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1 Introduction

We derive the optimal pricing strategy with ex ante commitment of a monopolist who
sells an indivisible non-durable product (e.g. an air, train or event tickets, a hotel room)
to a population of strategic buyers who arrive in the market at different times and differ
in their valuation for the good. Both the arrival times and the valuations are unobserved
to the seller. Buyers are strategic in the sense that they decide to purchase immediately
upon arrival or later in the selling period.

First, we examine the most general selling mechanisms in this two-dimensional
screening problem. We show that any mechanism can be approximated by a behavior-
based pricing policy combined with quantity rationing, whereby the seller lets the price
offered and the probability of serving a given customer depend on the history of his
purchase attempts. Yet we find that when consumers are risk-neutral such instruments
do not improve the profit: the optimal strategy of the seller is a simple time-dependent
price schedule.

Next, we characterize the optimal price schedule. We explain how the seller opti-
mally exploits the statistical link between valuations and arrival times, given the buyers’
ability to postpone their purchase. We find that optimal prices are nondecreasing over
time. For instance, airline and railway companies commonly sell tickets in advance and
change their prices as the departure date approaches. If the buyers become less price
sensitive as time passes, the standard pricing formula holds at each date, relating the
optimal mark-up to the elasticity of demand. Otherwise, if the price elasticity is non
monotonic over time, it may be optimal to offer the same price to consumers arriving at
different times.

Finally, we show that when the consumers can delay their purchase at no cost, a
first-come first-served policy makes it possible to achieve the optimal profit. Under
such a policy, the seller offers units at different prices and allocates them according
to the order of arrival: consumers who arrive earlier get better deals. First-come first
served policies are easier to implement than full-fledged time-dependent price schedules
because they involve only the order of arrival of consumers and do not require to let the
price explicitly depend on precise purchase times.

Our framework is primarily related to Akan et al. (2011). These authors assume that
all consumers are present in the market at the beginning of the selling period, each of
them privately knowing the date at which he will learn his valuation and the distribution
from which it will be drawn. In contrast, we assume here that the consumers simulta-
neously recognize their need for the good and discover their willingness to pay for it,
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but that the times at which these simultaneous events occur (which we call the “arrival
dates”) differ across consumers. These two frameworks can thus be seen as polar cases
in a general environment where the consumers would discover their need at different
times and thereafter learn their valuation progressively. Although the relevant instru-
ments differ in the two frameworks (e.g. refund policies are irrelevant in the context
we consider), in both cases the purchase time is a valuable screening device when less
elastic consumers arrive later.

The article is organized as follows. Section 2 relates our results to the existing lit-
erature. Section 3 presents the framework. Section 4 considers a general mechanism
design approach of the problem and shows that stochastic mechanisms are sub opti-
mal. Section 5 characterizes the optimal time-dependent price schedule and Section 6
introduces first-come first-served policies as a convenient way to implement the optimal
mechanism under zero waiting costs.

2 Literature review

To clarify the connection of the present article to the existing literature, it is important
to highlight the contrast between consumer preferences for durable and non-durable
goods:

• In most of the durable good literature, buyers are assumed to be impatient as
delaying purchase entails a waiting cost due to the privation of consumption. De-
creasing prices are obtained if sellers are more patient than consumers (Stokey
(1979), Landsberger and Meilijson (1985)). High-valuation consumers buy first
to enjoy consumption of the good sooner; as time goes by, the firm has an incen-
tive to lower prices to induce purchase by low-valuation consumers. Consumers
face an intertemporal tradeoff between buying now at a high price or later at a
lower price, which crucially depends on their degree of patience.1

• The economic setting is strikingly different for non-durable goods. There is no
opportunity cost due to the privation of consumption when purchasing later. For
instance, buying an airplane ticket sooner does not, in the absence of uncertainty,
yield any additional utility through a longer period of consumption. In addition,

1When demand varies over time and when the incoming demand is made up of identical consumer
cohorts, Conlisk et al. (1984) show that decreasing price cycles emerge at equilibrium: sooner or later,
the firm must charge a low price to make the cumulated stock of low-valuation consumers purchase. In
a more general setting, Board (2008) explains how the firm can time discriminate between cohorts when
incoming demand is allowed to vary over time.
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due to the relatively short period of time between purchase and consumption,
consumer discounting is unlikely to play a key role. Accordingly, unlike Board
(2008) and Board and Skrzypacz (2010) who adopt a durable good perspective,2

we assume that buyers do not suffer any utility loss per se by delaying their pur-
chase and are infinitely patient (the discount factor is one).3 We show that time
discrimination across cohorts may still arise in this setting because of heteroge-
neous price-sensitivity.

Second, while the literature on intertemporal price discrimination emphasizes the
role of demand uncertainty and capacity constraints,4 we argue here that there is no need
for demand uncertainty or capacity constraints to obtain nondecreasing price patterns.

