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Abstract

We consider the problem of testing a particular type of composite null hypothesis under a
nonparametric multivariate regression model. For a given quadratic functional Q, the null
hypothesis states that the regression function f satisfies the constraint Q[f ] = 0, while the
alternative corresponds to the functions for which Q[f ] is bounded away from zero. On the
one hand, we provide minimax rates of testing and the exact separation constants, along
with a sharp-optimal testing procedure, for diagonal and nonnegative quadratic function-
als. We consider smoothness classes of ellipsoidal form and check that our conditions are
fulfilled in the particular case of ellipsoids corresponding to anisotropic Sobolev classes.
In this case, we present a closed form of the minimax rate and the separation constant.
On the other hand, minimax rates for quadratic functionals which are neither positive nor
negative makes appear two different regimes: “regular” and “irregular”. In the “regular”
case, the minimax rate is equal to n−1/4 while in the “irregular” case, the rate depends
on the smoothness class and is slower than in the “regular” case. We apply this to the
issue of testing the equality of norms of two functions observed in noisy environments.

AMS 2000 subject classifications: Primary 62G08, 62G10; secondary 62G20.

Keywords and phrases: Nonparametric hypotheses testing, sharp asymptotics, sepa-
ration rates, minimax approach, high-dimensional regression.
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1. Introduction

1.1. Problem statement

Consider the nonparametric regression model with multi-dimensional random design: We
observe (xi, ti)i=1,...,n obeying the relation

xi = f(ti) + ξi, i = 1, . . . , n, (1)

where ti ∈ ∆ ⊂ Rd are random design points, 1 ≤ d < ∞, f : ∆ → R is the unknown
regression function and ξis represent observation noise. Throughout this work, we assume
that the vectors ti = (t1i , . . . , t

d
i ), for i = 1, . . . , n, are independent and identically distributed

with uniform distribution on ∆ = [0, 1]d, which is equivalent to tki
iid∼ U(0, 1). Furthermore,

conditionally on Tn = {t1, . . . , tn}, the variables ξ1, . . . , ξn are assumed i.i.d. with zero mean
and variance τ2, for some known τ ∈ (0,∞).

Let L2(∆) denote the Hilbert space of all squared integrable functions defined on ∆. Assume
that we are given two disjoint subsets F0 and F1 of L2(∆). We are interested in analyzing
the problem of testing hypotheses:

H0 : f ∈ F0 against H1 : f ∈ F1. (2)

To be more precise, let us set zi = (xi, ti) and denote by Pf be the probability distribution
of the data vector (z1, . . . , zn) given by (1). The expectation with respect to Pf is denoted
by Ef . The goal is to design a testing procedure φn : (R × ∆)n → {0, 1} for which we are
able to establish theoretical guarantees in terms of the cumulative error rate (the sum of the
probabilities of type I and type II errors):

γn(F0,F1, φn) = sup
f∈F0

Pf (φn = 1) + sup
f∈F1

Pf (φn = 0). (3)

To measure the statistical complexity of this testing problem, it is relevant to analyze the
minimax error rate

γn(F0,F1) = inf
φn
γn(F0,F1, φn), (4)

where infφn denotes the infimum over all testing procedures.

The focus in this paper is on a particular type of null hypotheses H0 that can be defined as
the set of functions lying in the kernel of some quadratic functional Q : L2(∆) → R, i.e.,
F0 ⊂

{
f ∈ L2(∆) : Q[f ] = 0

}
. As described later in this section, this kind of null hypotheses

naturally arises in several problems including variable selection, testing partial linearity of a
regression function or the equality of norms of two signals. Then, it is appealing to define the
alternative as the set of functions satisfying |Q[f ]| > ρ2 for some ρ > 0. However, without
further assumptions on the nature of functions f , it is impossible to design consistent testing
procedures for discriminating between F0 and F1. One approach to making the problem
meaningful is to assume that the function f belongs to a smoothness class. Typical examples
of smoothness classes are Sobolev and Hölder classes, Besov bodies or balls in reproducing
kernel Hilbert spaces.

In the present work, we assume that the function f belongs to a smoothness class Σ that
can be seen as an ellipsoid in the infinite-dimensional space L2(∆). Thus, the null and the
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alternative are defined by

F0 =
{
f ∈ Σ : Q[f ] = 0

}
, F1 = F1(ρ) =

{
f ∈ Σ : |Q[f ]| ≥ ρ2

}
. (5)

One can take note that both hypotheses are composite and nonparametric.

1.2. Background on minimax rate- and sharp-optimality

Given the observations (xi, ti)i=1,...,n, we consider the problem of testing the composite hy-
pothesis F0 against the nonparametric alternative F1(ρ) defined by (5). The goal here is to
obtain, if possible, both rate and sharp asymptotics for the cumulative error rate in the min-
imax setup. These notions are defined as follows. For a fixed small number γ ∈ (0, 1), the
function r∗n is called minimax rate of testing if:

• there exists C ′ > 0 such that ∀C < C ′, we have lim inf
n→∞

γn(F0,F1(Cr∗n)) ≥ γ,

• there exists C
′′
> 0 and a test φn such that ∀C > C

′′
, lim sup

n→∞
γn(F0,F1(Cr∗n), φn) ≤ γ.

A testing procedure φn is called minimax rate-optimal if lim supn→∞ γn(F0,F1(Cr∗n), φn) ≤ γ
for some C > 0. Note that the minimax rate and the rate-optimal test may depend on the
prescribed significance level γ. However, in most situations this dependence cancels out from
the rate and appears only in the constants. If the constants C ′ and C ′′ coincide, then their
common value is called exact separation constant and any test satisfying the second condition
is called minimax sharp optimal. The minimax rate r∗n is actually not uniquely defined, but
the product of the minimax rate with the exact separation constant is uniquely defined up
to an asymptotic equivalence. For more details on minimax hypotheses testing we refer to
(Ingster and Suslina, 2003).

While minimax rate-optimality is a desirable feature for a testing procedure, it may still lead
to overly conservative tests. A (partial) remedy for this issue is to consider sharp asymptotics
of the error rate. In fact, one can often prove that when n→∞,

γn(F0,F1(ρ)) = 2Φ(−un(ρ)) + o(1), (6)

where Φ is the c.d.f. of the standard Gaussian distribution, un(·) is some “simple” function
from R+ to R and o(1) is a term tending to zero uniformly in ρ as n → ∞. This relation
implies that by determining r∗n as a solution with respect to ρ to the equation un(ρ) = z1−γ/2—
where zα stands for the α-quantile of the standard Gaussian distribution—we get not only
the minimax rate, but also the exact separation constant. When relation (6) is satisfied, we
say that Gaussian asymptotics hold.

1.3. Overview of the main contributions

Our contributions focus on the case where the smoothness class Σ is an ellipsoid in L2(∆) and
the quadratic functional Q admits a diagonal form in the orthonormal basis corresponding to
the directions of the axes of the ellipsoid Σ. To be more precise, let L be a countable set and
{ϕl}l∈L be an orthonormal system in L2(∆). For a function f ∈ L2(∆), let θ[f ] = {θl[f ]}l∈L
be the generalized Fourier coefficients with respect to this system, i.e., θl[f ] = 〈f, ϕl〉, where
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〈·, ·〉 denotes the inner product in L2(∆). The functional sets Σ ⊂ L2(∆) under consideration
are subsets of ellipsoids with directions of axes {ϕl}l∈L and with coefficients c = {cl}l∈L ∈ RL+:

Σ ⊂
{
f =

∑
l∈L

θl[f ]ϕl :
∑

l∈L
clθl[f ]2 ≤ 1

}
. (7)

The diagonal quadratic functional is defined by a set of coefficients q = {ql}l∈L: Q[f ] =∑
l∈L qlθl[f ]2. Note that if Q is definite positive, i.e., ql > 0 for all l ∈ L, then the null

hypothesis becomes f = 0 and the problem under consideration is known as detection problem.
However, the goal of the present work is to consider more general types of diagonal quadratic
functionals. Namely, two situations are examined: (a) all the coefficients ql are nonnegative
and (b) the two sets L+ = {l ∈ L : ql > 0} and L− = {l ∈ L : ql < 0} are nonempty.

In the first situation, we establish Gaussian asymptotics of the cumulative error rate and
propose a minimax sharp-optimal test. Under some conditions, we show that the sequence1

r∗n,γ = min
{
ρ > 0 : inf

v∈RL+:〈v,c〉≤1;〈v,q〉≥ρ2
‖v‖22 ≥ 8n−2z1−γ/2

}
(8)

provides minimax rate of testing with constants C ′ = C ′′ = 1. This result is instantiated to
some examples motivating our interest for testing the hypotheses (5). One example, closely
related to the problem of variable selection (Comminges and Dalalyan, 2011), is testing the rel-
evance of a particular covariate in high-dimensional regression. This problem is considered in a
more general setup corresponding to testing that a partial derivative of order α = (α1, . . . , αd),
denoted by ∂α1+...+αdf/∂tα1

1 . . . ∂tαdd , is identically equal to zero against the hypothesis that
this derivative is significantly different from 0. As a consequence of our main result, we
show that if f lies in the anisotropic Sobolev ball of smoothness σ = (σ1, . . . , σd), and we set

δ =
∑d

i=1 αi/σi, σ̄ =
(

1
d

∑d
i=1 σ

−1
i

)−1
, then the minimax optimal-rate is r∗n = n−2σ̄(1−δ)/(4σ̄+d)

provided that δ < 1 and σ̄ > d/4. Furthermore, we derive Gaussian asymptotics and exhibit
the exact separation constant in this problem.

The second situation we examine in this paper concerns the case where the cardinalities
of both L+ and L− are nonzero. A typical application of this kind of problem is testing the
equality of the norms of two signals observed in noisy environments. In this set-up, we provide
minimax rates of testing and exhibit the presence of two regimes that we call regular regime
and irregular regime. In the regular regime, the minimax rate is r∗n = n−1/4, while in the
irregular case it may be of the form n−a with an a < 1/4 that depends on the degree of
smoothness of the functional class.

Note that all our results are non-adaptive: our testing procedures make explicit use of the
smoothness characteristics of the function f . Adaptation to the unknown smoothness for the
problem we consider is an open question for which the works (Spokoiny, 1996, Gayraud and
Pouet, 2005) may be of valuable guidance.

1.4. Relation to previous work

Starting from the seminal papers by Ermakov (1990) and Ingster (1993a,b,c), minimax testing
of nonparametric hypotheses received a great deal of attention. A detailed review of the

1We denote by ‖ · ‖2 and by 〈·, ·〉 the usual norm and the inner product in `2(L), the space of squared
summable arrays indexed by L.
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literature on this topic being out of scope of this section, we only focus on discussing those
previous results which are closely related to the present work. The goal here is to highlight
the common points and the most striking differences with the existing literature.

