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Survival of Hedge Funds: Frailty vs Contagion

Abstract

In this paper we examine the dependence between the ligandéks of individual hedge funds.
This dependence can result either from common exogenog&sghared frailty), or from contagion
phenomena, which occur when an endogenous behaviour ofdanfi@mager impacts the Net Asset
Values of other funds. We introduce dynamic models ablegtirdjuish between frailty and contagion
phenomena, and test for the presence of such dependencts effecording to the age and manage-
ment style of the fund. We demonstrate the empirical relesaof our approach by measuring the
magnitudes of contagion and exogenous frailty in liquigiatisk dependence in the TASS database.

The empirical analysis is completed by stress-tests orfighort of hedge funds.

Keywords: Hedge Fund, Liquidation Correlation, Frailty, Contagi@ynamic Count Model, Au-
toregressive Gamma Process, Systemic Risk, Stressitggiglation Swap, Funding Liquidity, Mar-
ket Liquidity.

JEL classification: G12, C23.



1 Introduction

The rather short lifetime$ of a majority of hedge funds (HF) and the reasons of the deperel
between their liquidations explain the interest of invest@academics and regulators in HF survival
analysis. There exist different economic reasons expiginihy a HF manager decides to liquidate a
fund. Loosely speaking, this decision can be taken sinberihe income of the fund manager is not
sufficient, or the market conditions are not appropriateianaging the fund in an efficient way. Let
us discuss these two aspects.

i) Large cash withdrawals

The income of a fund manager is coming from management feehwane indexed in a complicated
way on the performance of the fund, but also on the total Asseter Management (AUM). In par-
ticular, when outflows are important it may become unintimgsto continue to manage the fund.
Moreover, this effect is amplified by the specific high watarknfee structure implemented by the
HF manager [see e.g. Brown, Goetzmann, Liang (2004), BeroBourieroux (2012) for the descrip-
tion of fees]. This is the so-called L-effect, L for liabyljtsince it impacts the liability component of
the balance sheet of the fund. This L-effect can be a sourtigwflation dependence, for instance
during a funding liquidity crisis when the fund managersexgnce jointly large cash withdrawals,
while having difficulty in obtaining credit and being obldj¢o diminish their use of leverage. This
effect also arises with the withdrawal of some prime brokarsl it is amplified by the use of debt
to create the needed leverage. If the prime brokers simedissly quit several funds, we get a frailty

phenomenon, that is, a common risk factor. This frailty&ffe exogenous, even when there is a herd-

1The global annual liquidation rate for hedge funds betwe@94land 2003 has been around 8%-9%, which corre-
sponds to a median lifetime of 6-7 years. However, the ligtidch rate is considerably varying according to the year and
management style, with values between about 4% and 30%spéniod [see e.g. Getmanski, Lo, Mei (2004), Chan, Get-
manski, Haas, Lo (2007), Table 6.14]. Moreover, the ligtiatarate depends significantly on the definition of liquidat

and on the database.



ing behaviour of prime brokers, as along as their decisioigriggered by past liquidation events.
ii) Market effect
If HF portfolios are invested in illiquid assets, it can b#idult and risky to continue to manage funds
during a market liquidity crisis. Indeed, the fire sales oiveeg fund manager will consume the market
liquidity of a given class of illiquid assets. The first cogaence of such fire sales is a price pressure
on these assets, which implies a decrease of the marketadlifunds holding these assets in their
portfolio. This is the A-effect, A for assets, since it comtethe asset component of the balance sheet.
This effect is often called contagion in the HF literaturewall-known example is the default of the
Russian sovereign debt in August 1998, when Long Term dddiémagement (LTCM) and many
other fixed-income HF suffered catastrophic losses ovectliese of a few weeks. Then, the failure
of one of these funds increases the probability of liquaabf other funds.
iii) Finally, liquidation can also be the consequence of illegadrations, such as fraud, unauthorized
trading and misappropriation of investors funds, of cotdlmf interest or inadequate resources. The
analysis of operational risk is out of the scope of our paperiais expected that the new regulations
will diminish the importance of this reason for HF liquidati

From the investor’s point of view, liquidation is a risk, whi concerns both the timing of the
payoffs and the value of the fund at liquidation time. It igtf@dly at the discretion of the fund
manager, who can slow down or accelerate liquidation by gmogpiate management of gates, for

instance. The liquidation risk is similar to default riskepayment risk, or lapse risk encountered on

2At the beginning of the 2000’s, about half of all failures midpe attributed to such operational risks [Feffer, Kundro
(2003)]. On October 2, 2004, the SEC required the managetseahain hedge funds to register as investment advisors
by February 1, 2006. Such request applies to the hedge fumolseamanager is based in the United States, with more than
14 clients, assets of at least 25 millions USD and a lockupgef less than two years. The managers have to fill the
Form ADV and reveal the operational risk problems encowatér the past. Among the registered individual funds alive

in 2006, aboul 6% encountered operational difficulties in the past [Brownle(2008)].



corporate bonds, credit derivatives, or life insurancetramts, respectively. Liquidation risk is often
neglected in standard portfolio management practices.dtiidden risk, in contrast to the visible risk
directly measured by the volatility of returns, i.e. the ksmrisk. A fund with a small visible market
risk can have a large hidden liquidation risk. Liquidatiakrs especially important for the following
three types of market participants:
i) Most of the money invested in HF in the yearly 2000’s comesifiastitutional investors, including
endowments, foundations, corporate and public plans, mswtance (if they have a minimal capital)
[Casey, Quirk, Acito (2004)]. They invest on a long term aare interested in the low correlation of
HF returns with traditional assets classes, like equitylamts, and want to avoid the consequences
of a short term liquidity crisis.
ii) The funds of funds can be very sensitive to liquidation risgehdencies between individual funds.
An appropriate survival analysis can help to detect the $uofdunds, which are too sensitive to such
systematic risk.
iii) The regulators have to monitor both the L- and A- effects.yldan modify and control the funding
liquidity exposure by means of restrictions on the magratatleverage, of the frequency of gates and
of the minimal requirements for investing in a HF. Regulatocan also manage the market liquidity
exposure by applying the Basel Il approach, for instancenbpducing additional reserves based on
liquidity stress scenarios.

In this paper we focus on the liquidation times and do not icanghe losses on Net Asset Value

during the liquidation proces$.The analysis of HF lifetimes is generally based on a duratiodel,

31t would be much more difficult to measure the loss given liggion of hedge funds than the loss given default of
large corporations for three reasomsThe exposure at liquidation are self-reported and have twabefully checkedij)
The hedge funds cannot issue bonds for refinancing and thus éixists no market value of their liquidation rigk) The
hedge fund portfolios can include a significant proportibilliguid assets, which require time to be sold at a reasebal

price during the liquidation process.



which can be either parametric, semi-parametric, or na@patric. Typically, in a first step analysis
researchers study how the liquidation intensity dependb®@age of the HF, and/or on calendar time.
This is done by appropriately averaging the observed l@piot rates [see e.g. the Kaplan-Meier
non parametric estimation of the hazard function in Bab&d38006), Figure 1, for the description
of age dependence, or the log-normal hazard function usddhbikiel, Saha (2005)]. In a second
step, a parametric specification of the (discrete-tima)idigtion intensity can be selected, such as a
logit, or a probit model to analyze the possible determisantiquidation. The explanatory variables
can be time independent HF characteristics, such as thegaaeat style, the domicile country (off-
shore vs domestic), the minimum investment, variables samzing the governance structure, such
as the existence of incentive management fees, and thegnd@sgh water mark, hurdle rate), the
announced cancellation policy (redemption frequencykupcperiod), the experience and education
level of the manager [Boyson (2010)]. Regressors can aldade time dependent HF individual
characteristics, such as lagged individual HF return,izedlreturn volatility and skewness, asset
under management (AUM) and the recent fund inflows [see eapu@ro, Horst, Verbeek (2005),
Malkiel, Saha (2005), Chan, Getmansky, Haas, Lo (2007)i@e6.5.1, Boyson (2010)], as well as
time dependent market characteristics [Chan, GetmanskgsH.o (2007), Section 6.6.1, Carlson,
Steinman (2008)] and the competitive pressure, measurdtebyotal number of HFs [Getmansky
(2010)]. Finally, the parametric and nonparametric apgmea can be combined in the proportional
hazard model introduced by Cox (1972), as in Brown, GoetzmBark (2001), Baba, Goko (2006),
Gregoriou, Lhabitant, Rouah (2010).

While the above survival models are useful for a descrigivalysis of liquidation intensity, these
models are not always appropriate for liquidation risk poran, for evaluation of systematic risk, or
for capturing the observed liquidation clustering, as megLiin a stress testing analysis. For instance,

for such purposes it is not suitable to introduce time depehexplanatory variables in survival mod-



els. Indeed, the future liquidation risk can only be anallya#ter predicting the future values of the
time dependent explanatory variables. This is a difficidktas it requires a joint dynamic model
for these variables and the liquidation indicators. Furtigge, since the duration models considered
in the literature assume the independence of individuaidiation risks given the selected observed
explanatory variables, liquidation correlation has ndtheen included in the HF survival models.

Based on the above discussion, two causes of liquidatigrdapendencies arise.

i) There exist underlying exogenous stochastic factors, whave a common influence on the liqui-
dation intensities of the individual HF. In the credit ristetature, these factors are called systematic
risks, or frailties [Duffie et al. (2009)]. Such common exngas shocks also exist in the joint analysis
of HF lifetimes and capture the funding liquidity risk, thatthe L-effect.

ii) Risk dependency can also arise when a shock to one fund haspacti on other funds. This
is the so-called contagion effect. In the case of credit, reslhtagion is generally due to the debt
structure, when some banks or funds invest in other banksmatst For HFs it corresponds to the
market liquidity risk, that is, the A-effect.

The aim of our paper is to introduce both frailty and contagfects in HF survival models, and
to measure the magnitudes of these effects. The liquidatiensity of an individual HF is assumed
to depend on the lagged observations of liquidation coumtee same and in the other management
styles, as well as on a common unobservable dynamic facta.f@rmer explanatory variables rep-
resent contagion (A-effect), the latter represents theeshi@ailty (L-effect). The specification allows
to disentangle the two types of liquidation risk dependdmcexploiting the time lag that contagion
necessitates to produce its effects. Such a model is efipeaigropriate to analyze in a dynamic
framework the consequences of stress on either funding dkanbquidity, and then to design the
possible policies to diminish some of these consequencles.amalysis of underlying common risk

factors and contagion is the first step before studying thpaohof HF on systemic risk for the global



financial markets, and the possible cascade into a globaldialcrisis.

The paper is organized as follows. In Section 2 we first intoedthe microscopic foundation
for our framework based on individual hedge funds. A maaspgcPoisson model with both com-
mon frailty and contagion is derived by aggregating ligtimlacounts by management styles and age
classes. The Poisson model with contagion and autoregeegsmma frailty is especially convenient,
since it provides a joint affine dynamics for the frailty ahe fiquidation counts. This facilitates the
prediction of future liquidation risk as well as the estiroatof parameters in such a nonlinear setting
with unobservable factors. Dynamic models with contagind failty are estimated on HF data in
Section 3. We assess the relative magnitude of contagiostaardd frailty phenomena when we study
liquidation risks dependence across different managestgets. We carefully distinguish between the
direct frailty effect and the amplification of the exogenaystematic shocks through the contagion
network. We illustrate our methodology by an applicatiodyoamic stress tests of HF portfolios, that
evaluates the stress effects on the term structure of Edjoid risk. Section 4 concludes. Technical

proofs are gathered in appendices and supplementary alateri

2 Frailty vs Contagion in liquidation of hedge funds by genea-

tion and type

In this section we introduce a dynamic model for the jointritisition of liquidation count histories
of hedge funds of different types. The cross-sectional degece between individual HF liquidation
risks, and the liquidation risk dynamics, are captured lgoducingi) the autoregressive effect of
lagged counts, that is the contagion effect, &pd dynamic frailty to represent unobservable exoge-

nous common shocks.