Closely related to our analysis is the revenue management literature (see Talluri and
van Ryzin (2004)). Many articles in this field, however, postulate a particular form for
the price scheme (e.g. a number of fare classes) and look for the corresponding optimal
prices. In contrast, we impose no a priori restriction on the shape of the price schedule.

The present article is also related to the recent literature on behavior-based pricing
with customer recognition (see Fudenberg and Villas-Boas (2006) for a survey). In-
deed, we allow the seller to condition the price offered to a customer on the history of
his purchase attempts and thus to discriminate between first-time visitors and returning,
previously rationed customers (see Section 4). The sales techniques studied by Arm-
strong and Zhou (2011) entail a somewhat similar sort of discrimination, implemented
in a different context (consumer search and oligopolistic competition). However, our
model differs from the general approach of the literature on behavior-based pricing that
considers environments with repeated purchases that may at least partially revealed con-
sumers’ preferences over time.

Wilson (1988) suggests a rationale for first-come first-served policies, assuming that
consumers can buy many units and that they all have the same individual demand func-
tion. He finds that the seller optimally charges no more than two different prices and
rations sales at the lower price. In contrast, we find that the optimal scheme generally

2See Gershkov and Moldovanu (forthcoming) for a review of models with intertemporal pricing in
environments wherein consumers arrive over time.

3Introducing a common discount factor for the monopolist and consumers in our model does not alter
the analysis

4A number of articles consider environments with scarce capacity and uncertain aggregate demand
(e.g. Gale and Holmes (1993), and Dana (2001)). These papers often resort to two-periods models
with two consumer segments (price-sensitive and price-insensitive consumers) and show the optimality
of increasing price schedules. Some articles (e.g. Courty and Li (2000), Möller and Watanabe (2010)
and Nocke et al. (2010)) combine individual uncertainty, consumer heterogeneity, and possibly capacity
constraints. They explain how a seller can take advantage of the uncertainty to screen consumers.
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involves more than two prices, because consumer preferences change over time.

3 Model

A monopolistic seller operates over a finite time horizon (selling period), the length
of which is normalized to one. At the start of the time horizon, the seller is endowed
with an inventory of Q̄ units. In the railroad example, Q̄ accounts for the (exogenous)
capacity of the train. At the end of the selling period, units that are left over have
zero value. We denote by cd ≥ 0 the constant distribution cost per unit sold, which
corresponds to the fee of emitting one ticket.

We assume that the monopolist announces the price schedule at the start of the sell-
ing period and is able to credibly stick to the schedule for the entire period. Price com-
mitment is widely observed in practice, and this assumption is common in the advance-
selling literature (see Möller and Watanabe (2010), Nocke et al. (2010), and Akan et al.
(2011)).

Each consumer simultaneously recognizes his need for the product and discovers
his willingness to pay for it. The time at which these two events occur is called the
“consumer arrival time”. The consumers differ in their valuations and arrival times.
Both characteristics are unobserved to the seller, and hence constitute the private infor-
mation of a consumer. In particular, the monopolist cannot condition the price on the
consumer’s arrival date. Consumers are thus represented by two characteristics, their
arrival time, denoted by t, and their valuation, denoted by v. Each consumer buys at
most one unit, which he cannot resell. The consumers can purchase immediately upon
arrival or later without incurring any waiting cost.

The number of buyers who arrive before the consumption date (train or flight de-
parture, event), i.e. who will eventually recognize their need for the item, is denoted
by N . We denote by G(.) the distribution of arrival times, which is assumed to admit a
positive density g(.) on the selling period [0, 1]. We denote by F (v|t) the distribution of
valuations conditional on arrival times. We assume that this distribution admits a con-
tinuous and positive density, f(v|t) on its support [v, v̄]. The aggregate demand function
is defined by

D(p) = N

∫ 1

0

[1− F (p|t)] g(t) dt. (1)
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We introduce the price elasticity in cohort t (set of consumers arriving at time t):

ε(p|t) =
pf(p|t)

1− F (p|t)
·

To ensure the existence of instantaneous monopoly prices, we assume hereafter that, for
any arrival time t and any value of c ≥ cd, the instantaneous profit function, π(p|t) =

(p − c)[1 − F (p|t)], is single-peaked, i.e. first increases then decreases as the price p
rises.5 (When the capacity constraint is binding, the relevant value for c is higher than
cd, see Section 5.1.)

Assumption 1 (Nondecreasing price elasticity). For all t, the elasticity of demand,
ε(p|t), is nondecreasing in p.

Assumption 1 implies that the instantaneous profit is single-peaked. Indeed the
derivative of π(p|t) with respect to p can be written as fp[1/ε − (p − c)/p)]. Under
Assumption 1, the bracketed term is decreasing in p, and hence the derivative is first
positive then negative as p rises (see Maskin and Riley (1984a)). The assumption holds
in particular in the iso-elastic case where consumer valuations in cohort t are Pareto-
distributed: 1 − F (p|t) = (p/v)−ε(t), for some ε(t) > 0; the elasticity of demand in
cohort t, ε(t), does not depend on the level of price.