Note that the major part of the statistical inference for nonparametric hypotheses testing
was developed for the Gaussian white noise model (GWNM) and its equivalent formulation
as Gaussian sequence model (GSM). As recent references for the problem of testing a simple
hypothesis in these models, we cite (Ermakov, 2011, Ingster et al., 2012), where the reader
may find further pointers to previous work. In the present work, the null hypothesis defined by
(5) is composite and nonparametric. Early references for minimax results for composite null
hypotheses include (Horowitz and Spokoiny, 2001, Pouet, 2001, Gayraud and Pouet, 2001,
2005), where the case of parametric null hypothesis is of main interest. These papers deal with
the one-dimensional situation and provide only minimax rates of testing without attaining
the exact separation constant. Furthermore, the alternative is defined as the set of functions
that are at least at a Euclidean distance ρ from the null hypothesis, which is very different
from the alternatives considered in this work.

More recently, nonasymptotic approach to minimax testing gained popularity (Baraud et al.,
2003, 2005, Laurent et al., 2011, 2012). One of the advantages of the nonasymptotic approach
is that it removes the frontier between the concepts of parametric and nonparametric hy-
potheses, while its limitation is that there is no result on sharp optimality (even the notion
itself is not well defined). Note also that all these papers deal with the GSM considering as
main application the case of one dimensional signals, as opposed to our set-up of regression
with high-dimensional covariates.

Let us review in more details the papers (Ingster and Sapatinas, 2009) and (Laurent et al.,
2011) that are very closely related to our work either by the methodology which is used or by
the problem of interest. Ingster and Sapatinas (2009) extended some results on the goodness-
of-fit testing for the d-dimensional GWNM to the goodness-of-fit testing for the multivariate
nonparametric regression model. More precisely, they tested the null hypothesis H0 : f = f0,
where f0 is a known function, against the alternative H1 : f ∈ Σ,

∫
∆(f − f0)2 ≥ r2

n, where
Σ is an ellipsoid in the Hilbert space L2(∆) with respect to the tensor product Fourier basis
(with extensions to other bases). They obtained both rate and sharp asymptotics for the error
probabilities in the minimax setup. So the model they considered is the same as the one we are
interested in here, but the hypotheses H0 and H1 are substantially different. As a consequence,
the testing procedure we propose takes into account the general forms of H0 and H1 given
by (5) and is different from the asymptotically minimax test of Ingster and Sapatinas (2009).
Furthermore, we substantially relaxed the contraint on the noise distribution by replacing
Gaussianity assumption by the condition of bounded 4th moment.

Laurent et al. (2011) considered the GWNM from the inverse problem point of view, i.e.,
when the signal of interest g undergoes a linear transformation T before being observed in
noisy environment. This corresponds to f = T [g] with a compact injective operator T . Then
the two assertions g = 0 and T [g] = 0 are equivalent. Consequently, if the goal is to detect
the signal f , one can consider the two testing problems :

1. (inverse formulation) H0 : T−1[f ] = 0 against H1 : ‖T−1[f ]‖2 ≥ ρ.
2. (direct formulation) H0 : f = 0 against H1 : ‖f‖2 ≥ ρ.

The authors discussed advantages and limitations of each of these two formulations in terms of
minimax rates. Depending on the complexity of the inverse problem and on the assumptions on
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the function to be detected (sparsity or smoothness), they proved that the specific treatment
devoted to inverse problem which includes an underlying inversion of the operator, may worsen
the detection accuracy. For each situation, they also highlighted the cases where the direct
strategy fails while a specific test for inverse formulation works well. The inverse formulation
is closely related to our definition (5) of the hypotheses H0 and H1, since Q[f ] = ‖T−1[f ]‖22 is
a quadratic functional. However, our setting is more general in that we consider functionals
with non-trivial kernels and with possibly negative diagonal entries.

1.5. Organization

The rest of the paper is organized as follows. The results concerning sharp asymptotics for
positive semi-definite diagonal functionals are provided in Section 2. In particular, the rates
of separation for a general class of tests called linear U-tests are explored in Subsection 2.2.
The asymptotically optimal linear U-test is provided in Subsection 2.3 along with its rate of
separation, which is shown to coincide with the minimax exact rate in Subsection 2.4. Section 3
is devoted to a discussion of the assumptions and to the consequences of the main result
for some relevant examples. The results for nonpositive and nonnegative diagonal quadratic
functionals are stated in Section 4 along with an application to testing the equality of the
norms of two signals. Finally, the proofs of the results are postponed to the Appendix.

2. Minimax testing for nonnegative quadratic functionals

2.1. Additional notation

In what follows, the notation An = O(Bn) means that there exists a constant c > 0 such
that An ≤ cBn and the notation An = o(Bn) means that the ratio An/Bn tends to zero. The
relation An ∼ Bn means that An/Bn tends to 1, while the relation An � Bn means that there
exist constants 0 < c1 < c2 <∞ and n0 large enough such that c1 ≤ An/Bn ≤ c2 for n ≥ n0.
For a real number c, we denote by c+ its positive part max(0, c) and by bcc its integer part.
For a set A, 1A stands for its indicator function and |A| denotes its cardinality. Given a q > 0

and a function f , ‖f‖q =
( ∫

∆ |f(t)|qdt
)1/q

is the conventional `q-norm of f . Similarly, for a

vector or an array u indexed by a countable set L, ‖u‖q = (
∑

l∈L |ul|q)1/q is the `q-norm of
u. As usual, we also denote by ‖u‖0 and ‖u‖∞, respectively, the number of nonzero entries
and the magnitude of the largest entry of u ∈ RL.

In the sequel, without loss of generality, we assume that the standard deviation of the noise
is equal to one: τ = 1. The case of general but known τ will be formulated as a consequence.

Recall that we consider quadratic functionals Q of the form Q[f ] =
∑

l∈L qlθl[f ]2, for some
given array q = {ql}l∈L. The major difference between the functional

∑
l∈L θl[f ]2 that appears

in the problem of detection (Ingster and Sapatinas, 2009, Ingster et al., 2012) and this general
functional actually lies in the fact that the support of q defined by SF = supp(q) =

{
l ∈

L : ql 6= 0
}

is generally different from L. Furthermore, large coefficients ql amplify the error
of estimating Q[f ] and, therefore, it becomes more difficult to distinguish H0 from H1. An
interesting question, to which we answer in the next sections, is what is the interplay between
c and q that makes it possible to distinguish between the null and the alternative.

Let ScF denote the complement of SF and, for a set L ⊂ L, span
(
{ϕl}l∈L

)
be the closed linear

subspace of L2(∆) spanned by the set {ϕl}l∈L. Let ΠSF f and ΠScF
f be the orthogonal pro-
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jections of a function f ∈ Σ on span
(
{ϕl}l∈SF

)
and span

(
{ϕl}l∈ScF

)
respectively. To simplify

notation, the subscript ScF is omitted in the rest of the paper, i.e., ΠScF
f is replaced by Πf .

Finally, throughout this work we will assume that f is centered, i.e.,
∫

∆ f(t) dt = 0, and that
{ϕl} is an orthonormal basis of the subspace of L2(∆) consisting of all centered functions. In
other terms, all the functions ϕi are orthogonal to the constant function.

2.2. Linear U-tests and their error rate

We start by introducing a family of testing procedures that we call linear U-tests. To this end,
we split the sample into two parts: a small part of the sample is used to build a pilot estimator
Π̂fn of Πf , whereas the remaining observations are used for distinguishing between H0 and
H1. Let us set m = n−b

√
nc and call the two parts of the sample D1 = {(xi, ti) : i = 1, . . . ,m}

and D2 = {(xi, ti) : i = m + 1, . . . , n}. Using a pilot estimator Π̂fn of Πf , we define the

adjusted observations x̃i = xi − Π̂fn(ti) and z̃i = (x̃i, ti).

Definition 1. Let wn = {wl,n}l∈SF be an array of real numbers containing a finite number
of nonzero entries and such that ‖wn‖2 = 1. Let u be a real number. We call a linear U-test
based on the array wn the procedure φwn = 1{Uw

n >u}, where Un is the linear in wn U-statistic
defined by

Un =

(
2

m(m− 1)

)1/2 ∑
1≤i<j≤m

x̃ix̃j
∑
l∈SF

wl,nϕl(ti)ϕl(tj). (9)

We shall prove that an appropriate choice of wn and u leads to a linear U-test that is asymptot-
ically sharp-optimal. The rationale behind this property relies on the by now well-understood
principle of smoothing out high frequencies of a noisy signal. In fact, if we call {θl[f ]}l∈SF the
(relevant part of the) representation of f in the frequency domain, then { 1

m

∑m
i=1 x̃iϕl(ti)}l∈SF

is a nearly unbiased estimator of this representation. Then, the array wn acts as a low pass
filter that shrinks to zero the coefficients corresponding to high frequencies in order to prevent
over-fitting.

The first step in establishing theoretical guarantees on the error rate of a linear U-test consists
in exploring the behavior of the statistic Un under the null.

Proposition 1. Let wn,l ≥ 0 for all n ∈ N and l ∈ L. Assume that E[ξ4
1 ] < ∞ and the

following conditions are fulfilled:

• For some Cw <∞, ‖wn‖2∞‖wn‖0 ≤ Cw.
• As n→∞, ‖wn‖0 →∞ so that ‖wn‖0 = o(n).
• For some Cϕ <∞, supt∈∆

∑
l:wl,n 6=0 ϕ

2
l (t) ≤ Cϕ‖wn‖0.

• As n→∞, supf∈ΣEf [‖Πf − Π̂fn‖44] = o(1).

Then, uniformly in f ∈ F0, the U-statistic defined by (9) converges in distribution to the
standard Gaussian distribution N (0, 1).

In other terms, this proposition claims that under appropriate conditions, for every u ∈ R,
the sequence supf∈F0

|Pf (Un > u) − Φ(u)| tends to zero, as n goes to infinity. This means
that under the null, the distribution of the test statistic Un is asymptotically parameter free.
This is frequently referred to as Wilks’ phenomenon.
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To complete the investigation of the error rate of a linear U-test, we need to characterize
the behavior of the test statistic Un under the alternative. As usual, this step is more in-
volved. Roughly speaking, we will show that under the alternative the test statistic Un is

close to a Gaussian random variable with mean hn[f,wn] =
(m(m−1)

2

)1/2∑
l∈L(wn)wl,nθ

2
l [f ]

and variance 1. The rigorous statement is provided in the next proposition.

Proposition 2. Let the assumptions of Proposition 1 be satisfied. Assume that in addition:

• There exists a sequence ζn such that ζ−1
n = o(n) and supl∈SF :wl,n<ζn

c−1
l = o(1).

• For some p > 4, we have supf∈Σ ‖ΠSF f‖p <∞.

Then, for every ρ > 0, the type II error of the linear U-test based on wn satisfies:

supf∈F1(ρ) Pf (φwn = 0) ≤ supf∈F1(ρ) Φ(u− hn[f,wn]) + o(1), (10)

where the term o(1) does not depend on ρ.

Let us provide an informal discussion of the assumptions introduced in the previous propo-
sitions. The first two assumptions in Proposition 1 mean that most nonzero entries of the
array wn should be of the same order. Arrays that have a few spikes and many small entries
are discarded by these assumptions. Furthermore, the number of samples in the frequency
domain that are not annihilated by wn should be small as compared to the sample size n.
The third assumption of Proposition 1 is trivially satisfied for bases of bounded functions
such as sine and cosine bases and their tensor products. For localized bases like wavelets, this
assumption imposes a constraint on the size of the support of wn: it should not be too small.
The last assumption of Proposition 1 will be discussed in more detail later. One should also
take note that the only reason for requiring from the functions f to be smooth under the null
is the need to be able to construct a uniformly consistent pilot estimator of Πf .

