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Robust Portfolio Allocation with Systematic Risk Contribution Restrictions

Abstract

The standard mean-variance approach can imply extreme weights in some assets in the optimal

allocation and a lack of stability of this allocation over time. To improve the robustness of the

portfolio allocation, but also to better control for the portfolio turnover and the sensitivity of the

portfolio to systematic risk, it is proposed in this paper to introduce additional constraints on both

the total systematic risk contribution of the portfolio and its turnover. Our paper extends the exist-

ing literature on risk parity in three directions: i) we consider other risk criteria than the variance,

such as the Value-at-Risk (VaR), or the Expected Shortfall; ii) we manage separately the systematic

and idiosyncratic components of the portfolio risk; iii) we introduce a set of portfolio management

approaches which control for the degree of market neutrality of the portfolio, for the strength of

the constraint on systematic risk contribution and for the turnover.

Keywords: Asset Allocation, Portfolio Turnover, Risk Diversification, Minimum Variance Port-

folio, Risk Parity Portfolio, Systematic Risk, Euler Allocation, Hedge Fund.

JEL classification: G12, C23.
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1 Introduction

The gap between theory and practice is well illustrated by the example of portfolio management

since Markowitz (1952) introduced the mean-variance framework. The resolution of the allocation

problem by a simple quadratic optimization is the main advantage of the mean-variance approach.

However, in practice this approach is implemented by replacing the theoretical mean and variance

by their (unrestricted) historical counterparts, and the associated estimated mean-variance port-

folios have several drawbacks: they are very sensitive to errors in the estimates of the mean and

variance inputs [see e.g. Chopra (1993), Chopra and Ziemba (1993)], the resolution of a large-scale

quadratic optimization problem is not straightforward [see e.g. Konno and Hiroaki (1991)], and

dominant factor in the covariance matrix results in extreme weights in optimal portfolios [see e.g.

Green and Hollifield (1992)]. Finally the portfolio allocations are very erratic over time, which

implies significant transaction costs or liquidity risks. These drawbacks are even more pronounced

when the portfolio is based on a large number of assets.

These difficulties are due mainly to the sensitivity of the mean-variance efficient portfolio al-

location to the smallest eigenvalues of the variance matrix and to the poor accuracy of the inverse

variance matrix with the standard estimation methods. The literature has proposed different ways

to get more robust portfolio allocations, as the potential cost of a loss of efficiency. First, some

robust estimation methods have been introduced, following results known in statistics1. Typical

of such approaches are the shrinkages of the estimated variance matrix, which admit Bayesian in-

terpretation [Garlappi, Uppal, Wang (2007), Goldfarb, Iyengar (2003), Ledoit, Wolf (2004)], the

l1− or l2− penalizations introduced in the empirical optimization problem [see e.g. Broadie et al.

(2008), DeMiguel et al. (2009)a, Fan et al. (2012)a], or the refresh time subsample approach with

far more percentage of data used for any given pair of assets than for all the assets of the portfolio

[Barndorff-Nielsen et al. (2008)].

Robustness can also be achieved by introducing restrictions in the empirical optimization prob-

lem even if these restrictions are not required by Financial Theory. These constraints have often

1It is well-known that the standard OLS estimator in a regression model y = Xb+ u is not robust. The expression

of the OLS estimator: b̂ = (X ′X)−1X ′y includes the inversion of the design matrix X ′X , and this inversion is not

accurate when the explanatory variables are quasi-colinear. This lack of robustness is solved, either by considering

Bayesian estimators, or by introducing l2- penalizations, or by constraining the parameters.
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simple interpretations. They can be shortselling restrictions [Frost, Savarino (1988), Chopra (1993)

Jagannathan, Ma (2003)], gross exposure constraints [Fan et al. (2012)a], at the limit ”fully diver-

sified” portfolios in terms of either budget allocations [see Elton, Gruber (1977), Duchin, Levy

(2009), DeMiguel et al. (2009)b, Kritzman et al. (2010), Beleznay et al. (2012)], or contributions

to total risk [see e.g. Martellini (2008), Choueifaty and Coignard (2008), Maillard et al. (2010)].

Bruder et al. (2011).

The idea of imposing additional diversification constraints is now commonly used in the asset

management industry, and more enhanced strategies are grouped under the risk parity denomina-

tion. Risk parity is a general term for all investment techniques that attempt to take equal risk in the

different underlyings of a portfolio. However, risk parity implementations differ considerably: in-

vestment universes, risk definitions, risk forecasting methods and risk exposures calculation can be

different from one implementation to another one. Thus, risk parity is more a conceptual approach

rather than a specific system, and it is in general difficult to compare the different approaches.

Many questions are raised by risk parity approaches. First, the total risk of a given portfolio

is uniquely measured by its volatility, and contributions to total risk by the contribution of each

underlying asset to this volatility. However in a risk parity allocation, it is more natural to define the

total risk as the potential loss at the portfolio level and the contribution to total risk as the amount

of initial wealth measured in risk unit on each portfolio underlying. These amounts are called risk

budget in the literature [see e.g. Chow, Kritzmann (2001), Lee, Lam (2001)]. By defining risk

budget through volatility contributions, Gaussian returns are implicitely assumed [see e.g. Inker

(2010)]. Once the potential loss of capital for each portfolio underlying has been estimated, the

portfolio can be determined. Second, the optimality of the standard risk parity portfolio, which

imposes equal risk budgets on the underlying, can be discussed. This risk parity approach does

not ensure that the total risk of the portfolio is optimized. Third the definition of the investment

universe has a significant impact on the risk parity portfolio. In particular the risk parity portfolio

allocation changes when we duplicate one asset. Thus it does not satisfy the duplication invariance

property in the terminology of Choueifaty et al. (2011). Finally, risk parity approaches decrease

portfolio concentration by construction in increasing the small cap weights. Then they create

liquidity issues, since we have to dynamically rebalance an equity portfolio with a bigger liquidity

exposure on small caps.
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We develop in this paper a new implementation of the risk parity principle that circumvents the

usual limitations of the current implemented ones. Our contribution to the literature is threefold.

