γS3,2L
S
2

Table 5: Balance Sheet of Two Retail Banks and One Lender of Last Resort

of the tranches depend on the asset-liability ratios Axi/L
∗S
i and Axi/L

∗J
i

and on the debt exposures. For instance, the senior debt of a bank with
small asset/liability ratio can be riskier than the junior debt of a bank with
a large asset/liability ratio. In particular, it might be misleading to consider
a basket of senior tranches as weakly risky.
The seniority should only be interpreted as a priority rule for allocating the
asset in case of liquidation. In this framework, defining the priority rule for
each bank is enough to define endogenously the recovery rates on all debts,
that is, to fix the equilibrium conversion rates between the prices of the
different junior and senior tranches (see Section 2.5).
As an illustration of a junior debt which may be less risky than a senior debt,
let us consider a basic network composed of three banks with two purely retail
banks and one lender of last resort. Bank 1 and bank 2 have no interbanking
exposures. Bank 3 plays the role of lender of last resort and has only debts of
bank 1 and 2 in its asset side. The balance sheets of the banks are presented
in Table 5. In this extreme case, where there is no external asset component
for bank 3, a tranche on this lender of last resort is a pure CDO, written in
fact on two names and mixing junior and senior debts.

The payoffs of the senior and junior zero-coupons issued by bank 3 are:

ZCS
3 = min

[
γJ3,1

LJ1
L∗S3

+ γJ3,2
LJ2
L∗S3

+ γS3,1
LS1
L∗S3

+ γS3,2
LS2
L∗S3

; 1

]
, (3.24)

ZCJ
3 = min

[
γJ3,1

LJ1
L∗J3

+ γJ3,2
LJ2
L∗J3

+ γS3,1
LS1
L∗J3

+ γS3,2
LS2
L∗J3
− LS3
L∗J3

; 1

]
, (3.25)

These equations can be rewritten to show the impacts of the situations of
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bank 1 and bank 2 on the senior zero-coupon issued by bank 3 :

ZCS
3 = min

γJ3,1min
((
Ax1 − L∗S1

)+
;L∗J1

)
L∗S3

+ γJ3,2

min
((
Ax2 − L∗S2

)+
;L∗J2

)
L∗S3

+γS3,1
min

(
Ax1;L

∗S
1

)
L∗S3

+ γS3,2
min

(
Ax2;L

∗S
2

)
L∗S3

; 1

]
, (3.26)

Let us assume that bank 2 is alive: Ax2 > L∗J2 +L∗S2 , and let us focus on
the senior zero-coupon of bank 3. If the external asset of bank 1 decreases,
it may happen that the senior zero-coupon issued by bank 3 is riskier than
the junior zero-coupon issued by bank 2. This arises if

Ax1 < min

(
L∗S3 − γJ3,2L∗J2 − γS3,2L∗S2

γS3,1
;L∗S1

)
,

where we get:

ZCS
3 = γJ3,2

L∗J2
L∗S3

+ γS3,1
min

(
Ax1;L

∗S
1

)
L∗S3

+ γS3,2
L∗S2
L∗S3

< 1, (3.27)

Therefore there is a loss for the senior zero-coupon of bank 3 while the junior
zero-coupon issued by bank 2 has a plain payoff.

3.4 Contagion premium

The prices of the tranches can be decomposed into a part that accounts for
contagion phenomena and a part without contagion phenomena. The last
component corresponds to the standard price of a tranche (see Section 3.2)
Let us consider an initial financial system defined by the bilateral exposure
matrices, the values of external assets and the nominal values of junior and
senior debts: S0 = {Π,ΓJ ,ΓS, L∗J , L∗S, Ax0}. We assume that initially all
banks are alive : Y 0

i > 0, i = 1, ..., n. The prices of the junior and senior
zero-coupons can be written as functions of this initial financial system S0 :

ZCJ
i (S0) and ZCS

i (S0), i = 1, ..., n.
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Let us now consider an alternative initial financial system, where all the
banks sell their cross holdings of stocks, junior and senior debts. These sells
transform these assets into external assets. The after sell initial financial
system is S1 = {0, 0, 0, L∗J , L∗S, Ax1}, where Ax1 = ΠY 0 + ΓJL∗J + ΓSL∗S +
Ax0 = Y 0 + L∗J + L∗S. Of course the banks have the same values at date
t = 0 in both systems S0 and S1.
Then let us apply a shock on the external asset components Ax0, and thus
also on Ax1. This leads to new systems S0 + δS0 and S1 + δS1, respectively,
depending on the initial system, which is considered. The prices of the junior
and senior zero-coupons after the shock are denoted by ZCJ

i (S0 + δS0) and
ZCS

i (S0+δS0), and by ZCJ
i (S1+δS1) and ZCS

i (S1+δS1), respectively. Since
there are no interconnections, the prices ZCJ

i (S1 + δS1) and ZCS
i (S1 + δS1)

are immune to contagion and derived by the standard formulas of Section
3.2. By comparing the two types of prices, we define a contagion premium
for the junior and senior zero-coupons :