The variation of the elasticity ε(p|t) with respect to the arrival time t depends on the
statistical link between the random variables t and v, as stated in Lemma 1 below.

Lemma 1. The elasticity of demand, ε(p|t), does not depend on the arrival time t if and
only if the random variables v and t are statistically independent.

If the elasticity increases (decreases) over time, the valuation v first-order stochas-
tically decreases (increases) with the arrival time t.

Proof: Since ε(p|t) = p h(p|t), the elasticity of demand varies with t in the same way
as the hazard rate h given by

h(v|t) =
f(v|t)

1− F (v|t)
·

Integrating between v and v yields∫ v

v

h(x|t) dx = − ln[1− F (v|t)].

5To simplify the presentation, we assume that for all cohorts t, the profit function, π(p|t), attains its
maximum in the interior of the interval (v, v̄).
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If the elasticity does not depend on (increases with, decreases with) t, the same is true
for the hazard rate, and hence also for the cumulative distribution function F (v|t), which
yields the results.6 �

4 General analysis

In Section 4.1, we describe and characterize the general class of direct mechanisms.
In Section 4.2, we interpret these mechanisms in terms of sales strategies seen in prac-
tice, namely quantity rationing and behavior-based price discrimination. Assuming con-
sumer risk neutrality, we show in Section 4.3 that these extra instruments do not enhance
the seller’s profit. Risk-aversion7 is thus needed for such instruments to be optimal. In
a static framework, Gauthier and Laroque (2012) provide necessary and sufficient con-
ditions under which stochastic mechanisms shall be used; in particular, they notice that
local randomization is always useless under risk neutrality.

4.1 Direct mechanisms

As explained in the introduction, we assume that the consumers simultaneously recog-
nize their need for the good and discover their willingness to pay for it, but that the
arrival times at which these simultaneous events occur differ across consumers. The
most intuitive way to think of this situation is in terms of consumer cohorts arriving at
different times. Equivalently, one can consider that the total population of all potential
consumers is initially present and that the vast majority of these consumers will never
be interested in the product, –i.e., formally, will “arrive” after the event.8 In contrast
to Akan et al. (2011), the initially present agents do not know their arrival date at the
beginning of the selling period. Before they learn it, their best guess is that they will
never be interested in the good.

From the revelation principle, we know that there is no loss of generality restricting
attention to direct mechanisms whereby consumers announce their valuations, their ar-
rival times and the seller offers a price p as well as a probability of getting the good, x,
depending on the announcements. Under such a mechanism, the consumer of type (v, t)

6The variable v first-order stochastically decreases (increases) with t if and only if F (v|t) increases
(decreases) with t.

7Liu and van Ryzin (2008) develop a two-period model with risk aversion in which all consumers are
present from the start. They study strategic rationing, but do not consider behavior-based pricing.

8In this interpretation, the number of agents initially present is much higher than N , the number of
those who will discover their interest for the item before the consumption date.
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enjoys the indirect utility

U(v|t) = sup
v′,t′≥t

x(v′, t′)[v − p(v′, t′)], (2)

The inequality t′ ≥ t can be interpreted in two ways: either the consumer is not physi-
cally present before time t and hence cannot participate in the mechanism; or the con-
sumer is physically present, but his best guess at this point is that he will never be
interested in the good, and hence he has no incentive to participate.

The mechanism is incentive-compatible if and only if it induces truth-telling, i.e.
(v, t) is solution to the maximization problem (2). We denote by U ′(v|t) the derivative
of U with respect to v.

Lemma 2. A mechanism (x(v, t), p(v, t)) is incentive-compatible if and only if the in-
direct utility U is non-increasing in t and convex in v, with U ′(v|t) = x(v, t).

Proof. The envelope theorem yields U ′(v|t) = x(v, t) ∈ [0, 1]. For any given arrival
time, the function U is the upper bound of a family of affine functions of v, and hence
is convex in v. Finally, the inspection of (2) shows that U is non-increasing in t.

Conversely, suppose that U is convex in v, with U ′ = x, and non-increasing in t.
Then for any v, v′, t, t′ with t′ ≥ t, we have

U(v|t) = x(v, t)[v − p(v, t)] ≥ U(v|t′) ≥ U(v′|t′) + x(v′, t′)(v − v′)
= x(v′, t′)[v′ − p(v′, t′)] + x(v′, t′)(v − v′)
= x(v′, t′)[v − p(v′, t′)],

which yields incentive-compatibility.

Under a general mechanism, the indirect utility functions form a non-increasing
family of convex curves, as represented on the left panel of Figure 1. Under a price
mechanism, the indirect utility is given by U(v|t) = max(0, v − p(t)), so the slope U ′

is first 0, then 1, with a convex kink at v = p(t), as represented on the right panel of the
Figure 1.