First, we use a more appropriate risk measure than the variance to account for extreme risks and

give a reserve interpretation of the risk contributions in a general non Gaussian framework. Second,

we introduce the risk contribution restriction on the total contribution of the portfolio to systematic

risk and do not impose equal contributions to the systematic and unsystematic components of the

portfolio risk. Third, we discuss the interest of such a restriction in terms of portfolio turnover and

transaction costs.

The paper is organized as follows. In Section 2, we focus on the difference between the stan-

dard optimal portfolios and the associated risk parity portfolios. Section 3 considers asset returns

with systematic and idiosyncratic components. Then we construct and compare different risk par-

ity portfolios, when the parity is written on both types of components. Section 4 derives and

compares optimal portfolios for different risk measures, especially the volatility, the Value-at-Risk

and the Expected Shortfall. Section 5 presents empirical applications on portfolio of futures on

commodities and Section 6 concludes. Some extensions and proofs are given in the appendices.

2 Portfolio Allocation with Risk Contribution Restrictions

We review in this section basic results on portfolio and risk allocations to highlight the difference

between the standard optimal portfolios and the portfolios with risk contribution restrictions. We

denote by y1, ..., yn the returns of n risky assets, Y the corresponding vector of returns, µ the vector

of expected returns, Ω the associated volatility matrix, and w the portfolio allocation, satisfying the

standardized budget constraint w′e = 1, with e being a n-dimensional vector of 1. We denote by

R(w) the scalar risk measure associated with allocation w. The risk measure depends on allocation

w through the distribution of the portfolio return w′Y .
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2.1 Minimum Risk Portfolios

Let us focus first on the risk minimization problem. We obtain the minimum risk allocation by

solving the program:

w∗ = argmin
w′e=1

R(w).

The optimization problem above is written under the standardized budget constraint w′e = 1. This

possibility to standardize the budget constraint exists if the risk measure is homogeneous of degree

1, that is, if:

R(cw) = cR(w), say,

for any positive scalar c. Indeed, the solution of an optimization problem such as:

w∗(c) = min
w
R(w), s.t. w′e = 1/c,

is equal to w∗(c) = cw∗. Thus, the solution with another budget restriction is deduced from the

solution of the standardized optimization problem by an appropriate scaling. This solution is such

that : ∂R
∂wi

(w∗) = λ(w∗),∀i, where λ(w∗) is the Lagrange multiplier associated with the budget

restriction.

2.2 Portfolios with Risk Contribution Restrictions

The recent literature on risk measures focuses on the risk contribution of each asset to the total

portfolio risk. In this respect the risk contributions differ from the weights in portfolio allocations,

since they also account for the effect of each individual asset on the total risk. Let us consider a

global portfolio risk measured by R(w). This total risk can be assigned to the different assets as:

R(w) =
n∑
i=1

Ri(w), (2.1)

where Ri(w) denotes the risk contribution of asset i to the risk of the whole portfolio. If the risk

measure is homogenous of degree 1, we get the Euler formula:

R(w) =
n∑
i=1

wi
∂R(w)

∂wi
.
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The Euler formula has an interpretation in terms of marginal contribution to global risk w.r.t. a

change of scale in the portfolio allocation.2

This explains why it is often proposed in the literature to choose:

Ri(w) = wi
∂R(w)

∂wi
, (2.2)

called the Euler allocation [Litterman (1996), p.28, Garman (1997), footnote 2, Qian (2006)]. The

difference between the portfolio allocation and the risk contribution is captured by the marginal

risk ∂R(w)/∂wi [see (2.2)].

The Euler decomposition can be used to construct portfolios with constraints on the risk contri-

butions. For instance, Equally Weighted Risk Contribution portfolios have been considered in the

literature [see e.g. Scherer (2007), Maillard et al. (2010), Asness et al. (2012)], and are gaining in

popularity among practitioners [Asness (2010), Sullivan (2010), Dori et al. (2011)].

This practice can be generalized by imposing the risk contributions to be proportional to some

benchmarks πi, i = 1, ..., n, which are not necessarily equal:

∂R(w)

∂w
= λ(w) diag(πi) vec(1/w), (2.3)

where diag(πi) is the diagonal matrix with πi, i = 1, . . . , n as diagonal elements. That is we

consider Risk Parity portfolios after an appropriate adjustment for the notion of parity.

2.3 Risk Contribution Restrictions and Portfolio Turnover

The introduction of restrictions (2.3) can be justified by the effect of trading costs. Let us assume

that the investor’s portfolio allocation at the beginning of the period is: w0 = (w0,1, ..., w0,n)′, and

that the investor updates his portfolio to get the new allocation w = (w1, ..., wn)′. He will account

for the risk R(w) of the new allocation and for the trading costs when reallocating the portfolio

from w0 to w. Under no short sale constraints: w0,i ≥ 0, wi ≥ 0,∀i, the trading cost (turnover)

may be measured by:

T (w,w0) = c
n∑
i=1

w0,i ln

(
w0,i

wi

)
. (2.4)

2The Euler formula is obtained by differentiating the homogeneity condition R(cw) = cR(w), with respect to c

and setting c = 1.
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Indeed, when the allocation adjustments are small, we have:

T (w,w0) ≈ −c

[
n∑
i=1

w0,i
wi − w0,i

w0,i

− 1

2

n∑
i=1

w0,i
(wi − w0,i)

2

w2
0,i

]
≈ c

2

n∑
i=1

(wi − w0,i)
2

w0,i

,

since the two portfolios satisfy the budget constraint: e′w = e′w0 = 1.

This approximation has a direct interpretation in terms of transaction costs, in which the cost for

trading asset i is proportional to 1/w0,i. This assumption on trading costs can find a justification

if the initial allocation corresponds to a market portfolio. Assets with the highest market weights

woi are also the most liquid ones, and their trading is associated with low transaction cost. At

the opposite, assets with the lowest market weights are less liquid and then trading these assets is

expensive in terms of transaction costs. This cost for trading asset i is proportional to (wi−w0,i)
2.