ZCJ
i (S0 + δS0) = ZCJ

i (S1 + δS1)︸ ︷︷ ︸
standard price

+
(
ZCJ

i (S0 + δS0)− ZCJ
i (S1 + δS1)

)
,︸ ︷︷ ︸

contagion premium
(3.28)

ZCS
i (S0 + δS0) = ZCS

i (S1 + δS1)︸ ︷︷ ︸
standard price

+
(
ZCS

i (S0 + δS0)− ZCS
i (S1 + δS1)

)
,︸ ︷︷ ︸

contagion premium
(3.29)

for i = 1, ..., n.
The effect of interconnexions can increase or decrease the value of a junior,
or senior zero-coupon, that is, the contagion premium in equations (3.28)
and (3.29) can be either positive, or negative. Moreover, the sign of this pre-
mium may vary across banks and across seniority levels for a given bank. If
the contagion premium is positive, the interconnections make the defaultable
zero-coupon safer whereas a negative contagion premium makes it riskier.
Finally note that both the standard price and contagion premium depend
on the dependence due to the common shock F exogenous to the system.
The standard price (resp. the contagion premium) may themselves be de-
composed to measure the effect of the common shock (resp. the joint effect
of exogenous shock and contagion).
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4 Applications

For illustration purpose, we consider a system of 3 banks, which are inter-
connected through their debt holdings only, and we assume that no bank has
self-holding of its debt. We give an example of a liquidation equilibrium path
when the external asset components of the balance sheets are driven by a
single common dynamic factor. Then, we provide the prices of hidden CDO’s
and their contagion components for different junior and senior exposures.

4.1 The liquidation program

Let us first explain how to solve numerically the piecewise linear system
defining the equilibrium. The equilibrium conditions for the junior and senior
debts in a model without interconnections by stocks are given by:

LSi = min(L∗Si ;
∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi), i = 1, . . . , n, (4.1)

LJi = min(L∗Ji ;
∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi − LSi ), i = 1, . . . , n. (4.2)

How to solve this 2n dimensional piecewise linear system in practice? If
n is large, it is computationally unfeasible to consider the 3n regimes and
select the one corresponding to the equilibrium. Proposition 2 provides an
approach, which involves a number of computations of order n instead of 3n

to find the liquidation equilibrium. This extends Lemma 4 in Eisenberg, Noe
(2001). The idea is that the liquidation equilibrium is the solution of a linear
program.

Proposition 2 : The solution of the linear program :

max
LS
i ,L

J
i

( n∑
i=1

LSi + θ

n∑
i=1

LJi

)
s.t. LSi ≤ L∗Si , i = 1, ..., n,

LSi ≤
∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi, i = 1, ..., n,

LJi ≤ L∗Ji , i = 1, ..., n,

LJi ≤
∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi − LSi , i = 1, ..., n,

(4.3)
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satisfies the equilibrium conditions (4.1)-(4.2), if the positive penalty coeffi-
cient θ is sufficiently small.

Proof : See Appendix 4.

Therefore the liquidation equilibrium can be derived by applying a sim-
plex method to the linear program in Proposition 2. This optimization prob-
lem can be seen as describing the behavior of an authority, which has to
define the liquidation process. The criterion of the authority considers the
debt recoveries, while ensuring the priority of the senior debts with respect
to the junior debts by the appropriate choice of the weighting scalar8 θ.
Then, by maximizing the objective function under the contractual and lim-
ited liabilities restrictions, this optimizing authority will reach the liquidation
equilibrium.
As noted in Elsinger(2009), the result of Proposition 2 cannot be extended
when there are also stock crossholdings. It is still possible to use a fixed
point algorithm converging to the liquidation equilibrium, but the limiting
equilibrium is not necessarily reached in a finite number of steps

4.2 Liquidation equilibrium path

For illustrative purpose, let us now consider a basic network of three banks.
The exposure matrices are set to :

Π =

 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

 , ΓJ =

 0.00 0.00 0.00
0.00 0.00 0.00
0.35 0.15 0.00

 and ΓS =

 0.00 0.00 0.00
0.20 0.00 0.00
0.05 0.05 0.00

 .

The liability components of the balance sheets are :

L∗J =

 0.75
0.75
0.10

 and L∗S =

 1.75
1.25
0.90

 .