4.2 Quantity rationing under customer recognition

Stochastic mechanisms are not an abstract issue in the present problem. They can be
implemented in practice if we allow the seller to commit on quantities as well as on
prices and to let her policy depend on the observed visiting history of each consumer.
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v

U(v|t)

U(v|t1)

U(v|t2)

U(v|t3)

v

U(v|t)

U(v|t1)

U(v|t2)

U(v|t3)

p(t1)p(t2) p(t3)

Figure 1: Indirect utility functions in a general mechanism (left panel) and in a price
mechanism (right panel), with t1 < t2 < t3

Observing and conditioning upon consumer past behavior is made possible by techno-
logical evolutions in online retailing. For instance, an airline company can easily place
cookies in the web browser of its online visitors and, in principle, might condition the
price displayed on their screen upon their browsing behavior.

Rationing under customer recognition takes the following form. Suppose a buyer
shows up at some time t0 and in case he is denied the good returns at ulterior dates
t1, . . . , tn, . . . The scheme consists of a sequence (pi, σi)i, where pi and σi are the price
and the probability of getting the good at the i-th attempt:

H(t0, t1, . . . , tn, . . . )→ {(σ0, p0), (σ1, p1), . . . , (σn, pn), . . . }.

In the above expression, the time t0 does not refer to a consumer arrival time, which is
unobserved, but to the time the consumer first attempts to purchase the good. The seller
serves such a customer with probability σ0 at price p0, serves him with probability σ1

at price p1 at a later time t1 should he be rationed at time t0 and return at t1, with
probability σ2 at time t2 > t1 should he again be rationed at t1 and return at t2, etc.

When the values of (σti , pti), i > 0, depend only on the ti’s, the seller uses mere
quantity rationing: all customers trying to purchase at a given date ti are treated sim-
ilarly; they all have the same probability of getting the good, at the same price. The
pricing is behavior-based when these values vary across histories (which requires cus-
tomer recognition).

A consumer who has unsuccessfully attempted to purchase at time t0 keeps trying as
long as his valuation v remains above pi. Assuming that the sequence of prices, (pi), is
increasing, the stopping rule is given by the last index j(v, t0) such that pj ≤ v < pj+1.
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v

U(v|t)

p0 p1

σ0

(1− σ0)σ1

Figure 2: Rationing and behavior-based price discrimination for a sequence
(σ0, p0), (σ1, p1)

The consumer derives the following expected indirect utility from the sequenceH(t0):

U(v;H(t0)) = σ0(v − p0) + σ1(1− σ0)(v − p1) + · · ·+ σj(v − pj)
j−1∏
i=0

(1− σi), (3)

where the index j = j(v, t0) represents the last purchase attempt. Since there is no cost
of delaying purchase, the exact dates of the successive purchase opportunities do not
affect consumer utility. The consumer gets the good with probability

σ0 + σ1(1− σ0) + · · ·+ σj

j−1∏
i=0

(1− σi),

which is non-increasing in v because the stopping rule j(v, t0) is non-increasing. Fig-
ure 2 shows the indirect utility functions of consumers arriving at time t0 when these
consumers are offered a sequence of two purchase opportunities (σ0, p0), (σ1, p1). In-
creasing the size of the sequence allows to approximate any convex curve U(v|t0) arbi-
trarily closely, for a given t0.

We have seen that the most general incentive-compatible mechanism is character-
ized by a non-increasing family of convex indirect utility functions U(v|t). For each
arrival date t, we can replicate the indirect utility function with a behavior-based pricing
policy, i.e. with a sequence (σi, pi) starting at t0 = t. Because U(v|t) is non-increasing
in t, the consumer arriving at time t prefers these sequence to any other sequence starting
later. Once engaged in a sequence, the consumer has no access to purchase opportunities
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included in other sequences because of customer recognition.

4.3 Stochastic mechanisms are suboptimal

The mechanism design literature has given sufficient conditions for stochastic mecha-
nisms to be suboptimal (Maskin and Riley (1984b), Fudenberg and Tirole (1991) p. 306,
Laffont and Martimort (2002) p. 65). To the best of our knowledge, however, the ex-
isting conditions apply only to one-dimensional models, and even for those models, the
sufficient conditions hold only when the optimal allocation does not exhibit bunching
(see e.g. Strausz (2006), Schotmüller and Boone (2012)). These results, therefore, do
not apply in the present environment where consumers differ along two unobserved di-
mensions (their arrival date and their valuation for the good) and bunching may very
well occur at the deterministic optimum (see Section 5).

Proposition 1. Suppose that consumers are risk-neutral and that the instantaneous
profit function, π(p|t) = (p− c)[1− F (p|t)], is concave in p.

Then the optimal profit under quantity rationing and behavior-based pricing is the
same as under a simple time-dependent price schedule.