Thus the implied market impact function for trading asset i is strictly convex.

The investor has to balance risk reduction and trading cost in his portfolio management. Thus, he

can minimize a combination of both criteria, and choose:

w = argmin
w

R(w) + λc
n∑
i=1

w0,i ln

(
w0,i

wi

)
, (2.5)

where λ > 0 is a smoothing parameter introduced to control the portfolio turnover. With λ = 0, the

investment objective focuses on risk control. For high λ, the control is on the portfolio turnover,

and the investment objective is to enhance the initial portfolio allocation in terms of risk control,

but with a limited turnover.

The associated first-order condition is:

∂R(w)

∂wi
− λ c w0,i

wi
= 0⇔ wi

∂R(w)

∂wi
= λ c w0,i. (2.6)

The risk contributions are proportional to the initial portfolio allocations: πi ∝ w0,i. In par-

ticular, the benchmark levels of risk contributions πi, i = 1, ..., n depend on the current investor’s

portfolio. This approach is clearly suitable to advise investors that do not want to enhance their

risk management without generating a high portfolio turnover.

This solution is especially appealing in a multi-period framework. Indeed, in a myopic dynamic

portfolio management, the sequence of optimization problems is:

w∗t = argmin
wt

Rt(wt) + λ ct

n∑
j=1

w∗t−1,j ln

(
w∗t−1,j

wt,j

)
, (2.7)
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where the conditional risk measure Rt(wt) and the trading cost ct depend on time. Then the risk

contribution restrictions are proportional to w∗t−1,i and path dependent. In this dynamic frame-

work, the λ parameter controls the speed of convergence of the current portfolio towards the time

dependent minimum risk portfolio. In a stable risk environment, that is, if Rt and ct do not depend

on time, the optimal dynamic reallocation approaches the minimum risk portfolio in several steps

instead of doing the reallocation at a single date. This point is especially appealing for big insti-

tutional investors that want to reallocate huge portfolios without destabilizing the markets. 3 This

multi-period optimal reallocation approach is also appealing when managing portfolios of illiquid

assets.

3 Portfolio Allocation with Systematic Risk Contribution Re-

strictions

In this section, we consider portfolio allocations constructed to monitor the systematic and id-

iosyncratic components of the portfolio return. This is done by imposing the risk contribution

restrictions on these two components of the total risk. We consider factor models to discuss the

effects of the systematic and idiosyncratic components of the risk.

3.1 Systematic and Idiosyncratic Risks

Let us assume that the asset returns follow the one-factor model:

yi = βi f + σi ui, i = 1, ..., n, (3.1)

where f is the common (or systematic) factor, βi is the factor loading of asset i w.r.t. factor f ,

and ui is the idiosyncratic (or specific) component, independent of the factor. We assume that the

idiosyncratic terms are mutually independent4, with unconditional zero mean and unit variance.

3This is an important criterion for food commodity markets, when the commodity is also traded for consumption

by households, for instance.
4Any residual dependence might be captured by introducing additional common factors. This would lead to a

multifactor model. We consider the one-factor model for expository purpose.
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We get the following decomposition of the return covariance matrix:

Ω = ββ′σ2
f + Σ, (3.2)

where Σ = V u = diag(σ2), σ2
f is the variance of the common factor and β the vector of factor

loadings. The portfolio return can be decomposed accordingly into a systematic and an idiosyn-

cratic component as:

w′Y =

(
n∑
i=1

wiβi

)
f +

n∑
i=1

wiσiui. (3.3)

The effects of the systematic and idiosyncratic components can be analyzed for both risk con-

tributions and portfolio allocations.

3.2 Systematic and Idiosyncratic Risk Contributions

The decomposition principle (3.1) can be applied to disentangle the systematic and idiosyncratic

components of the risk as follows:

Ri(w) = Ris(w) +Riu(w), i = 1, . . . , n,

where Ris(w) [resp. Riu(w)] denotes the systematic (resp. idiosyncratic) risk contribution of asset

i to the total systematic (resp. idiosyncratic) component of the risk. The risk decompositions above

can be aggregated to get a decomposition of the total risk as:

R(w) = Rs(w) +Ru(w),

with Rs(w) =
∑n

i=1Ris(w) and Ru(w) =
∑n

i=1 Riu(w). These decompositions are summarized

in Table 1. This table shows how to pass from the assets i = 1, ..., n tradable on the market, to

the virtual assets f and (u1, ..., un) = u, which are not directly tradable, that is, how to transform

the decomposition of the total risk with respect to basic assets i = 1, ..., n to a decomposition

with respect to virtual assets. This is done by constructing an appropriate two entries table, and

summing up per column instead of summing up per row [see Gourieroux, Monfort (2012)].

How to derive this thinner risk decomposition in practice, while keeping an interpretation in

terms of Euler decomposition? Let us consider the virtual portfolio with allocation wi,s in the sys-

tematic component and wi,u in the idiosyncratic one. Thus the associated portfolio return becomes:(
n∑
i=1

wi,sβi

)
f +

n∑
i=1

wi,uσiui.
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Assets Systematic factor Idiosyncratic error terms Total

1 R1(w)
...

...

i Ris(w) Riu(w) Ri(w)
...

...

n Rn(w)

Total Rs(w) Ru(w) R(w)

Table 1: Decomposition of the Global Risk Measure

This portfolio invests wi,s in βif , and wi,u in σiui, i = 1, . . . , n. If we denote w̃ the components

wi,s, wi,u, the risk measure of this virtual portfolio can be written as: R̃(ws, wu), where R̃(w,w) =

R(w). The extended risk measure R̃ is also homogenous of degree 1. Thus we can apply the Euler

formula to R̃ and get:

R̃(ws, wu) =
n∑
i=1

wi,s
∂R̃

∂wi,s
(ws, wu) +

n∑
i=1

wi,u
∂R̃

∂wi,u
(ws, wu).