2.1 Microfoundations

Let us partition the set of HF according to a qualitative wlial characteristic, called the type. The
type depends on the hedge fund, and is time independent.iridigdual characteristic can be the
management style, the domicile state/country, the mininmwestment, the type of governance, or the
crossing of such variables. The type can t&kalternativeskt = 1,..., K. Moreover, leth denote
the age of the fund, where=1,... H.

For each period, we denote by, ; the number of hedge funds with ageand typek at the
beginning of the period. Among thesg ; hedge fundsy; ,, will be liquidated during this period.
The parametric model specifies the joint distribution of tlkenber of liquidationg, 5, , for k£, h and
t varying. We first define the joint distribution of these lidation counts given the common frailty
history. Then, the model is completed by specifying thdtiralynamics, which is needed to account
for the unobservability of the common stochastic factors.

Let us denote by; the factor value at datg and byY; = (Y bk = 1,..., K,h =1,.. H)
the vector of liquidation counts in perigdor all fund types and ages. Lét = (F;, F;_1,...) and
Y, = (Y}, Yi—1, .. .) denote the factor and liquidation counts histories, rethpedy, at datet. The factor

F; can be multidimensional with dimensien. We make the following assumption:

Assumption A.1: Conditional on F; and Y;_,, the liquidation counts Y, ¢, for k, h varying, are

independent with binomial distribution:

Yint ~ Blngnt, ent(6)], (2.1)

where py, 1, + () denotes the discrete-time liquidation stochastic intensity in period ¢ for category (k. h),

and ¢ is an unknown parameter.

The liquidation intensity is time varying and stochastiirice it depends on the unobservable
stochastic frailty procesg ;) and on the lagged liquidation counts. In general we consrdesfor-

9



mations of the liquidation rates by the inverse of a cumwatiistribution function (c.d.f.) to ensure
pr.nt(0) to be betweerd and1. We get a logit (resp. probit) model when the c.d.f. corresisoto
the logistic distribution (resp. standard Gaussian distron). We consider below the c.d.f. of the
exponential distribution since this transformation pd®s the continuously compounded liquidation

intensity,* which is specified as:
—log [1 = prpni(0)] = arn(0) + ben(0) Fi + con(0)'Y/ 4, (2.2)

where vecto;* | = (Y{',; 1, Ym0 YR1 15 Yiems1) Measures the lagged liquida-
tion rates at the source of possible contagions. The comanrfand the parameters are assumed
such that the RHS of equation (2.2) is positive. The spetifineof the liquidation rate includes
marginal effects of the individual type and age by means,.gf6), cross effects of type and age with
frailty throughby ,(0)'F}, and cross effects of type and age with lagged counts. Thablai’’,, , ,
can be chosen as the lagged liquidation cagnt,_;, or lagged liquidation frequenc. , +—1 /7 nt—1,
according to the degree of integration of the HF market. Tan®ffect of the lagged class size can be
represented by the size adjusted variables. The current size variable, ;, ; could also be introduced
in the liquidation intensity as the third type of explangteariable to capture a competitive pressure
effect. Loosely speaking, i, ,; is small, the default of one HF can improve the monopolistier

of the surviving HF’s in this category and thus diminish tHeture liquidation rates. The contagion
effects can be both within and between categories. The ve€tensitivity coefficientsy, ,(0) has
componentsy, ,, i »(6), for k', b’ varying, which measure the magnitude of contagion fromguate
(k', 1) to category(k, h). This contagion effect is not necessarily symmetric. F@megle, we can
have contagion fronik’, h') to (k, h) without contagion frontk, h) to (k', ).

The frailty dynamics in specified in the following assumptio

Assumption A.2: The shared frailty process (F}) is unobservable. It is an exogenous Markov process

“that is, an affine specification of the stochastic intensitydantinuous time modeling [see equation (2.9)].

10



with transition density:
9(fil fi13 ), (2.3)

where ¢ is an unknown parameter.

Under Assumption A.2, the transition of factor procéss) depends on the lagged factor value only,
and it does not depend on the lagged liquidation cobipts. Thus, the factor dynamic is exogenous
and F; summarizes the exogenous shocks affecting jointly thadajion intensities of the different
categorie§k, h) at the beginning of period. As discussed in the Introduction, the most relevant
economic interpretation of the common factor is likely a swea of funding liquidity risk.

The notion of frailty has been initially introduced in ducat models in Vaupel, Manton, Stallard
(1979) and later used to define the Archimedean copulas E)@E89)]. In this meaning, the frailty
is an unobservable individual variable introduced to aotéar omitted individual characteristics and
correct for the so-called mover-stayer phenomenon [sedalgp, Goko (2006) for the introduction of
an individual static frailty in the HF literature]. In ourdmework,F; is indexed by time and common
to all HF, which justifies the terminology "dynamic frailtyhtroduced by Duffie et al. (2009) for
application to credit risk. The unobservable common fyaitlso called systematic risk) has to be
integrated out, which creates a contemporaneous depaenthetween the individual HF liquidation
risks as well as long memory features. The coeffictgnt(#) in equation (2.2) gives the sensitivity
of the continuously compounded liquidation rate of catgdét ») with respect to this shared frailty.
In general, this coefficient depends on both fund t¥pmnd ageh. For instance, we expect that the
newly created HFs are more robust, and thus less sensix®tenous shocks during the first 2 years,
when they have survivorship available reserves. Thendugdation rates will increase between 2 and
4 years to diminish later on when the HF becomes mature. Henvévis not yet known how the
liquidation correlation depends on the age, and how thdea et age effects vary with the HF type.

The serial and cross-sectional correlation between laiod counts can be due to either shared

11



frailty (systematic risk), or contagion. This explains wihys important to test for the existence of
such effects. In particular, specification (2.1)-(2.2)unles as special cases:

i) the model without frailty and contagion,f ,,(#) = 0 andcy, ,(6) = 0, Yk, h.

ii) The model with frailty only, whemy, 5, () = 0, Vk, h.

iif) The model with contagion only, when. ,(6) = 0, Yk, h. This submodel is a time discretized
version of the self- and mutually-exciting point processé©duced by Hawkes (1971) and Hawkes,
Oakes (1974). Models of this type are used in the analysierpiocate default clustering by Giesecke
and Weber (2004), and for studying contagion across finanmaakets by Ait-Sahalia, Cacho-Diaz,
Laeven (2010); see also Dungey et al. (2010) for a review atagpon models.

iv) The proportional hazard model with both frailty and contewiif a;, ,(0) = dy,(0)al(6), by 1 (0) =
dn(0)80(0) andcey 1, (0) = d(0)c2(0), say. Thend,(6) is the baseline liquidation intensity, defined up
to a multiplicative scale.

Frailty and contagion both create correlation betweenitbgrhes of individual HF. In the limiting
case of a static model, that is, with a serially independsiilty process F;) and simultaneous effects
of observed liquidation counts, the two phenomena canniatdsgified. This is the reflection problem
highlighted in Manski (1993). In the dynamic framework ofséismptions A.1 and A.2, frailty and
contagion can be disentangled, since the frailty has a oguaeaneous effect while contagion is pro-
duced only after a time lag [see Gagliardini and Gourierd@1@) for a discussion of identification
in models with latent dynamic factors]. Our paper is simitaspirit to Azizpour, Giesecke (2008),
that considers a model for corporate default intensityuditlg a common factor and a self-exciting
jump component. However, the model in Azizpour, Gieseck®® is written at the aggregate level
of the economy, and allows neither for distinguishing witand between group contagion, nor for
heterogeneity in the sensitivity coefficients to the shdraity.

Let us now derive the likelihood function of the binomial nebih Assumptions A.1 and A.2.

12



Conditional on the factor history, the joint density of tiguidation counts of all management styles

and age categories is:

Nk ht

K H T
ITIITI (D1t (O)]75 1 — i p g (0)] 50t 701t 5 (2.4)
k=1h=1t=1

Yk,h,t

Since the common dynamic frailty is unobservable, the ilkad function is deduced by integrating

out the factor history. Thus, the likelihood function is givby:

K H T T

oo [ TITLTT i@l 1 = pecto) o Tlatl s )i, @9

k=1h=11t=1 t=1

wherex means equality up to a scale factor independent of parasneter
The likelihood function in (2.5) has a complicated expressiwvhich involves anT-dimensional

integral, whenever a shared dynamic frailty is introducethe model. Despite the complicated like-
lihood function, the model is suitable for simulating factmd liquidation counts histories, and can
be estimated by the simulation based methods. Indeed, thaelns a nonlinear state space model,
and the Gibbs sampling can be used to evaluate numericalljkidihood function [see e.g. Cappé,
Moulines, Rydén (2005), and Duffie et al. (2009) for an aggilon in credit risk]. However, the
Gibbs sampling can be time consuming and difficult to impletmeimerically, especially when there
is a large number of parameters to estimate. For this reaspoonsider next a Poisson approximation

of the binomial model, and develop in Section 3 a new methadarhents for its estimation.

2.2 The macroscopic model

When the sizes of the categories are large, the binomial hmoAesumption A.1 can be approximated
by the Poisson model with both contagion and frailty. ThesBan model is very convenient, as it
provides a joint affine dynamics for the frailty and the lidation counts. This facilitates the filtering
of the unobservable factor, the nonlinear prediction afifeiiiquidation risk as well as the estimation
of the parameters.

13



The HF categories are large and the liquidation rates ar#,sm@n monthly data are used. Then,
the binomial distribution can be well-approximated by tloesBon distribution [see e.g. Czado, Del-
warde, Denuit (2005) and Gagliardini, Gourieroux (201X)diach an approximation in life insurance
contracts and credit risk analysis, respectively]. Towdesuch an approximation let us assume that

the category sizes are such that:

N ht = Vi,h,tT (2.6)

wheren tends to infinity andy; 5, ; are fixed coefficients, that are, independent.ofet us also assume

that the liquidation intensities are such that:
nh—>nc}o npk,hﬂg(@) = )\k,h,t<9> > 0, say. (27)

Then, the conditional distribution of the liquidation casican be approximated by a Poisson distribu-
tion:

Yint ~ Plven e en(0)]. (2.8)

When model (2.2) is chosen for the liquidation intensitygkpansion provides an affine form for the

limiting liquidation intensity:
)\k,h,t<9> = ahh(@) -+ bkﬁ(@)/Ft + Ck7h(9)/Y;i1, say (29)
The scale componen, . ; in (2.6) is a size adjustment, which can be replaced for ntetdy:

Vbt = Tk bt/ Tk htos (2.10)

wheret, is a given date. This adjustment is especially useful forHRendustry, which has experi-
enced a large development before the crisis of 2008 (se@8&c1). Due to this size adjustment, the
distribution of the liquidation courit}, ;, ; depends on the current sample sizg, ;.