The monopolist cannot improve upon the profits of the complete problem by in-
troducing rationing and behavior-based pricing. This result extends Nocke and Peitz
(2007)’s Proposition 1 to a framework with elastic demands, new inflows of consumers
at each time and behavior-based pricing.

Proof. We assume that the consumer with the lowest valuation above the marginal cost
never purchases the good, hence Ũ(min(v, c)|t) = 0 and Ũ ′(min(v, c)|t) = 0.

The profit earned on a consumer with valuation v arriving at time t is the total surplus
he generates, (v − c)Ũ ′(v|t), minus his expected rent. The profit earned on the cohort
arriving at time t is therefore

Π̃(Ũ |t) =

∫ v̄

v

[
(v − c)Ũ ′(v|t)− Ũ(v|t)

]
f(v|t) dv.

Using Ũ(v|t) = Ũ ′(v|t) = 0 and integrating by part, we get

Π̃(Ũ |t) =

∫ v̄

v

Ũ ′′(v|t)π(v|t) dv,
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A second integration by part, together with Ũ ′(v|t) = π(v̄|t) = 0, yields

Π̃(Ũ |t) = −
∫ v̄

v

Ũ ′(v|t) dπ(v|t)
dv

dv.

A last integration by parts yields:

Π̃(Ũ |t) =

∫ v̄

v

[
Ũ(v|t)− Ũ(v̄|t)

] d2π(v|t)
dv2

dv − Ũ(v̄|t) dπ(v|t)
dv

·

It follows that the total profit earned by the seller is given by

Π(Ũ) =

∫ 1

0

∫ v̄

v

[
Ũ(v|t)− Ũ(v̄|t)

] d2π(v|t)
dv2

dv g(t) dt− Ũ(v̄|t) dπ(v|t)
dv

·

We have seen above that the indirect utility function Ũ(v|t) satisfies the following prop-
erties: Ũ(v|t) = Ũ ′(v|t) = 0 for all t; Ũ(v|t) is convex in v, with slope between zero
and one; Ũ(v|t) is non-increasing in t.

Let Û(v|t) = max(0, Ũ(v̄|t) + v − v̄). It is easy to check that Û satisfies all the
above properties. Actually Û is the lowest function satisfying these properties and co-
inciding with Ũ for v = v̄. The function Û is attained when the seller does not use
rationing nor behavior-based price discrimination, and simply offers a single price at
each time. The time-dependent price schedule corresponding to indirect utility Û is
given by Ũ(v̄|t) + p(t) − v̄ = 0. We have: Û ≤ Ũ with equality at v̄. Using the
concavity of the instantaneous profit π, we find that

Π(Û) ≥ Π(Ũ).

The derivative of Û(v|t) with respect to v is either zero or one: at each time, the seller
offers a single price (that is nondecreasing in time), and all consumers whose valuation
exceeds this price level are served. We conclude that any scheme that maximizes the
seller’s profit is such that only one single price is offered at each date, with no rationing.

5 The optimal time-dependent price schedule

In this section, we study the optimal mechanism which is according to the previous
section a price as a function of the purchase time. At the start of the selling period
(τ = 0), she commits to a price schedule, which we denote by p(τ), where τ is the
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purchase time, 0 ≤ τ ≤ 1.
In Section 5.1, we show that the consumer’s ability to delay his purchase translates

into a monotonicity constraint on the price schedule. In Section 5.2, we ignore the
monotonicity constraint and solve the “relaxed problem”. In Section 5.3, we solve the
complete problem.

5.1 The monotonicity constraint

A consumer arriving at time t, should he decide to buy the product, purchases when the
price is minimum. We denote by p̂(t) the minimum of prices offered after date t:

p̂(t) = min
τ≥t

p(τ). (4)

The consumer decides to purchase the good if and only if his valuation for the good
exceeds the minimum price, i.e. if and only if p̂(t) ≤ v, thus getting indirect utility
v − p̂(t). The purchase time, τ , depends on the arrival time, t, but not on the valuation
v, so we denote it by τ(t). The monopolist maximizes her intertemporal profit

Π = N

∫ 1

0

[p(τ(t))− cd] [1− F (p(τ(t))|t)] g(t) dt (5)

subject to the capacity constraint

N

∫ 1

0

[1− F (p(τ(t))|t)] g(t) dt ≤ Q̄.

The above inequality expresses the fact that the monopolist cannot sell more units than
her initial inventory. Denoting by µ the Lagrange multiplier associated to the capacity
constraint, we can rewrite the monopolist’s objective function as

L = N

∫ 1

0

[p(τ(t))− c] [1− F (p(τ(t))|t)] g(t) dt+ µQ̄, (6)

with c = cd + µ. The total cost c is the sum of the distribution cost, cd, and the shadow
cost of an extra unit, µ.

Clearly, no consumer purchases during periods where p(t) is decreasing as it is then
profitable to delay purchase. The next lemma introduces a transformation that removes
such regions.

