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Abstract

We derive a coherent multi-factor model to price various derivatives such as

forwards, futures and European options written on a same underlying asset which

is potentially non-tradable. We consider both cases when the underlying asset is

self-financed and tradable and when it is not, and show the difference between both

cases. When the underlying asset is self-financed and tradable, an additional arbi-

trage condition has to be introduced and implies nontrivial parameter restrictions.

These restrictions can be tested in practice to check if the derivatives are priced as

if the underlying asset were self-financed and tradable.
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1 Introduction

As argued in Xu (2006), the S&P 500 Index is an artificial number constructed to reflect

the evolution of the market. It is not a self-financed or a tradable portfolio and it cannot

be replaced by a mimicking portfolio such as the SPDR due to the particular way the

S&P 500 Index is calculated, maintained, and the way dividends are (not) accounted for.

The non-tradability of the S&P 500 Index has significant implications on risk hedging

and pricing constraints. For example, the well-known Black-Scholes model [See Black

and Scholes (1973) and Merton (1973)] assumes that the underlying asset is tradable

and follows a geometric Brownian Motion process with constant volatility. Therefore,

the market is completed by the underlying asset itself and the risk involved can be fully

hedged by the underlying asset. By the No-Arbitrage condition, the market price of risk

is determined uniquely by the price of the underlying asset. All derivatives written on

the underlying asset can be evaluated uniquely with this market price of risk, combined

with the terminal condition of the respective derivatives. If the underlying asset is non-

tradable, the underlying asset cannot be used as part of the arbitrage strategy and the

value of the underlying asset does not need to satisfy the No-Arbitrage condition. The

risk associated with the underlying asset is not hedged by itself and the expected return

of the underlying asset under the risk-neutral probability is not necessarily equal to the

risk-free rate. Knowing only the value of the underlying asset, we do not know the price

of the risk. Therefore the prices of options written on a non-traded underlying asset

whose price follows a geometric Brownian Motion process do not have to be evaluated

by the Black-Scholes formula. Similar ideas apply to many other models. For instance,

the stochastic volatility models in Heston (1993) and Ball and Roma (1994) assume that

the expected return of the underlying asset is equal to the risk-free rate under the risk-

neutral probability, i.e., that the underlying asset is tradable and the risk associated with

the underlying asset is hedged by itself. In general, because of the non-tradability of the

S&P 500 Index, the prices of its options do not have to satisfy the restrictions imposed

by the pricing models that are based on the assumption that the underlying asset is a
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security traded in the market.

In this paper, we introduce a coherent multi-factor model for pricing various deriva-

tives such as forwards, futures and European options written on the non-tradable S&P 500

Index, and derivatives written on the S&P 500 futures. The model illustrates the rela-

tionship between the index and its futures, and the relationship between the index and

its put and call options, when the underlying asset is non-tradable. We also consider

what the prices of the derivatives should be, if the index were self-financed and trad-

able. The model explains why the prices of derivatives written on a tradable asset and

a non-tradable asset can be different. Moreover, the model provides a framework to

test whether the S&P 500 derivatives are priced by the investors as if the index were

self-financed and tradable. To test this hypothesis, we consider three nested models:

the one-, two-, and three-factor model. Since the underlying factors are unobservable,

we transform the pricing model into a state space model. The models are estimated by

combining the spot, futures and options data and using the unscented Kalman Filter

(UKF) method. The Wald tests strongly reject the null hypothesis that the derivatives

are priced as if the index were self-financed and tradable in all three models. Our di-

agnostic analysis also shows that the multi-factor models are superior to the one-factor

model. The model in this paper can be easily extended to price derivatives written on

other non-tradable indices such as a retail price index, a meteorological index, an index

summarizing the results of a set of insurance companies, or a population mortality index.

The rest of the paper is organized as follows: In Section 2, we present a coherent

pricing model for pricing derivatives written on the S&P 500. The Spot-Futures Parity

and Put-Call Parity are also derived for the case of a non-tradable underlying index. In

Section 3, we derive the parameter restrictions which characterize the derivative pricing

if the index were tradable. This allows us to discuss how derivative prices can differ

for tradable and non-tradable underlying assets. In Section 4, we discuss the estimation

method and testing procedure. In Section 5, we report the empirical results. We conclude

in Section 6. Technical results and details are gathered in the Appendices.
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2 The Pricing Model

Under the absence of arbitrage opportunity (AAO), the market prices have to be com-

patible with a valuation system based on stochastic discounting [Harrison and Kreps

(1979)]. The pricing formulas can be written either in discrete time or in continuous

time, according to the assumptions of discrete or continuous trading (and information

sets). The modern pricing methodology requires a joint coherent specification of these

historical and risk-neutral distributions. For this purpose, we follow the practice initially

introduced by Constantinides (1992), which specifies a parametric historical distribution

and a parametric stochastic discount factor.

2.1 Assumptions

2.1.1 Historical Dynamics of the Index

The value of the index at date t is denoted by It. We assume that the log-index satisfies a

diffusion equation with affine drift and volatility functions of K underlying factors {xk,t},

k = 1, · · · , K:

Assumption 1.

d log It = (µ0 +
K∑
k=1

µkxk,t)dt+ (γ0 +
K∑
k=1

γkxk,t)
1/2dwt, (2.1)

where {µk} and {γk} , k = 0, · · · , K are constants, and {wt} is a Brownian motion.

The underlying factors summarize the dynamic features of the index. As seen in

Equation (2.2), they are assumed to be independent Cox, Ingersoll and Ross (CIR)

processes, independent of the standard Brownian motion {wt}. Since the CIR processes

are nonnegative, the volatility of the log-index is positive whenever parameters {γk}, k =

0, · · · , K, are positive. This positive parameter restriction is imposed in the rest of the

paper.
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Assumption 2. The CIR processes {xk,t}, k = 1, · · · , K satisfy the stochastic differential

equations:

dxk,t = ξk(ζk − xk,t)dt+ νk
√
xk,tdwk,t, k = 1, · · · , K, (2.2)

where ξk, ζk and νk are positive constants and {wk,t}, k = 1, · · · , K are standard inde-

pendent Brownian motions, independent of {wt}.

The condition ξkζk > 0 ensures the nonnegativity of the CIR process (for a positive

initial value x0 > 0), while the conditions ξk > 0 and ζk > 0 imply the stationarity of the

CIR process. The condition νk > 0 can always be assumed for identifiability reason.

This general specification of the index dynamics includes the Black-Scholes model

[Black and Scholes (1973)], when µk = γk = 0, k = 1, · · · , K, the stochastic volatility

model considered by Heston (1993) and Ball and Roma (1994), when K = 1 and x1

is interpreted as a stochastic volatility, or the model with stochastic dividend yield [see

Schwartz (1997) for example], when K = 1 and x1 appears in the drift only.

The transition distribution of the integrated CIR process is required for deriva-

tive pricing. This distribution is characterized by the conditional Laplace transform

Et[exp(−z
∫ t+h

t
xk,τdτ)], where Et denotes the conditional expectation given the past

values of the process and z is a nonnegative constant (or more generally a complex num-

ber), which belongs to the domain of the existence of the conditional Laplace transform.

This domain does not depend on past factor realizations, that is, on the information

set. The conditional Laplace transform admits a closed form expression [see e.g. Cox,

Ingersoll and Ross (1985b)]. The conditional Laplace transform of the integrated CIR

process is an exponential affine function of the current factor value. It is given by

Et[exp(−z

∫ t+h

t

xk,τdτ)] = exp[−Hk
1 (h, z)xk,t −Hk

2 (h, z)], (2.3)
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where

Hk
1 (h, z) =

2z(exp[εk(z)h]− 1)

(εk(z) + ξk)(exp[εk(z)h]− 1) + 2εk(z)
,

Hk
2 (h, z) =

−2ξkζk
ν2
k

{log[2εk(z)] +
h

2
[εk(z) + ξk] (2.4)

− log[(εk(z) + ξk)(exp(εk(z)h)− 1) + 2εk(z)]},

εk(z) =
√

ξ2k + 2zν2
k .

This formula also holds for a complex number z = u+ iv, whenever u > −1 and v ∈ R.

The joint dynamics of factors and log-index can be represented by means of the

stochastic differential system:

d


x1,t

...

xK,t

log It

 =


ξ1(ζ1 − x1,t)

...

ξK(ζK − xK,t)

µ0 +
∑K

k=1 µkxk,t

 dt

+


ν1
√
x1,t 0 · · · 0

0
. . .

...
... νK

√
xK,t 0

0 · · · 0 (γ0 +
∑K

k=1 γkxk,t)
1/2




dw1,t

...

dwK,t

dwt

 ,

where both the drift vector and the volatility-covolatility matrix are affine functions of

the current values of the joint process (x1,t, · · · , xK,t, log It)
′. Thus, the stacked process

(x1,t, · · · , xK,t, log It)
′ is an affine process [see Duffie and Kan (1996)], and the conditional

Laplace transform of the integrated process Et[exp
∫ t+h

t
(z1x1,τ + · · ·+zKxK,τ +z log Iτ )dτ ]

will also admit an exponential affine closed form expression.