Concerning the assumptions imposed in Proposition 2, the first one means that only co-
efficients θl corresponding to high frequencies are strongly shrunk by wn. This is a kind of
coherence assumption between the smoothing filter wn and the coefficients c = {cl}l∈L encod-
ing the prior information on the signal smoothness. The second assumption of Proposition 2
is rather weak and usual in the context of regression with random design. It is only needed
for getting uniform control of the error rate and the actual value of the norm ‖ΠSF f‖p does
not enter in any manner in the definition of the testing procedure.

Let us draw now the consequences of the previous propositions on the cumulated error rate
of a linear U-test. Using the monotonicity of the Gaussian c.d.f. Φ, under the assumptions of
Proposition 2, we get

γn(F0,F1(ρ), φwn ) ≤ Φ(−u) + Φ
(
u− inff∈F1(ρ) hn[f,wn]

)
+ o(1), (11)

where the term o(1) is uniform in ρ > 0. Using the symmetry of Φ and the monotonicity
of Φ′ on R+, one easily checks that the value of the threshold u minimizing the main term
in the right-hand side of the last display is u = 1

2 inff∈F1(ρ) hn[f,wn]. This result provides a
constructive tool for determining the rate of separation of a given linear U-test. In fact, one
only needs to set u = z1−γ/2 and find a sequence rn such that inff∈F1(rn) hn[f,wn] ∼ 2z1−γ/2,
where zα is the α-quantile of N (0, 1).

Remark 1. We explain here the use of x̃i instead of xi in our testing procedure. Actually if
we were only interested in rate-optimality, this precaution would not have been necessary.
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The problem only arises when dealing with sharp-optimality and it concerns the variance of
Un. Indeed we need some terms that appear in the variance to tend to zero when Q[f ] = 0
or Q[f ] is small (those terms only need to be bounded for the rate-optimality). If we had
used xi instead of x̃i, we would have ended up with terms like ‖f‖2 in the variance. The
information contained in the assertion “Q[f ] is small” concerns only the coefficients {θl}l∈SF ,
thus it implies that ‖ΠSF f‖2 is small but it does not say anything about ‖f‖2. We can also
remark that this problem does not arise in the Gaussian sequence model as one estimates θ2

l

by an unbiased estimator whose variance makes appear only θl.

Remark 2. We chose to consider only the criterion γn(F0,F1(ρ), φwn ) so as to simplify the
exposition of our results. But we could have dealt with the classical Neyman-Pearson criterion
that we recall here. For a significance level 0 < α < 1 and a test ψ, we set

α(F0, ψ) = supf∈F0
Pf (ψ = 1), β(F1, ψ) = infψ supf∈F1

Pf (ψ = 0),

Instead of the minimax risk γn(F0,F1(ρ)) we could have considered the quantity βn(F0,F1(ρ)) =
infψ:α(F0,ψ)≤α β(F1(ρ), ψ). This criterion is considered in Ingster and Sapatinas (2009) and
more generally in Ingster and Suslina (2003). The transposition to our case is straightforward.

2.3. Minimax linear U-tests

The relation (11) being valid for a large variety of arrays wn, it is natural to look for a wn

minimizing the right-hand side of (11). This leads to the following saddle point problem:

sup
w∈RL+
‖w‖2=1

inf
f∈F1(ρ)

∑
l∈L

wlθl[f ]2 = sup
w∈RL+
‖w‖2=1

inf
v∈RL+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w,v〉. (12)

It turns out that this saddle point problem can be solved with respect to w and leads to a
one-parameter family of smoothing filters w.

Proposition 3. Assume that for every T > 0, the set N (T ) = {l ∈ SF : cl < Tql} is finite.
For a given ρ > 0, assume that the equation∑

l∈L ql(Tql − cl)+∑
l∈L cl(Tql − cl)+

= ρ2 (13)

has a solution and denote it by Tρ. Then, the pair (w∗,v∗) defined by

v∗l =
(Tρql − cl)+∑

l∈L cl(Tρql − cl)+
w∗l =

v∗l
‖v∗‖2

(14)

provides a solution to the saddle point problem (12), that is

〈w∗,v∗〉 = sup w∈RL+
‖w‖2=1

inf
v∈RL+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w,v〉 = inf
v∈RL+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w∗,v〉.

This result tells us that the “optimal” weights wn for the linear U-test φwn should be of the
form (14), which is particularly interesting because of its dependence on only one parameter
T > 0. The next theorem provides a simple strategy for determining the minimax sharp-
optimal test among linear U-tests satisfying some mild assumptions. We will show later in
this section that this test is also minimax sharp-optimal among all possible tests.
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Theorem 1. Assume that E[ξ4
1 ] <∞ and for every T > 0, the set N (T ) = {l ∈ SF : cl < Tql}

is finite. For a prescribed significance level γ ∈ (0, 1), let Tn,γ be a sequence of positive numbers
such that the following relation holds true: as n→∞,(

m(m− 1)

2

∑
l∈L

(Tn,γql − cl)2
+

)1/2

=

(∑
l∈L

cl(Tn,γql − cl)+

)
(2z1−γ/2 + o(1)). (15)

Let us define

r∗n,γ =

{∑
l∈L ql(Tn,γql − cl)+∑
l∈L cl(Tn,γql − cl)+

}1/2

. (16)

If the following conditions are fulfilled:

[C1] For some constant C1 > 0, |N (Tn,γ)|maxl∈N (Tn,γ) q
2
l ≤ C1

∑
l∈N (Tn,γ)

(
ql− cl

Tn,γ

)2
.

[C2] As n→∞,
∑

l∈N (Tn,γ) q
2
l = o(n2 minl∈N (Tn,γ) q

2
l ).

[C3] For some constant C3 > 0, supt∈∆

∑
l∈N (Tn,γ) ϕ

2
l (t) ≤ C3|N (Tn,γ)|.

[C4] As n→∞, |N (Tn,γ)| → ∞ so that |N (Tn,γ)| = o(n).

[C5] As n→∞, Tn,γ inf l∈SF ql tends to +∞.

[C6] As n→∞, supf∈ΣEf [‖Πf − Π̂fn‖44] = o(1).

[C7] For some p > 4, it holds that supf∈Σ ‖ΠSF f‖p <∞.

then the linear U-test φ̂∗n = 1{Uŵ∗
n >z1−γ/2} based on the array ŵ∗n defined by

ŵ∗l,n =
(Tn,γql − cl)+[∑

l′∈L(Tn,γql′ − cl′)2
+

]1/2
satisfies

γn(F0,F1(r∗n,γ), φ̂∗n) ≤ γ + o(1), as n→∞. (17)

The proof of this result, provided in the Appendix, is a direct consequence of Proposition 1,
2 and 3. As we shall see below, the rate r∗n,γ defined in Theorem 1 is the minimax sharp-rate
in the problem of testing hypotheses (5), provided that the assumptions of the theorem are
fulfilled. As expected, getting such a strong result requires non-trivial assumptions on the
nature of the functional class, that of the hypotheses to be tested, as well as the interplay
between them. Some short comments on these assumptions are provided in the remark below,
with a further development left to subsequent sections.

Remark 3. The very first assumption is that the set N (T ) is finite. It is necessary for ensuring
that the linear U-test we introduced is computable. This assumption is fulfilled when, roughly
speaking, the coefficients which express the regularity, {cl}l∈L, grow at a faster rate than the
coefficients {ql}l∈L of the quadratic functional Q. Assumptions [C1], [C2], [C4] and [C5] are
satisfied in most cases we are interested in. Two illustrative examples—concerning Sobolev
ellipsoids with quadratic functionals related to partial derivatives—for which these hypothe-
ses are satisfied are presented in Subsections 3.3 and 3.4. Assumption [C3] is essentially a
constraint on the basis {ϕl}; we show in Subsection 3.1 that it is satisfied by many bases
commonly used in statistical literature. [C6] and [C7] are related to additional technicali-
ties brought by the regression model, which force us to impose more regularity than in the
Gaussian sequence model.
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2.4. Lower bound

We shall state in this section the result showing that the rate r∗n,γ introduced in Theorem 1
is the minimax rate of testing and the exact separation constant associated with this rate is
equal to one. This also implies that the testing procedure proposed in previous subsection is
not only minimax rate-optimal but also minimax sharp-optimal among all possible testing
procedures. In this subsection, we consider the functional classes Σ = Σp,L defined by

Σp,L =
{
f =

∑
l∈L

θl[f ]ϕl :
∑

l∈L
clθl[f ]2 ≤ 1, ‖f‖p ≤ L, ΠScF

f = 0
}
.

Clearly, for p > 4, this functional class is smaller than those satisfying conditions of Theorem 1.
Therefore, any lower bound proven for these functional classes will also be a lower bound for
the functional classes for which Theorem 1 is applicable.

Theorem 2. Assume that ξis are standard Gaussian random variables and that for every
T > 0, the set N (T ) = {l ∈ SF : cl < Tql} is finite. For a prescribed significance level
γ ∈ (0, 1), let Tn,γ and r∗n,γ be as in Theorem 1. If conditions [C1], [C3] and

[C8] as n→∞, |N (Tn,γ)| → ∞ so that |N (Tn,γ)| log(|N (Tn,γ)|) = o(n),
[C9] as n→∞, maxl∈N (Tn,γ) cl = o(n|N (Tn,γ)|1/2),

are fulfilled, then for every C < 1 the minimax risk satisfies

γn(F0,F1(Cr∗n,γ)) ≥ γ + o(1), as n→∞. (18)

Although the main steps of the proof of this theorem, postponed to the Appendix, are close
to those of (Ingster and Sapatinas, 2009), we have made several improvements which resulted
in both shorter and more transparent proof and relaxed assumptions. The most notable
improvement is perhaps the fact that in condition [C3] it is not necessary to have C3 = 1.
We will further discuss this point and the other assumptions in the next section.

Remark 4. If we were only interested in minimax rate-optimality, we could have used simpler
prior in the proof of Theorem 2 which would also yield the desired lower bound under slightly
weaker assumptions. One can also deduce from the proof that for a concrete pair (c,q), a
simple way to figure out what is the minimax rate of separation consists in solving w.r.t. rn
the relation n(rn)2 �M(r−2

n )1/2, where M(T ) =
∑

l∈N (T ) q
2
l .

3. Examples

3.1. Bases satisfying assumption [C3]

First we give examples of orthonormal bases satisfying assumption [C3], irrespectively of the
nature of arrays c and q defining the smoothness class and the quadratic functionalQ. One can
take note that despite more general settings considered in the present work, our assumption
[C3] is significantly weaker than the corresponding assumption in (Ingster and Sapatinas,
2009), which requires C3 to be equal to one. In fact, in a remark, Ingster and Sapatinas
(2009) suggest that their proof remains valid under our assumption [C3] if assumption [C4]
is strengthened to |N (Tn,γ)| = o(n2/3). Due to a better analysis, we succeeded to establish
sharp asymptotics under the weak version of [C3] without any additional price (except that
a logarithmic factor appears now in the corresponding condition in Theorem 2).
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Fourier basis Let us consider first the following Fourier basis in dimension d for which
L = Zd and

ϕk(t) =


1, k = 0,√

2 cos(2π k · t), k ∈ (Zd)+,√
2 sin(2π k · t), −k ∈ (Zd)+,

(19)

where (Zd)+ denotes the set of all k ∈ Zd \ {0} such that the first nonzero element of k is
positive and k · t stands for the usual inner product in Rd. Since all the basis functions are
bounded by

√
2, [C3] is obviously satisfied with C3 = 2. Furthermore, if the set N (T ) is

symmetric, i.e., k ∈ N (T ) implies −k ∈ N (T ), then [C3] is fulfilled with C3 = 1.