Then, for ws = wu = w, we deduce the thinner decomposition:

R̃(w) =
n∑
i=1

wi
∂R̃

∂wi,s
(w,w) +

n∑
i=1

wi
∂R̃

∂wi,u
(w,w),

and can define: Ris(w) = wi
∂R̃
∂wi,s

(w,w), Riu(w) = wi
∂R̃
∂wi,u

(w,w). Finally, the risk measure R(w)

is also function of parameters βi, σi, i = 1, ..., n, involved in the factor model and we get:

wi
∂R̃

∂wi,s
(w,w) =

∂R

∂βi
(w), wi

∂R̃

∂wi,u
(w,w) =

∂R

∂σi
(w), (3.4)

in which the dependence ofRwith respect to βi, σi is not explicitely written for expository purpose.

We get a decomposition, which highlights the effects on the total portfolio risk of shocks on either

the factor, or the idiosyncratic term.

3.3 Portfolios with Systematic Risk Contribution Restrictions

In the standard portfolios with risk contribution restrictions, the constraints are written on the basic

assets. The approach can be extended by considering risk contributions written on the systematic
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and unsystematic components of the portfolio. Let us consider the following optimization problem:

w(δ, π) = argmin
w′e=1

R2(w) + δ [(1− π)Rs(w)− πRu(w)]2 , (3.5)

where δ ∈ (0,∞) is a smoothing parameter. In the limiting case δ = ∞, we get the optimization

with a strict constraint on the contribution to systematic risk5 : Rs(w) = πR(w) . When δ = 0, we

get the minimum risk portfolio.

As in Section 2.3, we can justify the introduction of this risk contribution restriction by the effect

of trading costs, both on individual assets and on the factors, when derivative instruments allows

investors to directly trade on the virtual factor asset. This is the case for equity investing, where

the factor is usually the market portfolio.

4 Illustrations with Different Risk Measures

This section provides the closed form expressions of the minimum risk portfolios and the risk

contributions for three risk measures, that are the volatility, the Value-at-Risk, and the Distorsion

Risk Measures, including the Expected Shortfall.

4.1 The Volatility Risk Measure

When the risk is measured by the volatility, we get: R(w) = (w′Ωw)1/2.

4.1.1 Minimun variance portfolio

Let us assume that the set of assets does not include the riskfree asset, or equivalently that the

volatility matrix Ω is invertible. For the volatility risk measure, we get the minimum-variance

portfolio [see Markowitz (1952)], whose optimal allocation has the closed form expression:

w∗ =
Ω−1e

e′Ω−1 e
.

5If the level π belongs to the domain of admissible values of Rs(w)/R(w), when w varie. Otherwise, we get the

portfolio allocation with a systematic risk budget the closest to π.
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4.1.2 Risk contributions

We have:
∂R(w)

∂w
=

Ωw

(w′Ωw)1/2
,

and the risk contributions are:

Ri(w) =
wi

(w′Ωw)1/2

n∑
j=1

Ωi,j wj =
Cov(wiyi, w

′Y )

V (w′Y )
,

where Ωi,j is the generic element of Ω, and Cov(.) and V (.) denote respectively the covariance

and the variance. Thus the contribution Ri(w) is the beta coefficient of the part of the portfolio

invested in asset i with respect to the total portfolio.

4.1.3 Systematic and idiosyncratic risk contributions

In a single factor model, we have: R(w) = [w′(ββ′σ2
f + Σ)w]1/2 and the Euler risk contributions

can be written as:

Ri(w) =
wi

(w′Ωw)1/2

[
βiw

′ β σ2
f + wi σ

2
i

]
= Ris(w) +Riu(w),

where Ris(w) is the systematic risk contribution i and Riu(w) is the idiosyncratic risk contribution

of asset i:

Ris(w) = wi βi
w′β σ2

f

(w′Ωw)1/2
, Riu(w) = wi

wi σ
2
i

(w′Ωw)1/2
.

The expression of component Ris(w) shows the quantity wiβi invested in the systematic factor

f , and the risk contribution
w′β σ2

f

(w′Ωw)1/2
of a unit invested in f . By adding the decompositions per

asset, we get the decomposition of the total portfolio risk as:

R(w) = Rs(w) +Ru(w), with Rs(w) = (w′β)2
σ2
f

(w′Ωw)1/2
and Ru(w) =

w′Σw

(w′Ωw)1/2
,

that is the standard variance decomposition equation.

As an illustration we provide in Appendix A this decomposition and its interpretation for the

minimum-variance portfolio.
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4.2 The α-VaR Risk Measure

The introduction of the VaR corresponds to the safety first criterion initially introduced by Roy

(1952). The α-VaR risk measure is defined by:

R(w) = −qα(w′Y ),

where qα is the α-quantile of the distribution of the portfolio return. More precisely, the α-VaR is

defined by the condition: P [w′Y < qα(w′Y )] = α.

4.2.1 Minimum α-VaR portfolio

Let us first consider the Gaussian case before discussing the general framework.

• Let us assume that the set of basic assets does not include the riskfree asset and consider the

allocation minimizing the α-VaR in a Gaussian framework. When the vector of returns is

Gaussian with mean µ and variance-covariance Ω, the optimal allocation minimizes:

−qα(w′Y ) = −w′µ− qαw′Ωw,

where qα denotes the α-quantile6 of the standard Gaussian distribution under the budget

restriction w′e = 1. The minimum α-VaR portfolio allocation is then given by:

w∗ =
Ω−1e

e′Ω−1 e
+

1

2 qα
Ω−1

[
µ− e′Ω−1 µ

e′Ω−1 e
e

]
.

This formula highlights the key role of the minimum variance portfolio as the benchmark

portfolio for a very risk averse investor (when α→ 0 and qα →∞), but also the importance

of the excess expected returns.

• In the general framework, the returns are not necessarily Gaussian and the minimum α-VaR

portfolio is the solution of the system of equations:

∂qα(w′Y )

∂wi
= λ(w), i = 1, ..., n, (4.1)

6Since α is small, qα is negative. Thus, the α-VaR is an increasing function of the variance of the portfolio return

and a decreasing function of its expected return.
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where the Lagrange multiplier λ(w) is fixed by the budget restrictionw′e = 1. The derivative

of the α-VaR is equal to [Gourieroux, Laurent, Scaillet (2000), Hallerbach (2003)]:

∂qα
∂wi

(w′Y ) = E [yi|w′Y = qα(w′Y )] , i = 1, ..., n. (4.2)

This derivative has no closed form expression in general and the minimum α-VaR allocation

has to be computed numerically.