2.1.2 Specification of the Stochastic Discount Factor

The model is completed by a specification of a stochastic discount factor (SDF), which

is used later on to price all derivatives written on the index.
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Assumption 3. The stochastic discount factor (SDF) for period (t, t+dt) is

Mt,t+dt = exp(dmt) = exp[(α0 +
K∑
k=1

αkxk,t)dt+ βd log It]

= exp{[α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,t]dt+ β(γ0 +
K∑
k=1

γkxk,t)
1/2dwt}. (2.5)

This SDF explains how to correct for risk when pricing derivatives. The “risk premia”

depend on the factors and index values, whereas the sensitivities of this correction with

respect to these risk variables are represented by the α and β parameters. The market

price of risk associated with wt is1 −β(γ0 +
∑K

k=1 γkxk,t)
1/2. This specification of the

SDF implicitly assumes that the market prices of the risk factors {wk,t}, k = 1, · · · , K

are 0. Equivalently, Equation (2.2) also describes the risk-neutral distribution of {xk,t},

k = 1, · · · , K. Under the risk-neutral probability, the joint dynamics of the underlying

factors and log-index can be represented by means of the stochastic differential system:

d


x1,t

...

xK,t

log It

 =


ξ1(ζ1 − x1,t)

...

ξK(ζK − xK,t)

µ0+βγ0+
∑

(µk+βγk)xk,t)

 dt

+


ν1
√
x1,t 0 · · · 0

0
. . .

...
... νK

√
xK,t 0

0 · · · 0
√

γ0+
∑

γkxk,t




dw1,t

...

dwK,t

dw∗
t

 ,

where {wk,t}, k = 1, · · · , K, and {w∗
t } are standard independent Brownian motions under

the risk-neutral probability. Thus only the last row is corrected for risk. This differential

stochastic system is still an affine process.

1This can be seen easily from the short rate computed in Equation (2.14).
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2.2 Pricing Formulas for European Derivatives Written on the

Index

As mentioned above, the arbitrage pricing proposes a valuation approach, which is

compatible with observed market prices and proposes coherent quotes for non-highly-

traded derivatives. More precisely, the value (price) at t of a European derivative paying

g(x1,t+h, · · · , xK,t+h, It+h) at time t+ h is

c(t, t+ h, g) = Et[exp(

∫ t+h

t

dmτ )g(x1,t+h, · · · , xK,t+h, It+h)]. (2.6)

The valuation formula is not assumed to be unique. Indeed, the SDF has been

parameterized by α0, α1, · · · , αK , β, but the parameter values have not been fixed ex-

ante. Thus, we propose implicitly different possible valuations and by comparing with

observed derivative prices, we estimate ex-post which one(s) is(are) compatible with

observed market prices.

The aim of this section is to derive explicit valuation formulas for European index

derivatives. All the formulas are derived from the valuation of European Index derivatives

with power payoff. Such derivatives are not traded or more generally quoted. But these

basic computations are used to derive:

• the risk-free term structure of interest rates

• the forward and futures prices of the index

• the prices of European options written on the index.

2.2.1 Power Derivatives Written on the Index

The following proposition is proved in Appendix A.
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Proposition 1. The value at t of the European derivative paying exp[ulog(It+h)] =

(It+h)
u at maturity t+h is

C(t, t+ h, u) = Et[(It+h)
u exp(

∫ t+h

t

dmτ )]

= Et[exp(

∫ t+h

t

dmτ + u log It+h)]

= exp(u log It) exp[−hz0(u)−
K∑
k=1

Hk
1 (h, zk(u))xk,t −

K∑
k=1

Hk
2 (h, zk(u))],

(2.7)

where

zk(u) = −αk − (β + u)µk −
γk
2
(β + u)2, ∀ k = 0, · · · , K, (2.8)

= zk(0) + ulk +
γk
2
u(1− u), (2.9)

lk = −µk −
1 + 2β

2
γk, ∀ k = 0, · · · , K, (2.10)

and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(2.4).

Proposition 1 holds, if and only, if zk(u) > −1, ∀ k = 1, · · · , K. When we apply this

formula to different traded derivatives, i.e., different values of u, the inequalities above

imply restrictions on parameters α, β and γ.

2.2.2 The Risk-free Term Structure

The zero-coupon bonds correspond to a unitary payoff, and their prices B(t, t + h) cor-

respond to the special case of C(t, t+ h, u) where u = 0. The continuously compounded

risk-free interest rates are defined by r(t, t+h) = − 1
h
logB(t, t+h). We get the following

proposition:

Proposition 2. The prices of the zero-coupon bonds are:

B(t, t+ h) = C(t, t+ h, 0)

= exp[−hz0(0)−
K∑
k=1

Hk
1 (h, zk(0))xk,t −

K∑
k=1

Hk
2 (h, zk(0))], (2.11)
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where zk(·) is defined in Equation (2.8), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equa-

tion(2.4). We deduce the expressions of the interest rates:

r(t, t+ h) = −1

h
logB(t, t+ h)

= −1

h
[−hz0(0)−

K∑
k=1

Hk
1 (h, zk(0))xk,t −

K∑
k=1

Hk
2 (h, zk(0))]

= z0(0) +
1

h

K∑
k=1

Hk
1 (h, zk(0))xk,t +

1

h

K∑
k=1

Hk
2 (h, zk(0)). (2.12)

The risk-free interest rates are affine functions of the CIR risk factors. This specifi-

cation is the standard affine term structure model introduced in Duffie and Kan (1996)

[see also Dai, Singleton (2000)]. It includes the one-factor CIR model [Cox, Ingersoll and

Ross (1985b)] as well as the multi-factor term structure model of Chen and Scott (1993).

As explained in subsection 2.2.1, the following restrictions are imposed on the param-

eters:

zk(0) = −αk − βµk −
γk
2
β2 > −1, ∀ k = 1, · · · , K. (2.13)

The short rate is defined by r(t) = limh→0 − 1
h
logB(t, t+h). The following proposition

is proved in Appendix B.

Proposition 3. The short rate is given by

r(t) = lim
h→0

−1

h
logB(t, t+ h) =

d[− logB(t, t+ h)]

dh
|h=0

= z0(0) +
K∑
k=1

zk(0)xk,t. (2.14)

2.2.3 Forward Prices for the S&P 500 Index

A forward contract is an agreement to deliver or receive a specified amount of the under-

lying asset (or equivalent cash value) at a specified price and date. A forward contract

always has zero value when it is initiated. There is no money exchange initially or during

the life of the contract, except at the maturity date when the price paid is equal to the

specified forward price. The following proposition is proved in Appendix C.
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Proposition 4. The forward prices are given by

f(t, t+ h) =
C(t, t+ h, 1)

C(t, t+ h, 0)

= It exp{−hl0 −
K∑
k=1

Hk
1 (h, zk(1))xk,t +

K∑
k=1

Hk
1 (h, zk(0))xk,t

−
K∑
k=1

Hk
2 (h, zk(1)) +

K∑
k=1

Hk
2 (h, zk(0))}, (2.15)

where zk(·) is defined in Equation (2.8), l0 is defined in Equation (2.10), and Hk
1 (·, ·) and

Hk
2 (·, ·) are given in equation(2.4).

In addition to the restrictions in (2.13), the following restrictions are imposed on the

parameters:

zk(1) = −αk − (β + 1)µk −
γk
2
(β + 1)2 = zk(0) + lk > −1, ∀ k = 1, · · · , K. (2.16)

2.2.4 Futures Prices

Let us now consider the price at t of a futures contract written on It+h. The major dif-

ference between a futures contract and a forward contract is the mark-to-market practice

for the futures. A futures contract has also zero value when it is issued and there is no

money exchange initially. However, at the end of each trading day during the life of the

contract, the party against whose favor the price changes must pay the amount of change

to the winning party. That is, a futures contract always has zero value at the end of each

trading day during the life of the contract. If the interest rate is stochastic, the forward

price and futures price are generally not the same [See Cox, Ingersoll and Ross (1981)

and French (1983)]. The following proposition is proved in Appendix D.

Proposition 5. The prices at t of futures written on It+h are given by

Ft,t+h = Et[exp(

∫ t+h

t

dmτ ) exp(

∫ t+h

t

rτdτ)It+h]

= It exp[−hl0 −
K∑
k=1

Hk
1 (h, lk)xk,t −

K∑
k=1

Hk
2 (h, lk)], (2.17)

where lk is defined in Equation (2.10), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(2.4).
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As explained earlier, in addition to the restrictions in (2.13), the following restrictions

are imposed on the parameters:

lk = −µk −
1 + 2β

2
γk > −1 ∀ k = 1, · · · , K. (2.18)

Propositions 4 and 5 show that

f(t, t+ h) = Et[exp(

∫ t+h

t

dmτ ) exp(r(t, t+ h)h)It+h]

and

Ft,t+h = Et[exp(

∫ t+h

t

dmτ ) exp(

∫ t+h

t

rτdτ)It+h].

Since the short rate is stochastic, the forward and futures prices are not equal in general.

A sufficient condition for the forward and futures prices to be identical is zk(0) = 0,

∀ k = 1, · · · , K, i.e., the interest rates are non-stochastic. This is Proposition 3 in Cox,

Ingersoll and Ross (1981).