Tensor product Fourier basis We can also consider the traditional tensor product Fourier
basis as in Ingster and Sapatinas (2009). [C3] is then obviously satisfied with C3 = 2d. More-
over, if the set N (T ) is orthosymmetric, i.e., (k1, . . . , kd) ∈ N (T ) implies (±k1, . . . ,±kd) ∈
N (T ), then [C3] is fulfilled with C3 = 1.

Haar basis Let
{
ϕj,k(·), j ∈ N, k ∈ {1, . . . , 2j}

}
, be the standard orthonormal Haar basis

on [0, 1], where j is the scale parameter and k is the shift. The tensor product (ϕj,k)j,k Haar
basis is then

ϕj,k =

d∏
i=1

ϕji,ki ,

where j = (j1, . . . , jd) and k = (k1, . . . , kd). As shown in (Ingster and Sapatinas, 2009), under
the extra assumption that the coefficients cl = cj,k and ql = qj,k depend only on the scale
parameter, i.e., cj,k = cj and qj,k = qj , assumption [C3] is satisfied with C3 = 1. Note that
the same holds true for the multivariate Haar basis defined in the more commonly used way
(see Cohen (2003), chapter 2):

{
ϕl(t) =

∏d
i=1 ψ

ωi
j,ki

(ti)
}

, where l = (j,k,ω) such that j ∈ N,

k ∈ {1, . . . , 2j}d and ω ∈ {0, 1}d \ {0} with ψ0
j,k and ψ1

j,k being the scaled and shifted mother
wavelet and father wavelet, respectively.

Compactly supported wavelet basis Since we are not limited to the case C3 = 1, any
orthonormal wavelet basis satisfies assumption [C3], as long as the wavelets are compactly
supported and provided that the coefficients cl and ql depend on the level of the resolution
and not on the shift.

3.2. Examples of estimators satisfying [C6]

We present below pilot estimators that in two different contexts satisfy assumption [C6].

Tensor-product Fourier basis For the first example, we assume that the orthonormal
system {ϕl} is the tensor product Fourier basis. Then we have supl supt∈∆ |ϕl(t)| ≤ 2d/2. The
anisotropic Sobolev ball with radius R and smoothness σ = (σ1, . . . , σd) ∈ (0,∞)d is defined
by

Wσ
2 (R) =

{
f :
∑

l∈Zd

∑d

i=1
(2πli)

2σiθl[f ]2 ≤ R
}
.
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The estimator we suggest to use is constructed as follows. We first estimate θl[f ] by θ̂l =
1
n

∑n
i=1 xiϕl(ti). Then we choose a tuning parameter T = Tn > 0 and define the pilot estimator

Π̂fn =
∑

l∈ScF :cl<T

θ̂lϕl. (20)

To ease notation, we set N1(T ) = {l ∈ ScF : cl < T} and N2(T ) = ScF \ N1(T ).

Lemma 1. Assume that either one of the following conditions is satisfied:

• c satisfies the condition
∑

l c
−1
l <∞,

• Σ ⊂Wσ
2 (R) for some R > 0 and for some σ ∈ (0,∞)d such that σ̄ = (1

d

∑
i

1
σi

)−1 > d/4.

If T = Tn →∞ so that |N1(T )| = o(n1/2), then Π̂fn defined by (20) satisfies [C6].

Compactly supported orthonormal wavelet basis The same method can be applied
in the case of an orthonormal basis of compactly supported wavelets of L2[0, 1]d. We suppose
that the coefficients cl = cj,k correspond to those of a Besov ball Bs

2,2, i.e., cj = 2js, and that
σ = s− d/4 > 0. Let us set, for J ∈ N,

Π̂fn =
∑

k∈[1,2J ]d
α̂J,kϕJ,k where α̂J,k =

1

n

∑n

i=1
xiϕJ,k(ti).

Lemma 2. If J = Jn tends to infinity so that 2Jd = o(n), then supf∈ΣEf‖Πf − Π̂fn‖4 → 0
as n→∞.

In the following two subsections, we apply the previous results to two examples of quadratic
functionals involving derivatives. The orthonormal system we use is the tensor product Fourier
basis.

3.3. Testing partial derivatives

We assume here that f belongs to a Sobolev class with anisotropic constraints and the
quadratic functional Q corresponds, roughly speaking, to the squared L2-norm of a partial
derivative. More precisely, let α ∈ Rd+ and σ ∈ Rd+ be two given vectors and define, for every
l ∈ L = Zd \ {0},

ql =
∏d

j=1
(2πlj)

2αj , and cl =
∑d

j=1
(2πlj)

2σj .

We will assume that
∑d

j=1(αj/σj) < 1.

For a function f =
∑

l∈L θlϕl ∈ L2(∆), we set ‖f‖22,c =
∑

l∈L clθ
2
l and ‖f‖22,q =

∑
l∈L qlθ

2
l .

Then, for a 1-periodic function which is differentiable enough, and if the αj and σj are integers,
we have

‖f‖22,q = ‖∂
∑
j αjf/∂tα1

1 . . . ∂tαdd ‖
2
2, and ‖f‖22,c =

∑d

j=1
‖∂σjf/∂tσjj ‖

2
2.

Proposition 4. Let us define δ, σ̄, (κj) and κ by δ =
∑d

j=1 αj/σj,
1
σ̄ = 1

d

∑d
j=1

1
σj

, κj =
1

2σj
+

αj
σj

4σ̄+d
2σ̄(1−δ) and κ =

∑d
j=1 κj. If δ < 1 and σ̄ > d/4, then the exact minimax rate r∗n,γ is
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given by r∗n,γ = C∗γr
∗
n(1 + o(1)), where the minimax rate r∗n and the exact separation constant

are

r∗n = n−
2σ̄(1−δ)

4σ̄+d , and C∗γ =
(
4z2

1−γ/2κC(d,σ,α)
) σ̄(1−δ)

4σ̄+d (1 + 2κ−1)
2(1+δ)σ̄+d

2(4σ̄+d)

with

C(d,σ,α) = π−d
∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1− δ)Γ(κ+ 2)

.

Furthermore, the sequence of linear U-tests φn of Theorem 1 is asymptotically minimax with
Tn,γ ∼ (r∗n,γ)−2(1 + 2κ−1).

Remark 5. The previous result can be used for performing dimensionality reduction through
variable selection (Comminges and Dalalyan, 2011). Indeed, in a high-dimensional set-up it
is of central interest to eliminate the irrelevant covariates. The coordinate ti of t is irrelevant
if f is constant on the line {t ∈ ∆ : tj = aj for all j 6= i}, whatever the vector a ∈ ∆ is. This
implies that the ith partial derivative of f is zero. Therefore, one can test the relevance of
a variable, say t1, by comparing ‖∂f/∂t1‖2 with 0. In our notation, this amounts to testing
hypotheses (5) with Q[f ] = ‖f‖22,q such that ql = (2πl1)2. Combining Proposition 4 and
Theorem 1, one can easily deduce a minimax sharp-optimal test and the minimax sharp-rates
for this variable selection problem.

Remark 6. Another interesting particular case of the setting described in this subsection
concerns the problem of component identification in partial linear models (Samarov et al.,
2005). We say that f obeys a partial linear model if for some small subset J of indices
{1, . . . , d} and for a vector β ∈ R|Jc|, one can write f(t) = g(tJ)+β>tJc for every t ∈ ∆. The
problem of component identification in this model is to determine for an index j whether j ∈ J
or not. This way of addressing this issue is to perform a test of hypothesis Q[f ] = ‖f‖22,q = 0,

where ql = (2πlj)
4. Roughly speaking, this corresponds to checking whether the second order

partial derivative of f with respect to tj is zero or not (if the null is not rejected, then
j ∈ Jc). Once again, Proposition 4 and Theorem 1 provide a minimax sharp-optimal test for
this problem along with the minimax rates and exact separation constants.

Remark 7. In the case where the covariates ti are not observable and only xi’s are available,
our model coincides with the convolution model, the for which the minimax rates of testing
were obtained by Butucea (2007) in the one-dimensional case with simple null hypothesis. It
would be interesting to extend our results to such a model and to get minimax rates and, if
possible, separation constants in the multidimensional convolution model.

3.4. Testing the relevance of a direction in a single-index model

Recall that a single-index model is a particular case of (1) corresponding to functions f that
can be written in the form f(t) = g(β>0 t) for some univariate function g : R → R and some
vector β0 ∈ Rd. Assume now that for a candidate vector β ∈ Rd \ {0} we wish to test the
goodness-of-fit of the single-index model (Dalalyan et al., 2008, Gäıffas and Lecué, 2007).
This corresponds to testing the hypothesis

∃g : R→ R such that f(t) = g(β>t), ∀t ∈ ∆.
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This condition implies that ∂f
∂ti

(t) ≡ βi
‖β‖22

∑d
j=1 βj

∂f
∂tj

(t) = βi
‖β‖22

β>∇f(t), ∀i ∈ {1, . . . , d},
which in turn can be written as

d∑
i=1

(∂f
∂ti
− βi
‖β‖22

β>∇f(t)
)2
≡ 0.

Without loss of generality, we assume that ‖β‖2 = 1 and set ql =
∑d

i=1(2π)2
(
li− (β>l)βi

)2
=

(2π)2
(
‖l‖22 − (β>l)2

)
. We consider homogeneous Sobolev smoothness classes, that is cl =∑d

i=1(2πli)
2σ, with σ > d/4. Then, when σ is an integer, for a 1-periodic function which is

smooth enough,

‖f‖22,c =
d∑
i=1

∥∥∥∂σf
∂tσi

∥∥∥2

2
and ‖f‖22,q =

d∑
i=1

∥∥∥∂f
∂ti
− βi[β>∇f ]

∥∥∥2
.

To state the result providing the minimax rate and the exact constant in this problem, we
introduce the constants

C̄0 =
1

(2π)d

∫
Rd

[
‖x‖22 − (β>x)2 − ‖x‖2σ2σ

]2
+
dx,

C̄1 =
1

(2π)d

∫
Rd

(
‖x‖22 − (β>x)2

)(
‖x‖22 − (β>x)2 − ‖x‖2σ2σ

)
+
dx,

and C̄2 = C̄1 − C̄0.

Proposition 5. In the setting described above, the exact minimax rate r∗n,γ is given by r∗n,γ =
C∗γr

∗
n(1 + o(1)), where

r∗n = n−
2(σ−1)
4σ+d and C∗γ =

(4T1−α/2(C̄1/C̄2)
d+4

2(σ−1) C̄2
1

σd−1(σ − 1)C̄0

) σ−1
4σ+d

.