4.2.2 Risk contributions

When the risk is measured by the α-VaR, we get the following decomposition formula of the global

conditional quantile [see Gourieroux, Monfort (2012)]:

qα(w′Y ) = w′
∂qα(w′Y )

∂w
= w′E [Y |w′Y = qα(w′Y )] , (4.3)

and

Ri(w) = E [wiyi|w′Y = qα(w′Y )] . (4.4)

It measures the part of the expected loss due to asset i when the total portfolio is in distress.

4.2.3 Systematic and idiosyncratic risk components

In the α-VaR case, the marginal effect of a change of weight of asset i can be decomposed by

Equation (3.4) as :

wi
∂qα(w′Y )

∂wi
= βi

∂qα(w′Y )

∂βi
+ σi

∂qα(w′Y )

∂σi
. (4.5)

The Euler components associated with systematic and idiosyncratic risks can be explicited as

follows :

∂qα(w′Y )

∂β
= E [f |w′Y = qα(w′Y )] ,

∂qα(w′Y )

∂σi
= E [ui|w′Y = qα(w′Y ) ].

In the linear factor model, the general decomposition (3.4) becomes:

Ris(w) = βiE [f |w′Y = qα(w′Y ) ], Riu(w) = σiE [ui|w′Y = qα(w′Y ) ], (4.6)
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and the decomposition of the total portfolio risk is:

R(w) = Rs(w) +Ru(w),

with

Rs(w) = β′ E [f |w′Y = qα(w′Y ) ], Ru(w) =
n∑
i=1

σiE [ui|w′Y = qα(w′Y ) ]. (4.7)

4.3 Distorsion Risk Measures

A Distortion Risk Measure is a weighted function of the VaRs associated with the different risk

levels. It can be written as:

R(w) =

∫
V aRα(w)dH(α) = −

∫
qα(w)dH(α),

where H is a given distortion measure on (0, 1), that is, an increasing concave function. The

Expected Shortfall is obtained when H is the cumulative distribution function of the uniform dis-

tribution on the interval [0, α] [see e.g. Wang (2000), Acerbi (2002), Acerbi, Tasche (2002)].

4.3.1 Minimum DRM portfolio

The optimal allocations have no closed form expression and have to be derived numerically. The

minimum DRM portfolios solve the first-order condition [see Gourieroux et al. (2000)]:

(1− qα(w′ Y ))E [Y |w′ Y = qα(w′ Y )] = 0.

4.3.2 Risk contributions

Let us for instance consider the Expected Shortfall ESα. By definition we have:

ESα(w′Y ) = w′E [Y |w′Y > qα(w′Y )] , (4.8)

with risk contribution [Tasche (2000)]: Ri(w) = E [wiyi|w′Y > qα(w′Y )]. Thus, the risk decom-

positions for VaR and ES differ by their conditioning set. These conditioning sets correspond to

different definitions of portfolio distress.
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5 Application

We apply in this section the portfolio managements of Section 3 above to futures on commodities.

5.1 The investment universe

We consider futures contracts on physical commodities. These assets are split into five sectors as

described in Table 2.

Table 2: The Commodities

Energy Grains & Seeds Softs Live Stock Metals

brent crudeoil∗ corn∗ cocoa lean hogs∗ copper∗

heating oil∗ rice coffee∗ live cattle∗ gold∗

light crudeoil∗ soybean oil∗ cotton∗ palladium

natural gas∗ soybeans∗ orange juice platinum

wheat∗ sugar∗ silver∗

The prices are daily closing prices from 14 May, 1990 up to 24 September, 2012, and are all

denominated in US$, even for metals traded in London. The physical commodity prices include

the storage and transportation costs. The returns are adjusted by rolling the futures positions in

order to avoid the delivery process and to get a stable time-to-maturity over time.

We provide in Table 3 summary statistics of the historical distribution of returns, that are the

historical mean, volatility, skewness and kurtosis, with the historical Value-at-Risk for risk lev-

els 1%, 5%, 95%, 99%. The VaR at levels 95% and 99% are relevant in case of short sale of

the commodity. We also display the historical betas of each asset return with respect to the Dow

Jones-UBS (DJUBS) commodity index.

[Insert Table 3 : Summary Statistics of Asset Returns].

We observe rather symmetric distributions, except for commodity ”brent crudeoil”, which is
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left skewed, and for ”cotton”, which is right skewed 7. All distributions feature tails fatter than

Gaussian tail with kurtosis up to 30-40 for ”brent crudeoil” and ”cotton”.

The betas are all nonnegative and some returns are very sensitive to changes in the market index

such as ”brent crudeoil” and ”soybeans”. These large values do not reflect the composition of the

DJUBS index only. Indeed this index includes currently 20 physical commodities for 7 sectors.

Thus, several commodities in Table 2 are not included in the index. The commodities included

in the index are marked with a ”*” in Table 2. Moreover, if the weights of included assets are

fixed according to their global economic significance and market liquidity, they are capped. No

commodity can compose more than 15% of the index and no sector more than 33%. For instance

cocoa, coffee and cotton have similar weights in the index, but cotton has a much higher beta than

the two other commodities.

This analysis can be completed by considering the historical bivariate distributions for any pair

of assets. We provide in Figure 1 the historical correlations between asset returns and in Figure 2

the scatterplots of the bivariate distributions for the Grains & Seeds sector, the one-dimensional

distribution being displayed on the diagonals.

[Insert Figure 1 : Historical Correlation Matrix]

[Insert Figure 2 : Scatterplots of One and Bi-dimensional Distributions for Sector Grains &

Seeds]

Figure 1 and Figure 2 provide similar information on the pairwise links between asset returns.

We get high correlations especially between ”oil” commodities and within the ”Live Stock” sector.