The external assets are driven by the following historical dynamic equation :

log(Axi,t) = αi+ρ log(Axi,t−1)+βiFt+σiεi,t, for t = 2, ..., 5, and i = 1, 2, 3,
(4.4)

8The discussion in Appendix 4 shows that scalar θ has to be chosen smaller than 1.
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with initial conditions:(
Ax1,1, Ax2,1, Ax3,1

)′
=
(

2.6, 2.1, 0.6
)′
, (4.5)

parameters set to:(
σ1, σ2, σ3

)′
=
(

0.16, 0.06, 0.01
)′
,

ρ = 0.95,
β = (1.2, 0.8, 0.4)′,

(4.6)

Gaussian common factor Ft ∼ IIN (0; 0.001), and independent standard
normal specific error terms εi,t ∼ IIN (0; 1). The αi’s are set such that
E(Axi,2|Axi,1) = Axi,1.
Intuitively, bank 1 is a pure retail bank, which is very sensitive to the sys-
tematic factor. Bank 3 plays the role of lender of last resort : it lends to the
two other banks and has very few assets on its own. The asset component
of bank 2 includes interbank lending (towards bank 1) and moderately risky
external assets.
The dynamic (4.4)−(4.6) defines the benchmark scenario. The external asset
components at initial date 1 have been chosen to ensure that the three banks
are alive at this date. Then at the next date, these external asset components
receive specific shocks through the new drawing of the εi,t and new common
shocks through the new drawing of the common factor. At some dates these
shocks can be adverse shocks implying the default of one or several banks.
The dynamic model above can also serve for stress-tests. A stress-test com-
pares the outcomes of benchmark and stress scenarios. We build a stress
scenario where the common factor F is twice bigger than in the benchmark
scenario. Figure 4 displays the payoffs of the junior and senior tranches in
the benchmark and stress scenarios for given systematic and idiosyncratic
trajectories.
Under the benchmark scenario, the senior zero-coupons are not risky for the
three banks, but we observe default of bank 1 at date 3 (respectively, of bank
3 at date 5) on the junior debt. Under the stress scenario, the payoffs are
smaller than under the benchmark scenario. The default can now reach the
senior debts, for instance for banks 3 and 1. Moreover, we observe first a
default of bank 3 at date 2, then a joint default of banks 1 and 2 at date 3.
Finally, note that the payoff of the junior debt of bank 3 in the benchmark
scenario is higher than the payoff of its senior debt under the stress scenario.
This means that the rating of a junior (resp. senior) debt can vary over time.
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The x-axis corresponds to time with t = 1 as initial date. The y-axis represents the values
of external assets (top row), senior zero-coupons (middle row) and junior zero-coupons
(bottom row). The left column of the three plots refers to bank 1, the middle column of
the three plots refers to bank 2 and the right column of the three plots refers to bank 3.
The plain lines correspond to values under the benchmark scenario while the dashed lines
correspond to values under the stress scenario.

Figure 4: Payoffs in the Benchmark and Stress Scenarios

4.3 Decomposition of hidden CDO prices

Let us now focus on the decomposition of the junior and senior hidden CDO
prices into the standard prices and the contagion premiums. We assume
that the risk-neutral dynamics is the autoregressive system with systematic
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Standard Contagion
Price Premium

ZCS
1 ZCS

2 ZCS
3 ZCS

1 ZCS
2 ZCS

3

h = 0 100.00 100.00 100.00 0.00 0.00 0.00
h = 1 99.79 100.00 100.00 0.00 0.00 -0.41
h = 2 98.90 100.00 100.00 0.00 0.00 -1.20
h = 3 97.68 100.00 100.00 0.00 0.00 -1.97
h = 4 96.54 100.00 100.00 0.00 0.00 -2.56

ZCJ
1 ZCJ

2 ZCJ
3 ZCJ

1 ZCJ
2 ZCJ

3

h = 0 100.00 100.00 100.00 0.00 0.00 0.00
h = 1 79.62 99.80 99.98 0.00 0.13 -13.67
h = 2 71.07 98.81 99.62 0.00 0.54 -23.38
h = 3 66.25 97.36 98.84 0.00 0.93 -28.19
h = 4 63.42 96.16 97.86 0.00 1.11 -30.55

Table 6: Prices of Tranches and Contagion Premiums

factor given in the benchmark scenario (4.4). The prices are computed by
simulation with 10 000 iterations. The results are given in Table 6 (in %) for
date t = 1 at horizon h = 0, ..., 4. There is no default at current date t = 1
and the initial conditions are given in (4.5). For the financial system without
contagion, we consider that banks sell their interbank asset and invest them
in their external assets, whose dynamics is given by (4.4). Since bank 1 does
not lend to other banks, there is no contagion premium on the tranches of
bank 1. For the senior tranches, the tranches of bank 3 are affected by a neg-
ative contagion premium. For the junior tranches, the contagion premium is
negative for bank 3 whereas it is positive for bank 2. The interconnections
have a positive (respectively, negative) impact on bank 2 (respectively, on
bank 3). In this special case, the contagion premium for bank 1 is null, is
positively increasing with the horizon for bank 2 and negatively decreasing
with the horizon for bank 3. The negative risk premium for bank 3 was
expected. Indeed the bank has an interpretation of lender in last resort and
has to support the increased common risk introduced in the stochastic sce-
nario. When the horizon h increases, it has to support both the direct and
the indirect effects due to the interconnections.
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5 Concluding remarks