2.2.5 European Call and Put Options Written on the Index

The prices of the European options are deduced by applying a transform analysis to

function C(t, t + h, u) computed for pure imaginary argument u [see Duffie, Pan and

Singleton (2000) and Appendix E].

Proposition 6.

i) The European call prices are given by

G(t, t+ h,X) = Et{exp(
∫ t+h

t

dmτ )[exp(log It+h)−X]+} (2.19)

=
C(t, t+ h, 1)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h, 1− iv) exp(iv logX)]

v
dv

−X{C(t, t+ h, 0)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h,−iv) exp(iv logX)]

v
dv}

(2.20)

where X is the strike price, h is the time-to-maturity, i denotes the pure imaginary number

and Im(·) is the imaginary part of a complex number.
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ii) The European put prices are given by

H(t, t+ h,X) = Et{exp(
∫ t+h

t

dmτ )[X − exp(log It+h)]
+} (2.21)

= −C(t, t+ h, 1)

2
+

1

π

∫ ∞

0

Im[C(t, t+ h, 1 + iv) exp(−iv logX)]

v
dv

+X{C(t, t+ h, 0)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h, iv) exp(−iv logX)]

v
dv}.

(2.22)

Again, the restrictions (2.13) and (2.16) are imposed2.

In particular, the relationship between the prices of European call and put options is

G(t, t+ h,X)− C(t, t+ h, 1) = H(t, t+ h,X)−XC(t, t+ h, 0) (2.23)

− 1

π

∫ ∞

0

Im[C(t, t+ h, 1− iv) exp(iv logX)]

v
dv

+
1

π

∫ ∞

0

Im[C(t, t+ h, 1 + iv) exp(−iv logX)]

v
dv

+
X

π

∫ ∞

0

Im[C(t, t+ h,−iv) exp(iv logX)]

v
dv

− X

π

∫ ∞

0

Im[C(t, t+ h, iv) exp(−iv logX)]

v
dv

Equation (2.23) provides the deviation to the Put-Call Parity due to the non-tradability

of the underlying index and shows that this deviation is stochastic.

2.3 Pricing Formulas for European Derivatives Written on Fu-
tures

2.3.1 Derivatives Written on Futures

As for derivatives written on the index, we first consider European derivatives written

on futures with exponential payoffs. More precisely, we introduce three different dates:

• t is the current date

2Re(zk(1− iv)) > −1, Re(zk(−iv)) > −1, Re(zk(1+ iv)) > −1 and Re(zk(iv)) > −1, ∀ k = 1, · · · ,K,
where Re(·) denotes the real part of a complex number, should also hold in order for the pricing formulas
to exist. Re(zk(1 − iv)) = Re(zk(1 + iv)) = −αk − (β + 1)µk − γk

2 (β + 1)2 + γk

2 v2 = zk(1) +
γk

2 v2 and
Re(zk(−iv)) = Re(zk(iv)) = −αk − βµk − γk

2 β2 + γk

2 v2 = zk(0) +
γk

2 v2. So the restrictions (2.13)and
(2.16)are sufficient.
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• t+h is the maturity date of the derivatives on futures

• t+h+m is the maturity date of the futures on which the derivatives are written.

CF (t, t + h, t + h + m,u) denotes the price at t of the European derivative paying

(Ft+h,t+h+m)
u at t+ h. The following proposition is proved in Appendix F.

Proposition 7. The prices at t of the European derivatives paying (Ft+h,t+h+m)
u at t+h

are given by

CF (t, t+ h, t+ h+m,u)

=Et[exp

∫ t+h

t

dmτ (Ft+h,t+h+m)
u]

= exp(u log It) exp{m(uµ0 −
1 + 2β

2
uγ0) + h[(β + u)µ0 +

(β + u)2

2
γ0 + α0]

−
K∑
k=1

uHk
1 (m, lk)hξkζk −

K∑
k=1

uHk
2 (m, lk)−

K∑
k=1

Hk
2 (h, pk(m,u))

−
K∑
k=1

[uHk
1 (m, lk) +Hk

1 (h, pk(m,u))]xk,t} (2.24)

where

pk(m,u) = −αk−(β+u)µk−uHk
1 (m, lk)ξk−

γk
2
(β+u)2−u2

2
[Hk

1 (m, lk)]
2ν2

k ∀ k = 1, · · · , K,

(2.25)

lk is given in equation(2.10), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(2.4).

Again, we impose (2.13) and (2.18) as well as the following restrictions on the param-

eters:

pk(m,u) = −αk − (β + u)µk − uHk
1 (m, lk)ξk −

γk
2
(β + u)2 − u2

2
[Hk

1 (m, lk)]
2ν2

k > −1,

∀ k = 1, · · · , K. (2.26)

2.3.2 European Call Options Written on Futures

The following proposition is proved in Appendix G.
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Proposition 8. The prices of European calls written on futures are given by

GF (t, t+ h, t+ h+m,X)

=Et{exp(
∫ t+h

t

dmτ )[exp(logFt+h,t+h+m)−K]+}

=
CF (t, t+ h, t+ h+m, 1)

2

− 1

π

∫ ∞

0

Im[CF (t, t+ h, t+ h+m, 1− iv) exp(iv logX)]

v
dv

−X{C
F (t, t+ h, t+ h+m, 0)

2

− 1

π

∫ ∞

0

Im[CF (t, t+ h, t+ h+m,−iv) exp(iv logX)]

v
dv} (2.27)

The parameters are subject to the restrictions in (2.13), (2.18) and3

pk(m, 1) = −αk − (β + 1)µk −Hk
1 (m, lk)ξk −

γk
2
(β + 1)2 − 1

2
[Hk

1 (m, lk)]
2ν2

k > −1,

∀ k = 1, · · · , K. (2.28)

3 Parameter Restrictions for a Tradable Index

In Section 2, the pricing formulas are valid for tradable as well as non-tradable index. In

this section, we derive the restrictions implied by the tradability of the underlying index.

When the benchmark index is a self-financed and tradable asset, the pricing formula

is also valid for the index itself. In this case, we have an additional condition:

It = Et[exp(

∫ t+h

t

dmτ )It+h] = C(t, t+ h, 1),

and

C(t, t+ h, 1) = It exp[−hz0(1)−
K∑
k=1

Hk
1 (h, zk(1))xk,t −

K∑
k=1

Hk
2 (h, zk(1))], (3.1)

where zk(·) is defined in Equation (2.8), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation

(2.4). zk(1) > −1 is imposed, ∀ k = 1, · · · , K.

3Restrictions (2.13) imply pk(m, 0) = zk(0) > −1. The inequalities pk(m, 0) > −1 and pk(m, 1) > −1
imply Re(pk(m,−iv)) > −1 and Re(pk(m, 1− iv)) > −1.
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This additional pricing condition has to be satisfied in any environment. By consider-

ing the expression of C(t, t+h, 1) and identifying the different terms in the decomposition,

we see that the dynamic parameters are constrained by Hk
1 (h, zk(1)) = 0, ∀ k = 1, · · · , K, ∀h,

−hz0(1)−
∑K

k=1H
k
2 (h, zk(1)) = 0, ∀h,

(3.2)

or equivalently by the conditions shown in Proposition 9 (See the proof in Appendix H).

Proposition 9. When the benchmark index is a self-financed and tradable asset, the

dynamic parameters are constrained by

zk(1) = αk + (β + 1)µk +
γk
2
(β + 1)2 = zk(0) + lk = 0, ∀ k = 0, · · · , K. (3.3)

These restrictions fix the parameters {αk}, k = 0, · · · , K of the SDF as functions of

the parameters of the index dynamics.

When the benchmark index is tradable, the risk-neutral dynamics of log It can also

be written as

d log It = [r(t)− γ0 +
∑

γkxk,t

2
]dt+

√
γ0+

∑
γkxk,tdw

∗
t , (3.4)

or
dIt
It

= r(t)dt+
√

γ0+
∑

γkxk,tdw
∗
t . (3.5)

In other word, conditional on the underlying factors, the risk wt can be hedged by the

index and the short rate if the index is tradable.

If the benchmark index is tradable, the formulas of derivative prices can be simpli-

fied. In particular, the forward price derived in Proposition 4 simplifies to the standard

formula:

f(t, t+ h) =
It

B(t, t+ h)
, (3.6)

and the Spot-Futures Parity will hold for the index and its forward price.
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4 Estimation Method and Testing Procedure

We want to check if the restriction zk(1) = 0, for all k = 0, · · · , K, derived in Proposition

9, are satisfied. If they are satisfied, the market prices the derivatives written on the

index as if the index were self-financed and tradable. To test the restrictions, we need to

get an estimator of zk(1) for all k = 0, · · · , K. This can be achieved by combining the

spot, futures and options data4. The pricing model in Section 2 can be estimated using

the unscented Kalman Filter (UKF) method in Wan and Van Der Merwe (2000).

Equation (2.3) shows that we cannot identify ςk, ν
2
k and z separately. Only ςk

ν2k
and

zν2
k can be identified. Equation (2.7) further shows that we can only identify µkν

2
k , γkν

2
k ,

αkν
2
k from the pricing formulae. Therefore, follow Dai and Singleton (2000), we normalize

the model by setting νk = 1 for k = 1, · · · , K.