The sequence of tests φn of Theorem 1 is minimax sharp-optimal if T = Tn,γ is chosen as
T = (C∗γr

∗
n)−2

(
C̄1/C̄2

)
.

4. Nonpositive and nonnegative diagonal quadratic functionals

In this section we consider the more general setting obtained by abandoning the assumption
that all the entries ql of the array q have the same sign. That is, we still have Q[f ] =

∑
l∈L qlθ

2
l ,

but now

L+ = {l : ql > 0} 6= ∅ and L− = {l : ql < 0} 6= ∅. (21)

The sets F0 and F1(rn) are defined as before, cf. (5), and we use the same notation as in the
positive case. Namely, for T > 0, we set N (T ) =

{
l ∈ SF : cl < T |ql|

}
, N(T ) = |N (T )| and

M(T ) =
∑

l∈N (T ) q
2
l .

We point out that, in the case considered in this section, a phenomenon of phase transition
occurs: there is a regular case in which the rate is independent of the precise degree of
smoothness, and an irregular case where the rate is smoothness-dependent. To be more precise,
let |Q| denote the diagonal positive quadratic functional whose coefficients are |ql| for every
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l ∈ L. Let us recall that the minimax rate r∗n in testing the significance of |Q|[f ] (see Remark
4) is determined by

n(r∗n)2 �M(r∗n
−2)1/2.

In our context, this rate corresponds to the irregular case: if Σ contains functions that are
not smooth enough (compared to the difficulty of the problem, that is to say if ql’s are
“too large” compared to cl’s), the minimax rate corresponding to Q is the same as for |Q|
obtained in previous sections. By contrast, in the regular case, the minimax rate is smoothness-
independent and equals r∗n = n−1/4.

4.1. Testing procedure and upper bound on the minimax rate

The testing procedure we use in the present context is of the same type as the one used
for nonnegative quadratic functionals. More precisely, for a tuning parameter Tn and for a
threshold u, we set φn(T ) = 1|Un(T )|>u, where the U -statistic Un(T ) is defined by

Un(T ) =

(
n

2

)−1/2 ∑
1≤i<j≤n

xixjGT (ti, tj).

with GT (t1, t2) = M(T )−1/2
∑

l∈N (T ) qlϕl(t1)ϕl(t2).

Theorem 3. Let γ ∈ (0, 1) be a fixed significance level. Let us denote by TQ[f ] the linear
functional TQ[f ] =

∑
l∈N (T ) qlθl[f ]ϕl. Assume that T > 0 is such that the assumptions

[D1] there exists D1 > 0 such that |N (T )|maxl∈N (T ) q
2
l ≤ D1

∑
l∈N (T ) q

2
l ,

[D2] there exists D2 > 0 such that supt∈∆

∑
l∈N (T ) ϕl(t)2 ≤ D2|N (T )|,

[D3] there exists D3 > 0 such that supf∈Σ ‖f‖4 ≤ D3,

[D4] there exists D4 > 0 such that supf∈Σ ‖f · TQ[f ]‖2 ≤ D4,

are fulfilled. Set B1 = 6 + 12D1D2D
2
3 + 6D1D2D

4
3 and B2 = 4D4. Then, for every

u ≥ n

T
√

2M(T )
+ γ−1/2

(
B1 +B2nM(T )−1

)1/2
,

the type I error is bounded by γ/2: supf∈F0
Pf (φn(T ) = 1) ≤ γ

2 .
If, in addition,

ρ2 ≥
[
u+ γ−1/2

(
B1 +B2nM(T )−1

)1/2]2√M(T )

n
+

√
2

T

then the type II error is also bounded by γ/2: supf∈F1(ρ) Pf (φn(T ) = 0) ≤ γ
2 .

As a consequence, if we choose u = (2M(T ))−1/2(n/T ) + γ−1/2
(
B1 + B2nM(T )−1

)1/2
then

the cumulative error rate of the test φn(T ) is bounded by γ for every alternative F1(ρ) such

that ρ2 ≥ 4γ−1/2n−1
(
B1M(T ) +B2n

)1/2
+ 2
√

2T−1.

This theorem provides a nonasymptotic evaluation of the cumulative error rate of the linear
U-test based on the array wl ∝ ql truncated at the level T . In the cases where the constants B1

and B2 can be reliably estimated and the function M(T ) admits a simple form, it is reasonable
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to choose the truncation level T by minimizing the expression 4γ−1/2n−1
(
B1M(T )+B2n

)1/2
+

2
√

2T−1. By choosing T in such a way, we try to enlarge the set of alternatives for which the
cumulative error rate stays below the prescribed level γ. Therefore, the last theorem implies
the following non-asymptotic upper bound on the minimax rate of separation:

(r∗n,γ)2 ≤ inf
T>0

(4
(
B1M(T ) +B2n

)1/2
nγ1/2

+
2
√

2

T

)
. (22)

This non-asymptotic bound clearly shows the presence of two asymptotic regimes. The first
one corresponds to the case where n is much larger than M(T ∗), whereas the second regime
corresponds to n = o(M(T ∗)). Here, T ∗ is the minimizer of the bound on ρ2 obtained in
the theorem above. The next corollary exhibits the rates of separation in these two different
regimes.

Corollary 1. Assume that the arrays q and c are such that M(αT ) �T→∞ M(T ) for every
α > 0. Let T 0

n be any sequence of positive numbers satisfying T 0
n

√
M(T 0

n) � n. If for the
sequence Tn = T 0

n ∧ n1/2 all the assumptions of Theorem 3 are satisfied, then for some C > 0
the linear U-test φn(T ) based on the threshold T = Tn satisfies

γn(F0,F1(CT−1/2
n ), φn) ≤ γ.

Thus, the rate of convergence is r∗n = (T 0
n)−1/2 if T 0

n = o(n1/2) and r∗n = n−1/4 otherwise.

Remark 8. Condition [D4] of Theorem 3 is more obscure than the other assumptions of
theorem. Clearly, it imposes additional smoothness constraints on the function f . Using the
Cauchy-Schwarz inequality, one can easily check that either one of the assumptions [D4-1]
and [D4-2] below is sufficient for [D4]:

[D4-1] For some constants D5 and D6, supf∈Σ ‖f‖∞ ≤ D5 and maxl∈N (T ) |ql/cl| ≤ D6.
[D4-2] For some constant D′4, supf∈Σ ‖TQ[f ]‖4 ≤ D′4.

4.2. Lower bound on the minimax rate

We will show in this subsection that the asymptotic rate of separation provided by Corollary 1
is unimprovable, in the sense that there is no testing procedure having a faster separation
rate. To this end, for every a ∈ {−,+} we set Ma(T ) =

∑
l∈La∩N (T ) q

2
l , Na(T ) = |La∩N (T )|,

M∗(T ) = M+(T ) ∨M−(T ), N∗(T ) = N+(T )1{M+(T )>M−(T )} +N−(T )1{M+(T )≤M−(T )}.

Theorem 4. Let us consider the problem of testing H0 : f ∈ F0 against H1 : f ∈ F1(ρ),
where F0 and F1 are defined by (5) and

ΣL =
{
f =

∑
l∈L

θl[f ]ϕl :
∑

l∈L
clθl[f ]2 ≤ 1, ‖f‖4 ∨ ‖f · TQ[f ]‖2 ≤ L

}
.

Assume that the sets L+ and L− defined by (21) are both nonempty and that ξi’s are Gaussian.
The following assertions are true.

1. For every γ < 1/4 there exists C > 0 such that lim infn→∞ γn(F0,F1(Cn−1/4)) > γ.
2. Let T 0

n be a sequence of reals such that 4T 0
n

√
M(T 0

n) ≥ nz−1
1−γ/2 as n → ∞. If the

assumptions [D1] (cf. Theorem 3) and
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[D5] N∗(T 0
n)→∞ so that N∗(T 0

n) logN∗(T 0
n) = o(n),

[D6] there exists D6 > 0 such that supt∈∆

∑
l∈N ∗(T 0

n) ϕl(t)2 ≤ D6N
∗(T 0

n),

are fulfilled, then there exists C > 0 such that lim infn→∞ γn
(
F0,F1

(
C(T 0

n)
−1/2)) ≥ γ.

Corollary 2. Combining the two assertions of this theorem, we get that the minimax rate of

separation r∗n is lower bounded by n−1/4 ∨ (T 0
n)−1/2 = (n1/2 ∧ T 0

n)−1/2 = T
−1/2
n . Thus, if the

conditions of Theorems 3 and 4 are satisfied, then the minimax rate of separation is given by

r∗n = T
−1/2
n , where Tn = n1/2 ∧ T 0

n and T 0
n is determined from the relation T 0

nM(T 0
n)1/2 � n.

4.3. Testing equality of norms

As an application of the testing methodology developed in this section, we consider the
problem of testing the equality of norms of two functions observed in noisy environment.
More precisely, let us consider the following two-sample problem: for i = 1, . . . , n we observe
(x1,i, t1,i) and (x2,i, t2,i) such that

xs,i = gs(ts,i) + ξs,i, i = 1, . . . , n; s = 1, 2,

where ts,i’s are independent random vectors drawn from the uniform distribution over [0, 1]d.
Furthermore, we assume that ξs,i’s are i.i.d. such that E(ξs,i|{ts,j}) = 0, E(ξ2

s,i|{ts,j}) = 1

and, for some Cξ <∞, E(ξ4
s,i|{ts,j}) ≤ Cξ almost surely.

Assuming that both g1 and g2 belong to a smoothness class Σ, we wish to test the hypothesis

H0 : ‖g1‖2 = ‖g2‖2, against H1 :
∣∣‖g1‖22 − ‖g2‖22

∣∣ ≥ ρ2.

It can be useful to perform such a test prior to using a shifted curve model in the context of
curve registration (Dalalyan and Collier, 2012, Collier, 2012). Indeed, if there exists τ ∈ [0, 1]d

such that g1(t) = g2(t − τ ) for every t ∈ [0, 1]d and the function g1 is one-periodic, then
necessarily ‖g1‖2 = ‖g2‖2. Thus, the rejection of the null hypothesis implies the inadequacy
of the shifted curve model. In order to show how this type of test can be derived from the
framework presented in the previous subsections, let us consider the case of a Sobolev ellipsoid
Σ.

Let {ψm}l∈M be an orthonormal basis of the subspace L2,c([0, 1]d) of L2([0, 1]d) consisting of
all the functions orthogonal to the constant function. We will assume that both g1 and g2 are
centered (this implies that they are orthogonal to the constant function as well). The Fourier

coefficients of a function g w.r.t. a basis {ψm} will be denoted by θψm[g]. We assume that for
some array c and some constant L > 0 it holds that

gs ∈ Σ0
L =

{
g ∈ L2,c([0, 1]d) :

∑
m∈M

cmθ
ψ
m[g]2 ≤ 1, ‖g‖4 ≤ L

}
, ∀s ∈ {1, 2}.