An adverse exogenous shock on the banks can create joint defaults and a
joint determination of the recovery rates of the debts. We have shown in this
paper that the new situation of the financial system depends on the struc-
ture of the interconnections between the banks through the different types
of assets included in their balance sheets, in particular through the matrices
of exposures for stocks, junior and senior debts. We have proved the exis-
tence and uniqueness of the liquidation equilibrium under conditions on the
exposures, which are generally fulfilled in practice.
These interconnections and the associated liquidation equilibrium have sig-
nificant consequences on the pricing of the junior and senior debts written
on a single name, when this name is a bank. Those contractual single name
assets are in fact CDO’s written on the names of all interconnected banks.
Moreover to account for the interconnection between banks the standard
CDO’s pricing formulas have to be modified by adding a premium to capture
the contagion effects.
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Appendix 1

The equilibrium for two banks

We consider system (2.11)− (2.13) with n = 2. There are nine possible joint
default regimes for the two banks. The idea is first to consider the solution
of the system in each regime, second to characterize each regime in the space
of external assets Ax1, Ax2, and finally to write conditions to insure that the
regions defining the regimes form a partition of this space. For each given
regime, there exists a unique solution. These solutions are given below.

Regime 1 : No default. We get : (Id−Π)Y = ∆Ax, and this regime occurs

iff :

∆Ax ∈
(

1− π1,1 −π1,2
−π2,1 1− π2,2

)
IR+2 ≡ C1.

Regime 2 : bank 1 is alive ; bank 2 is in partial default. We get :

(Id− Π)

[
Y1
0

]
+ (ΓJ − Id)

[
0

∆LJ2

]
= ∆Ax,

and this regime occurs iff :

∆Ax ∈
(

1− π1,1 γJ1,2
−π2,1 γJ2,2 − 1

)
IR+ × [0;L∗J2 ] ≡ C2.

Regime 3 : bank 1 is alive ; bank 2 is in complete default. We get :

(Id− Π)

[
Y1
0

]
+ (ΓJ − Id)

[
0
L∗J2

]
+ (ΓS − Id)

[
0

∆LS2

]
= ∆Ax,

and this regime occurs iff :

∆Ax−
(

γJ1,2L
∗J
2

(γJ2,2 − 1)L∗J2

)
∈
(

1− π1,1 γS1,2
−π2,1 γS2,2 − 1

)
IR+ × [0;L∗S2 ] ≡ C3.

Regime 4 : bank 1 is in partial default ; bank 2 is alive. We get :

(Id− Π)

[
0
Y2

]
+ (ΓJ − Id)

[
∆LJ1

0

]
= ∆Ax,
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and this regime occurs iff :

∆Ax ∈
(
γJ1,1 − 1 −π1,2
γJ1,2 1− π2,2

)
[0;L∗J1 ]× IR+ ≡ C4.

Regime 5 : bank 1 is in partial default ; bank 2 is in partial default. We

get : (ΓJ − Id)∆LJ = ∆Ax, and this regime occurs iff :

∆Ax ∈
(
γJ1,1 − 1 γJ1,2
γJ2,1 γJ2,2 − 1

)
[0;L∗J1 ]× [0;L∗J2 ] ≡ C5.

Regime 6 : bank 1 is in partial default ; bank 2 is in complete default. We

get :

(ΓS − Id)

[
0

∆LS2

]
+ (ΓJ − Id)

[
∆LJ1

0

]
+ (ΓJ − Id)

[
0
L∗J2

]
= ∆Ax,

and this regime occurs iff :

∆Ax−
(

γJ1,2L
∗J
2

(γJ2,2 − 1)L∗J2

)
∈
(
γJ1,1 − 1 γS1,2
γJ2,1 γS2,2 − 1

)
[0;L∗J1 ]× [0;L∗S2 ] ≡ C6.

Regime 7 : bank 1 is in complete default ; bank 2 is alive. We get :

(Id− Π)

[
0
Y2

]
+ (ΓS − Id)

[
∆LS1

0

]
+ (ΓJ − Id)

[
L∗J1
0

]
= ∆Ax,

and this regime occurs iff :

∆Ax−
(

(γJ1,1 − 1)L∗J1
γJ1,2L

∗J
1

)
∈
(
γS1,1 − 1 −π1,2
γS1,2 1− π2,2

)
[0;L∗J1 ]× IR+ ≡ C7.