As the underlying factors {xk,t} are not observable, we transform the model into a

dynamic state-space form and estimate it with a filtering method.

The state equations and measurement equations are specified as follows. Equation

(2.2) is discretized daily (1/252 years) to generate the state equation for all factors. We

consider one, two and three factors respectively.

We use daily data from the spot index, two index futures and three index options

to estimate the model. Therefore we have six measurement equations. Equation (2.1)

is discretized daily to generate the first measurement equation for the spot index. The

annualized log of futures spot ratio (ALFSR) is defined as5 1
h
log

Ft,t+h

It
, where Ft,t+h is

given by Equation (2.17). The measurement equations for the futures are generated

by adding an error term to the ALFSR. The call options price in Equation (2.19) is

normalized by dividing the corresponding Black-Scholes vega6, we denote it option price-

vega ratio (OPVR). The measurement equations for the options are generated by adding

4Note that only futures and options data correspond to tradeable assets.
5If the spot-futures parity, Ft,t+h = Ite

(r−q)h, where r is the annually continuously compounded
riskfree interest rate and q is the dividend yield, holds for the index and its futures, then ALFSR simply
equals the riskfree interest rate minus the dividend yield.

6The Black-Scholes vega is the derivative of the Black-Scholes options price with respect to the
volatility.
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an error term to the OPVR. All the error terms for the futures and options are assumed

to be independently and normally distributed with mean 0 and variance σ2
i , i = 1, · · · , 5.

The parameters to be estimated are µk, γk, αk, k = 0, · · · , K, ξk, ζk, k = 1, · · · , K, β

and σ2
i , i = 1, · · · , 5. We use θ to denote the vector of all the parameters. The total

number of parameters is 5K + 9, where K is the number of latent factors.

The above state-space model is Gaussian, but nonlinear. We thus implement the

unscented Kalman Filter (UKF) method in Wan and Van Der Merwe (2000), which

linearizes the model and removes the requirements to explicitly calculate Jacobians or

Hessians without sacrificing the accuracy. Since all the error terms are assumed to be

normally distributed in the state space model, the loglikelihood function of the observed

variables yt = [dlogIt, ALFSR1, ALFSR2, OPV R1, OPV R2, OPV R3]
′ is given by

logLt(θ) = −6

2
ln2π − 1

2
ln|P−

yt | −
1

2
(yt − ŷ−t )

′(P−
yt )

−1(yt − ŷ−t ) (4.1)

where ŷ−t is the predicted value of yt based on earlier observations and P−
yt is the predicted

covariance matrix. The maximum likelihood estimator is obtained as

θ̂ = argmaxθ

T∑
t=1

logLt(θ), (4.2)

where T is number of days in the dataset. Under standard regularity conditions, these

estimators are asymptotically normal.

The “sandwich” formula is used to estimate the covariance of the quasi-maximum

likelihood estimator (see White (1982) and Gourieroux, Monfort and Trognon (1984)) to

take account of the possibility that the model is misspecified:

Σ̂θ̂ =
1

T
I(θ̂)−1J(θ̂)I(θ̂)−1 (4.3)

where

I(θ̂) = − 1

T

T∑
t=1

∂2logLt(θ̂)

∂θ∂θ′
and J(θ̂) =

1

T

T∑
t=1

∂logLt(θ̂)

∂θ

∂logLt(θ̂)

∂θ′
.

(4.4)
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We deduce that the estimated functions of the parameters characterizing the restric-

tions for index tradability

ẑk(1) = α̂k + (β̂ + 1)µ̂k +
γ̂k
2
(β̂ + 1)2, ∀ k = 0, · · · , K.

are also asymptotically normal, with an estimated variance-covariance matrix Ω̂, which

is computed by the δ-method. More precisely,

Ω̂ = Ĵ · V̂ · Ĵ′,

where the Jacobian matrix Ĵ with size K + 1 by 3K + 4 is given by

Ĵ =


β̂ +1 0 · · · 0 (β̂+1)2

2
0 · · · 0 1 0 · · · 0 µ̂0+γ̂0(β̂+1)

0
. . .

... 0
. . .

... 0
. . .

... µ̂1+γ̂1(β̂+1)
...

. . . 0
...

. . . 0
...

. . . 0
...

0 · · · 0 β̂ +1 0 · · · 0 (β̂+1)2

2
0 · · · 0 1 µ̂K+γ̂K(β̂+1)

 ,

and V̂ denotes the variance-covariance matrix of estimator [µ̂0 · · · µ̂K , γ̂0 · · · γ̂K , α̂0 · · · α̂K ,

β̂]′. V̂ is a submatrix of Σ̂θ̂.

A Wald test statistic of the null-hypothesis that the derivatives are priced as if the

index were self-financed and tradable is:

ξw = ẑ(1)′Ω̂−1ẑ(1). (4.5)

Under the null-hypothesis this statistic follows asymptotically a chi-square distribution

with K + 1 degree of freedom.

5 Empirical Results

In this section, we present the estimation and test results. Subsection 5.1 introduces the

data. The model is estimated with the quasi-maximum likelihood estimation method

discussed in Section 4. The estimation and testing results are presented in Subsection

5.2. We also analyze the model performance and compare the one-, two-, and three-factor

models in this subsection.
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5.1 Description of Data

In order to identify all the parameters in the model, we combined in the estimation

the data of S&P 500 index, index futures and index options. They are obtained from

Optionmetrics. The spot index and the futures are only used for estimation, while the

options data are divided into two parts, one for estimation and the other for out-of-the-

sample test.

The dataset ranges from January 3, 2001 to December 29, 2006. There are totally 1506

days. The summary statistics is presented in Table 1 and the plots of all the in-sample

observations are shown in Figure 1.

The index level is computed using the last transaction prices of its component stocks.

As seen in the table and the plots, the average daily change of S&P 500 Index is very

small, while its standard deviation is relatively larger. The variable dlogIt is positively

skewed and has a fatter tail than the normal distribution.

The S&P 500 futures contracts traded in Chicago Mercantile Exchange (CME) are

among the most actively traded financial derivatives in the world. On each day, there

are eight futures contracts with different maturity dates. The maturity dates are the

third Friday of the eight months in the following March quarterly cycle (March, June,

September and December). The futures contracts are ranked by their maturities and

we selected two futures for estimation each day. The first futures (Fu1) has the shortest

maturity except that in the March cycle months and before the maturity date the futures

with the second shortest maturity is used. The second futures (Fu2) expires a quarter

later than Fu1. Fu1 has time-to-maturity ranging from 15 to 112 days, while the maturity

of Fu2 ranges from 105 to 204 days. These two futures usually have the highest trading

volumes with open interest7 greater than 1700 contracts. The futures prices are quoted

in terms of index points, and the contract size is $250 times CME S&P 500 futures price.

The prices vary considerably during our sample period. The ALFSR, which is equal to

1
h
log

Ft,t+h

It
, was more stable as seen in Figure 1. The ALFSR for the first futures has a

7Open interest refers to the total number of long (short) positions outstanding in an derivatives
contract.
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mean of 0.009 and standard deviation of 0.018, and the second one has a mean of 0.011

and standard deviation of 0.015.

The S&P 500 Index Options traded on the Chicago Board Options Exchange (CBOE)

are European options. They are among the most liquid exchange-traded options and are

extensively used for testing the option pricing models. The exchange-traded S&P 500

Index Options differ from over-the-counter options and have a deterministic issuing dates,

maturity dates and strikes to enhance the liquidity. The expiration months are the three

near-term months followed by three additional months from the March quarterly cycle,

plus two additional months from June and December. The expiration date is the Saturday

following the third Friday of the expiration month. The underlying asset is the index

level multiplied by 100. Strike price intervals are 5 points and 25 points for long term

contracts.

In this paper, the options data are filtered as follows. First, only call options are

included. Second, to alleviate the liquidity concern, we only consider call options with

open interest greater than 100, trading volume greater than 0, maturity between 7 days

and 540 days, and moneyness8 between 0.85 and 1.06. Third, to mitigate the market

microstructure problem, we eliminate options with best bid prices less than 3/8 dollars.

The filtered dataset contains 1506 days, 77,224 options in total and 51 observations per

day on average. A similar filtering approach was used in Li (2012). On each day, we

select three call options for estimation and the rest are used for out-of-the-sample test.

We try to use a variety of options with distinct moneyness and time-to-maturity in the

estimation. We categorize three sets of options. The first set has time-to-maturity less

than 60 days and moneyness between 0.97 and 1.03. These at-the-money short time-to-

maturity (ATM-SM) options are among the most liquid products in the market. Options

with medium and long maturity are generally more liquid when they are out-of-the-

money. Therefore, the second set of options (OTM-MM) has time-to-maturity between

60 to 180 days and moneyness less than 1, and the third set (OTM-LM) has time-to-

8The moneyness is defined as the underlying price divided by the strike price, i.e., I/X.
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maturity longer than 180 days and moneyness less than 1. For estimation purpose, we

choose from each set the option with the highest trading volume each day.

Figure 1 shows that the price-vega ratio for the options are high when the underlying

index is volatile and low when the index is relatively stable. Options used for out-of-

sample test has a wide range of time-to-maturity and moneyness, as shown in Table 1.