While equation (2.1) defines the model for a finite populatiequation (2.8) defines its limit
for a large population size. Below we show that, by disremardhe effect of finite category size,

14



we simplify the dynamics and obtain an affine dynamic for thiatjprocess of liquidation counts
and frailty [see e.g. Duffie, Filipovic, Schachermayer Dfbr continuous time affine processes,
and Darolles, Gourieroux, Jasiak (2006) for discrete timidje Poisson approximation leads to the
conditional Laplace transform of the current liquidatiauots vectoi; given F; andY;_,, which is:

Yi(u) = E [exp(—u’Ytﬂﬁ, Y;—l:| = HE[GXP(—Uk,hYk,h,t”ﬁa Vi1

k,h

= H exp { Vit Ak,h,t(0)[1 — exp(—urpn)]}

= exp {— Z[l — exp(—uk,n) | Ve neann(0) — Z[l — exXP(—uk,n) Vi tbk,n (0) Fi

k,h k,h

-y - eXp(—Uk,h)]%,h,tCk,h(9)/3/,:*_1} ; (2.11)

k,h
whereu is a vector with nonnegative components,.
The conditional Laplace transform (2.11) is an exponerdffwhe function ofF; andY;*,. By

selecting an affine dynamics for the latent factor pro¢éss that is, by assuming that:
Elexp(—u'Fy)|Fi—1, Yi—1] = exp|—a(u) Fi_y — B(w)], (2.12)

for some positive functions and 3, we deduce also an affine dynamic for the joint pro¢éssr;)’.
Specifically, the joint conditional Laplace transform obpessY;, F;) is deduced from (2.11)-(2.12)

by iterated expectation, and we get:

Yi(u,v) = E[eXp(—U’Yt—v’Ft)\thl,Efl]

= E{E [exp(~uY)|F, Yot | exp(—v'F)|Fiy, Vi |

= €Xp {— Z Vit (0)[1 — exp(—ug,pn)] — Z[l - eXp(—Uk,h)]%,h,tck,h(@)'n"_l
k,h k,h
— <Z Vi, tbr,n (0)[1 — exp(—upp)] + U) Fi
k,h
—ﬁ <Z ’}/k,h,tbk,h<9>[1 — exp(—uk,h)] + U> } . (213)
k.h

15



This joint conditional Laplace transform is exponentidiref in lagged value¥;_; and F;_q, that is,

it is of the form:

Yi(u,v) = exp{—an4(u,v)'Yi_1 — ags(u,v) Fi_1 — Bi(u,v)}, say, (2.14)

where the sensitivity coefficients, ;, a2, and 5, depend on the class size and are time dependent
in general. Thus, proces%?, F})’ is a time-heterogenous affine Markov process. The closed for
exponential affine expression of the conditional Laplaaagform of procesgY/, F})’ simplifies the
computation of the predictive distributions at any predicthorizon [see e.g. Darolles, Gourieroux,
Jasiak (2006)] and the filtering of the latent factor [seeeB42006)]. The closed form expression of
the conditional Laplace transform also provides inforrathoment restrictions, which are the basis

of estimation with the Generalized Method of Moments (seiGe 3.4).

2.3 A constrained stationary autoregressive Poisson modelith gamma dy-
namic frailty

The dynamic Poisson model in equations (2.8) and (2.9) uffem the curse of dimensionality, as
it involves K2 H? contagion parameters to estimate. To solve this problenintseduce constrained
parametric specifications for the liquidation intensitirelgeneral specification of Section 2.2 can be

constrained by considering the following assumption:

Assumption A.3: Theliquidationintensity is Ay . +(0) = &k+EkFt+é;€}Q,1,where}Q = (Y1t oo, Yt)

H
and Yy, = Z Yi ot
h=1

Under Assumption A.3, the parameters vedtaonsists of the intercept,, the frailty sensitivityb,

and the vector of contagion coefficients for all management stylels. The effect of the lagged
liquidation counts is passing through the liquidation dsuaggregated over age classes. Moreover,
the liquidation intensity at a given dateés assumed independent of the fund agéhat is, it is equal
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across all funds of the same type. Nevertheless, the ligamantensity of a given HF is time-varying
as a result of the shared dynamic frailty and the liquidatiomnts history.
In some applications such as stress testing (see Sectipnt3sbappropriate to consider a given

portfolio structure with respect to fund type and age, whscheld fixed through time in the analysis.

Assumption A.4: The size adjustments are constant and equal to 1: ~, ,: = 1, for any &, h, .

Thus, the sizes of the categories are fixed through time, @@ssumed homogenous across fund type
and age for expository purpose. Under Assumptions A.3-Ae4an aggregate the liquidation counts

over theH age classes and consider the aggregate model:

Yo~ Plag + b Fy + Y1), k=1, K, (2.15)

Whereak = Hay, b, = Hi)k andck = Hey,.

Assumption A.5: The frailty process (F;) is scalar (m = 1) and follows an Autoregressive Gamma

(ARG) process.

The ARG process is the time discretized Cox, Ingersoll, Rossess [Cox, Ingersoll, Ross (1985)].
The transition of this Markov process corresponds to a nanagegamma distribution (6, nF;_1, v),

wherer > ( is a scale paramete¥,> 0 is the degree of freedom of the gamma transition distriloutio
and parameter > 0 is such thal = nv is the first-order autocorrelation. The conditional Laplac

transform is exponentially affine and given by equationZ?With:

alu) = 1TZU’ B(u) =dlog(l+vu), u >0, (2.16)

(see Appendix 1 for basic results on the ARG process). Sineddctor is unobservable, it is al-
ways possible to assumié(F;) = 1 for identification purpose. Then, the frailty dynamics can b

conveniently parameterized kyy= (9, p)’.
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The first and second-order unconditional moments of thedation counts process are given in
Proposition 1 below, which is proved in Appendix 2. Let vesto= (ay, ..., ax) andb = (by, ..., bx)’
gather the intercepts and frailty sensitivities for tiemanagement styles, and ét= [cy, ..., cx| be

the (K, K') matrix whose rows correspond to the contagion coefficiemtthie X' management styles.

Proposition 1: In the Poisson model with AssumptionsA.3-A.5, thejoint process (Y}, F;)’ isstationary
if, and only if, p < 1 and the eigenvalues of matrix C' are strictly smaller than 1 in modulus. Then, we

have:
E(Y,) = (Id—C) Ya+0), Cov(Yy,, Y1) = o?pbb (Id — pC") ' + CV(Y,), (2.17)
and the variance-covariance matrix V() is solution of the linear system:

V(YY) = diaglE(Y;)] +CV(Y,)C' + o2bb/

+0?pC(Id — pC) b + o?pbt/ (Id — pC") 1, (2.18)
where o? = V(F,) = 1/5.

As expected, the stationarity condition of the joint praq@3, F;)’ requires both the stability of the
contagion phenomenon, i.e. the eigenvalues of the comtagadrix C' are smaller tham in modulus,
and the stationarity of the frailty process, i.e. the firstey autocorrelation coefficientis smaller
than1. By expanding matrix/d — C')~! in a power series, the expectation of the liquidation counts
can be written a&[V;] = (a +b) + C(a+b) + C*(a+b) + - - -. The first term in the RHS + b is the
expectation of the liquidation counts if there is no comagithe second terri'(a + b) is the effect
of contagion over a one-month period, the third t&rfiia + b) is the indirect effect of contagion over
a two-month period, etc. When the elements of madtiare all positive, the endogenous contagion
amplifies the effect of the exogenous shared frailty on ebgueloquidation counts.

Equation (2.18) in Proposition 1 provides a decompositibthe historical variance-covariance
matrix of the liquidation counts. The first teriiag[E(Y;)] in the right hand side of equation (2.18)
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corresponds to the variance in a Poisson model with cragseal independence. The sum of the first
and second terms provides the expression of the variancenodal including contagion, but without
frailty. The third termo2bl’ captures the direct effect of the exogeneous frailty. Theaiaing terms
in equation (2.18) accommodate its indirect effects throagntagion, namely, the amplification of
the frailty effect due to the network. This variance decosifian is written in an implicit form since
the linear system (2.18) has to be solved to get the expressit’(Y;) as a function of the model

parameters.

3 Empirical analysis

The dynamic Poisson model is applied to individual HF datanfthe Lipper TASS database.

3.1 The Data

The TASS database consists of monthly returns, Asset Undealjement (AUM) and other HF char-
acteristics for individual funds from February 1977 to J20®9. The relevant information for our
study concerns the HF status. The database categorizesd{fEive” and "Graveyard” funds. The
"Live” funds are presented as still active. There are seveesons for a fund to be included in the
Graveyard database. For instance, these funds longer report their performance to TASH,are
liquidated,iii) are merged or restructureid) are closed to new investors. A HF can be listed in the
Graveyard database only after being listed in the Live detabThe TASS dataset includes 6097 funds

in the "Live” database and 6767 funds in "Graveyard”. In ooalgsis, we consider only the HF, which

STremont Advisory Shareholders Services. Further inforomagbout this database is provided on the website

http://www.lipperweb.com/products/LipperTASS.aspx.
5Graveyard status code: 1=fund liquidated; 2=fund no longgorting to TASS; 3=TASS unable to contact the manager

for updated information; 4=fund closed to new investmentfud has merged into another entity; 7=dormant fund;

9=unknown.
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are considered as "Live”, or "Liquidated” (status code’ 1)The latter are 2533 funds. Moreover, in
order to account for the time needed to pass from "Live” tod&yard” in TASS, we have transfered
to the "Graveyard” database the 273 funds of the "Live” dassbwith missing data at least for April,
May, June 2009. Among these funds, 23 are considered addiga according to this criterion.

We apply a series of filters to the data. First, we have salemtdy funds with Net Asset Value
(NAV) written in USD. This currency filter avoids double cding, since the same fund can have
shares written in USD and EUR for example. After applying ¢herency code filter, we have 3183
funds in the "Live” base, and 1881 liquidated funds. Secavelhave selected only funds with monthly
reporting frequency. Nevertheless, we have also includedfunds with quarterly reporting frequency,
when the intermediate monthly estimated returns were avail Third, to keep the interpretation in
terms of individual funds, we eliminate the funds of fundsnafly, in order to apply the Poisson
approximation within the management styles, we select treagement styles with a sufficiently large
size. These are Long/Short Equity (LSE), Event Driven (Banaged Futures (MF), Equity Market
Neutral (EMN), Fixed Income Arbitrage (FI), Global MacroNtp Emerging Markets (EM), Multi
Strategy (MS), and Convertible Arbitrage (CONV). After &ppg all these filters, we get 2279 funds
in the "Live” database and 1520 liquidated funds. The distibn by style of alive and liquidated

funds in the database is reported in Table 1.

[Insert Table 1: The database]
The largest management style in the database of alive amdditgd funds is Long/Short Equity Hedge
(about40%), followed by Managed Futures, Multi-Strategy and Everivé&m (each about0%).

The age of an individual HF is measured since the inceptiom igoorted in TASS. Thus, we do
not take into account the incubation period preliminaryrtception, and the possible associated left

truncation bias.

“Chan, Getmansky, Haas, Lo (2007) have regarded as liqditti€raveyard funds in status code 1, 2 or 3.
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3.2 Summary statistics

In Figures 1 and 2 we provide the subpopulation sizes anddghiglation rates over time for different

management styles, without distinguishing the age of the HF

[Insert Figure 1: Subpopulation sizes of HF]

[Insert Figure 2: Liquidation rates of HF]

We observe in Figure 1 the HF market growth between 2000 afd,2dhd the sharp decrease due
to the 2008 financial crisis. However, the effect of the erisiless pronounced for HF following a
Global Macro strategy. Figure 2 shows liquidation clustgrboth with respect to time and among
categories. One liquidation clustering due to the Long T@apital Management (LTCM) debacle
is observed in Summer 1998 and is especially visible for timefging Markets and Global Macro
categories. Another liquidation clustering is observetth@2008 crisis, but did not include the Global
Macro strategy.

Let us now focus on the age effect. We provide in Figure 3 theathed nonparametric estimates
of the liquidation intensity by management style. The eatesn are obtained from the Kaplan-Meier

estimators of the survival functions.

[Insert Figure 3: Smoothed estimates of liquidation inigyhs

These estimates feature similar patterns, with a maximuageatof about 4 years. Table 2 provides
the estimated liquidation intensities at the maximum, arabas) and100 months. We observe that
the intensity functions of different management stylesraseproportional. This suggests that the

proportional hazard model should not be used for these data.

[Insert Table 2: Maximum and boundary values of the liguatatates]
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There can also exist cross-effects of time and age in ligwdantensity, which are difficult to
observe when the fund lifetimes are separately analysed weither time (see Figure 2), or age (see
Figure 3). These cross-effects can be detected by means @Eettis diagram. Each liquidated fund
is reported on the diagram by a dot with the date of death orrtteis and its age at death on the
y-axis. All the funds of the same cohort are represented bytihdine passing through this dot. In
particular, the intersection of this line with theaxis provides the birth date of the funds in this cohort

(see Figure 4).