Lemma 3. Let p(t) be any intertemporal price schedule. Changing from schedule p to
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schedule p̂, where p̂ is given by (4), does not alter the seller’s profit. The price schedule
p̂(t) is nondecreasing over time.

Proof: The monotonicity of p̂ is obvious from (4). Under the schedule p̂, the consumers
should purchase upon arrival as they will not get a lower price later.9 Hence, the seller’s
profit under p̂ is given by

N

∫ 1

0

[p̂(t)− cd] [1− F (p̂(t)|t)] g(t) dt,

which is the same as expression (5) for the profit Π because p̂(t) = p(τ(t)). �
It follows from Lemma 3 that the seller’s optimal profit, denoted hereafter by Π∗, is

obtained by maximizing

Π = N

∫ 1

0

[p(t)− cd] [1− F (p(t)|t)] g(t) dt (7)

under the capacity constraint

N

∫ 1

0

[1− F (p(t)|t)] g(t) dt ≤ Q̄ (8)

and the monotonicity constraint:
p′(t) ≥ 0 (9)

for all t ∈ [0, 1]. Hereafter, we refer to this problem as to the “complete problem”.

5.2 The relaxed problem

In this section, we first ignore the monotonicity constraint, maximizing the profit (7)
under the sole capacity constraint (8). Then we give a sufficient condition for the mono-
tonicity constraint to be satisfied at the relaxed solution.

The Lagrangian of the relaxed problem

L = N

∫ 1

0

[p(t)− c] [1− F (p(t)|t)] g(t) dt+ µQ̄ (10)

can be maximized separately at each time t. As the instantaneous profit is single-peaked
(see Section 3), the solution of the relaxed problem, denoted pr(.), is characterized by

9In periods where the original schedule p is decreasing, the new schedule p̂ is constant. The consumers
arriving at such times indifferently purchase upon arrival or later, which does not affect the price paid nor
the seller’s profit.
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the first-order condition
pr(t)− c
pr(t)

=
1

ε(pr(t)|t)
. (11)

The relaxed solution is solution to the complete problem if and only if

dpr

dt
≥ 0, (12)

for all t ∈ [0, 1]. A necessary condition for the relaxed solution to be nondecreasing
over time is that the price elasticity of the instantaneous demand, evaluated at the relaxed
solution, ε(pr(t)|t), be non-increasing in t. Proposition 2 provides a sufficient condition.

Proposition 2. Suppose that the elasticity of demand, ε(p|t), is nondecreasing in price
(Assumption 1) and non-increasing in time. Then the relaxed solution, given by (11), is
also solution to the complete problem.

Proof: Assume that the demand becomes less elastic as time passes, i.e. ε(p|t) is non-
increasing in the arrival time, t. This implies that

p− c
p
− 1

ε(p|t)

is non-increasing in t. Under Assumption 1, this term increases with p. We conclude
that pr(.) is nondecreasing over time, and hence is solution to the complete problem. �

Under Assumption 1, the intertemporal price schedule increases over time when the
consumers who arrive later are less price sensitive. Proposition 2 holds in particular
when the elasticity of demand is constant over time, i.e. when the arrival time and the
valuation are independent (see Lemma 1). In this case, the optimal price is constant over
time: the monopolist uses a uniform price. In contrast, when demand becomes strictly
less elastic as time passes, the optimal price increases over time: using a uniform price
would be suboptimal.

We now provide two examples to illustrate the effects of price discrimination. We
denote by pu the best uniform price, which maximizes (p−c)D(p), where the aggregate
demand function D(.) is given by (1). We compare the performances of pu and pr given
by (11) under the assumptions of Proposition 2. Consumer surplus is given by

S =

∫ 1

0

(∫ v

p(t)

vf(v|t) dv − p(t)[1− F (p(t)|t)]
)
g(t) dt, (13)
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and the welfare is

W =

∫ 1

0

(∫ v

p(t)

vf(v|t) dv − c[1− F (p(t)|t)]
)
g(t) dt, (14)

where p(t) = pr(t) or p(t) = pu.
In both examples, the elasticity is constant in price and non-increasing over time,

the minimum valuation is v = 1, consumers arrive uniformly during the selling period,
i.e. g = 1 on [0, 1], the market size is N = 1000, and the cost is c = 1.

• Suppose that the demand elasticity decreases linearly from three to two over the
selling period: ε(p|t) = 3− 2t, for all p and t ∈ [0, 1]. Then price discrimination
raises profits by 14.7% and reduces consumer surplus by 2.5% and welfare by
1.8%; 199 units (resp. 225 units) are sold under uniform pricing (resp. at the
optimum).

• Suppose that ε(t) = 5 for consumers arriving before t = .5 and ε(t) = 1.5

for consumers arriving after t = .5. Then price discrimination raises profits,
consumer surplus and welfare by respectively 18.1%, 1.4% and 5.4%; 122 units
(resp. 260 units) are sold under uniform pricing (resp. at the optimum).