The time-to-maturity varies from 10 days to 540 days, while the moneyness ranges from

0.85 to 1.06.

5.2 Estimation Results and Model Comparison

Table 2 summarizes the estimation and testing results for the one-, two- and three-factor

models. The table reports the parameter estimates and the standard deviations. The

maximized loglikelihood for each model and the test statistics ξw for the null hypothesis

of tradable index computed in equation (4.5) are presented at the end of the table.

In Table 2, we see that the standard errors of the parameter estimate in the one-factor

model is very large. As a result, none of the estimates for the parameters in θ appears

to be statistically significant. The Wald test statistic, ξw, is equal to 846. So the null-

hypothesis that the derivatives are priced as if the index were self-financed and tradable

is strongly rejected in the one-factor model.

Similarly, the estimates for most of the parameters in the two-factor model are not

statistically significant. TheWald test statistic, ξw, is equal to 997. So the null-hypothesis

that the derivatives are priced as if the index were self-financed and tradable is also

strongly rejected in the two-factor model.

For the three-factor model, the estimates for most parameters become statistically

significant, which means that a third CIR factor process is required. The estimate of

2.23, 2.23 and 1.72 for ξ1, ξ2 and ξ3 implies that the underlying factors are mean reverse

and they are not very persistent. The market price of risk associated with wt is −β(γ0 +∑K
k=1 γkxk,t)

1/2. All γ estimates are positive and the estimate of -5.66 for β implies

positive market risk premium. The Wald test statistic, ξw, is equal to 18,232. So again
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the null-hypothesis that the derivatives are priced as if the index were self-financed and

tradable is strongly rejected in the three-factor model despite the rather small forecasting

error on It. In other words, significant mispricing of options and futures would appear if

the three-factor model were estimated with the parameters constrained by the tradable

restrictions (3.3) as usually done in the literature.

The results above are also compatible with “Roll’s critique”. Roll (1977) argues that

the market portfolio in the Capital Asset Pricing Model is unobservable. In practice,

a market index, such as the S&P 500 Index, often serves as a proxy for the market

portfolio. Our results show that the S&P 500 Index cannot be considered as the value of

a self-financed traded portfolio, in particular, not the value of the market portfolio.

The likelihood-ratio test of the one-factor model against two-factor model using the

estimated loglikelihood rejects the one-factor model. Similarly, the two-factor model is

rejected against the three-factor model.

Table 3 reports the in-sample pricing (forecasting) errors for the three models. The

pricing errors are measured as the absolute difference between model implied price and

the observed price as a percentage of the observed price. For the index which is not

tradable, the interpretation is in terms of forecasting error. For the index, we report on

the log index value, while for the futures and options, the actual prices are examined.

There are 1,506 days in the data. The daily absolute percentage pricing (forecasting)

errors for each model are shown in Figure 2 to Figure 4.

The in-sample pricing (forecasting) errors for spot index and index futures in all three

models are very small due to the linearity of the pricing functions. The pricing errors are

in general larger for the options, although all the mean values are less than 10%. Figure

2 to Figure 4 shows that the pricing errors tend to be smaller in earlier period of the

sample, when the underlying index and the latent factors are more volatile.

The factors in the models capture the risks that affect the expected return, the volatil-

ity and the dividend of the underlying index. Figure 5 plots the estimate of the filtered

factors in each model. These three factors play different roles. Table 3 shows that the

first factor corresponds to the short term risk, but does not fit the long end of the deriva-
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tives very well. When additional factors are included, the medium term and long term

risks are better accounted for. This is clear by checking the in-sample pricing error of

the medium-term futures (Fu2) and the options with medium and long maturities (OP2

and OP3). In Table 3, the mean absolute percentage pricing error for the medium ma-

turity futures (Fu2) and the medium maturity options (OP2) are much smaller in the

two-factor models, while the three-factor model produces the smallest pricing error for

the long maturity options (OP3). The superiority of the two- and three-factor model

can also been seen from the parameter estimates σFu2, σOP2 and σOP3, which measure

the mispricing of the derivatives with the medium and long maturity. The smaller values

of these parameters in the multi-factor models indicate that the multi-factor models are

more capable of explaining the variations in the observed data.

Table 4 reports the out-of-the-sample option pricing errors for the three models. There

are 1,506 days and 72,706 out-of-the-sample observations in total. The options are divided

into 15 groups based on the maturity and moneyness. The mean of absolute percentage

option pricing errors for each group is reported.

As seen in the table, all the three models do poorly in estimating the deep out-of-

the-money options, especially those with short term maturities. However, the models

produce more accurate estimates for the other options and the pricing errors for these

options are fairly small. The two- and three-factor models perform better than the one-

factor model in forecasting the prices of the medium- and long-term derivatives. The

three-factor model yields the smallest mean absolute percentage pricing errors for the

options with long maturities.

6 Conclusion

In this paper we consider a coherent multi-factor affine model to price various derivatives

such as forwards, futures and European options written on the non-tradable S&P 500

Index, and derivatives written on the S&P 500 futures.
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We consider both cases when the underlying index is self-financed and tradable and

when it is not, and show the difference between the two pricing models. When the

underlying asset is self-financed and tradable, an additional arbitrage condition has to

be introduced and implies additional parameter restrictions. These restrictions can be

tested in practice to check whether the derivatives are priced as if the underlying index

were self-financed and tradable.

To test the restrictions, we consider three nested factor models. The models are

estimated by combining the spot, futures and options data and using the unscented

Kalman Filter (UKF) method. The Wald tests strongly reject the null-hypothesis that

the derivatives are priced as if the index were self-financed and tradable in all three

models. In other words, i) significant mispiricing of options and futures contracts would

be observed if the factor models were estimated with parameters constrained by the index

tradability restriction as usually done in the literature; ii) it is not possible to reproduce

the index by means of a self-financed mimicking portfolio without significant errors; iii)

the S&P 500 Index cannot be considered as the value of the market portfolio.

The S&P 500 Index is not the only non-tradable index on which various derivatives

have been written. Our model can be easily extended to price derivatives written on

other non-tradable indices such as a retail price index, a meteorological index, an index

summarizing the results of a set of insurance companies, or a population mortality index.

These other application are even more appealing since no liquid mimicking portfolio is

generally proposed for these indices on the market.
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Appendices: Proofs of Propositions

A Proof of Proposition 1

The price of the call option is:

C(t, t+ h, u)

=Et[exp(

∫ t+h

t

dmτ + u log It+h)]

=Et{exp[
∫ t+h

t

dmτ + u(log It +

∫ t+h

t

d log Iτ )]}

=exp(u log It)Et[exp(

∫ t+h

t

(dmτ + ud log Iτ )]

= exp(u log It)Et{exp
∫ t+h

t

([α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,τ ]dτ

+ β(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ + u[(µ0 +

K∑
k=1

µkxk,τ )dτ + (γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ])}

=exp(u log It)Et{exp
∫ t+h

t

([α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ

+ (β + u)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ )}

=exp(u log It)Et{exp
∫ t+h

t

[α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ

× Et(exp[(β + u)

∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ] | Xk,τ )},

whereXk,τ denotes the set {xk,τ}k=1···K
τ=t···t+h.

Since exp[(β + u)

∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ] | Xk,τ

∼ LN(0, (β + u)2
∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )dτ),

we deduce that:
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C(t, t+ h, u)

= exp(u log It)Et{exp
∫ t+h

t

[α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ

× exp[
(β + u)2

2

∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )dτ ]}

=exp(u log It)Et{exp
∫ t+h

t

([α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ

+
(β + u)2

2
(γ0 +

K∑
k=1

γkxk,τ )dτ)}

=exp(u log It) exp

∫ t+h

t

[α0 + (β + u)µ0 +
(β + u)2

2
γ0]dτ

× Et{exp
∫ t+h

t

K∑
k=1

[(αk + (β + u)µk +
(β + u)2

2
γk)xk,τ ]dτ}

=exp(u log It) exp{h[α0 + (β + u)µ0 +
(β + u)2

2
γ0]}

× Et{exp
K∑
k=1

∫ t+h

t

[αk + (β + u)µk +
(β + u)2

2
γk]xk,τdτ}

=exp(u log It) exp{h[α0 + (β + u)µ0 +
(β + u)2

2
γ0]}

×
K∏
k=1

Et{exp−
∫ t+h

t

−[αk + (β + u)µk +
(β + u)2

2
γk]xk,τdτ},

since factors {xk,t}, k = 1, · · · , Kare independent,

= exp(u log It) exp{h[α0 + (β + u)µ0 +
(β + u)2

2
γ0]}

×
K∏
k=1

exp[−Hk
1 (h, zk(u))xk,t −Hk

2 (h, zk(u))]

= exp(u log It) exp{h[α0 + (β + u)µ0 +
γ0
2
(β + u)2]

−
K∑
k=1

Hk
1 (h, zk(u))xk,t −

K∑
k=1

Hk
2 (h, zk(u))},

where

zk(u) = −αk − (β + u)µk −
γk
2
(β + u)2,
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and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(2.4)

B Proof of Proposition 3

The instantaneous interest rate is defined by:

r(t) = lim
h→0

−1

h
logB(t, t+ h) =

d[− logB(t, t+ h)]

dh
|h=0 .