Regime 8 : bank 1 is in complete default ; bank 2 is in partial default. We

get :

(ΓS − Id)

[
∆LS1

0

]
+ (ΓJ − Id)

[
L∗J1
0

]
+ (ΓJ − Id)

[
0

∆LJ2

]
= ∆Ax,
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and this regime occurs iff :

∆Ax−
(

(γJ1,1 − 1)L∗J1
γJ1,2L

∗J
1

)
∈
(
γS1,1 − 1 γJ1,2
γS1,2 γJ2,2 − 1

)
[0;L∗S1 ]× [0;L∗J2 ] ≡ C8.

Regime 9 : bank 1 is in complete default ; bank 2 is in complete default.

We get :

(ΓS − Id)

[
∆LS1
∆LS2

]
+ (ΓJ − Id)

[
L∗J1
L∗J2

]
= ∆Ax,

and this regime occurs iff :

∆Ax−
(

(γJ1,1 − 1)L∗J1 + γJ1,2L
∗J
2

γJ2,1L
∗J
1 + (γJ2,2 − 1)L∗J2

)
∈
(
γS1,1 − 1 γS1,2
γS2,1 γS2,2 − 1

)
[0;L∗S1 ]× [0;L∗S2 ]︸ ︷︷ ︸

≡C9

.

We get a partition of the set of external asset values Ax = (Ax1, Ax2)
′ into

9 bounded or unbounded quadrilaterals defined by means of 4 nodes. These
quadrilaterals are generated by the six vectors u1,...,u6, spreading from Ax∗,
Ax∗ +X1, Ax

∗ +X2, or Ax∗ +X1 +X2, where :

u1 =

(
1− π1,1
−π2,1

)
, u3 =

(
γJ1,1 − 1
γJ2,1

)
, u5 =

(
γS1,1 − 1
γS2,1

)
,

u2 =

(
−π1,2

1− π2,2

)
, u4 =

(
γJ1,2

γJ2,2 − 1

)
, u6 =

(
γS1,2

γS2,2 − 1

)
,

and : X1 =

(
(γJ1,1 − 1)LJ∗1
γJ2,1L

J∗
1

)
, X2 =

(
γJ1,2L

J∗
2

(γJ2,2 − 1)LJ∗2

)
.

This partition is described in Figure 3.

In case of two banks, the existence and uniqueness of the liquidation
equilibrium is given below.
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Proposition A.1: For a system with two banks and two seniority levels,
the liquidation equilibrium exists and is unique, iff the determinants :

det(u1, u2) = (1− π1,1)(1− π2,2)− π1,2π2,1,

det(u2, u3) = (1− π2,2)(1− γJ1,1)− π1,2γJ2,1,

det(u3, u4) = (1− γJ1,1)(1− γJ2,2)− γJ1,2γJ2,1,

det(u4, u1) = (1− π1,1)(1− γJ2,2)− γJ1,2π2,1,

det(u2, u5) = (1− π2,2)(1− γS1,1)− π1,2γS2,1,

det(u5, u4) = (1− γS1,1)(1− γJ2,2)− γJ1,2γS2,1,

det(u5, u6) = (1− γS1,1)(1− γS2,2)− γS1,2γS2,1,

det(u3, u6) = (1− γJ1,1)(1− γS2,2)− γS1,2γJ2,1,

det(u5, u1) = (1− π1,1)(1− γS2,2)− γS1,2π2,1,
have the same sign.

Proof : Let us consider two vectors u, v of IR2 with a same length. Vector v
can be deduced from vector u by a rotation of angle θ ∈ (−π, π). The sign of
this angle is equal to the sign of the determinant det(u, v). More generally,
when the two vectors have different lengths, the sign of the determinant still
provides either the positive, or negative direction of the rotation to pass from
u
||u|| to v

||v|| .
Let us now consider Figure 3. The equilibrium exists and is unique if and
only if the (bounded and unbounded) quadrilaterals form a partition of IR2.
This happens if and only if the directions of the rotations are the same at
the four nodes. This provides the conditions of Proposition A.1.

QED

These determinantal conditions are implied by the conditions :

2∑
i=1

πi,j < 1,
2∑
i=1

γJi,j < 1,
2∑
i=1

γSi,j < 1, j = 1, 2,
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since under these inequalities all determinants of Proposition A.1 are strictly
positive. Thus, the equilibrium exists and is unique if nonzero fractions of
stocks and junior and senior debts are hold outside the system.