Let us now focus on the sector ” Grains & Seeds” and on Figure 2, where the scatterplots are easy

to interpret. We observe small positive dependence between returns for a significant number of

pairs, but also strong positive links for pairs of substituable commodities such as ”soybeans” and

”soybean oil”, or ”corn” and ”wheat”. We even observe multiregimes of dependence for ”soybean”

7Even if we do not focus on portfolio performances in this paper, note that positive historical skewness of individual

asset returns might explain some good performance properties of the equally weighted portfolio [Beleznay et al.

(2012)]. The small observed skewness show that this argument will not apply to commodities.
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and ”wheat”, where the scatterplot shows two regression lines.

For expository purpose, it is not possible to plot all the return dynamics and we focus in Fig-

ure 3 on the sector ”Grains & Seeds”. 8

[Insert Figure 3 : Returns for the Sector ”Grains & Seeds”]

The evolutions can be very different in such a sector, which is clearly not homogenous. Even

if we observe common volatility clustering, there is a switching trend in both mean and volatility

for commodity ”soybeans” and partly for the commodity ”soybean oil” positively correlated with

it. This is this change of regime in 2004, which explains the double regime dependence mentioned

earlier.

5.2 Benchmark portfolio allocations

Let us now consider four portfolio allocations for the sector ”Grains & Seeds”: an equally-

weighted portfolio, a minimum-variance portfolio, and two risk parity portfolios using either the

volatility, or the VaR at 5%, respectively. The three first portfolios are frequently considered in the

H.F. literature [see e.g. DeMiguel et al. (2009)b], and can be used as benchmarks for comparison.

The fourth portfolio allocation focuses on extreme risks. The VaR and VaR contributions are es-

timated by kernel methods9, the means and variances by their historical counterparts based on the

252 previous observations. For each portfolio, we provide the evolutions of the portfolio weights,

of the contributions to volatility and to VaR, respectively, computed under shortselling restrictions.

[Insert Figure 4 : Evolution of Portfolio Weights]

[Insert Figure 5 : Evolution of Volatility Contributions]

8The analysis for the other commodity sectors are available from the authors upon request
9The standard Nadaraya-Watson estimator has to be adjusted to ensure that the estimated VaR and VaR contribu-

tions are compatible, that is satisfy exactly the Euler restriction.
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[Insert Figure 6 : Evolution of VaR Contributions]

The main expected effect is to diminish the weights of highly risky assets for all strategies

controlling the risk (see Figure 4). At the extreme, the commodity ”soybeans” is not introduced in

the min-variance allocation, whereas it appears underweighted for strategies based on risk contri-

butions, which are using the ”substituability” with the less risky ”soybean oil”. We also observe

the instability over time of the weights for the min-variance portfolio, largely mentioned in the lit-

erature. On the contrary the two risk parity portfolios exhibit stable weights with a lower turnover.

However the final allocation depends on the risk measure selected to write the risk contribution

restrictions.

The risk parity portfolios have rather stable risk contributions for both risk measures [see Fig-

ures 5 and 6], especially when we compare their contributions to the VaR with the contribution

of the equally weighted and min-variance portfolios. Whereas the min-variance portfolio shows

very erratic contributions to total risk, we observe a highly risky trend in the evolution of the risk

contribution for the portfolio with naive 1/n diversification.

Finally the Variance and VaR contributions of the two last portfolios are almost the same, even

if the portfolio VaR and portfolio volatility differ significantly.

5.3 Dynamic portfolio management with control on the turnover

Let us now consider a minimum risk portfolio with a control on the portfolio turnover. The selected

measure is the VaR at 5%, and the allocation at date t is the solution of the optimization problem

of Section 2.3 :

w∗t = arg min
wt

V aRt(wt) + λ

n∑
j=1

w∗t−1,jln

(
w∗t−1,j

wt,j

)
,

with a constant trading cost standardized at c = 1. For λ = 0, we get the minimum VaR portfolio.

For positive λ, we reduce the turnover and obtain dynamic portfolio managements corresponding

to different aversions to turnover.

[Insert Figure 7: Portfolio Weights, VaR Contributions, Turnover, Contribution to Systematic

Risk for λ = 0.01]
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[Insert Figure 8: Portfolio Weights, VaR Contributions, Turnover, Contribution to Systematic

Risk for λ = 1]

In Figures 7 and 8, we have reported the evolutions of the main characteristic of the optimal

portfolios : the allocation, the VaR contributions, the turnover (plotted in a logarithmic scale) and

the contribution to systematic risk. The figures are given for two values λ = 0.01 and λ = 1 of the

aversion on trading costs. For λ = 0.01, the optimal portfolio is closed to the min-VaR portfolio.

The initial portfolio is an equally weighted portfolio, as clearly seen by considering the portfolio

weights of Figure 8 at the beginning of the period. We observe several effects when increasing

parameter λ: i) the weights become much smoother than the VaR contributions, ii) the asset to be

withdrawn from the portfolio, such as ”soybean”, are sold more progressively, iii) the turnover,

that are the trading costs, are much smaller, smoother, with wider clusters in the last period.

Finally, even if the basic asset allocations are smoothed when increasing λ, we still observe

large movements in the contribution to systematic risk. We will now try to also control for this

feature.

5.4 Portfolio management with systematic risk contribution restrictions and

turnover

Let us now consider the constrained optimization problem introduced in Section 3.3 with a control

for turnover :

min
wt

V aRt(wt) + δ[(1− π)V aRs,t(wt)− πV aRu,t(wt)]
2 + λ

n∑
j=1

w∗t−1,jln

(
w∗t−1,j

wt,j

)
,

s.t. w′t e = 1, wit ≥ 0, i = 1, . . . , n,

(5.1)

which corresponds to a mix between the minimization of the total VaR, the constraint on the risk

contribution for systematic risk and the turnover. The risk measure is the VaR at 5%, and the

systematic component is driven by a single factor chosen equal to the DJUBS index return.