We have:

− logB(t, t+ h) = −h(α0 + βµ0 +
γ0
2
β2) +

K∑
k=1

Hk
1 (h, zk(0))xk,t +

K∑
k=1

Hk
2 (h, zk(0)).

We deduce that:

d[− logB(t, t+ h)]

dh
= −α0 − βµ0 −

γ0
2
β2 +

K∑
k=1

dHk
1 (h, zk(0))

dh
xk,t +

K∑
k=1

dHk
2 (h, zk(0))

dh
,

where

Hk
1 (h, zk(0)) =

2zk(0)(exp[εk(zk(0))h]− 1)

(εk(zk(0)) + ξk)(exp[εk(zk(0))h]− 1) + 2εk(zk(0))
,

Hk
2 (h, zk(0)) =

−2ξkζk
ν2
k

{log[2εk(zk(0))] +
h

2
[εk(zk(0)) + ξk]

− log[(εk(zk(0)) + ξk)(exp[εk(zk(0))h]− 1) + 2εk(zk(0))]}.

Let us denote (εk(zk(0)) + ξk)(exp[εk(zk(0))h]− 1) + 2εk(zk(0)) ≡ A. We get:

dHk
1 (h, zk(0))

dh
|h=0

=
2zk(0) exp[εk(zk(0))h]εk(zk(0))A

A2

− 2zk(0)(exp[εk(zk(0))h]− 1)(εk(zk(0)) + ξk) exp[εk(zk(0))h]εk(zk(0))

A2
|h=0

=
2zk(0)εk(zk(0))2εk(zk(0))− 0

[2εk(zk(0))]2
= zk(0),

and

dHk
2 (h, zk(0))

dh
|h=0

=
−2ξkζk

ν2
k

{1
2
[εk(zk(0)) + ξk]−

1

A
(εk(zk(0)) + ξk) exp[εk(zk(0))h]εk(zk(0))} |h=0
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=
−2ξkζk

ν2
k

{1
2
[εk(zk(0)) + ξk]−

(εk(zk(0)) + ξk)εk(zk(0))

2εk(zk(0))
} = 0.

We deduce:

r(t) = −α0 − βµ0 −
γ0
2
β2 +

K∑
k=1

zk(0)xk,t.

C Proof of Proposition 4

Since

E[exp(

∫ t+h

t

dmτ )(f(t, t+ h)− It+h)] = 0,

we get:

B(t, t+ h)f(t, t+ h) = E[exp(

∫ t+h

t

dmτ )It+h],

and

f(t, t+ h) =
C(t, t+ h, 1)

C(t, t+ h, 0)
.

D Proof of Proposition 5

Since Et[

∫ t+h

t

(exp

∫ t+τ

t

dms)dFτ ] = 0, we get:

Ft,t+h

=Et[exp(

∫ t+h

t

dmτ ) exp(

∫ t+h

t

rτdτ)It+h]

=Et{exp[
∫ t+h

t

(dmτ + rτdτ) + log It +

∫ t+h

t

d log Iτ ]}

=ItEt[exp(

∫ t+h

t

(dmτ + rτdτ + d log Iτ )]

=ItEt{exp
∫ t+h

t

[(α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,τ )dτ

+ β(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ + (µ0 +

K∑
k=1

µkxk,τ )dτ
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+ (γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ + (−α0 − βµ0 −

γ0
2
β2 +

K∑
k=1

zk(0)xk,τ )dτ ]}

=ItEt{exp
∫ t+h

t

[(α0 + (β + 1)µ0 − α0 − βµ0 −
γ0
2
β2)dτ

+
K∑
k=1

(αk + βµk + µk + zk(0))xk,τdτ + (β + 1)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ]}

=It exp[h(µ0 −
γ0
2
β2)]Et{exp

∫ t+h

t

K∑
k=1

(αk + (β + 1)µk + zk(0))xk,τdτ

× Et[exp

∫ t+h

t

(β + 1)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ | Xk,τ ]}.

Since exp

∫ t+h

t

(β + 1)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ | Xk,τ

∼ LN(0, (β + 1)2
∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )dτ),

we get:

Ft,t+h

=It exp[h(µ0 −
γ0
2
β2)]

× Et{exp
∫ t+h

t

[
K∑
k=1

(αk + (β + 1)µk + zk(0))xk,τdτ +
(β + 1)2

2
(γ0 +

K∑
k=1

γkxk,τ )dτ ]}

=It exp[h(µ0 −
γ0
2
β2 +

(β + 1)2

2
γ0)]

× Et{exp
∫ t+h

t

[
K∑
k=1

(αk + (β + 1)µk + zk(0) +
(β + 1)2

2
γk)xk,τ ]dτ}

=It exp[h(µ0 −
γ0
2
β2 +

(β + 1)2

2
γ0)]

×
K∏
k=1

Et{exp−
∫ t+h

t

−[αk + (β + 1)µk + zk(0) +
(β + 1)2

2
γk]xk,τdτ}

=It exp[h(µ0 −
γ0
2
β2 +

(β + 1)2

2
γ0)]

K∏
k=1

exp[−Hk
1 (h, lk)xk,t −Hk

2 (h, lk)]

=It exp[h(µ0 +
1 + 2β

2
γ0)−

K∑
k=1

Hk
1 (h, lk)xk,t −

K∑
k=1

Hk
2 (h, lk)],
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where

lk = −αk − (β + 1)µk − zk(0)−
γk
2
(β + 1)2

= −µk −
1 + 2β

2
γk.

E Proof of Proposition 6

Let us first consider the call option with price G(t, t+ h,X). Its price is given by:

G(t, t+ h,X)

= Et{exp(
∫ t+h

t

dmτ )[exp(log It+h)−X]+}

= Et{exp(
∫ t+h

t

dmτ )[exp(log It+h)−X]1− log It+h≤− logX}

= A1,−1(− logX; x1,t, · · · , xK,t, log It, h)−XA0,−1(− logX;x1,t, · · · , xK,t, log It, h),

whereAa,b(y;x1,t, · · · , xK,t, log It, h) = Et[exp(

∫ t+h

t

dmτ ) exp(a log It+h)1b log It+h≤y].

The Fourier-Stieltjes transform of Aa,b(y;x1,t, · · · , xK,t, log It, h) is∫
ℜ
exp(ivy)dAa,b(y;x1,t, · · · , xK,t, log It, h)

= Et{exp(
∫ t+h

t

dmτ ) exp[(a+ ivb) log It+h]} = C(t, t+ h, a+ ivb).

We deduce that:

Aa,b(y;x1,t, · · · , xK,t, log It, h)

=
C(t, t+ h, a)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h, a+ ivb) exp(−ivy)]

v
dv

[see Duffie, Pan and Singleton (2000), p1352].

By substitution we get the call price

G(t, t+ h,X) =
C(t, t+ h, 1)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h, 1− iv) exp(iv logX)]

v
dv

−X{C(t, t+ h, 0)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h,−iv) exp(iv logX)]

v
dv}.
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Similarly, for the put option with price H(t, t+ h,X), we have

H(t, t+ h,X)

= Et{exp(
∫ t+h

t

dmτ )[X − exp(log It+h)]
+}

= Et{exp(
∫ t+h

t

dmτ )[X − exp(log It+h)]1 log It+h≤logX}

= −A1,1(logX;x1,t, · · · , xK,t, log It, h) +XA0,1(logX;x1,t, · · · , xK,t, log It, h)

= −C(t, t+ h, 1)

2
+

1

π

∫ ∞

0

Im[C(t, t+ h, 1 + iv) exp(−iv logX)]

v
dv

+X{C(t, t+ h, 0)

2
− 1

π

∫ ∞

0

Im[C(t, t+ h, iv) exp(−iv logX)]

v
dv}.

F Proof of Proposition 7

We have:

Ft+h,t+h+m = It+h exp[m(µ0 −
1 + 2β

2
γ0)−

K∑
k=1

Hk
1 (m, lk)xk,t+h −

K∑
k=1

Hk
2 (m, lk)],

logFt+h,t+h+m = log It+h +m(µ0 −
1 + 2β

2
γ0)−

K∑
k=1

Hk
1 (m, lk)xk,t+h −

K∑
k=1

Hk
2 (m, lk).