Appendix 2

The equilibrium for n interconnected banks:
Proof of Proposition 1

The proof of the existence and uniqueness of the equilibrium in the general
framework needs more complicated arguments than in the case of two banks.
It requires a condition for the invertibility of a piecewise linear function
in a multidimensional space like in Gourieroux, Heam, Monfort (2012) and
arguments of projective geometry.
Let us consider a set of n interconnected banks. There are three situations
for each bank and therefore 3n joint regimes indexed by a sequence z =
(z1, ..., zn), where zi = 0, if bank i does not default, zi = 1, if bank i partially
defaults and zi = 2, otherwise. For each state zi and for each bank, there is
only one variable among Y , LS, LJ , which is not known.
The equilibrium conditions (2.11) − (2.13) can be written in terms of Y ,
∆LS = L∗S−LS and ∆LJ = L∗J −LJ , where Yi, ∆LSi , ∆LJi are nonnegative
variables. Let us denote ∆Ax = Ax−(Id−ΓS)L∗S−(Id−ΓJ)L∗J = Ax−Ax∗,
where Ax∗ denotes the out of stock net nominal assets, that is, Ax∗i is the
out of stock nominal profit and loss of bank i.
These equations are equivalent to :

Yi =
( n∑
j=1

πi,jYj−
n∑
j=1

γJi,j∆L
J
j−

n∑
j=1

γSi,j∆L
S
j +∆LJi +∆LSi +∆Axi

)+
, i = 1, . . . , n,

(a.1)

∆LSi =
(
−

n∑
j=1

πi,jYj+
n∑
j=1

γJi,j∆L
J
j +

n∑
j=1

γSi,j∆L
S
j−L∗Ji −∆Axi

)+
, i = 1, . . . , n,

(a.2)

∆LJi =
(
−

n∑
j=1

πi,jYj+
n∑
j=1

γJi,j∆L
J
j +

n∑
j=1

γSi,j∆L
S
j−∆LSi −∆Axi

)+
, i = 1, . . . , n.

(a.3)
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Let us now denote B = Id − Π, CJ = ΓJ − Id, CS = ΓS − Id, and bi,
cJi and cSi the ith columns of matrices B, CJ and CS, respectively. Let us
also introduce the dummy variable zi,j equal to 1, if zi = j, and equal to 0,
otherwise, and the (n, n) matrix D(z), whose ith column is given by :

di(z) = zi,0bi + zi,1c
J
i + zi,2c

S
i . (a.4)

Then the equilibrium conditions become :

(1− zi,0)Yi + (1− zi,1)∆LJi + (1− zi,2)∆LSi = 0, i = 1, . . . , n. (a.5)

D(z)


...

zi,0Yi + zi,1∆L
J
i + zi,2∆L

S
i

...

+ (ΓJ − Id)


...

zi,2L
∗J
i

...

 = ∆Ax. (a.6)

Equation (a.5) defines the regimes. For instance, if zi,0 = 1, we get zi,1 =
zi,2 = 0, then ∆LJi = ∆LSi = 0, that is LJi = L∗Ji and LSi = L∗Si , since the
variables ∆LJi and ∆LSi are nonnegative.
The n−dimensional system (a.6) provides the closed form expression of the
unconstrained variable in each regime. For instance, if zi,0 = 1 for all i =
1, ..., n, it provides the expression of the value of the firm, by solving :

BY = (Id− Π)Y = ∆Ax. (a.7)

The equilibrium conditions (a.5) − (a.6) can be rewritten in an equivalent
way, which is more appropriate to study the existence and uniqueness of the
liquidation equilibrium. The aim of the transformation is to consider a vector
space in which the boundaries defining the regimes are orthogonal. Let us
consider the new variables defined by :

XJ
i = −∆LJi ∈ [−L∗Ji ; 0],

XS
i = −∆LSi − L∗Ji ∈ [−L∗Ji − L∗Si ;−L∗Ji ].

With these new variables, the regimes can be defined by considering the lo-
cation of Ui = zi,0Yi + zi,1X

J
i + zi,2X

S
i with respect to the thresholds −L∗Ji

and 0. We get the description of such regimes in Figure 5 for the case of two
banks.

With the new notations, the equilibrium conditions involve new matrices.
Let us define the matrix Q(z), whose ith column is the ith column of Π, if zi =
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U1

U2

(0, 0)−L∗J1

−L∗J2

no default

partial default of 2

total default of 2

partial default of 1

joint

partial default

partial default of 1

total default of 2

total default of 1

partial default of 2

total default of 1

joint total default

Figure 5: The Transformed Quadrilaterals
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0, the ith column of ΓJ , if zi = 1, and the ith column of ΓS, otherwise. The
equilibrium conditions on the space of values of U = (U1, ..., Un)′ become :

∆Ax =
(
Id−Q(z)

)
...
Ui
...

+ (ΓJ − ΓS)


...

zi2L
∗J
i

...

 . (a.8)

The function of interest is a continuous piecewise linear function with 3n

regimes, corresponding to bounded or unbounded quadrilaterals, character-
ized by 2n nodes.

Let us now derive sufficient conditions for the piecewise linear function
defined in Section 2.4 to be a one-to-one mapping.

i) A necessary condition for the global invertibility of this function is its
local invertibility at each node. In a neighborhood of a given node, we have 3n

regimes. The condition of local invertibility is the condition of identical sign
of the determinants of the corresponding linear components of the application
in each of the 3n regimes.

ii) Moreover the border of one regime is exactly the border of the very
adjacent regime. If there were an overlapping, there would be several equi-
libria. To avoid this situation we need the signs of the determinants to be
the same for the 2n nodes.

iii) Finally, we have to ensure that the unbounded polygons do not inter-
sect.