[Insert Figure 4: Lexis diagram]

The Lexis diagrams for four management styles are providé&dgures 5-8. In these figures, each
star represents a liquidation event in the time-age plad,vas look for concentration of stars in a
band either parallel to the-axis (age effect), or parallel to theaxis (time effect), or parallel to the
459 line (cohort effect). For example, the Emerging Marketatstyy represented in Figure 5 features
a concentration of liquidation events around the age of 26thw) regularly spaced liquidation events

for the cohort born in 1993, and another concentration duthe crisis of 2008.

[Insert Figure 5: Lexis diagram for Emerging Markets]

The Lexis diagram for the Global Macro strategy (Figure &esds two high time concentrations
around 1998 (the LTCM crash) and 2008-2009 (the recent fiahagsis), whereas the time concen-

trations are around January 2003 and the 2008 crisis for thig Strategy funds (Figure 7).

[Insert Figure 6: Lexis diagram for Global Macro]

[Insert Figure 7: Lexis diagram for Multi Strategy]

The strategy Managed Futures in Figure 8 shows essentrafiga effect.

22



[Insert Figure 8: Lexis diagram for Managed Futures]

We now move to the estimation of the dynamic Poisson modehvdad the curse of dimensional-
ity, we assume that the liquidation intensity is independéage and that the lagged liquidation counts
can be aggregated over age as in Section 2.3. To accommbddtd-tmarket growth seen in Figure
1, we adjust for category sizes. The size adjustments aneediefis follows: we rely on Assumption
A.3 (Section 2.3) in which the aggregation scheme for thgdagcounts i3 | = (Y7, 1, ..., Y%, 1)
with Yy, | = Yit—1/Ve—1 andy ;1 = iWM—L We selecty;, ,,, as the ratio between the popu-
lation size at month, and the populatiohn:;ize in February 2001, for typand ageh. We consider

first a model with pure contagion. Then we introduce also avbearved frailty with autoregressive

gamma dynamics (Assumption A.5 in Section 2.3).

3.3 Model with contagion only

Let us first focus on a model with pure contagion. As in SecBd) the data can be aggregated over
the age to get:

Yie ~P [ (4 + Y )], k=1,.,K. (3.1)

This is a multivariate Poisson regression model, with= 9 lagged counts as explanatory variables
[Cameron, Trivedi (1998)]. The lagged counts capture tipaidiation clustering effects and their dif-
fusion between management styles. The model invaliatercept parameters;, k = 1,...,9, and a
matrix of 81 contagion parameters ./, with k£, &’ = 1,...,9. As usual the parameters of the Poisson
regression model are estimated by the Maximum Likelihootl)(Ms this model is a special case of
Generalized Linear Model (GLM), the likelihood equatioms aasily solved by applying iteratively
the weighted least squares in a Seemingly Unrelated Regne€&SUR) model [McCullagh, Nelder
(1989)]. The estimated values of the intercepts are givarable 3 with standard errors in parenthe-

ses. The estimated contagion matrix is provided in TableRereswe display only the statistically
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significant contagion coefficients at th& level.

[Insert Table 3: Estimated interceptgin the pure contagion model]

[Insert Table 4: Estimated contagion parametgys in the pure contagion model]

The contagion matrix is represented as a network in Figuvéh@re an arrow from stylg’ to stylek

corresponds to a statistically significant estimate of p&tarcy, ;..

[Insert Figure 9: The contagion scheme for the pure contagiodel]

All strategies are interconnected either directly, or iadily through multistep contagion channels.
Such a contagion scheme corresponds to a complete strict#éilen, Gale (2000) terminology. The
structure of the contagion matrix provides interestinginfation on the contagion interactions and
the possible model misspecification. We observe the spedies of the Fixed Income Arbitrage
and Long/Short Equity Hedge strategies, which both infleeticectly most of the other strategies.
However, some estimated contagion parameters likely ateia misspecification of the model without
frailty and lead possibly to misleading interpretationsr Fastance, we get a large valQg7 of the
contagion parameter from Fixed Income Arbitrage to LongfSEquity Hedge. Such a causal effect
is unlikely since the Fixed Income Arbitrage strategiesiavesting in bonds and, when the associated
managers deleverage their portfolios, the impact on LdmytSEquity strategies invested in stocks is
expected to be small.

In Tables 3 and 4, the estimates of the interceptand the rows;, of the contagion matrix differ
significantly across management styles When a model with fund age and management style as
the sole explanatory variables is fitted to the data, as inrEi@ and Table 2, the variable age partly
captures the effect of the time-varying lagged liquidatonnts, that are the explanatory variables in

model (3.1), with different impacts across the managemgldss Thus, the results in Tables 3 and 4

24



are compatible with the findings in Figure 3 and Table 2, ampett the evidence that a proportional

hazard specification without time-varying explanatoryiaalies is not appropriate for our dataset.

3.4 Model with frailty and contagion

Let us now extend the model to include an exogenous sharigt with ARG dynamics. We get:
Yie ~ P [yer (s + 0B+ Y5)], k=1, K. (3.2)

The single factor assumption is convenient for tractapilitis also in line with empirical findings in
the literature. For instance, Carlson, Steinman (2008es=gthe aggregate liquidation count for the
entire HF market on several time-dependent observablabias related to market conditions and on
the lagged aggregate liquidation count, and find only ortestitaally significant variable® The model

in equation (3.2) involves9 parametersy, b, andcy ;- in the liquidation intensities, plusparameters
for the frailty dynamics, namely the degrees of freedoamd the autocorrelation The large number
of parameters is due to introducing cross-effects betwemmagement style and frailty, and between
management style and lagged liquidation counts.

The likelihood function of this multivariate autoregregsPoisson regression model with shared
dynamic frailty involves a multi-dimensional integral aadarge number of parameters. This makes
the numerical implementation of the likelihood maximipaticumbersome. We propose below an
informative Generalized Method of Moments (GMM) approachdur estimation problem. The mo-
ment restrictions can involve either the stationary disttion of the frailty (static moment restrictions),

or the transition distribution of the frailty (dynamic monteestrictions).

8These market conditions are essentially the market indexrrend the market volatility, the significant observed
variable being the S&P 500 return. However, the model in €0er| Steinman (2008) includes no variable measuring
liquidity features, such as measures of counterparty fiskhe discussion of the estimated contagion effects welse t

the effect of the S&P 500 return is likely a reduced form efftat is a consequence of the subprime crisis and the Icteffe
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i) Static moment restrictions
The moment restrictions are based on the special form of @aheitonal Laplace transform in

equation (2.11). For typk and by aggregating over the a@gewe have:
Elexp (—uyYk.t) |5,£] = exp {—%,t (ak + b Fy + c;gY;’il) (1— e_“’*’)} , (3.3)

for any argument,, € [0, o). These conditional moments are appropriate for analyzgkgparam-
eters. Indeed, the left hand side of the above equation iglgithe expected utility function for an
investor with a portfolio totally invested in the liquidati events of stylé, and an absolute risk aver-
sion equal tou,. By considering the associated set of moment restrictimesgonsider all types of
investment, for all values of risk aversion. Therefore,abksociated moment method will calibrate the
unknown parameters on the whole set of expected utilities.

The equations in (3.3) can be rewritten as:
E [eXp {—urYey + e (ar + 6 Y7) (L —e ")} |E, thl] = exp {—be(1 — e ") E}, (3.4)

for u;, € [0,00). Thus, we obtain nonlinear transforms of the observableédation count variables,
whose conditional expectation depends on the frailty ofdyequation (3.4) holds for all real positive
arguments:;, we can consider a time-dependent argumgniThe time dependence is selected such
that the RHS of equation (3.4), and thus the LHS as well, isostary. More precisely, let, ; be
such thatl — e™“** = v/, for givenv € Vi, i.e. ug; = —log (1 —v/v,). In order to obtain a
well-definedu ; in [0, 0o), the real interval),, has to be a subset @f, iItlf Yk.t).- Then, equation (3.4)

becomes:
E [exp {log(l —0/Yet)Yir + 0 (ak + CQCY;L)} |F, Y;_l} = exp (—vbpF}), Yv € V. (3.5)

These moment restrictions are conditional on factor patind cannot be used directly for estimation

since the factor is unobservable. Therefore, we integnattéhe latent factor by taking expectation on

26



both sides of the equation w.r.t. the gamma stationaryiligton (4, 0, 1/4) of factor proces¢; (see

Appendix 1). We get a continuum of unconditional momentrretsons:

1

E [exp {log(1 — v/ Ve + v (ax + G Y,2) 1] = (1+vby/5)"
k

Yo € V. (3.6)

These static moment restrictions involve the intensityapaaters:, by, ¢, for any typek, as well as
parametew characterizing the stationary distribution of the fraillbyit do not allow to identify the

frailty persistence parameter

if) Dynamic moment restrictions
In order to derive moment restrictions that allow for estiima of parametep, let us consider
equation (3.5) and multiply both sides byp(—a;;—1Y; 1), wheret;;_; = —log(1l — ©/7,4-1), for

some typ€ and anyo € V,. We have:
E [exp {_uk,tYk,t —Up4—1Yi4—1 + v (ak + C;ﬁyt*_1)} |F, Y;f—l} = exp (—vbp Fy — U 4-1Y14-1),

forallv € Vy, v € V;, whereu,, = log(1 — v/v,). By taking the conditional expectation givén

and the liquidation counts histoly_, up to montht — 2 on both sides of the equation, we get:

E [eXp {—uk,tYk,t — Ug-1Yie-1 + 0 (ak + C;sY;til)} |F, &]

— exp (—vbiFy) E [exp (—tis1Yie) | F, YH] — oxp {—vbFy — (i + b Fyy + Y, )i}
By rearranging terms, and computing the unconditional etgtion of both sides, we get:
E [eXp {_uk,tYk,t —Upp—1Yy -1+ v (ak + C;CY;j*_l) +o (al + C;Yt*_g) }] = Elexp (—vbpFy — 0biFy_1)]

forall v € V,, 0 € V,. The expectation in the right-hand side involves the joistrtbution of the

frailty valuesF; andF;_; on two consecutive months, and hence depends on the fratltg@rrelation
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parametep. In fact, by the exponential affine property of the ARG preces have:

E [exp (—vbp Fy; — b Fy_1)]

= FE|[E[exp (—vbpF}) |F;_1] exp (—0b F;_1)] = exp (—F(vby)) E [exp (—[a(vby) + 0b)) Fy_1)]
1 1 B 1

[1+ (1 — p)uby/0]° [1+ [c(boy) + 0b,]/6]°  [1+ (vby + 0by) /8 + (1 — p)vibgb, /62)°

_ pu

1+ (1—pu/s

(a.3) in Appendix 1. Thus, we get the continuum of uncondaialynamic moment restrictions:

where we use(u) = dlog(1l + (1 — p)u/d) anda(u) from equations (2.16) and

E [exp {log(1 = v/vk4) Yt + log(1 = 0/ q,-1)Yiemr + v (ar + Y, ) + 0 (ar + Y, ,) }]

1
= — — 59 Yv € Vi, v € V. (37)
[1 + (Ubk + vbl)/5 + (1 — p)UUbkbl/52]

These dynamic moment restrictions, written for all pairmaihagement stylé¢;, ), involve all model

parameters. Far = 0, these moment restrictions reduce to the static momemiatésns (3.6).

i) GMM estimators

The above moment restrictions can be used is different waydgetine GMM estimators. We
consider below three possible GMM approaches.

a) We can use the static moment restrictions (3.6) writtenfdypesk to define a first-step GMM
estimator of parameters,, bx, cx, for all management stylels, and parametes. Then, a second-
step GMM estimator of parametercan be defined by using some subset of the dynamic moment
restrictions (3.7) and replacing parameteysb;., ¢, andd with their first-step GMM estimates.

b) Alternatively, the dynamic moment restrictions (3.7) canused to estimate jointly all model
parametersd’, ©’)’, wheref = (ay, by, ¢,k = 1,..., K,) andg = (4, p)’, in one step. More pre-
cisely, consider the dynamic moment restrictions (3.7xtemi for all management stylés with

I = k, and for a given grid of values, . ® They define a set of unconditional moment restric-

91t might also be possible to apply an efficient GMM taking immcount the continuum of moment restrictions (3.7)

[see e.g. Carrasco et al (2007)].
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tions E [hy(ay, by, e, ©)] = 0, for k = 1,..., K, say. Then, the GMM estimatd@é’, &')’ minimizes

the criterion:

K
Qr(0,0) = > lhuwr(ar, be, cx, )|, (3.8)

k=1
T
wherehy, r(ag, by, cx, ) = T Z hi+(ak, be, cx, ) is the sample average of the orthogonality func-

tion. By including only the rtn:(;ment restrictions with = [, and using a weighting matrix that is
diagonal across management styles, we simplify consitletab optimization problem2° In fact,
for given value of the bivariate frailty parameter= (9, p)’, the GMM criterion (3.8) is additive w.r.t.
the parameters of the styles. Therefore, the minimizatamlme performed by concentrating w.r.t.
parametef. Namely, for givenp, the criteria for the different stylésare separately minimized w.r.t.
parametersy, by, ¢, by a Newton-Raphson algorithm. Then, the concentrateermit is minimized
by a bi-dimensional grid search over parametérg).