Assume now that we wish to test

H0 :
∑
m∈M

qmθ
ψ
m[g1]2 =

∑
m∈M

qmθ
ψ
m[g2]2, against H1 :

∣∣∣∣ ∑
m∈M

qm(θψm[g1]2 − θψm[g2]2)

∣∣∣∣ ≥ ρ2,

where q = {qm} is a given array. In order to show that this problem can be solved within the
framework of the previous subsections, we introduce the functional set

ΣL =
{
f : [0, 1]2d → R : f(t1, . . . , t2d) = g1(t1, . . . , td) + g2(td+1, . . . , t2d) with g1, g2 ∈ Σ0

L

}
.
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Setting L =M×{1, 2} and for l = (m, s) ∈M× {1, 2}

ϕl(t1, t2) = ψm(ts), for all t = (t1, t2) ∈ [0, 1]d × [0, 1]d,

we get an orthonormal basis of ΣL. Clearly, for a function f ∈ ΣL, we have θϕl [f ] = θϕm,s[f ] =

θψm[gs]. This implies that ΣL is included in the set Σ2
L = {f :

∑
(m,s) cmθ

ϕ
m,s[f ]2 ≤ 2; ‖f‖4 ≤

2L} and contains the set Σ1
L = {f :

∑
(m,s) cmθ

ϕ
m,s[f ]2 ≤ 1, ‖f‖4 ≤ L}. Therefore, for studying

the rate of separation of a testing procedure we can assume that f ∈ Σ2
L, whereas for estab-

lishing lower bounds on the minimax rate of separation we can use the relation Σ1
L ⊂ ΣL. In

both cases, this perfectly matches the framework of the previous subsections.

We give a concrete example by setting M = Zd and choosing as {ψm} the Fourier basis
in dimension d. Similarly to the example in Subsection 3.3, we focus on anisotropic Sobolev
smoothness classes defined via coefficients

cm =

d∑
i=1

(2πmi)
2σi , m ∈ Zd,

for some σ = (σ1, . . . , σd) ∈ Rd+. As it was done previously, σ̄ stands for the harmonic mean

of σi’s: σ̄ =
(

1
d

∑d
i=1 σ

−1
i

)−1
. To test the equality of norms, we introduce the coefficients ql,

l = (m, s) ∈ Zd × {1, 2}, of the quadratic functional Q:

qm,s = (−1)s, (m, s) ∈ Zd × {1, 2}.

Theorems 3 and 4, as well as the computations done in the proof of Proposition 4, imply that

the minimax rate of separation in the problem described above is: r∗n = n−
2σ̄

4σ̄+d
∧ 1

4 . This rate
shows that the watershed between the two regimes corresponds to the condition σ̄ = d/4.
In other terms, we are in the regular regime when σ̄ > d/4. It is interesting to note, even if
we are unable to establish a direct connection, that this is also the regime under which the
Sobolev embedding Wσ

2 ⊂ L4([0, 1]d) holds true.

Appendix A: Proofs of results stated in Section 2

A.1. Proof of Proposition 1

Throughout the proof, the terms o(1), O(1) and the equivalences are uniform over Σ. Let
L(wn) be the support of wn. ED2

f will denote the conditional expectation with respect to D2.
We define

hn[f,wn] =
(m(m− 1)

2

)1/2∑
l∈L(wn)

wl,nθ
2
l [f ], (23)

Gn(t1, t2) =
∑

l∈L(wn)

wl,nϕl(t1)ϕl(t2). (24)

This allows us to rewrite the U-statistic Un in the form Un = Un,0 + Un,1 + Un,2 where

Un,k =
( 2

m(m− 1)

)1/2 ∑
1≤i<j≤m

Kn,k(z̃i, z̃j), k = 0, 1, 2,



Minimax testing of hypotheses defined via quadratic functionals 19

are U-statistics with the kernels

Kn,0(z̃1, z̃2) = ξ1ξ2Gn(t1, t2), (25)

Kn,1(z̃1, z̃2) =
[
ξ1

(
f − Π̂fn

)
(t2) + ξ2

(
f − Π̂fn

)
(t1)

]
Gn(t1, t2), (26)

Kn,2(z̃1, z̃2) =
(
f − Π̂fn

)
(t1)

(
f − Π̂fn

)
(t2)Gn(t1, t2). (27)

To prove Proposition 1 and the subsequent results, we need two auxiliary lemmas.

Lemma 3. Let wn = (wl,n)l∈L be a family of positive numbers containing only a finite number
of nonzero entries and such that

∑
l∈Lw

2
l,n = 1. Let L(wn) be the support of wn. Then the

expectation of the U-statistic Un is given by:

Ef [Un] = Ef [Un,2] = hn[f,wn],

whereas for the variances it holds

Ef [U2
n,0] = 1,

Ef [U2
n,1] ≤ 2‖wn‖2∞

(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)(
‖ΠSF f‖

2
2 + Ef

[
‖Πf − Π̂fn‖22

])
, (28)

V arf [Un,2] ≤ 8‖wn‖2∞
(

sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)(
‖ΠSF f‖

4
4 + Ef

[
‖Πf − Π̂fn‖44

])
+ 8hn[f,wn]‖wn‖∞

(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)1/2(
‖ΠSF f‖

4
4 + Ef

[
‖Πf − Π̂fn‖44

])1/2
.

(29)

Proof. It is clear that EfUn,0 = EfUn,1 = 0, while

Ef [Un,2] =
(m(m− 1)

2

)1/2
Ef [Kn,2(z̃1, z̃2)]

with

Ef [Kn,2(z̃1, z̃2)] = Ef

[∑
l∈L(wn)

wl,n

(∫ (
f(t)− Π̂fn(t)

)
ϕl(t)dt

)2]
.

As Π̂fn ∈ span
(
{ϕl}l∈ScF

)
, we have

∫
Π̂fnϕl = 0 for all l ∈ SF . Therefore

Ef [Un,2] =
(m(m− 1)

2

)1/2∑
l∈L(wn)

wl,nθ
2
l [f ] = hn[f,wn].

Now, let us evaluate the variances. Since ξis are non correlated zero-mean random variables
with variance one, and ϕl’s are orthonormal, it holds that Ef [U2

n,0] = Ef [Gn(t1, t2)2] =∑
l w

2
l,n = 1. For Un,1, we have

Varf [Un,1] = Ef [U2
n,1] = EfE

D2
f [K2

n,1(z̃1, z̃2)].

Using the definition of Gn(t1, t2), we get

ED2
f [K2

n,1(z̃1, z̃2)] = 2

∫
∆

∫
∆

(
f − Π̂fn

)2
(t1)G2

n(t1, t2)dt1dt2

= 2

∫
∆

(
f − Π̂fn

)2
(t1)

∑
l∈L(wn)

w2
l,nϕ

2
l (t1)dt1

≤ 2
(

max
l∈L(wn)

w2
l,n

)(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)
‖f − Π̂fn‖22.
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Then, the Pythagoras theorem yields

Ef‖f − Π̂fn‖22 = ‖f −Πf‖22 + Ef‖Πf − Π̂fn‖22 = ‖ΠSF f‖
2
2 + Ef‖Πf − Π̂fn‖22.

This completes the proof (28). As for the variance of Un,2, we have

V arf [Un,2] = EfE
D2
f [U2

n,2]− (Ef [Un,2])2 = An,1 +An,2 +An,3,

where

An,1 = Ef

∫∫ (
f − Π̂fn

)2
(t1)

(
f − Π̂fn

)2
(t2)G2

n(t1, t2)dt1dt2,

An,2 =
4

m(m− 1)

(
m

3

)
Ef

∫∫∫ (
f − Π̂fn

)2
(t1)

(
f − Π̂fn

)
(t2)Gn(t1, t2)

×
(
f − Π̂fn

)
(t3)Gn(t1, t3)dt1dt2dt3,

and

An,3 =
4

m(m− 1)

(
m

4

)
Ef

{∫∫
f(t1)f(t2)Gn(t1, t2)dt1dt2

}2
− (EfUn,2)2.

Let us bound the first term An,1:

An,1 = Ef
∑

l,l′∈L(wn)

wl,nwl′,n

(∫
(f − Π̂fn)2(t)ϕl(t)ϕl′(t) dt

)2
.

Now, in view of Bessel’s inequality,

An,1 ≤ max
l∈L(wn)

w2
l,nEf,B

∑
l∈L(wn)

∫
(f − Π̂fn)4(t)ϕ2

l (t) dt

≤
(

max
l∈L(wn)

w2
l,n

)(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)
Ef
[∥∥f − Π̂fn

∥∥4

4

]
,

and the expression inside the last expectation can be bounded using the inequality
∥∥f −

Π̂fn
∥∥4

4
≤ 8(‖ΠSF f‖44 + ‖Πf − Π̂fn‖44).

The term An,2 can be dealt with similarly. Using the Cauchy-Schwarz inequality,

An,2 =
4

m(m− 1)

(
m

3

) ∑
l,l′∈L(wn)

wl,nwl′,nθl[f ]θl′ [f ]Ef

{∫ (
f − Π̂fn

)2
(t)ϕl(t)ϕl′(t) dt

}

≤
(
m

2

)1/2(∑
l

w2
l,nθl[f ]2

)( ∑
l,l′∈L(wn)

{∫
Ef
[(
f − Π̂fn

)2
(t)
]
ϕl(t)ϕl′(t) dt

}2)1/2

≤
(

max
l∈L(wn)

wl,n

)
hn[f,wn]

( ∑
l,l′∈L(wn)

Ef

{∫ (
f − Π̂fn

)2
(t)ϕl(t)ϕl′(t) dt

}2)1/2
.

By virtue of the Bessel inequality, it holds that

An,2 ≤
(

max
l∈L(wn)

wl,n

)
hn[f,wn]

( ∑
l∈L(wn)

∫
Ef
[(
f − Π̂fn

)4
(t)
]
ϕ2
l (t) dt

)1/2

≤
(

max
l∈L(wn)

wl,n

)
hn[f,wn]

(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t) dt

)1/2(
Ef [‖f − Π̂fn‖44]

)1/2
.
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The last expectation can be bounded in the same way as we did several lines above for the
term An,1. The last term An,3 is actually negative

An,3 =
4

m(m− 1)

(
m

4

)(∑
l∈L(wn)

wl,nθ
2
l

)2
− m(m− 1)

2

(∑
l∈L(wn)

wl,nθ
2
l

)2
≤ 0.

Combining all these estimates, we get (29).

Lemma 4. Let wn = (wl,n)l∈L be a family of positive numbers containing only a finite number
of nonzero entries and such that

∑
l∈Lw

2
l,n = 1. Assume that the random variable ξ1 has finite

fourth moment: Ef [ξ4
1 ] <∞. If, as n→∞,

‖wn‖∞ = o(1) and ‖wn‖2∞
(

sup
t∈∆

∑
l∈L(wn)

ϕl(t)2
)2

= o(n), (30)

then Un,0 is asymptotically Gaussian N (0, 1).

Proof. This result is an immediate consequence of (Hall, 1984, Theorem 1).