Intertemporal price discrimination always increases profits. It may reduce (first exam-
ple) or raise (second example) aggregate consumer surplus and total welfare.

5.3 The complete problem

We now investigate the situation where the monotonicity constraint (9) is binding, i.e.
the relaxed solution violates (12). In this case, the optimal price schedule remains con-
stant on some time intervals, which we call bunching periods.

To derive the first-order conditions in this context, we employ the method of Mussa
and Rosen (1978), considering infinitesimal variations of the intertemporal price sched-
ule that are admissible, i.e. that respect the monotonicity constraint. Translating slightly
the schedule on a bunching period (t0, t1), we get∫ t1

t0

[
p− c
p
− 1

ε(p|t)

]
f(p|t)g(t) dt = 0, (15)

where p is the constant price during the bunching period. In other words, the first-
order condition (11) does not hold pointwise as is the case under separation, but only in
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expectation on bunching intervals. The optimal margin rate, (p − c)/p, is equal to the
average inverse elasticity during the bunching period.

Increasing slightly the price schedule on subinterval (s, t1) yields∫ t1

s

[
p− c
p
− 1

ε(p|t)

]
f(p|t)g(t) dt ≥ 0, (16)

for all s in (t0, t1). Hence, the optimal markup is below (above) the inverse elasticity at
the start (end) of bunching periods. As the bracketed term increases in p, the solution
to the complete problem is below (above) the relaxed solution pr at the start (end) of
bunching periods, as represented on Figure 3.

Finally, increasing (decreasing) slightly the price at the left (right) of t0 (t1), we get

1

ε(p−0 |t0)
≤ p−0 − c

p−0
and

p+
1 − c
p+

1

≤ 1

ε(p+
1 |t1)

, (17)

where p−0 and p+
1 are the limits of p(t) as t tends to t0 from below and t tends to t1 from

above. Assuming that the densities f(p|t) and g(t) are continuous in the arrival time, t,
we conclude from (16) and (17) that the price schedule is continuous at the extremities
of the bunching periods, where it coincides with the relaxed solution.10 The first-order
conditions at the extremities, together with (15), jointly determine t0, t1 and the level p
of the price during the bunching period.

Outside bunching intervals, the seller is able to discriminate consumers on the ba-
sis of their purchase times, and the price scheme is solution to the relaxed problem,
given by (11): the earlier the consumers arrive, the more price sensitive they are (the
corresponding price elasticity being evaluated at the offered price).

In contrast, during bunching periods, consumers buying at different times are offered
the same price. Using a uniform price is optimal if and only if the solution of the
complete problem exhibits full bunching. This occurs in particular when the elasticity
ε(p|t) monotonically increases over time, or equivalently, when valuations first-order
stochastically decrease with arrival times (see Lemma 1), in which case the relaxed
solution, pr(.), is monotonically decreasing over time.

A last remark, before considering implementation, is that our analysis of the op-
timal price schedule would remain unchanged with we introduce a common discount

10Letting s tend to t1 in (16), we get

p− c
p
≥ 1

ε(p|t1)
,

which, combined with the right inequality of (17), shows the continuity of the price schedule at t1.
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Figure 3: Mark-up for the relaxed solution (dashed line) and for the complete solution
(solid line), with c > 0.

factor r for consumers and the monopolist. All computations would remain the same
replacing p(t) by p(t)e[r(T−t)], where t is the purchase date, T the consumption date and
consumers who pay upon purchasing.

6 First-come first-served policy

Since the seller cannot earn more than the optimal profit of the complete problem, even
when equipped with sophisticated instruments, it is important to find selling mecha-
nisms that yield this profit level and are easy to implement in practice. In this section,
we show that first-come first-served policies meet these requirements.

A first-come first-served policy can be described by a pair (Q, r(q)), where Q ≤ Q̄

is the total number of units on sale and r(q) is the price of the q-th cheapest unit, q
being expressed as a percentage of the total number of units on sale. All units are made
available at time zero and are allocated on a first-come first-served basis: consumers
who arrive earlier get better price offers.

By construction, the function r(q), which represents the q-th percentile of the distri-
bution of offered fares, is nondecreasing on [0, 1]. Its inverse function, denoted by q(r),
is the fraction of units on sale that are offered at a price lower than or equal to r. For a
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uniform pricing policy, the support of the distribution of offered prices is a single point
{pu} and hence q(.) is a step function that jumps from zero to one at pu.

Proposition 3. When the consumers can delay their purchase at no cost, the optimal
first-come first-served policy yields the same profit as the optimal time-dependent price
schedule, Π∗, defined as the maximum of (7).

Proof: Under a first-come first-served policy, consumers who arrive earlier get better
deals, so the induced intertemporal price schedule is nondecreasing: the monotonicity
constraint (9) is satisfied.