¢) We can also consider the GMM estimators that exploit theseilof dynamic moment restric-
tions (3.7) written for all pairs of management stylés/). Such GMM estimators are expected to be
more efficient than the GMM estimator minimizing criterich ). However, such GMM estimators
are computationally less convenient, because they invarveptimization over a large-dimensional
parameter space that can not be dealt with by concentratgityeln this paper we apply methdx),
which provides a trade-off between tractability and efficig
iv) Estimation results

In Table 5 we display the estimated intercept parametgend factor sensitivitieg, along with
their standard errors. The estimated contagion matrixasiged in Table 6, where we display only
the statistically significant contagion coefficients at 1€ level. The estimated parameters of the
frailty dynamics ared = 0.59 (with standard erro6.34) andp = 0.74 (with standard err00.20). To

simplify the numerical computation of the GMM estimator, 8et equal to zero the parameters in the

OFor expository purpose the weighting matrix is set equahéoidentity matrix for each type.
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contagion matrix whose estimates in the pure contagion hraydenot statistically significant. The

standard errors of the GMM estimates are computed usingsiragotic distribution.

[Insert Table 5: Estimated intercepts and factor sensitivitieg, in the model with contagion and

frailty]

[Insert Table 6: Estimated contagion parametgrs in the model with contagion and frailty]

The estimated factor sensitivities are all positive antistteally significant. As discussed in the in-
troduction, the unobservable frailty is likely represagta measure of funding liquidity risk. This is
confirmed by a careful analysis of the estimated senséwitFor a given management style, the lig-
uidity features are twofold: the portfolio can be investedniore or less liquid assets, and the strategy
can require more or less time to be applied. In this respemiglShort Equity Hedge portfolios are
invested in very liquid assets, have weekly, or even daglyitlity conditions (that is, daily or weekly
gates), and thus a large sensitivity coeffici€nb. At the opposite, the Fixed Income Arbitrage strate-
gies are based on arbitrages with high leverage requiriaggtime to perform, and have less frequent
gates, generally quarterly liquidity conditions; the tacensitivity coefficiend.31 is the smallest one.
Similar remarks can be done for other management stylesinstamce, the Event Driven strategies
are essentially looking for positive outcomes in merger acguisitions, which can only be expected
in a medium term.

The sumsy, + b, = a + by E[F] in Table 5 are much larger than the coefficiemtsestimated
in the pure contagion model (see Table 3). Thus, a largeidract the common liquidation features
is captured by the introduction of the frailty. This effestbalanced by a diminution in the estimated
contagion parameters. Onlyt, resp. 13, estimated contagion parameters in Table 6 are statistical
significant at5%, resp. 10%, level. These numbers have to be compared with2thstatistically

significant contagion parameterssét in Table 4 obtained when the frailty component is omittede Th
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contagion scheme for the model including both contagionfeailty is displayed in Figure 10, where
any estimated contagion coefficient in Table 6, that isstiatilly significant at% level, is represented

by an arrow.

[Insert Figure 10: The contagion scheme for the model wititagion and frailty]

By comparing Figure 10 with Figure 9, as expected the intctida of the systematic risk factdr;
largely diminishes the perception of contagion phenombmparticular, we observe that the key roles
of Fixed Income Arbitrage and Long-Short Equity Hedge inl&aband Figure 9 were mostly due to
the effect of the common factor, and the fact that these nenagt strategies are rather sensitive to
the factor, especially the second management style. MergiovFigure 10 we observe that contagion
occurs along some specific directions, such as Multi StyategEquity Market Neutral— Event
Driven — Fixed Income Arbitrage—» Emerging Markets, without any evidence of contagion in the
reverse direction.

Let us now discuss carefully the scheme in Figure 10. We gbdeur types of funds:
i) Funds mainly invested in fixed income products and using legarage, that are Fixed Income
Arbitrage, Managed Futures, Emerging Markets and Globalrda
i) Funds mainly invested in equities, such as Equity Marketti&u_ong/Short Equity Hedge and
Event Driven.
iii) Funds in the Convertible Arbitrage management style, irciviine convertible products have fea-
tures of the corporate bonds and associated stocks.
iv) Funds in the Multi-Strategy management style, with poid®Iincluding subprimes and equities.
Then, the causal scheme is likely due to the subprime cmgidlae associated lack of market liquidity
on the different classes of assets. In 2007, there is anageref the expected default rates for mort-
gages, and then an increase of margin calls for credit derdga The Multi-Strategy funds, largely

invested in subprimes, have to get cash in order to satigfyetlralls, with a direct effect on stock
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prices. At the beginning this effect cannot be observed erstbck indices, but mainly on the relative
performances of the individual stocks: the high-rankedkstdecoming low ranked and vice-versa,
since the strategies followed by Equity Market Neutral aad/Short Equity Hedge funds, for in-
stance, are orthogonal to the market. The effect reachestdbk indexes themselves after one year
around August 2008. Then, these effects on stock pricesingsacted the Event Driven strategies.
The associated M&A strategies have transformed the short-shocks into long-term shocks. This
explains the key (systemic) role of the Event Driven manag@rstyle, which creates the link between
the shocks on stock markets and the shocks on fixed incomeetaark

The relative effect of contagion and frailty on liquidatinsk can be measured by using the vari-
ance decomposition derived in Proposition 1. Let us comsideortfolio of Liquidation Swaps (LS)
written on the individual hedge funds, which is diversifieihwespect to the types in order to ensure
vt = 1, forall k, t. The liquidation swap for management stylpaysl USD for each fund of stylé
that is liquidated in month. The payoff of the LS portfolio at monthis ¢'Y;, wheree = (1,1, ..., 1)’
is a (K, 1) vector of ones. To ensure the time-invariant diversificgtibe portfolio of LS has to be
appropriately rebalanced when a liquidation occurs. Bpgithhe decomposition of variance in Propo-
sition 1, we can evaluate the percentage of portfolio vagafi/(Y;)e, due to the underlying Poisson

shocks, contagion and frailty, respectively. We have thieviang decomposition:

Underlying Poisson Contagion| Frailty (direct) | Frailty (indirect)

Percentage of variange 6.54 % 5.10% 64.30 % 24.06 %

The largest contribution to the portfolio variance comesfithe frailty process, either through a direct
effect (64.30%), or through an indirect effect via the contagion netw@k (6%). The remaining part
of portfolio variance is explained by the underlying Poisstocks §.54%) and the direct contagion
effects 6.10%). Eventhough the direct effect of contagion is modest, #tevark plays an important

role in amplifying the effect of the exogenous frailty.
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3.5 Diagnostic checks for shared frailty

In this section we discuss diagnostic tools to test for tles@nce of the shared frailty effect. Our aim
is to provide empirical evidence that the Poisson model wathtagion only is not able to reproduce
some relevant feature in the joint dynamics of the liquiatounts.

As it is common in tests of omitted heterogeneity, it is difficto establish an optimal testing
procedure and, when it exists, it is complicated to impleniteim practice. The difficulties are the
following:

i) The null hypothesis of no frailty effect can be written as:
Ho : {0'2 = 0} U {bk = 0, Vk}, (39)

wheres? = V(F}) is the frailty variance. Thus, we have no heterogeneityceffié either the het-
erogeneity is constant through time, or the sensitivityffacients b, are all equal ta@). '* The null
hypothesis is the union of two subspaces of the parameterltsist nonstandard, especially as the
dimensions, and thus the degrees of freedom, are not the@afwé = 0}, on{b, = 0, Vk}, and on
the intersectioqo? = 0} N {b, = 0, Vk}.

i) The null hypothesigo? = 0} touches the boundary of the parameter set, sitice 0.

iii) Finally, under the null hypothesis we havg; ~ P(Wk,t)\gvt) conditionally onY;_,, where
Aoy = ar + b + Y. Thus, the identifiable parameters age+ b, andcy, for k = 1,..., K. In
particular, the sensitivities,, ¥ = 1,...K, the variancer?> and the frailty autocorrelatiop are not

identifiable under the null hypothesis.

1Das et al. (2007) and Lando, Nielsen (2010) test for defagdépendence across U.S. corporations conditional on
a given set of observable common and firm-specific varialleallly stochastic assumption). In Das et al. (2007) and
Lando, Nielsen (2010), the null hypothesis is a model withhown factors and without contagion, while in our paper the
null hypothesis is a model with contagion and without comifa@tors. Moreover, common factors are assume observable

in Das et al. (2007) and Lando, Nielsen (2010), while theyumtgservable in our paper.
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It is complicated to develop optimal tests when some parmamehere thé,, o2 andp, are not
identifiable under the null [see e.g. Andrews, Ploberge®@4)P However, it is easy to construct infor-
mative diagnostic tools. For this purpose, we considert¢bessw.r.t. parameter?, namely the partial
derivative of the log-likelihood function w.r.tz?, evaluated at the true parameter value satisfying the
null hypothesisH, of no frailty effect. > This score is given in equation (a.10) in Appendix 3. It
involves the unknown parametetis + by, bx, ¢, andp. In the standard use of such a score, these
parameters would have to be replaced by their constraineédimators. In our framework, the con-
strained estimates of parametéfsandp are not uniquely defined, due to the lack of identification of
these parameters under the null. Nevertheless, the expregshe score in equation (a.10) suggests

some basic statistics, which can be used to construct dstigriools. These are:

T - 9 0 . i
1 0 1og p(Yit; Vet i) 0 log p(Yit; YesAp,) 0log p(Yie; viaA],)
= J— ) 5 8 1 k _ l , , 7 7 7 7
fkl,T T ;%,m,t i oz { } + 5 s
T _
1 Yk 14 1/2 t Yk t
= — ’ — 1 : — 1 — 7’1 ]{; = l , 310
T tzl e L <7k’t>\27t ) (fn’t)\?yt ) (’Yk,t)\g,t)z { }] ( )
and:

1 < 9108 (Yt Yty s) 0108 p(Viimsi YiamsAy_s)
Tkl,T(S) = T Z VetV t—s

OA )\
t=s+1
1 r Y: Y,
k.t lit—s
T s\ o Y\ o0 ) 3.11
T t:zS% Vit Vit <7k7t)\27t ) <%’t_s/\2ts ) (3.11)

fork,l=1,..,K ands = 1,2,..., wherep(-; \) is the p.d.f. of the Poisson distribution with intensity
parameter\. The statistict;,; » corresponds to the standard information-matrix test [@/(it982)]

for the pair(k, 1), which is a score test for omitted heterogeneity [Chesh@84)]. For a Poisson
regression model, statistig; » with £ = [ corresponds to a test for conditional overdispersion, that
is, a test for the null hypothesis that the mean and the wegiari the conditional distribution of

liquidation counts in management styteare equal. Indeed, statistig, - involves the difference

12From the expression of the null hypothesis, we might alscictem the score w.r.th;, under the null. However, it is

equal to the score w.r.t;;, due to the identification problem, and is not informative.
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between the weighted mean and variance of the liquidatiemtsofor management style It is
well known that the Poisson distribution features no owsdision, that is, the mean is equal to the
variance. In the statistical literature, overdispersimgcount data is typically modeled my means of
unobservable heterogeneities [see e.g. Cox (1983)]. Idyhamic model estimated in Section 3.4,
overdispersion in the conditional distribution of liquiatan counts is generated by the shared dynamic
frailty. For k # [, statistic,, r corresponds to a weighted covariance between the residitiie
Poisson regressiorls,t/(yk7t)\27t) -1 anle,t/(%t/\Rt) — 1 for stylesk and!, and can be used to test
for the absence of conditional contemporaneous correlaiiooss styles. The values of statistigs,

are symmetric with respect to the indideand!, that is,£, - = &, r. The statisticsy, r(s) are used

to detect possible serial auto- and cross-correlation éatvihe residuals of the Poisson regression
model. Indeed, if the model without shared dynamic fradtgarrectly specified, the Poisson residuals
feature no serial auto- and cross-correlation.