With these tools at hand, we are now in a position to establish the asymptotic normality
of the U-statistic Un which leads to an evaluation of the type I error of the U-test. Let us
recall that, for f ∈ F0, it holds Q[f ] =

∑
qlθl[f ]2 = 0 and, therefore, θl[f ] = 0 for all

l ∈ SF = {l : ql 6= 0}. Hence, for every f ∈ F0, hn[f,wn] = 0 and ΠSF f = 0. So, it follows
from Lemma 3 that under the assumptions of the proposition, the convergences Ef [U2

n,1]→ 0

and Ef [U2
n,2] → 0 hold true uniformly in f ∈ F0. This implies that Un,1 and Un,2 tend to

zero in Pf -probability, uniformly in f ∈ F0. On the other hand, according to Lemma 4,
Un,0 → N (0, 1) in distribution. The claim of the proposition follows from Slutsky’s lemma.

A.2. Proof of Proposition 2

We first note that for every h̄ > 0 it holds

sup
f∈F1(ρ)

Pf (Un ≤ u) =
(

sup
f∈F1(ρ)

hn[f,wn]>h̄

Pf (Un ≤ u)
)∨(

sup
f∈F1(ρ)

hn[f,wn]≤h̄

Pf (Un ≤ u)
)
. (31)

The value of h̄ will be made precise later in the proof. Assume merely by now that h̄ > 2(1+u).
Then,

sup
f∈F1(ρ);
hn[f,wn]>h̄

Pf (Un ≤ u) ≤ sup
f∈Σ;hn[f,wn]>h̄

Varf [Un](
Ef [Un]− u

)2 = sup
f∈Σ;hn[f,wn]>h̄

Varf [Un](
hn[f,wn]− u

)2 .
Using the conditions of the proposition and the inequalities of Lemma 3, we get that for some
constants C,C ′ independent of h̄,

sup
f∈F1(ρ)

hn[f,wn]>h̄

Pf (Un ≤ u) ≤ sup
f∈Σ;hn[f,wn]>h̄

C(1 + hn[f,wn])(
hn[f,wn]− u

)2 ≤ C 1 + h̄(
h̄− u

)2 ≤ C ′h̄−1. (32)
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Let us switch to the second sup in (31). Let δn > 0 be a sequence tending to zero. One readily
checks that

Pf (Un ≤ u) = Pf (hn[f,wn] + Un,0 + Un,1 + (Un,2 − hn[f,wn]) ≤ u)

≤ Pf (hn[f,wn] + Un,0 ≤ u+ δn) + Pf (−Un,1 − (Un,2 − hn[f,wn]) ≥ δn)

≤ FU0,n(u− hn[f,wn] + δn) +
2V arf (Un,1) + 2V arf (Un,2)

δ2
n

, (33)

where FU0,n(·) is the c.d.f. of U0,n. On the one hand, we know from Lemma 4 that Un,0
converges in distribution to N (0, 1). This entails that FU0,n converges uniformly over R to Φ.
Therefore,

FU0,n(u− hn[f,wn] + δn) = Φ(u− hn[f,wn] + δn) + o(1) = Φ(u− hn[f,wn]) + o(1) + δnO(1).

On the other hand, in view of Lemma 3, V arf (Un,1)+V arf (Un,2) = O(‖ΠSF f‖44 +‖ΠSF f‖22).

Then we have,

‖ΠSF f‖
2
2 =

∑
l∈SF

θ2
l ≤

1

ζn

∑
wl,n≥ζn

wl,nθ
2
l +

∑
wl,n<ζn

θ2
l

≤
√

2hn[f,wn]

ζn(m− 1)
+ sup
l∈SF :wl,n<ζn

c−1
l .

Applying Hölder’s inequality we get ‖ΠSF f‖44 ≤ ‖ΠSF f‖
2(p−4)/(p−2)
2 ‖ΠSF f‖

2p/(p−2)
p . There-

fore, we have

sup
f∈F1(ρ)

hn[f,wn]≤h̄

Pf (Un ≤ u) ≤ sup
f∈F1(ρ)

Φ(u− hn[f,wn]) + o(1) + δnO(1) +
o(1)(h̄(p−4)/(p−2) + h̄)

δ2
n

.

Choosing h̄ large enough and then making δn tend to zero sufficiently slowly we get the desired
result.

A.3. Proof of Proposition 3

Using Kneser’s minimax theorem for bilinear forms (Kneser, 1952), we can interchange the
sup and the inf as follows:

sup
w∈RL+
‖w‖2=1

inf
v∈RL+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w,v〉 = inf
v∈RL+

〈v,c〉≤1,〈v,q〉≥ρ2

sup
w∈RL+
‖w‖2=1

〈w,v〉 = inf
v∈RL+

〈v,c〉≤1,〈v,q〉≥ρ2

‖v‖2, (34)

Furthermore, the array w∗ attaining the sup is given by w∗l = vl/‖v‖2. Now, the minimization
at the right-hand side of (34) involves a convex second-order cost function ‖v‖22 and linear
constraints vl ≥ 0, 〈v, c〉 ≤ 1 and 〈v,q〉 ≤ ρ2. Therefore, according to KKT conditions, if there
exist µ, λ ≥ 0 and ν ∈ RL+ satisfying for some v∗ ∈ RL+ the conditions 2v∗ + λc− µq− ν = 0
and λ(〈v∗, c〉 − 1) = 0, µ(〈v∗,q〉 − ρ2) = 0 and νlv

∗
l = 0 for all l, then v∗ is a solution to the

minimization problem (34). Under the conditions of the proposition, one easily checks that
these KKT conditions are fulfilled with λ = 2/

∑
l cl(Tρql − cl)+, µ = 2Tρ/

∑
l cl(Tρql − cl)+

and νl = 2(cl − Tρql)+/
∑

l cl(Tρql − cl)+.
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A.4. Proof of Theorem 1

To ease notation, we set Nn,γ = N (Tn,γ). We first check that under the assumptions of the
theorem all the conditions required in Propositions 1 and 2 are fulfilled. Since ‖ŵ∗n‖0 = |Nn,γ |
and ‖ŵ∗n‖2∞ ≤ maxl∈Nn,γ q

2
l /
∑

l∈Nn,γ
(
ql − cl

Tn,γ

)2
, condition [C1] implies the first condition

of Proposition 1. Conditions [C3] and [C4] imply respectively the third and the second con-
ditions of Proposition 1. Finally, condition [C6] implies the fourth condition of Proposition 1.
Thus, we have checked that under the conditions of the theorem, the claim of Proposition 1
holds true. To check that the claim of Proposition 2 holds true as well, it suffices to check the
first assumption of that proposition (the second one being identical to [C7]). In fact, it is not
difficult to check that the first assumption of Proposition 2 follows from [C2], [C4] and [C5]
for the sequence ζ2

n = minl∈Nn,γ q
2
l /4

∑
l∈Nn,γ q

2
l .

Therefore, combining the results of Proposition 1 and 2, we get that

γn(F0,F1(r∗n,γ), φ̂∗n) ≤ Φ(−z1−γ/2) + Φ
(
z1−γ/2 − inff∈F1(r∗n,γ) hn[f, ŵ∗n]

)
+ o(1). (35)

In view of Proposition 3, the infimum over f of hn[f, ŵ∗n] can be evaluated as follows:

inff∈F1(r∗n,γ) hn[f, ŵ∗n] =
(m(m− 1)

2

)1/2
inf

θ∈RL:
∑
l clθ

2
l ≤1∑

l qlθ
2
l ≥(r∗n,γ)2

∑
l

ŵ∗l,nθ
2
l

=
(m(m− 1)

2

)1/2
inf

v∈RL+:〈v,c〉≤1

〈v,q〉≥(r∗n,γ)2

〈ŵ∗n,v〉

=
(m(m− 1)

2

)1/2
‖v∗‖2

=
(m(m− 1)

2

)1/2
(∑

l∈Nn,γ (Tn,γql − cl)2
)1/2∑

l∈Nn,γ cl(Tn,γql − cl)
.

Inserting this expression in (35) and using (15), we get that

γn(F0,F1(r∗n,γ), φ̂∗n) ≤ Φ(−z1−γ/2) + Φ
(
z1−γ/2 − 2z1−γ/2 + o(1)

)
+ o(1)

= 2Φ(−z1−γ/2) + o(1) = γ + o(1).

A.5. Proof of Theorem 2

The proof of the lower bound follows the steps of (Ingster and Sapatinas, 2009). However, we
considerably modified the way some of these steps are carried out which allowed us to relax
several assumptions and resulted in a shorter proof.

Let us recall that θ[f ] = (θl[f ])l∈L ∈ `2(L) is the array of Fourier coefficients of a function
in L2(∆) w.r.t. the system (ϕl)l∈L. We introduce the sets Θ1(ρ) =

{
θ ∈ `2(L) : 〈c,θ2〉 ≤

1, 〈q,θ2〉 ≥ ρ2
}

and Θ0 =
{
θ ∈ `(L) : 〈c,θ2〉 ≤ 1, 〈q,θ2〉 = 0

}
, where we used the notation

θ2 = {θ2
l }l∈L. Clearly, if f belongs to the functional class F1(ρ) (resp. F0) then θ[f ] ∈ Θ1(ρ)

(resp. θ[f ] ∈ Θ0).

Let C < 1 be a constant. Our goal is to prove that γn(F0,F1(Cr∗n,γ)) ≥ γ + o(1). To get
this lower bound, we define prior measures that are essentially concentrated on the sets Θ0
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and Θ1. Let π1
n and π2

n be measures on the space `2(L) such that π1
n(Θ0) = 1 + o(1) and

π2
n(Θ1(Cr∗n,γ)) = 1 + o(1). Those priors lead to the corresponding mixtures:

Pπin(A) =

∫
Pθ(A)πin(dθ) for every measurable set A ⊂ (∆× R)n, i = 1, 2.

If γn(Pπ1
n
, Pπ2

n
) = infψ:(∆×R)n→{1,2}

{
Pπ1

n
(ψ = 2) + Pπ2

n
(ψ = 1)

}
is the minimal total error

probability for testing the simple null hypothesis H0 : P = Pπ1
n

against the simple alternative
H1 : P = Pπ2

n
, then we have (see Proposition 2.11 in Ingster and Suslina (2003))

γn
(
F0,F1(Cr∗n,γ)

)
≥ γn(Pπ1

n
, Pπ2

n
) + o(1).

As shows the next result, to get the desired lower bound, it suffices to show that the Bayesian
log-likelihood log(dPπ2

n
/dPπ1

n
) is asymptotically equivalent to a Gaussian log-likelihood.

Lemma 5 (section 4.3.1 in Ingster and Suslina (2003)). If there exists a deterministic sequence
un and a sequence of random variables ηn such that under Pπ1

n
-probability ηn converges in

distribution to N (0, 1) and

log(dPπ2
n
/dPπ1

n
) = unηn −

u2
n

2
+ oP (1), (36)

then γn(Pπ1
n
, Pπ2

n
) ≥ 2Φ(−un/2) + o(1).

For our purposes, we choose π1
n to be the Dirac measure in 0 and denote the corresponding

mixture probability Pπ1
n

by P0. It is clear that with this choice π1
n(Θ0) = 1. We now explain

how π2
n, that we will call πn from now on, is built. Let an ∈ RL+ be an array containing a

finite number of nonzero elements. Let L(an) be the support of an, i.e., al 6= 0 if and only if
l ∈ L(an). We assume that L(an) ⊂ SF and define πn(dθ) as the Gaussian product measure
such that under πn the entries θl are independent Gaussian with zero mean and variance al.