Let us now discuss the different conditions.

Let us first establish the following Lemma.

Lemma A.2: Under the inequality conditions of Proposition 1, det[Id−
Q(z)] > 0,∀z.

Proof : By the assumptions in Proposition 1, the matrices Q′(z) have
nonnegative coefficients, which sum up to a value strictly smaller than 1 per
row. By applying Perron-Froebenius theorem, we deduce that the eigenvalues
of Q′(z), which are also equal to the eigenvalues of Q(z), have a modulus
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strictly smaller than 1. Therefore the eigenvalues of Id − Q(z) are either
complex conjugates, or real positive, and their product equal to det[Id−Q(z)]
is strictly positive.

QED

We can now apply Theorem 1 in Gourieroux, Laffont, Monfort (1980)
The condition det[Id − Q(z)] > 0, ∀z is exactly the condition ensuring the
global invertibility of the piecewise linear function (a.8) in a bounded region
including all the nodes.
Thus, to finish the proof we have just to check that the unbounded poly-
gons do not overlap, or equivalently that the piecewise linear mapping is
locally invertible at ”infinity”. This condition can be derived by considering
the projective geometry [see e.g. Bennett (1995)], which provides the trans-
formation of the asymptotic directions associated with the piecewise linear
function. Let us denote ∆Axas, Y as

i ,∆LS,asi the asymptotic directions asso-
ciated with ∆Ax, Yi,∆L

S
i , respectively. (There is no asymptotic direction

for the junior debt, which is bounded). In the projective space the piecewise
linear transformation becomes :{

(1− z∗i )Y as
i + z∗i ∆L

S,as
i = 0, i = 1, . . . , n.

∆Axas = [Id−Qas(z∗)](z∗i Y
as
i + (1− z∗i )∆L

S,as
i ),

(a.9)

where z∗i = 0, if Y as
i 6= 0,∆LS,asi = 0, z∗i = 1, if Y as

i = 0,∆LS,asi 6= 0, and the
matrix Qas(z∗) is such that its ith column is the ith column of Π, if z∗i = 0,
and the ith column of ΓS, otherwise.
We get an asymptotic system, which involves only the bilateral exposures in
stocks and senior debts. By reapplying Theorem 1 in Gourieroux, Laffont,
Monfort (1980), the invertibility of projective system (a.9) is obtained if the
det[Id − Qas(z∗)],∀z∗, have the same sign. This condition is satisfied if:
n∑
i=1

πi,j < 1,
n∑
i=1

γSi,j < 1, j = 1, . . . , n ; it is in particular satisfied under the

inequality conditions of Proposition 1.

QED
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Appendix 3

Computations of the PD and ELGD for tranches

We denote εi = σiui where ui ∼ N (0, 1). Let us first consider the senior
debt and compute the associated probability of default and the expected loss
given default.

PDS
i = Q(Axi < L∗Si )

= Q
(
log(Axi) < log(L∗Si )

)
= Q

(
βiF + εi < log(L∗Si )

)
= Φ

( log(L∗Si )− βiF
σi

)
= Φ(Ai).

ELGDS
i = EQ

(
1− Axi

L∗Si

∣∣∣Axi < L∗Si

)
= 1− EQ

(
Axi
L∗Si

∣∣∣Axi < L∗Si

)
= 1− EQ

(
exp

(
log (Axi)− log

(
L∗Si
)) ∣∣∣log (Axi)− log

(
L∗Si
)
< 0
)

= 1− EQ
(
exp (σiui − σiAi)

∣∣∣σiui − σiAi < 0
)

= 1− exp (−σiAi)EQ
(
exp (σiui)

∣∣∣ui −Ai < 0
)

= 1− exp (−σiAi)
Φ(Ai)

∫ Ai

−∞

1√
2π
exp

(
σiui −

1

2
u2i

)
dui

= 1− exp (−σiAi)
Φ(Ai)

exp(
1

2
σ2
i )

∫ Ai

−∞

1√
2π
exp

(
−1

2
(ui − σi)2

)
dui

= 1− exp (−σiAi)
Φ(Ai)

exp(
1

2
σ2
i )

∫ Ai−σi

−∞

1√
2π
exp

(
−1

2
(ui)

2

)
dui

= 1−
exp

(
−σiAi +

1

2
σ2
i

)
Φ (Ai)

Φ (Ai − σi)

Second, we derive the expression of the probability that the asset value are
between the boundaries defining the junior tranche, and the corresponding
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expected loss given default.