These basic statistics can be used as diagnostic tools. Wg&reot the standardized statistics:

& = Eur/owr, kl=1,.,K, (3.12)

wherewy, r is an estimate of the asymptotic variance gfr. StatisticS;;  is asymptotically standard
Gaussian distributed under the null hypothésisof no frailty effect. The values o, ;- are displayed

as a(K, K) array in Table 7.

[Insert Table 7: Statisticg;, ;- for diagnostic check of conditional overdispersion anddtional

contemporaneous cross-correlation |

When the shared frailty is not introduced in the model, fiverftthagement styles feature conditional
overdispersion in liquidation counts. Moreover, we finddevice of conditional contemporaneous
cross-correlation in Poisson residuals, in particulamkeen Long/Short Equity Hedge and all other

management styles except Convertible Arbitrage.
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For each paifk, ), we also compute the estimated (cross-)ACF of the Poissiduals:

Fhar(s) = rir(9)/\rer (O rur(0), s =12, (3.13)

with their confidence bands to detect if there is some omiigeamic in the pure contagion model.
The (cross-)ACF for management styles Fixed Income Arpér&lobal Macro and Long/Short Eq-

uity Hedge are displayed in Figure 11.
[Insert Figure 11: (Cross-)ACF;, ,-(s) for diagnostic check]

We find evidence of autocorrelation in the Poisson residofitee Long/Short Equity Hedge style,
as well as cross-correlation between the residuals of tiee tthanagement styles, especially between
residuals of Long/Short Equity Hedge and leads and lagssaduels of Fixed Income Arbitrage.
Overall, the results in Table 7 and Figure 11 show that thedeoi model with contagion only
does not fully capture the serial and cross-sectional digrasies featured by the joint dynamics of
the liquidation counts. These findings suggest that it iessary to introduce a dynamic frailty in the

autoregressive Poisson model to achive a sastifactoryfspdion.

3.6 Stress-tests

The estimated model with dynamic frailty and contagion carubed for portfolio management of a
fund of funds, for computation of reserves, etc. In thisisecive illustrate how to implement stress-
tests for liquidation risk. We consider a portfolio of HF lviixed category sizes such that, = 1,
for all £ andt. The stress can be designed as follows:

i) We can stress the current factor value by setfing- ¢, in the conditioning set, wherg, is the
guantile of the estimated stationary distribution of treélfy F; at levela. By choosingy = 95%, or
99%, we consider an extreme scenario with a large transitorgisbo the underlying funding liquidity

risk factor at month.
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i) We can change some parameters values, by either “incréasi@agnatrix of contagion, or
by increasing the value of the frailty persistence parameteThis stress scenario will increase the
liquidation risks by amplifying the impact of the exogenalmck by contagion and by introducing
some exogenous shocks clustering, respectively.

For any given stress scenarlg = q,- and (6%, ¢*), wherea® and (0%, ¢*) denote the frailty
guantile level and the model parameters values in the steessario, we compute the term structure

of expected liquidation counts, volatility and overdispen of these counts, for the different types:

V (Yk,t+r|Ft = Gas, Yt)

(02,%)
o | E VirF =g, Ys), V. Yigir| Fr = qos, Y2)2, :
(9%05)( kt+ | t=4q t) (95#,5)( kt+ | t = 4q t) (95E5)<Yk’t+T|Ft:an7K>
P

wherer = 1,2, ... is the horizon, anc(iesis) and(gjips) denote conditional mean and variance computed
for parameter value§)®, ¢*). These conditional moments are derived in closed form bgguie
exponential affine property of the joint process of frailhddiquidation counts (see Sections 2.2 and
2.3, and the supplementary materials). By conditioning mm®x&reme event, these statistics are in
line with the measures for systemic risk as the CoVaR [AdiBaannermeier (2011)], or the marginal
expected shortfall [Acharya et al. (2010)]. The main défeee is in the definition of the conditioning
set including the unobservable factor and the observatpedation counts, instead of including the
return of a market portfolio. Sialm, Sun and Zheng (2012)@s¥aR to measure contagion in returns
of funds of funds.

Our stress test analysis is dynamic, as it fully account®édh liquidation counts and exogenous
frailty dynamics. Therefore, it sharply differs from theests test analysis in models with time-varying
observable variables, in which a crystallized scenarialierfuture factor path is assumed. Such a

stress test would neglect the liquidation risk dependemtieded by the exogenous factors.

We consider three sets of stress scenarios:

S.1: The current factor valuég; is increased from the median, i®’ = 0.50, to the95% quantile, i.e.
a® = 0.95, of the historical distribution. Parameter valués, ¢*) correspond to the estimates
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of Section 3.4.

S.2: The contagion matrix is changed froftf = C to C* = 2C', where(' is the estimate of Section
3.4. The other parameter values are kept constant, equia¢ testimates of Section 3.4. The

current factor valué; is the median of the historical distribution.

S.3: The frailty autocorrelation is increased frgrh= 0.74 (corresponding to the estimate in Section
3.4)top® = 0.90. The other parameter values are kept constant, equal tstines¢es of Section

3.4. The current factor valug, is the median of the historical distribution.

For all stress scenarios, the vector of liquidation counte the conditioning set is equal to the
observations on the liquidation counts in the last montthefdample, i.e. June 2009. In Figures 12,
13 and 14 we display for the nine management styles the ingbattess scenarios S.1, S.2 and S.3,

respectively, on the term structures of the conditionakesgtions of liquidation counts?

[Insert Figure 12: Term structure of expected liquidatioamts when stressing the current factor value]
[Insert Figure 13: Term structure of expected liquidationrmts when stressing the contagion matrix]
[Insert Figure 14: Term structure of expected liquidationmts when stressing the frailty persistence]

In each figure, the squares represent the term structuregetied liquidation counts before stress,
that are the same in each scenario. As the horizon increhseterm structure converges to the un-
conditional expectation of the liquidation count, for eashnagement style. The term structures are
upward sloping since the current month, i.e. June 2009¢spands to a period with few liquidation

events compared to the historical average in any style. Trokes represent the term structures of

expected liquidation counts after the shock. We observethigathree types of shocks have very dif-

BFigures with the term structures of conditional volatilityd overdispersion of liquidation counts are provided @ th

supplementary material.
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ferent effects on the term structures. The shock to the faetae in stress scenario S.1 is a transitory
funding liquidity shock, with different impacts in the shoun with respect to the management style
(see Figure 12). Its effect decays rather quickly and disapgpafter about 12 months. The results
of these stress tests are compatible with the liquidityrpretation of the unobservable factor. We
observe an immediate effect of the shock on the very liquategies of the Long/Short Equity Hedge
management style, whereas the effect is clearly laggedinainmectly due to contagion, for the Fixed
Income Arbitrage strategies. The magnitude of the impa¢herierm structure depends on the condi-
tioning information. There can be months when the sensittei shocks are larger, depending on the
lagged liquidation counts at the month of the stress. Irsstseenario S.2, the change in the contagion
matrix is a permanent shock. In Figure 13, there is no impbe&ect in the short run, but the long
run behaviors of the models with and without the shock in tr@agion matrix significantly differ for
all styles, except for Global Macro. Indeed, the elementhé@row of the estimated contagion matrix
(Table 6) for that management style are zero. We concludetibee is no contagion effect impacting
the Global Macro style. Therefore, the stress in scenaBlasSrrelevant for the distribution of liqui-
dation counts in that management style. Finally, when thityrpersistence parameter is shocked in
stress scenario S.3, we observe an increase in the time el Wie long run expected values of the

liquidation counts are attained (Figure 14).

4 Concluding remarks

In this paper we develop a new methodology to analyse thendipsaof liquidation risk dependence in
the hedge fund industry. The autoregressive Poisson mattetiynamic frailty is especially appeal-
ing, since it allows for distinguishing the effect of exoges shocks (L-effects) and the endogenous
contagion effects (A-effects). We estimate this model byppropriate method of moments, identify

the channels through which the exogenous factor has an tmgad introduce different diagnostic
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tools. Furthermore, we explain how the model can be usedresstesting. The frailty and contagion
components can also be disentangled in a more general (p&ir@ndynamic framework. The model

can include more than one factor, lagged effects of thegerfaon the liquidation intensity, and an
autoregressive order larger than one. The relative magdmibfithe frailty and contagion components
will depend on the selected number of factors and lags.

In addition to contagion and exogenous frailties sharedbyentire population of HF, liquidation
clustering can also be the consequence of type-specifictefféor instance, liquidation risk depen-
dence can be due to sharing the same management compangiiGuedascalau (2012)] or part of
the clients [Ben-David, Franzoni, Moussawi (2010)], or &g located in the same geographic area.
In the latter case, the dependence can result from commemigliif there is a home bias effect of the
investors [Sialm, Sun and Zheng (2012)]. Such liquidatisk dependence can be accommodated by
refining the definition of typé, and including type-specific exogenous frailtigs;.

It is known that systemic risk can be due to a significant shmtk common factor amplified by
contagion. Models with both frailty and contagion are regdito understand what is the main channel
of systemic risk, namely the exogenous shock and/or cammagind to develop accurate strategies to
avoid systemic crises. Concerning hedge funds, such agsasalould have to be performed jointly
for market risk, that is on returns, and liquidation riskattis on lifetimes. In this respect, our work
completes the systemic risk analysis based on returnsajmetlin a series of recent papers includ-
ing Sadka (2010), Boyson, Stahel, Stulz (2010), Akay, Servoldas (2011), Brown et al. (2011),
Billio et al. (2012), Bali, Brown, Caglayan (2012), and thealysis of comovements between in-
flows and outflows [Sialm, Sun and Zheng (2012)]. Moreoveuitlation can bias the performance
analysis of hedge funds, as it is often a consequence of entegbbad results. There exist an exten-
sive literature on correcting the survivorship bias in wdiial mutual fund or HF performance [see

e.g. Brown, Goetzmann, Ibbotson, Ross (1992), Carpentach (1999) for mutual funds, and Fung,
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Hsieh (1997), (2000), Ackermann, McEnally, Ravenscra®9d), Liang (2000), Baquero, Horst, Ver-
beek (2005) for hedge funds]. Liquidation risk dependengaies that the correction for survivorship
bias should be performed jointly for all funds, and not indially fund by fund. The specification

of a joint model for hedge fund returns and endogenous latiod is an interesting avenue for future

research.
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Figure 1: Subpopulation sizes of HF.
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The figure displays the evolution of the population size between October 1992 and June 2009 for
the nine management styles. Data are aggregated w.r.t. age.
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Figure 2: Liquidation rates of HF.
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The figure displays the time series of liquidation r&g/n . between October 1992 and June 2009
for the nine management styles. Data are aggregated \ge.t. a
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Figure 3: Smoothed estimates of liquidation intensity.
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The figure displays the smoothed nonparametric estimatie digquidation intensity as a function of
age for the nine management styles. The estimates are basbd Baplan-Meier estimators of the
historical survival functions.
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Figure 4: Lexis diagram.
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In the lexis diagram, the liquidation of a HF is representgélaot in the plane. The horizontal axis
corresponds to the calendar time of the liquidation evehilethe vertical axis displays the age of the
fund at liquidation. The diagondb-degree lines correspond to funds in a same cohort.