Therefore,

CF (t, t+ h, t+ h+m,u)

= Et(exp

∫ t+h

t

dmτ (Ft+h,t+h+m)
u)

= Et[exp

∫ t+h

t

dmτ exp(u logFt+h,t+h+m)]

= Et[exp(

∫ t+h

t

dmτ + u logFt+h,t+h+m)]

= Et{exp(
∫ t+h

t

[(α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,τ )dτ + β(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ]
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+ u[log It +

∫ t+h

t

d log It +m(µ0 −
1 + 2β

2
γ0)

−
K∑
k=1

Hk
1 (m, lk)(xk,t +

∫ t+h

t

dxk,τ )−
K∑
k=1

Hk
2 (m, lk)])}

= exp[u log It + um(µ0 −
1 + 2β

2
γ0)− u

K∑
k=1

Hk
1 (m, lk)xk,t − u

K∑
k=1

Hk
2 (m, lk)]

× Et{exp
∫ t+h

t

[(α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,τ )dτ + β(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ

+ u(µ0 +
K∑
k=1

µkxk,τ )dτ + u(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ

− u
K∑
k=1

Hk
1 (m, lk)(ξk(ζk − xk,τ )dτ + νk

√
xk,τdwk,τ )]}

= exp[u log It + um(µ0 −
1 + 2β

2
γ0)− u

K∑
k=1

Hk
1 (m, lk)xk,t − u

K∑
k=1

Hk
2 (m, lk)]

× Et{exp
∫ t+h

t

[(α0 + βµ0 + uµ0 − u
K∑
k=1

Hk
1 (m, lk)ξkζk)dτ

+
K∑
k=1

(αk + βµk + uµk + uHk
1 (m, lk)ξk)xk,τ )dτ

+ (β + u)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ − u

K∑
k=1

Hk
1 (m, lk)νk

√
xk,τdwk,τ ]}

= exp{u[log It +m(µ0 −
1 + 2β

2
γ0)−

K∑
k=1

Hk
1 (m, lk)xk,t −

K∑
k=1

Hk
2 (m, lk)]

+ h[α0 + (β + u)µ0 − u

K∑
k=1

Hk
1 (m, lk)ξkζk]}

× Et{exp(
∫ t+h

t

K∑
k=1

[αk + (β + u)µk + uHk
1 (m, lk)ξk]xk,τdτ)

× Et(exp

∫ t+h

t

[(β + u)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ − u

K∑
k=1

Hk
1 (m, lk)νk

√
xk,τdwk,τ ] | Xk,τ )}

= exp{u log It + (um+ hβ + hu)µ0 −
1 + 2β

2
umγ0 + hα0
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−
K∑
k=1

uHk
1 (m, lk)(xk,t + hξkζk)−

K∑
k=1

uHk
2 (m, lk)}

× Et{exp(
∫ t+h

t

K∑
k=1

[αk + (β + u)µk + uHk
1 (m, lk)ξk]xk,τdτ)

× (exp

∫ t+h

t

(
(β + u)2

2
(γ0 +

K∑
k=1

γkxk,τ ) +
K∑
k=1

u2

2
[Hk

1 (m, lk)]
2ν2

kxk,τ )dτ)}

= exp{u log It + (um+ hβ + hu)µ0 −
1 + 2β

2
umγ0 + hα0

−
K∑
k=1

uHk
1 (m, lk)(xk,t + hξkζk)−

K∑
k=1

uHk
2 (m, lk)}

× Et{exp
∫ t+h

t

(
(β + u)2

2
γ0

+
K∑
k=1

[αk + (β + u)µk + uHk
1 (m, lk)ξk +

(β + u)2

2
γk +

u2

2
[Hk

1 (m, lk)]
2ν2

k ]xk,τ )dτ}

= exp{u log It + (um+ hβ + hu)µ0 +
(β + u)2h− (1 + 2β)um

2
γ0 + hα0

−
K∑
k=1

uHk
1 (m, lk)(xk,t + hξkζk)−

K∑
k=1

uHk
2 (m, lk)}

×
K∏
k=1

Et[exp−
∫ t+h

t

−(αk + (β + u)µk + uHk
1 (m, lk)ξk

+
(β + u)2

2
γk +

u2

2
[Hk

1 (m, lk)]
2ν2

k)xk,τdτ ]

= exp{u log It + (um+ hβ + hu)µ0 +
(β + u)2h− (1 + 2β)um

2
γ0 + hα0

−
K∑
k=1

uHk
1 (m, lk)(xk,t + hξkζk)−

K∑
k=1

uHk
2 (m, lk)}

×
K∏
k=1

exp[−Hk
1 (h, pk(m,u))xk,t −Hk

2 (h, pk(m,u))]

= exp{u log It + (um+ hβ + hu)µ0 +
(β + u)2h− (1 + 2β)um

2
γ0 + hα0

−
K∑
k=1

uHk
1 (m, lk)hξkζk −

K∑
k=1

uHk
2 (m, lk)−

K∑
k=1

Hk
2 (h, pk(m,u))

−
K∑
k=1

[uHk
1 (m, lk) +Hk

1 (h, pk(m,u))]xk,t}
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= exp(u log It) exp{m(uµ0 −
1 + 2β

2
uγ0) + h[(β + u)µ0 +

(β + u)2

2
γ0 + α0]

−
K∑
k=1

uHk
1 (m, lk)hξkζk −

K∑
k=1

uHk
2 (m, lk)−

K∑
k=1

Hk
2 (h, pk(m,u))

−
K∑
k=1

[uHk
1 (m, lk) +Hk

1 (h, pk(m,u))]xk,t},

where

pk(m,u) = −αk − (β + u)µk − uHk
1 (m, lk)ξk −

γk
2
(β + u)2 − u2

2
[Hk

1 (m, lk)]
2ν2

k ,

lk is given in equation(2.10), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(2.4).

G Proof of Proposition 8

The price of the call optioin written on the futures is:

GF (t, t+ h, t+ h+m,X)

= Et{exp(
∫ t+h

t

dmτ )[exp(logFt+h,t+h+m)−X]+}

= Et{exp(
∫ t+h

t

dmτ )[exp(logFt+h,t+h+m)−X]1− logFt+h,t+h+m≤− logX}

= A1,−1(− logX; x1,t, · · · , xK,t, logFt,t+h+m, h)

−XA0,−1(− logX;x1,t, · · · , xK,t, logFt,t+h+m, h),

where

Aa,b(y; x1,t, · · · , xK,t, logFt,t+h+m, h)

=Et[exp(

∫ t+h

t

dmτ ) exp(a logFt+h,t+h+m)1b logFt+h,t+h+m≤y].

The Fourier-Stieltjes transform of Aa,b(y;x1,t, · · · , xK,t, logFt,t+h+m, h) is:∫
ℜ
exp(ivy)dAa,b(y;x1,t, · · · , xK,t, logFt,t+h+m, h)

= Et{exp(
∫ t+h

t

dmτ ) exp[(a+ ivb) logFt+h,t+h+m]} = CF (t, t+ h, t+ h+m, a+ ivb).
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Therefore, we have:

Aa,b(y; x1,t, · · · , xK,t, logFt,t+h+m, h)

=
CF (t, t+ h, t+ h+m, a)

2
− 1

π

∫ ∞

0

Im[CF (t, t+ h, t+ h+m, a+ ivb) exp(−ivy)]

v
dv,

and

GF (t, t+ h, t+ h+m,X)

=
CF (t, t+ h, t+ h+m, 1)

2
− 1

π

∫ ∞

0

Im[CF (t, t+ h, t+ h+m, 1− iv) exp(iv logX)]

v
dv

−X{C
F (t, t+ h, t+ h+m, 0)

2

− 1

π

∫ ∞

0

Im[CF (t, t+ h, t+ h+m,−iv) exp(iv logX)]

v
dv}.

H Proof of Proposition 9

The first restriction in Equation (3.2) holds, if and only, if

zk(1) = −αk − (β + 1)µk −
γk
2
(β + 1)2 = 0, ∀k = 1, · · · , K.

This implies εk(zk(1)) =|ξk |, ∀k = 1, · · · , K, and

Hk
2 (h, zk(1)) =

−2ξkζk
ν2
k

{log|2ξk |+
h

2
(|ξk |+ξk)− log[(|ξk |+ξk)(exp(|ξk |h)− 1) + 2 |ξk |]}

= 0, no matter if ξk > 0 or ξk < 0, ∀k = 1, · · · , K.

This, with the second restriction in Equation (3.2), implies that

α0 + (β + 1)µ0 +
γ0
2
(β1)

2 = 0.

Therefore, Equation (3.2) is equivalent to

αk + (β + 1)µk +
γk
2
(β1)

2 = 0, ∀k = 0, · · · , K.
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Figure 1: Plots of Observations

This figure plots the observations for estimation in this paper. The data ranges from

Jan 3, 2001 to Dec 29, 2006 and there are 1,506 days in total. On each day, there

are six observations including the daily log difference of S&P 500 Index (dlogSPXspot),

annualized log of futures spot ratio (ALFSR) for two S&P 500 futures, and price-vega

ratio for three S&P 500 options.
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Figure 2: In-Sample Absolute Percentage Pricing (Forecasting) Errors from the One-

Factor Model

This figure plots the in-sample pricing (forecasting) errors from the one-factor model.

The pricing errors are measured as the absolute difference between the model implied

price and the observed price as a percentage of the observed price. For the index, we

report on the log index value, while for the futures and options, the actual prices are

examined. There are 1,506 days in the dataset.
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Figure 3: In-Sample Absolute Percentage Pricing (Forecasting) Errors from the Two-

Factor Model

This figure plots the in-sample pricing (forecasting) errors from the two-factor model.

The pricing errors are measured as the absolute difference between the model implied

price and the observed price as a percentage of the observed price. For the index, we

report on the log index value, while for the futures and options, the actual prices are

examined. There are 1,506 days in the dataset.
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Figure 4: In-Sample Absolute Percentage Pricing (Forecasting) Errors from the Three-

Factor Model

This figure plots the in-sample pricing (forecasting) errors from the three-factor model.