PDJ,S
i = Q(L∗Si < Axi < L∗Si + L∗Ji )

= Q
(
log(L∗Si ) < log(Axi) < log(L∗Si + L∗Ji )

)
= Q

(
log(L∗Si ) < βiF + εi < log(L∗Si + L∗Ji )

)
= Q

( log(L∗Si )− βiF
σi

< ui <
log(L∗Si + L∗Ji )− βiF

σi

)
= Φ

( log(L∗Si + L∗Ji )− βiF
σi

)
− Φ

( log(L∗Si )− βiF
σi

)
= Φ(Bi)− Φ(Ai).

ELGDJ,S
i = EQ

(
1− Axi − L∗Si

L∗Ji

∣∣∣L∗Si < Axi < L∗Si + L∗Ji

)
= 1− EQ

(
exp (βiF + σiui)− L∗Si

L∗Ji

∣∣∣L∗Si < exp (βiF + σiui) < L∗Si + L∗Ji

)
= 1 +

L∗Si
L∗Ji
− exp (βiF )

L∗Ji

EQ (exp(σiui)1Ai<ui<Bi)

Φ(Bi)− Φ(Ai)

= 1 +
L∗Si
L∗Ji
− exp (βiF )

L∗Ji

EQ (exp(σiui)1ui<Bi)− EQ (exp(σiui)1ui<Ai
)

Φ(Bi)− Φ(Ai)

= 1 +
L∗Si
L∗Ji
− exp (βiF )

L∗Ji

exp

(
1

2
σ2
i

)(
Φ(Bi − σi)− Φ(Ai − σi)

)
Φ(Bi)− Φ(Ai)

= 1 +
L∗Si
L∗Ji
− L∗Si
L∗Ji

exp

(
−σiAi +

1

2
σ2
i

)
Φ(Bi − σi)− Φ(Ai − σi)

Φ(Bi)− Φ(Ai)
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Appendix 4

Proof of Proposition 2

The result is deduced from Lemma 4 in Eisenberg, Noe (2001) by first
concentrating with respect to the junior debts.

i) Concentration with respect to the junior debts.
Let us consider fixed values for the senior debts satisfying the constraints
and let us optimize with respect to the junior debt only. The maximization
problem becomes :

max
LJ
i

( n∑
i=1

LJi

)
s.t. LSi ≤

∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi, i = 1, ..., n

LJi ≤ L∗Ji , i = 1, ..., n

LJi ≤
∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi − LSi , i = 1, ..., n

In this maximization problem, only the two last types of inequalities matter
since the first type of inequalities is implied by the third type of inequalities.
Then, by Lemma 4 in Eisenberg, Noe (2001), we know that the solutions LJi
satisfy :

LJi = min
(
L∗Ji ;

∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi − LSi

)
, i = 1, ..., n.

This n−dimensional system can be solved to express the argmax as piecewise
linear functions of the levels of senior debts :

LJi (LS, Ax,ΓS,ΓJ), say.

ii) The concentrated optimization problem
By concentration, we get :

max
LS
i

( n∑
i=1

LSi + θ

n∑
i=1

LJi (LS, Ax,ΓS,ΓJ)
)

s.t. LSi ≤ L∗Si , i = 1, ..., n

LSi ≤
∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j (LS, Ax,ΓS,ΓJ) + Axi, i = 1, ..., n.
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The criterion function is a piecewise linear functions in LSi , i = 1, ..., n. To
apply the argument used in the proof of Lemma 4 in Eisenberg, Noe (2001),
we have to ensure that this criterion function is increasing. In some regimes,
some slopes coefficients of LSj in the expression of LJj (LS, Ax,ΓS,ΓJ) will be
negative. But the presence of LSj in the first part of criterion will balance
this sign whenever θ is chosen sufficiently small. Under this condition, we
deduce that at the optimum, we have :

LSi = min
(
L∗Si ;

∑
j 6=i

γSi,jL
S
j +

∑
j 6=i

γJi,jL
J
j + Axi

)
, i = 1, ..., n.

iii) A system with a single bank
To understand the need for the weighting scalar in the criterion function, let
us consider the case of a single bank n = 1. The equilibrium conditions are :{

LS = min(Ax,L∗S),
LJ = min(Ax− LS, L∗J).

The optimization problem of Proposition 3 is :

max
LJ ,LJ

LS + θLJ

s.t. LS ≤ Ax,
LS ≤ L∗S,
LJ ≤ L∗J ,
LJ ≤ Ax− LS,

with θ > 0.
The optimization with respect to LJ provides the solution:

LJ(LS, Ax, L∗S, L∗J) = min(Ax− LS, L∗J).

Then the concentrated optimization problem is:

max
LS

LS + θ min(Ax− LS, L∗J)

s.t. LS ≤ Ax,
LS ≤ L∗S.

In this very simple case, we have just to choose a value of θ strictly smaller
than 1 to ensure that the concentrated criterion is a strictly increasing func-
tion of LS.
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