49



Figure 5: Lexis diagram for Emerging Markets.
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The figure displays the lexis diagram for liquidation evesft$lF with management style Emerging
Markets in the TASS database. The horizontal axis represmiendar time and the vertical axis

represents age in months.

Figure 6: Lexis diagram for Global Macro.
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The figure displays the lexis diagram for liquidation everitdF with management style Global Macro
in the TASS database. The horizontal axis represents caléintk and the vertical axis represents age

in months.
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Figure 7: Lexis diagram for Multi Strategy.
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The figure displays the lexis diagram for liquidation evesftsiF with management style Multi Strat-

egy in the TASS database. The horizontal axis represer@sdal time and the vertical axis represents
age in months.

Figure 8: Lexis diagram for Managed Futures.
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The figure displays the lexis diagram for liquidation everit$iF with management style Managed
Futures in the TASS database. The horizontal axis repesaténdar time and the vertical axis
represents age in months.

51



Figure 9: The contagion scheme for the pure contagion model.

The figure provides the contagion scheme for the Poisson Inmattecontagion only estimated on
the TASS database. We display an arrow between two managstykss, if the estimated contagion
coefficient from the first style to the second style is statidly significant att% level. The estimated

contagion matrix is provided in Table 4.
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Figure 10: The contagion scheme for the model with contagiahfrailty.

LSE

The figure provides the contagion scheme for the Poisson Imetteboth frailty and contagion esti-
mated on the TASS database. We display an arrow between twagement styles, if the estimated
contagion coefficient from the first style to the second stykatistically significant ai% level. The
estimated contagion matrix is provided in Table 6.
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Figure 11: (Cross-)ACF of residuals for diagnostic check.
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The figure displays the auto- and cross-correlation funstiof residuals, (s), with s varying,
defined in equation (3.13), for the management styles Fimedrhe ArbitrageX = 5), Global Macro
(k = 6) and Long/Short Equity Hedgé 7). The horizontal lines arg5% confidence bands.
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Figure 12: Term structure of expected liquidation countemvbtressing the current factor value.
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Term structure of the conditional expectatiény .. -|Y;, Fi] of liquidation counts for horizonr =
1,2, ...,24 months, by management styleSquares and circles correspond to conditioning setsivith
equal to the median and th8% quantile, respectively, of the stationary distributiontod frailty. The
liquidation counts vecto¥; in the conditioning set corresponds to the observationsime 2009 for
both curves. The model is the specification including fyaaibhd contagion, with intensity parameters
as in Tables 5 and 6, and frailty dynamic parameters 0.59 andp = 0.74, corresponding to the
estimates of Section 3.4.
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Figure 13: Term structure of expected liquidation countemvbtressing the contagion matrix.
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Term structure of the conditional expectatidifiy ;. .|Y;, Fi] of liquidation counts for horizon =

1,2, ..., 24 months, by management styte Squares and circles correspond to models with contagion
matricesC* = C' andC® = 2C, respectively, wher€' is the matrix of estimates in Table 6. The
intercepts and frailty sensitivities are as in Table 5, drelftailty dynamic parameters afe= 0.59
andp = 0.74, corresponding to the estimates of Section 3.4. The fa@e\F, in the conditioning

set corresponds to the median of the stationary distribudfdahe frailty, while the liquidation counts
vectorY; in the conditioning set corresponds to the observationame 2009 for both curves.
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Figure 14: Term structure of expected liquidation countemvbtressing the frailty persistence.
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Term structure of the conditional expectatiény . -|Y;, Fi] of liquidation counts for horizonr =

1,2, ...,24 months, by management styte Squares and circles correspond to models with frailty
autocorrelatiorp® = 0.74 (corresponding to the estimate in Section 3.4) ahe- 0.90, respectively.
The intensity parameters are as in Tables 5 and 6, and thenptmacharacterizing the stationary
distribution of the frailty isd = 0.59, corresponding to the estimate of Section 3.4. The factlreva
F; in the conditioning set corresponds to the median of theostaty distribution of the frailty, while
the liquidation counts vectar; in the conditioning set corresponds to the observationsime 2009
for both curves.
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Table 1: The database.

Alive funds (%) Liquidated funds (%) Total (%)

CONV  Convertible Arbitrage 45 2.00% 66 4.30% 111 2.90%
EM Emerging Markets 227 10.00% 111 7.30% 338 8.90%
EMN  Equity Market Neutral 126 5.50% 139 9.10% 265 7.00%
ED Event Driven 216 9.50% 129 8.50% 345 9.10%
FI Fixed Income Arbitrage 95 4.20% 75 4.90% 170 4.50%
GM Global Macro 162 7.10% 102 6.70% 264 6.90%
LSE Long/Short Equity Hedge 885 38.80% 546 3590% | 1431 37.70%
MF Managed Futures 224 9.80% 230 15.10% | 454 12.00%
MS Multi-Strategy 299 13.10% 122 8.00 % 421 11.10%

Total 2279 100.00 % 1520 100.00% | 3799 100.00%

The table provides the distribution of alive and liquidated funds across the nine management styles in

June 20009.
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Table 2: Maximum and boundary values of the liquidation rates.

Lower Boundary Maximum Upper Boundary
Convertible Arbitrage 0.022 0.075 0.051
Emerging Markets 0.034 0.082 0.051
Equity Market Neutral 0.045 0.124 0.084
Event Driven 0.032 0.093 0.058
Fixed Income Arbitrage 0.040 0.114 0.066
Global Macro 0.045 0.108 0.066
Long/Short Equity Hedge 0.038 0.102 0.062
Managed Futures 0.041 0.086 0.045
Multi-Strategy 0.052 0.119 0.058

The table provides the value of the estimated liquidation intensity at the lower and upper bounderies
of the age domain, as well as the maximum estimated value of the liquidation intensity. The lower and

upper boundaries of the age domain are 0 months and 100 months from inception, respectively.
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Table 3: Estimated intercepts in the pure contagion model.

Intercept ay,
Convertible Arbitrage 0.05
(0.11)
Emerging Markets 0.51%**
(0.15)
Equity Market Neutral 0.63***
(0.17)
Event Driven 0.59***
(0.21)
Fixed Income Arbitrage 0.30**
(0.13)
Global Macro 0.73***
(0.13)
Long/Short Equity Hedge 4.56%**
(0.46)
Managed Futures 1.65%**
(0.22)
Multi-Strategy 0.21**
(0.10)

The table provides the Maximum Likelihood (ML) estimates of the intercept parameters a; for the
Poisson model with contagion only. Standard errors are provided in parentheses. Stars *, ** and * * *

denote significance at the 10%, 5% and 1% level, respectively.
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Table 4: Estimated contagion parameters in the pure contagion model.

Convertible ~ Emerging Equity Event Fixed Global Long/Short Managed Multi-
Arbitrage Markets Market Driven Income Macro Equity Hedge Futures Strategy
Neutral Arbitrage
Convertible Arbitrage —0.13**  0.11** 0.20*** 0.05**
(0.06) (0.05) (0.07) (0.02)
Emerging Markets 0.19*** 0.31%** 0.17***
(0.07) (0.09) (0.05)
Equity Market Neutral 0.24***
(0.09)
Event Driven 0.35***  0.16** 0.36*** 0.08***
(0.11) (0.07) (0.13) (0.03)
Fixed Income Arbitrage 0.08** 0.32%**
(0.04) (0.08)
Global Macro 0.20%** 0.23*** —0.04**
(0.07) (0.08) (0.02)
Long/Short Equity Hedge 0.42** 0.42** 0.67*** 0.21%** 0.78%**
(0.17) (0.20) (0.25) (0.06) (0.23)
Managed Futures 0.27**
(0.11)
Multi-Strategy —0.16*** 0.15%** —0.07**  0.47***
(0.04) (0.06) (0.03) (0.07)

The table provides the Maximum Likelihood (ML) estimates of the contagion parameters (cy 4 ) for the
Poisson model with contagion only. Rows and columns correspond to target and source of contagion,
respectively. Standard errors are provided in parentheses. Stars ** and * * * denote significance at the

5% and 1% level, respectively. The estimates that are not statistically significant at 5% level are not

displayed.

61



Table 5: Estimated intercepts and factor sensitivities in the model with contagion and frailty.

Intercept aj,  Sensitivity by,
Convertible Arbitrage 0.00 1.08**
(0.15) (0.55)
Emerging Markets 0.10 0.69**
(0.23) (0.27)
Equity Market Neutral 0.27 0.84**
(0.30) (0.40)
Event Driven 0.00 1.39**
(0.15) (0.70)
Fixed Income Arbitrage 0.00 0.31**
(0.20) (0.13)
Global Macro 0.76*** 0.33***
(0.14) (0.12)
Long/Short Equity Hedge 2.98%** 4.55**
(1.10) (1.92)
Managed Futures 1.18 0.63**
(0.75) (0.25)
Multi-Strategy 0.00 0.89**
(0.17) (0.41)

The table provides the estimates of the intercepts a; and frailty sensitivities by, for the Poisson model
with frailty and contagion. The estimates are obtained by the Generalized Method of Moments (GMM)
estimator of Section 3.4 iii). Standard errors are provided in parentheses. Stars *, ** and * * * denote

significance at the 10%, 5% and 1% level, respectively.
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Table 6: Estimated contagion parameters in the model with contagion and frailty.

Convertible ~ Emerging Equity Event Fixed Global Long/Short Managed Multi-
Arbitrage Markets Market Driven Income Macro  Equity Hedge Futures Strategy
Neutral Arbitrage
Convertible Arbitrage 0.15**
(0.07)
Emerging Markets 0.17*** 0.21** 0.20%**
(0.06) (0.08) (0.05)
Equity Market Neutral 0.10**
(0.05)
Event Driven 0.35%** 0.10*
(0.09) (0.06)
Fixed Income Arbitrage 0.09** 0.22%**
(0.04) (0.07)
Global Macro 0.20*
(0.11)
Long/Short Equity Hedge 0.39**
(0.16)
Managed Futures 0.27**
(0.11)
Multi-Strategy 0.29***
(0.06)

The table provides the estimates of the contagion parameters (cy, ;) for the Poisson model with frailty
and contagion. Rows and columns correspond to target and source of contagion, respectively. We set
equal to zero the contagion parameters, that are not statistically significant at 5% in the model with
contagion only (Table 4). The free parameters are estimated by the Generalized Method of Moments
(GMM) estimator of Section 3.4 iii). Standard errors are provided in parentheses. Stars *, *x and * *
denote significance at the 10%, 5% and 1% level, respectively. The estimates that are either set equal

to zero, or statistically non-significant at 10% level, are not displayed.
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Table 7: Statistics for diagnostic check of conditional overdispersion and conditional contemporaneous

cross-correlation.