The pricing errors are measured as the absolute difference between the model implied

price and the observed price as a percentage of the observed price. For the index, we

report on the log index value, while for the futures and options, the actual prices are

examined. There are 1,506 days in the dataset.
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Figure 5: Filtered Factors from the Factor Models

This figure plots the filtered underly factors {x̂kt} for each model, based on the parameter

estimate in this paper.
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Table 1: Summary Statistics for the Data

This table summarizes statistics for the daily data ranging from January 3, 2001 to

December 29, 2006. It covers the spot S&P 500 Index (SPX), the two index futures

(Fu1 and Fu2), and the three index options (Op1 to Op3) used for estimation, and

the options used for out-of-the-sample test. The daily log difference of S&P 500 Index

is reported on the first row. For the futures, statistics for time-to-maturity (T2M),

annualized log of futures spot ratio (ALFSR) and total number of outstanding futures

contract (open interest) are presented. Fu1 refers to the short-term futures with the

shortest maturity and Fu2 refers to the medium-term futures expiring a quarter later

than Fu1. For the options, statistics for time-to-maturity (T2M), moneyness, price-vega

ratio, trading volume and open interest are shown in the table. Op1 represents at-the-

money options with short maturity (ATM-SM). Op2 stands for out-of-the-money options

with medium maturity (OTM-MM), and Op3 are out-of-the-money options with long

maturity (OTM-LM). The last panel summarizes the out-of-the sample options.

Variable Mean Std.Dev. Skewness Kurtosis Min Median Max

In Sample

dlogSPX 0.000 0.011 0.161 5.844 -0.050 0.000 0.056

In Sample

Fu1 T2M (years) 0.172 0.0721 0.0142 1.817 0.041 0.173 0.307

Fu1 ALFSR 0.009 0.018 0.474 3.910 -0.051 0.005 0.105

Fu1 Open Int 520,907 128,143 -1.520 4.905 71,345 564,230 669,216

In Sample

Fu2 T2M (years) 0.423 0.072 0.017 1.820 0.288 0.425 0.559

Fu2 ALFSR 0.011 0.015 0.481 2.218 -0.022 0.008 0.058

Fu2 Open Int 85,164 140,107 2.440 8.105 1,744 25,647 665,176

(to be continued on next page...)
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Table 1: (continued)

Variable Mean Std.Dev. Skewness Kurtosis Min Median Max

In Sample

Op1 T2M (years) 0.081 0.034 0.398 2.476 0.027 0.082 0.162

Op1 Moneyness 0.994 0.012 0.149 2.677 0.970 0.995 1.030

Op1 Price/Vega 0.160 0.093 1.173 5.109 0.018 0.143 0.665

Op1 Trading vol 7,467 6,353 2.840 15.921 239 5,853 59,702

Op1 Open int 31,716 27,922 1.696 6.587 143 24,269 191,634

In Sample

Op2 T2M (years) 0.266 0.076 0.675 2.468 0.164 0.244 0.490

Op2 Moneyness 0.959 0.036 -0.812 2.703 0.851 0.968 1.000

Op2 Price/Vega 0.110 0.064 0.811 3.418 0.014 0.104 0.375

Op2 Trading vol 3,963 3,921 3.130 25.210 6 2,700 54,275

Op2 Open int 17,892 16,759 1.546 5.638 100 12,752 94,890

In Sample

Op3 T2M (years) 0.810 0.235 0.875 3.056 0.501 0.753 1.479

Op3 Moneyness 0.931 0.043 -0.046 1.832 0.850 0.930 1.000

Op3 Price/Vega 0.111 0.056 0.557 2.492 0.017 0.103 0.278

Op3 Trading vol 1,627 1,820 3.556 25.661 1 1,050 21,000

Op3 Open int 11,766 10,091.15 1.535 6.421 100 8,925 75,069

Out of Sample

Op T2M 0.295 0.303 1.669 5.235 0.027 0.164 1.479

Op Moneyness 0.972 0.047 -0.422 2.614 0.850 0.977 1.060

Op Price/Vega 0.189 0.642 82.578 9,353 0.013 0.109 90.927

Op Trading vol 811 1,977 20.398 1,232 1 178 157,542

Op Open int 12,856 16,113 3.421 22.919 100 7,722 214,048
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Table 2: Parameter Estimate

This table reports parameter estimates and standard deviations for three nested factor

models. The models are normalized by setting νk = 1, for k = 1, · · · , K. The one-,

two- and three-factor models derived in the paper are estimated using the daily data of

S&P 500 Index, two index futures and three index options described in Section 5. The

loglikelihood for each model and test statistics ξw computed in equation (4.5) is presented

at the end of the table.

Parameter One Factor Two Factors Three Factors

Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

µ0 0.014156 0.062649 0.001751 0.490664 0.020641 0.000306

µ1 -0.019612 1.202200 -0.120038 3.543429 0.326886 0.001813

µ2 - - 0.501187 0.000786 0.241127 0.011074

µ3 - - - - 0.238038 0.000913

γ0 0.005084 0.021024 0.005787 0.060267 0.005612 7.60e-05

γ1 0.091091 0.226156 0.115763 0.453376 0.006901 0.000180

γ2 - - 1.72e-05 1.21e-07 0.003152 5.24e-05

γ3 - - - - 0.067161 0.004048

ξ1 3.364535 6.302816 2.667334 11.54964 2.230514 0.006613

ξ2 - - 3.409025 0.474828 2.230497 0.032053

ξ3 - - - - 1.719731 0.079500

ζ1 0.103510 0.442547 0.052931 0.450232 0.093168 0.000992

ζ2 - - 0.078183 0.000923 0.013873 0.000221

ζ3 - - - - 0.084855 0.002533

α0 0.279563 0.710415 0.351444 0.043135 0.376432 0.017518

α1 0.115896 3.850134 0.356801 6.467518 1.500325 0.013313

α2 - - -0.476146 0.362013 1.181081 0.008354

(to be continued on next page...)
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Table 2: (continued)

Parameter One Factor Two Factors Three Factors

Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

α3 - - - - 0.059578 0.002488

β -0.421196 12.37646 -1.860492 0.960758 -5.662848 0.415460

σFu1 0.022757 0.001289 0.009532 0.003030 0.009446 0.000655

σFu2 0.017257 0.001578 0.000290 0.065585 0.000790 3.36e-05

σOp1 0.012955 0.006663 0.015889 0.025387 0.016573 0.000553

σOp2 0.010243 0.008514 0.009056 0.066390 0.010097 0.000281

σOp3 0.013427 0.017725 0.010930 0.009359 0.008439 0.000746

Loglikelihood 25,525.29 28,491.26 28,853.48

ξw 845.9943 997.2979 18,231.71

χ2
99%(K + 1) 9.21 11.35 13.28
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Table 3: In-Sample Absolute Percentage Pricing (Forecasting) Errors

This table reports the in-sample pricing errors, which are measured as the absolute differ-

ence between model implied price and the observed price as a percentage of the observed

price. For the index which is not tradable, the interpretation is in terms of forecasting

error. For the index, we report on the log index value, while for the futures and options,

the actual prices are examined. Fu1 refers to the short-term futures, and Fu2 refers to the

medium-term futures. Op1 represents at-the-money options with short maturity (ATM-

SM). Op2 stands for out-of-the-money options with medium maturity (OTM-MM), and

Op3 are out-of-the-money options with long maturity (OTM-LM). There are 1,506 days

in the sample.

Securities One Factor Two Factors Three Factors

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

logIt 0.001108 0.001086 0.001109 0.001088 0.001112 0.001095

Fu1 0.002400 0.001722 0.001199 0.001045 0.001084 0.001049

Fu2 0.005233 0.003227 4.86e-06 4.70e-06 3.98e-05 4.12e-05

Op1 0.089782 0.164550 0.105236 0.178787 0.107083 0.179544

Op2 0.097314 0.152559 0.082150 0.113209 0.095510 0.128891

Op3 0.104998 0.142086 0.087099 0.109224 0.067479 0.084363
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Table 4: Out-of-the-Sample Absolute Percentage Options Pricing Errors

This table reports the out-of-the-sample options pricing errors, which are measured as the

absolute difference between model implied price and the observed price as a percentage

of the observed price. There are 1,506 days and 72,706 out-of-the-sample observations

in total. The options are divided into 15 groups based on the maturity and moneyness.

The mean of absolute percentage options pricing errors for each group is reported.

Maturity Model Moneyness(I/K)

<0.94 0.94-0.97 0.97-1.00 1.00-1.03 >1.03

<60 days one-factor 0.545435 0.466165 0.154574 0.048615 0.028152

two-factor 0.529769 0.466957 0.165987 0.044368 0.025586

three-factor 0.519731 0.436678 0.163203 0.045412 0.028491

60-180 one-factor 0.360111 0.122878 0.061926 0.053554 0.033464

two-factor 0.329843 0.111317 0.057041 0.046736 0.025826

three-factor 0.336643 0.106182 0.057058 0.049048 0.033831

>180 one-factor 0.158253 0.076913 0.072129 0.075685 0.087410

two-factor 0.127078 0.063742 0.054993 0.058140 0.080321

three-factor 0.109486 0.056811 0.051816 0.054455 0.068869
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