The optimal allocation depends on control parameters δ, π and λ :
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• δ is a smoothing parameter : we get the min-VaR portfolio when δ = 0, and the min-VaR

portfolio with strict restriction on the systematic risk contribution when δ →∞,

• The benchmark systematic risk contribution π takes values in (0,1). When the factor is a

market index, π measures the degree of market neutrality of the portfolio, for extreme risks.

When π = 0, we are looking for a portfolio with no market influence on extreme risks,

• When used, the control for turnover takes two different values : λ = 0.01 and λ = 1.

5.4.1 Influence of both the parameters π and δ with λ = 0.01

[Insert Figure 9 : Marginal Allocations for Rice and Wheat]

In Figure 9, the allocations for commodities ”rice” and ”wheat” are provided as function of δ

and π. They are computed for the last available date : September, 24, 2012, and are based on the

252 days preceding the computation date. As expected the allocations of commodities with a large

(resp. small) beta diminish (resp. increase), when we get closer to market neutrality. The surfaces

feature convexity property, which means that we have no fund Separation Theorem.

Figure 10 provides the evolution according to π and δ of the portfolio systematic risk contribution.

As expected, as π increases, and whatever is the value for δ, the systematic risk contribution in the

portfolio increases as well.

Figure 11 complements the previous figure and illustrates how the individual systematic risk

contributions account for the portfolio systematic risk for some fixed values of π and varying val-

ues of δ. When δ = 0, we get a small contribution to systematic risk as expected in the min-VaR

portfolio. For large δ, the total contribution to systematic risk is close to the benchmark systematic

contribution π. When π = 1, the individual systematic risk contributions equalize themselves as

δ increases and sum-up to the total systematic risk of the portfolio, i.e. 51.8% (see Table 4). The

three last columns of Table 4 provide the two entries table of contributions to total risk, that is the

estimated counterpart of Table 1, derived for the min-VaR portfolio.

Globally, we observe that the introduction of the (smoothed) constraint on the systematic risk

22



contribution has implied rather similar individual systemic risk contributions, despite very differ-

ent betas. In fact the introduction of this restrictions on the factor component is stabilizing the

allocations and risk contributions [see McKinlay, Pastor (2000) for a similar effect when a factor

structure is partially taken into account].

[Insert Figure 10 : Contribution of the Systematic Risk to Total Risk]

[Insert Figure 11 : Relative Contributions to Systematic Risk]

5.4.2 Dynamic evolution of the weights and the systematic risk contributions for fixed values

of π, δ and λ

We provide in Figures 12-15 the dynamic evolution of the weights and of the systematic risk con-

tributions to total risk for the portfolios obtained with equation (5.1) for different values of the

couple (π,δ) and in the two cases λ = 0.01 and λ = 1.

[Insert Figure 12 : Portfolio Allocations for λ = 0.01]

[Insert Figure 13 : Relative Contributions to Systematic Risk for λ = 0.01]

[Insert Figure 14 : Portfolio Allocations for λ = 1]

[Insert Figure 15 : Relative Contributions to Systematic Risk for λ = 1]

For the small value of λ = 0.01, it seems quite possible to control the market neutrality of the

final portfolio by changing the values of π and δ. The higher are π and δ values, the higher are the

allocations of the assets with a higher β (this is the case for Rice and Wheat on Figure 12). On the

opposite, when the manager focuses on reducing the turnover of its portfolio (e.g. when λ = 1),

then it seems very difficult to balance this condition whatever are the values of π and δ.

Note also that a portfolio management which controls for extreme risk does not necessarily imply

a ”diversification” in terms of portfolio allocation. It may be less risky to allocate the budget in a
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small number of assets. This phenomena is clearly seen on the top right panels of Figure 12 at the

end of the period.

When we look at Figure 13, we note that the solicited level of systematic risk contribution is

reached rather slowly, with fluctuation at the end of the period. This solicited level cannot be

reached when the control parameter λ is equal to 1 as it is shown on Figure 15. Indeed, whatever

the π is, we get the same dynamic pattern of the systematic risk contributions. For such a level

(λ = 1), the tradeoff between the control on the systematic risk contributions and the turnover is

clearly in favor of this latter and we get then stuck with the initial portfolio, which is, in the case

of Figure 14, set as being the equally-weighted portfolio. This example shows that the calibration

of the different control parameters is essential and yields to quite different portfolio profiles.

6 Concluding Remarks

We have introduced in this paper a unified optimization framework for asset allocation, which

provides a mix between risk minimization, weakened risk contribution restrictions and turnover.

These allocation techniques include the most well-known allocation procedures, such as the mean-

variance and the minimum-variance allocation as well as the equally weighted and risk parity

portfolios.

There exist at least four reasons for considering such a mix focusing on the systematic compo-

nent of the risk :

• the first one is to account for transaction costs, when looking for the portfolio adjustment.

In this respect the introduction of constraints on the risk contributions can have such an

interpretation,

• the second one is to account for the regulation for financial stability, that is, for the intro-

duction of constraints on the budgets allocated to the different types of assets, according to

their individual risk, but also to the capital required for systematic risk, which is based on

the risk contribution. This justifies a restriction written on the systematic component of the

portfolio,
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• the third one is the possibility to manage the degree of market neutrality of the portfolio,

• finally, the standard mean-variance approach applied to a large number of assets is very

sensitive to small changes in the inputs, especially to the estimate of the volatility-covolatility

matrix of asset returns. The introduction of budget and/or risk contributions on either asset

classes, or types of risks (systematic vs unsystematic) will robustify such an approach as

well as the accounting for turnover.

However, if such a mix is needed, there is no general method to select an optimal mix, which

might depend on the preference of the investor, but also on the liquidity features and on the poten-

tial regulation. In this framework, the best approach consists in considering different mix, to apply

them empirically for portfolio allocation and compare the properties of the associated portfolios in

terms of stability over time of budget allocations, risk contributions and performances.