Conversely, let p(.) be the optimal intertemporal price profile, i.e. the solution to the
complete problem derived in Section 5. The total number of units sold is

Q = N

∫ 1

0

[1− F (p(t)|t)] g(t) dt. (18)

Let q(t) be the fraction of units purchased before time t:

q(t) =

∫ t

0

[1− F (p(s)|s)] g(s) ds∫ 1

0

[1− F (p(s)|s)] g(s) ds

. (19)

The function q(.) is continuous and increasing, with q(0) = 0 and q(1) = 1. The non-
decreasing functions q(t) and p(t) parameterize a curve (q(t), p(t)) in the (q, r) space,
implicitly defining a first-come first-served scheme r(q) that satisfies r(q(t)) = p(t) for
all t.

The cheapest units are sold at price r(0) = p(0) and the most expensive ones at price
r(1) = p(1). Using (18) and differentiating (19), we get

Q dq = N [1− F (p(t)|t)] g(t) dt.

Changing variables q and t in (7) and using r(q(t)) = p(t) shows that between times t
and t+ dt, Q dq units are sold at the optimal price p(t), which yields

Π = Q

∫ 1

0

[r(q)− cd] dq.

The seller’s profit is equal to the average price of a sold unit minus the unit cost,∫ 1

0
r(q) dq − cd, multiplied by the number of units sold. �
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Figure 4: Left panel: Fraction of units purchased by early consumers (assuming that
early consumers buy relatively less units). Right panel: Optimal intertemporal price
schedule p(t) (dashed); first-come first-served scheme r(q) (solid).

As shown on the right panel of Figure 4, bunching at the optimum of the complete
problem translates into flat parts of the first-come first-served scheme r(q). If the opti-
mal price is constant and equal to p between times t0 and t1, the schedule r(q) is constant
and equal to p on (q0, q1), where q0 = q(t0) and q1 = q(t1) are given by equation (19).
The number of units sold at price p is therefore

(q1 − q0)Q = N

∫ t1

t0

[1− F (p|t)] g(t) dt.

Among consumers who arrive at time t, the fraction σ(t) = 1−F (p(t)|t) gets the good.
If early consumers buy relatively less units, i.e. σ(t)g(t) increases over time, then the
function q is convex in t and hence the speed at which units are sold, Q dq/ dt, increases
over time. In this case, shown on Figure 4, we have: q(t) ≤ t and p(t) = r(q(t)) ≤ r(t)

for all t. If early consumers buy relatively more units, i.e. σ(t)g(t) decreases over time,
then q is concave and the speed at which units are sold decreases over time. In this case:
q(t) ≥ t and p(t) = r(q(t)) ≥ r(t). Finally, if σ(t)g(t) remains constant, the flow of
units sold is constant over time, q(t) = t and p(t) = r(t).

7 Discussion

We have examined optimal selling mechanisms when the seller does not observe the
times at which her customers arrive on the market and how much they are willing to
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pay for the good. Assuming that the consumers are risk neutral and can delay their
purchase at no cost, and that they simultaneously recognize their need for the good
and their willingness to pay for it, we have demonstrated that quantity rationing and
behavior-based price discrimination (or more generally any stochastic mechanism) do
not improve the seller’s profit compared to a simple time-dependent price schedule. We
have also shown that the optimal profit may be achieved with a first-come first-served
policy, whereby the price depends only on the orders of arrival, and not on the exact
purchase times.

The above result does not mean that the seller cannot do better that the simple price
mechanism if other, more powerful instruments are available. Suppose for instance that
the seller announces that she will charge the static monopoly price at each time and
that she will once-for-all stop selling in the event that the observed sales are not in line
with what she expected. If the consumers believe the seller’s commitment, they cannot
do better than purchase upon arrival. Indeed, absent uncertainty, the seller is able to
perfectly anticipate demand and hence would immediately detect any deviation, should
some customers delay their purchase during high price periods. It follows that this
policy makes it possible for the seller to earn the relaxed profit, which is higher than
the complete profit if the monotonicity constraint is binding. We argue, however, that
such a commitment is extreme because it involves giving up all sales after a deviation is
observed –a very costly policy ex post, given that leftover units have zero values at the
end of the selling period. For example, this commitment could involve letting a train
depart with very few passengers. It seems unrealistic because it is based on aggregate
data and it is unclear how the seller would let individual consumers know about her
policy in practice.

Three directions for further research is worth mentioning. First, we have assumed
that the consumers arrive in the market at exogenously given times. Yet one purpose
of intertemporal pricing might be to encourage buyers to actively monitor the seller’s
offers. Further research is needed to understand optimal pricing strategies under endoge-
nous arrival times. Second, introducing risk aversion in the model would emphasize the
importance of resorting to stochastic mechanisms and thus of having a behavior-based
price policy. Finally, relaxing the commitment assumption would also be a challenging
extension of this work, allowing for the firm to revise its announced schedule.
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