Convertible  Emerging  Equity Event Fixed Global Long/Short Managed Multi-
Arbitrage Markets Market Driven Income Macro  Equity Hedge Futures Strategy
Neutral Arbitrage
Convertible Arbitrage 2.25** —0.31 2.02** 1.49 —0.00 0.42 1.22 —1.32 —0.29
Emerging Markets 1.91* 0.39 1.40 1.19 1.37 1.97** —0.09 1.61
Equity Market Neutral 2.06** 1.67* —0.24 1.62 2.91%** 1.36 1.72*
Event Driven 3.82%** 1.44 2.27** 4.23%* 1.68* 0.75
Fixed Income Arbitrage 1.99** 0.20 2.35%* 1.01 0.89
Global Macro 1.79* 2.57** 0.11 0.98
Long/Short Equity Hedge 4.73** 2.18** 2.27*
Managed Futures 1.83* 1.39
Multi-Strategy 2.60***

The table provides the values of the statistics &, 1, for k,0 = 1,...,9, defined in equation (3.12).
Since the statistic &, 1 is symmetric with respect to the indices £ and [ of the management styles, we
only provide the values on and above the diagonal. Values on the diagonal are used for diagnostic
check of conditional overdispersion in any management style. Values outside the diagonal are used for
diagnostic check of conditional contemporaneous cross-correlation between any pair of management
styles. Under the null hypothesis of no frailty effect, the statistic £, - admits a standard normal
distribution, for any k,[. Stars %, ** and * * * denote significance at the 10%, 5% and 1% level,

respectively.
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Appendix 1: The Autoregressive Gamma process

In this Appendix we review the main properties of the ARG(thgess used in the paper [see Gourieroux, Jasiak

(2006)].

i) The conditional distribution
The ARG(1) proces§F; ) is a Markov process with conditional distribution the namtcal gamma distribu-
tion v(d,nF—1,v), whered, § > 0, is the degree of freedomF;_1, n > 0, the noncentrality parameter and

v > 0, a scale parameter. Its first- and second-order conditimoahents are:
E(F)|Fi_1) = v +nvF_y, V(F|F_1) =v% +2m°F,_,. (a.1)

i) The state space representation

The ARG(1) process admits a state space representatiooh vehéspecially convenient for simulating the
trajectories of the process. To get a simulated valug; afiven F;_,, we proceed as follows:
a) We draw an intermediate valu&’ in a Poisson distributio® (nF;_1 );

b) Then, F; is drawn in the centered gamma distributipf@ + Z7,0,v).

i) Stationarity condition and stationary distribution
The ARG(1) process is stationarypif= vn is such thap < 1. Then, the stationary distribution is a centered

gamma distributiony (4, 0, %). In particular, we get the unconditional moments:
—un

vo
1—wvn

E(F) = , V(Ft):5<1 v )2. (@.2)

_Vn

From the first equation in (a.1) it is seen that parameierthe first-order autocorrelation of process).

iv) Normalization and reparameterization
When theA RG(1) process is used as a latent frailty, the scale of the proeessecabsorbed in the parameter
6 of the intensity function. Then, the proceds) can be normalized to hav@(F;) = 1. Thus, from the first

equation in (a.2), the parameters are such that:

vi=1—-wvn=1—p. (a.3)
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It follows that the stationary distribution ig(d, 0,1/6), with Laplace transfornk[exp(—uF})] = (14 u/6)~°,

for u > —4§. Moreover, the stationary varianceWi§ F;) = 1/6.

Appendix 2: Stationarity and first and second-order momentsof
the Poisson model with contagion and frailty

Let us consider the Poisson model with liquidation intgngitiependent of age, fixed category sizes and ARG

frailty dynamics (Assumptions A.3-A.5).

i) Stationarity condition
Let us consider the joint process = (Y/, F;), and letw = (v/,v)" € RX x R. From a computation

similar to equation (2.13), the conditional moment geriegafunction of the Markov process, is given by:
E [exp (—w’Zt) \Zt_l] = exp (—A(w)/Zt_l — B(w)) ,

where functionsA(w) and B(w) are given by:
K K !
A(w) = [Z (1 —e "), (v + Z(l - e“’“)bk>] ,
k=1 k=1

and:

K K
B(w) = Z(l — e_uk’)ak + (1} + Z(l — e—uk)bk> ,
k=1

k=1

and functionsy andg are given in (2.16). Thus, procegs; ) is a discrete time affine process. From Proposition

2 in Darolles, Gourieroux, Jasiak (2006), procggg) is strictly stationary if:

. [24(0)]7
Tlgglo [ S ] =0. (a.4)
Now, by using thataaA—(o) = [c}., bda(0) /du) = [ck, pbi), fork =1,..., K, and%(o) = [0, da(0)/du) =
U (%
[0, p)’, we get:
gA(0) | € 0
ow'
pb' p

Thus, condition (a.4) is satisfied if, and only jif,< 1 and the eigenvalues of matriX have modulus smaller

thanl.
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i) Moments of order 1

We have:
E 1(Yy) = Eia[Bi (Y F)] = Ei—1(a+bF; + CYi1) = a + bE;_(F}) + CY;_y,

whereE;_, denotes expectation conditional on the past historiegjofdation count¥’;_; and factorF;_;. By
taking expectation of both sides of the equation, and usiagtationarity of procegd’;) and the normalization

E(F;) =1, we get:
EY,)=a+b+CE(Y, <« EY)=Id-C) ' a+b). (a.5)

iii) Moments of order 2

Let us first consider the covariance between the liquidatammts and the frailty. We have:

Ei (YY) = E (B (FYi|Fy)] = B [Fi(a+ bF; + CY;_1)]
= aBy_1(F) + bE 1 (FY) + CE 1 (F) Y

= aBE1(F) +bE1(F2)+ C(1— p+ pF,1)Y;1,
from equations (a.1) and (a.3). By taking the expectatiobodih sides of the equation, we get:
E(FRY) =a+b1+ 0%+ (1 —p)CUId—-C) Y a+b)+ pCE(FY}).
We deduce that:

B(FY;) = (Id—pC) Hbo® +[Id+ (1 - p)C(Id = C)|(a +b)},

= (Id— pC) 'bo* + (Id — C) ' (a +b).

Thus:

Cov(Yy, Fy) = o*(Id — pC) . (a.6)
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Let us now consider the variance-covariance matrix of tipgidiation counts vectar;. We have:
E, (YY) = E1(EaVY/|F)) = EaViei(VF) + B (Y| F) Ee 1 (Y| )]
= Epa[diag(a +bF; 4+ CYi1)] + Ep1[(a +bF; + CYi_1)(a + bE; + CY;1)']
= diagla +bE;_1(F}) + CYy_1] + bb' Vi1 (F})
+[Ei—1(a + bF; + CY;1)|[Ei—1(a + bF; + CY;_1)]
= diagla +bE;—1(F) + CYyo1] + b0'Vi—1 (F)
+la+b(1 —p+pFi 1)+ CYi1lla+b(1 — p+ pFi1) + CYy ]’
By taking the expectation of both sides, we deduce:
E(Y,Y)) = diagla+b+C(Id~C)"}a+0b)] + 00 E[Vior(F)] + V[bpFi1 + CY;—i]
+E[a+b(1—p+ pFi1) + CY1]Ela+b(1 — p+ pF_1) + CY; 4]
= diag[(Id — C)~H(a +b)] + o*(1 = p*)bb' + V[bpFi 1 + CYs1] + E(V1) E(YY),

where we used thab[V;_1(F;)] = o%(1 — p?). Therefore, the variance-covariance matrixypfsatisfies the

recursive equation:
V() = CV(Y)C +diag[(Id — C) Y a + b)] + o*bl/
+pbCov(Fy, Y;)C" + pCCou(Yy, F)Y'. (a.7)
Equation (2.18) is obtained by substituting the expres&oB) of Cov(Yy, F}).
iv) Autocovariance at order 1
We have:
Cov(Yy,Yi-1) = Cov[Ei1(Vy),Yi-1] = Cov[Ei—1(a+ bF; + CYi1), Yi1]
= Covla+b(1—p+ pFi—1) 4+ CY_1,Yi 1]
Therefore:
Cov(Y,Yi—1) = Cov(bpFi_1 + CY_1,Yi—1) = bpCov(Fi—1,Yi—1) + CV (V)
= CV(Y}) +o?pbt/(Id — pC")~L. (a.8)
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Appendix 3: Diagnostic checks for the frailty effect

In this appendix we derive the score for the test of the nytidiigesis (3.9) of no frailty effects in the Poisson
model. The liquidation count variablé$ ;, for k = 1, ..., K, are independent conditionally 6f_; andF;, with
Poisson distributiorP (vyx :Ar ¢), wherel, ; = ay, + b F; 4 ¢,.Y," ;. The frailty proces$F;) is a ARG process,
normalized withE(F;) = 1 and parametrized by = (6, p)’, where parameteris such thal/ (F;) = 1/§ = o2
andp is the first-order autocorrelation [see Appendix 1 iii) amg.iThe likelihood function is given by:

T K T T

= [ [T Lo T ol on [T

t=1k=1 t=1 t=1
wherep(-; \) is the pdf of the Poisson distributioR(\) with parametet\ > 0, g(fi|fi—1; ¢) is the transition
p.d.f. of the ARG process with parametgrand parameter vectéris the collection of the vector@uy, by, c}.)’
for all management stylés

We compute the score for the null hypothesis of no frailtget$ as the partial derivative of the log-likelihood

function w.r.t. parameter? evaluated at> = 0. Let us write the likelihood function as:

T

K
TTTT p¥ets vt X0 s + it (Fr — 1))] , (a.9)
k=1

L(0,p)=E
# t=1

Where)\gat = ap+bp+c.Yi1 andg denotes expectation w.r.t the frailty process with paramet\We perform
a Taylor series expansion of the function within the expétaaround the values; = 1 fort =1,...,T. We

have:

T K T K
H Hp (Y, t5 vk t)\kt + Vi tbr (Fr — 1)) = exp (ZZlogp (Y13 Yk t)\kt + Vi, tbk (Fr — 1)))
t=1 k=1

T K
0log p( tha'}/kt)\ )
T o L) exo (zz be) et — 1)

t=1 k=1

T K 2
1 07 log p( YkmktAk ‘)
S RERE -1 ).

where the reminder term in the exponent involves powel of 1 of order larger or equal t8. By expanding
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the exponential function, we get:

T K T K
3108;17 thv'}’kt)\k )
H HP(Yk,t;’Yk,tAg,t + ’Yk,tbk(Et - 1)) = H Hp(Yk,t§'Yk,t)\kt (1 + E ! ’Yk,tbk(Ft - 1)
t=1 k=1

T T K K 0 0

1 9log p(Yi,t; V1AL ) 01og p(Yi,r5 71, A )

P 1yoyoye s dloerheineb DlospOten o) |,y - ).
t=1 17=1 k=1 1=1

We now take the expectation w.r.t. the frailty process, awthatF[F;—1] = 0, E[(F;—1)(F,—1)] = pl~"lo?,
¢ ¥
and that higher order central moments of the ARG processvienmwers ofr2 = 1/6 of order larger or equal

to 2. From equation (a.9) we get:

::]w

o-T1

P(Yi 5 'Wc,t)‘g,t)

t=1k=1
02 LEE o log p(Yi 15 %,t/\%t) dlog p(Y 3 Wk,t)\g,t) dlog p(Yy; %,M?J
: S kb 532 k=1 + N N
t=1 k=1 l=1

0.2

T3

_ 1 01og p(Yiea: Y] o) Olog p(Yirs e AL ) N

K
Zbkbl’Wc P B\ B s

=1

>

1 r=17#tk

Mﬂ w|
&MN

t

where the reminder involves terms of ordér, o¢, ... We deduce the score w.rt?;

Olog L(0, )
do* 02=0
1l & d 9”log P(Yit; %,t/\%t) dlog p(Y 3 Wk,t)\g,t) dlog p(Yi; %,t)\?,t)
k=11=1 t=1

T T 0 0
01og p(Yi.t; Ykt AL ¢) Olog p(Yi 5 v A, 1)
|t—| 0 TRt T TLT
+> 0> AT o o\

t=1 7=1,7#t
By rearranging terms, and using that the density of the Boidsstribution is such thdbg p(y; A\) = ylog A— A

up to a constant independent of parametewe get:

dlog L(0, p)
Oc?

— g Z Z biby {ﬁkz T+ Z p° [rir(s) + Tzk,T(S)]} : (a.10)

k=11=1

where the stastisticg;; 7 andry,; r(s) are defined in equations (3.10) and (3.11), respectively.
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