Our approach is easily extended to other type and number of factors. At the limit, these factors

on which the risk budgeting constraints are written might be at the disposal of the portfolio manager

and be selected to create oriented portfolio managements [see e.g. Meucci (2007)].
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A Minimum variance portfolio and systemic risk contribution

Let us decompose the minimum-variance allocation to disentangle the effects of systematic and

unsystematic components. This portfolio is given by:

w∗ =
Ω−1e

e′Ω−1e
=

(ββ′σ2
f + Σ)−1e

e′(ββ′σ2
f + Σ)−1e

.

The inverse (ββ′σ2
f + Σ)−1 admits the explicit expression:

(ββ′σ2
f + Σ)−1 = Σ−1 −

σ2
f Σ−1ββ′Σ−1

1 + σ2
f β
′Σ−1β

.

We deduce that:

w∗ =
Σ−1e+ σ2

f [β
′Σ−1βΣ−1e− β′Σ−1eΣ−1β]

e′Σ−1e+ σ2
f [β
′Σ−1βe′Σ−1e− (β′Σ−1e)2]

. (A.1)

Thus, w∗ is a weighted average of the optimal allocation in the idiosyncratic virtual assets, i.e.

w∗k = Σ−1e
e′Σ−1e

, and of the optimal allocation in the systematic virtual asset, i.e.

w∗s =
β′Σ−1 β Σ−1 − β′Σ−1 eΣ−1 β

β′Σ−1 β e′Σ−1 − (β′Σ−1 e)2
.

Symmetrically, we get a decomposition of the total risk of the minimum-variance portfolio into

its systematic and unsystematic risk contributions. We get:

Rs(w
∗) =

(e′Ω−1β)2σ2
f

(e′Ω−1e)3/2
, Ru(w

∗) =
e′Ω−1ΣΩ−1e

(e′Ω−1e)3/2
. (A.2)
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Table 3: Summary Statistics of Asset Returns
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Figure 1: Historical Correlation Matrix

33



Scatter plots of returns for Subsector grains

−0.1 0 0.1

wheat

−0.2 0 0.2

soybeans

−0.1 0 0.1

soybeanoil

−0.05 0 0.05

rice

−0.2 0 0.2

−0.1

0

0.1

corn

w
h

e
a

t

−0.2

0

0.2

s
o

y
b

e
a

n
s

−0.1

0

0.1

s
o

y
b

e
a

n
o

il

−0.05

0

0.05

ri
c
e

−0.2

0

0.2

c
o

rn

Figure 2: Scatterplots of One-and Bi-dimensional Distributions for the Sector Grains & Seeds
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Figure 3: Returns for the Sector Grains & Seeds

35



Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Equally−weighted portfolio − Sector Grains

 

 

corn

rice

soybeanoil

soybeans

wheat

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Minimum−variance portfolio

 

 

corn

rice

soybeanoil

soybeans

wheat

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Risk parity volatility portfolio − Sector Grains

 

 

corn

rice

soybeanoil

soybeans

wheat

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Risk parity VaR portfolio − Sector grains

 

 
corn

rice

soybeanoil

soybeans

wheat

Figure 4: Evolution of Portfolio Weights for the Sector Grains & Seeds
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Figure 5: Evolution of Volatility Contributions in the Sector Grains & Seeds
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Figure 6: Evolution of VaR Contributions in the Sector Grains & Seeds
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Figure 7: Weights, VaR contributions, turnover (in a logarithmic scale) and systematic risk of the

5%-VaR portfolio (see Equation (2.7)) for a unitary value of the costs (c = 1) and a small value of

λ = 0.01 obtained for the sector Grains & Seeds
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Figure 8: Weights, VaR contributions, turnover (in a logarithmic scale) and systematic risk of the

5%-VaR portfolio (see Equation (2.7)) for a unitary value of the costs (c = 1) and a quite high

value of λ = 1 obtained for the sector Grains & Seeds
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turnover control parameter λ = 0.01. These allocations are obtained by minimizing equation (3.5)
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Figure 11: Relative Contributions to Systematic Risk for some fixed values of π, varying values of

δ and a turnover control parameter λ = 0.01, as of 24-Sept-2012 in the Sector Grains & Seeds.
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Table 4: Decomposition of Total Risk for a min-VaR (5%) portfolio with a turnover control param-

eter λ = 0.01 in the sector Grains & Seeds as of 24-Sept-2012.

Risk parity Systematic Idiosyncratic

Assets Beta VaR weight Factor Error Total

Corn 1.09 11.9% 9.3% 6.9% 16.2%

Rice 0.35 34.4% 8.7% 18.2% 26.8%

SoybeanOil 0.76 24.4% 13.2% 8.8% 22.1%

Soybeans 0.87 16.3% 10.2% 8% 18.2%

Wheat 1.12 13% 10.4% 6.3% 16.7%

Total 100% 51.8% 48.2% 100%
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Figure 12: Allocations of the 5%-VaR portfolio in sector Grains & Seeds including the transaction

costs balanced with a quite low parameter λ = 0.01 and for different couples of parameters (π, δ).

Each row is for a fixed value of π ∈ {0; 0.2; 0.5}, and each column is for a fixed value of δ ∈

{10; 50; 100}.
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Figure 13: Systematic risk contributions of the 5%-VaR portfolio in sector Grains & Seeds includ-

ing the transaction costs balanced with a quite low parameter λ = 0.01 and for different couples

of parameters (π, δ). Each row is for a fixed value of π ∈ {0; 0.2; 0.5}, and each column is for a

fixed value of δ ∈ {10; 50; 100}.
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Figure 14: Allocations of the 5%-VaR portfolio in sector Grains & Seeds including the transaction

costs balanced with a quite high parameter λ = 1 and for different couples of parameters (π, δ).

Each row is for a fixed value of π ∈ {0; 0.2; 0.5}, and each column is for a fixed value of δ ∈

{10; 50; 100}.
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Figure 15: Systematic risk contributions of the 5%-VaR portfolio in sector Grains & Seeds includ-

ing the transaction costs balanced with a quite high parameter λ = 1 and for different couples of

parameters (π, δ). Each row is for a fixed value of π ∈ {0; 0.2; 0.5}, and each column is for a fixed

value of δ ∈ {10; 50; 100}.
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