Proposition 6. Let δ ∈ (0, 1) be such that 1 − δ ≥ C. Assume that an = (1 − δ)vn and, as
n→∞, the following assumptions are fulfilled:

[L1] 〈c,vn〉 ≤ 1 and 〈q,vn〉 ≥ (r∗n,γ)2,
[L2] maxl∈L(vn)(qlvl) = o(〈q,v〉) and maxl∈L(vn)(clvl) = o(〈c,v〉),
[L3] ‖vn‖0 →∞ and n‖vn‖2∞‖vn‖20 log ‖vn‖0 → 0,

[L4] n‖vn‖∞‖vn‖1/30 → 0 and ‖vn‖3 = o(‖vn‖2).
[L5] For some L5 > 0, it holds

∑
l∈L(an) ϕ

2
l (t) ≤ L5‖an‖0.

Then, as n→∞,

γn(F0,F1(Cr∗n,γ)) ≥ 2Φ
(
− n(1− δ)

2
√

2
‖vn‖2

)
+ o(1). (37)

Proof. The proof of this proposition will be carried out with the help of several lemmas. The
fact that πn

(
Θ1(Cr∗n,γ)

)
= 1 + o(1) is proved in the following lemma.

Lemma 6. Assume that an = (1 − δ)vn satisfies [L1] and [L2]. Then, for every δ ∈ (0, 1),
it holds that πn

(
Θ1(Cr∗n)

)
= 1 + o(1).
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Proof. Let us denote H1(θ) =
∑

l∈L qlθ
2
l and H2(θ) =

∑
l∈L clθ

2
l . In view of [L1], we have∫

H1(θ)πn(dθ) =
∑
l∈L

qlal ≥ (r∗n,γ)2(1− δ),
∫
H2(θ)πn(dθ) =

∑
l∈L

clal ≤ 1− δ.

On the other hand, since the variance of the sum of independent random variables equals the
sum of the variances of these random variables, we get∫

H1(θ)2πn(dθ)−
(∫
H1(θ)2πn(dθ)

)2
= 2

∑
l∈L

q2
l a

2
l ≤ 2〈q,an〉 max

l∈L(an)
(qlal).

By Tchebychev’s inequality, we arrive at

πn
(
θ : H1(θ) < (Cr∗n,γ)2

)
≤

2 maxl∈L(vn)(qlvl)

C2(1− C)2〈q,vn〉
,

πn
(
θ : H2(θ) > 1

)
≤

2 maxl∈L(vn)(clvl)

δ2〈c,vn〉
.

The claim of the lemma follows now from condition [L2].

Second, we show that for every p > 2 and every L > 0, the probability πn(θ : ‖
∑

l θlϕl‖p > L)
tends to zero. Indeed, in view of the Tchebychev inequality and Fubini’s theorem,

πn

(
θ :
∥∥∥∑

l
θlϕl

∥∥∥
p
> L

)
≤ L−p

∫
∆
Eπn

[∣∣∣∣∑
l

θlϕl(t)

∣∣∣∣p] dt.
Using the fact that for every fixed t, the random variable

∑
l θlϕl(t) is Gaussian with zero

mean and variance
∑

l alϕ
2
l (t), we get

πn

(
θ :
∥∥∥∑

l
θlϕl

∥∥∥
p
> L

)
≤ p!L−p

∫
∆

∣∣∣∣∑
l

alϕ
2
l (t)

∣∣∣∣p/2 dt ≤ p!Lp/25 Lp(‖an‖∞‖an‖0)p/2.

The last expression tends to zero as n→∞ in view of condition [L3].

We focus now on the proof of (36). Set m = |L(an)| and let Φn be the m×n matrix having as
generic element (Φn)li = ϕl(ti). Let An be m×m diagonal matrix having the nonzero entries
of an on its main diagonal. It is clear that under Pπn , conditionally to Tn, x = (x1, . . . , xn)>

is distributed according to a multivariate Gaussian distribution with zero mean and n × n
covariance matrix Rn = Φ>n AnΦn+In. Therefore, the logarithm of its density w.r.t. P0 is given
by

log
(dPπn
dP0

(x; t1, . . . , tn)
)

= −1

2

(
log det Rn + x>(R−1

n − In)x
)
.

In what follows, we denote by |||M||| = sup‖x‖2=1 ‖Mx‖2 the spectral norm of a matrix M.

Lemma 7. Let R̄n = nAn + Im and m = mn → ∞. If n2‖an‖2∞‖an‖0||| 1nΦnΦ>n − Im|||2 =

oP (1) and |Tr[R̄−1
n Bn]|+E[|ξ>R̄−1

n BnR̄
−1
n ξ|] = oP (1), then under P0 it holds log

(
dPπn/dP0

)
=

−1
2

(
log det R̄n + ξ>(R̄−1

n − Im)ξ
)

+ oP (1), where ξ ∼ Nm(0, Im).
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Proof. Let us denote R̃n = A
1/2
n ΦnΦ>n A

1/2
n + Im, Bn = R̃n − R̄n and introduce the function

g(z) = log det(R̄n + zBn) for z ∈ [0, 1]. One easily checks that g(1) = log det R̃n = log det Rn,
g(0) = log det R̄n and g′(z) = Tr[(R̄n + zBn)−1Bn]. Therefore, the relation g(1) − g(0) = g′(z̄)
for some z̄ ∈ [0, 1] implies

| log det Rn − log det R̄n| = |Tr[(R̄n + z̄Bn)−1Bn]|
≤ |Tr[R̄−1

n Bn]|+m|||(R̄n + z̄Bn)−1 − R̄−1
n ||||||Bn|||.

Using the identity (R̄n + z̄Bn)−1 − R̄−1
n = −z̄(R̄n + z̄Bn)−1BnR̄

−1
n , we get

| log det Rn − log det R̄n| ≤ |Tr[R̄−1
n Bn]|+m|||(R̄n + z̄Bn)−1||||||R̄−1

n ||||||Bn|||2

≤ |Tr[R̄−1
n Bn]|+m|||Bn|||2,

where we used that R̄n and R̄n + z̄Bn = Im + z̄A
1/2
n ΦnΦ>n A

1/2
n + (1 − z̄)nAn have all their

eigenvalues ≥ 1. On the other hand, one can check that |||Bn||| ≤ n|||An|||||| 1nΦΦ> − Im|||. Com-
bining these inequalities with the facts |||An||| = ‖an‖∞ and m = ‖an‖0 → ∞ we arrive at
log det Rn = log det R̄n + oP (1).

The term x>R−1
n x is dealt with similarly. First, using the singular values decomposition of the

matrix A
1/2
n Φn, one can note that for an appropriately chosen vector ξ ∼ Nm(0, Im), it holds

that x>(R−1
n −In)x = ξ>(R̃

−1
n −Im)ξ. Then, we introduce the function ḡ(z) = ξ>[R̄n+zBn]−1ξ,

the derivative of which is given by g′(z) = −ξ>(R̄n + zBn)−1Bn(R̄n + zBn)−1ξ. Therefore, for
some z̄ ∈ [0, 1],

|ξ>R̃−1
n ξ − ξ>R̄

−1
n ξ| = |ξ>(R̄n + z̄Bn)−1Bn(R̄n + z̄Bn)−1ξ|

≤ |ξ>R̄−1
n BnR̄

−1
n ξ|+ |ξ>[(R̄n + z̄Bn)−1 − R̄n]−1Bn(R̄n + z̄Bn)−1ξ|

+ |ξ>[(R̄n + z̄Bn)−1 − R̄n]−1BnR̄
−1
n ξ|

≤ |ξ>R̄−1
n BnR̄

−1
n ξ|+ 2‖ξ‖22|||Bn|||2.

It is well-known that ‖ξ‖22 being distributed according to the χ2
m distribution is OP (m), as

m→∞. This completes the proof of the lemma.

According to (Vershynin, 2012, Cor. 5.52), under [C3], we have ||| 1nΦnΦ>n−Im||| ≤ C(m logm
n )1/2

with probability at least 1−1/n. Furthermore, using the facts that the R̄n is a diagonal matrix
with diagonal entries ≥ 1 and that the variance of the sum of independent random variables
equals the sum of variances, one readily checks that E|Tr[R̄−1

n Bn]|2 + E[|ξ>R̄−1
n BnR̄

−1
n ξ|2] ≤

3C2
3n‖vn‖2∞‖vn‖20. Hence, condition [L3] implies that the two conditions of the last lemma

are fulfilled and, therefore, its claim holds true. Using the fact that An is diagonal, we get

log
(
dPπn/dP0

)
=

1

2

∑
l

( nalξ
2
l

nal + 1
− log(nal + 1)

)
+ oP (1)

=
1

2

∑
l

( nal
nal + 1

− log(nal + 1)
)

+
∑
l

nal(ξ
2
l − 1)

2(nal + 1)
+ oP (1). (38)

Lemma 8. Let us denote

un =
n‖an‖2√

2
, ηn =

1

un

∑
l∈L

nal(ξ
2
l − 1)

2(nal + 1)
.
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If the conditions mn3‖an‖3∞ → 0, and ‖an‖3 = o(‖an‖2) are fulfilled, then ηn converges in
distribution to N (0, 1) and

1

2

∑
l∈L

( nal
nal + 1

− log(nal + 1)
)

+
∑
l∈L

nal(ξ
2
l − 1)

2(nal + 1)
= unηn −

u2
n

2
+ o(1). (39)

Proof. Since n‖a‖∞ → 0, we have nal
nal+1 = nal − (nal)

2 + O((nal)
3) and log(nal + 1) =

nal− (nal)
2

2 +O((nal)
3). This implies that

∑
l∈L
(

nal
nal+1−log(nal+1)

)
= −1

2u
2
n+O(mn3‖an‖3∞).

On the other hand, using the central limit theorem for triangular arrays, we get the weak
convergence of ηn to N (0, 1) provided that u−3

n

∑
l(nal)

3/(nal + 1)3 tends to zero. Since
under the conditions of the lemma this convergence trivially holds, we get the claim of the
lemma.

Combining Lemma 5 with (38) and (39), we get (37) and the proposition follows.

To complete the proof of Theorem 2, we shall show now that if we choose Tn,γ as in Theorem 1
and define vn by

vl = vl,n =
(Tn,γql − cl)+∑

l∈L cl(Tn,γql − cl)+
,

then all the conditions of Proposition 6 are fulfilled. We start by noting that [L1] is straight-
forward. To check the first relation in [L2], we use [C1] and |N (Tn,γ)| → ∞, along with the
following evaluations:

∀l ∈ N (Tn,γ),
qlvl
〈q,v〉

=
ql(Tn,γql − cl)∑
l ql(Tn,γql − cl)+

≤
q2
l∑

l(ql −
cl
Tn,γ

)2
+

≤ C1

|N (Tn,γ)|
.

For the second relation in [L2], in view of (15), ∀l ∈ N (Tn,γ) we have

clvl
〈c,v〉

=
cl(Tn,γql − cl)∑
l cl(Tn,γql − cl)+

≤ Tn,γclql∑
l cl(Tn,γql − cl)+

≤ Tn,γclql O(1)

nTn,γ
(∑

l(ql −
cl
Tn,γ

)2
+

)1/2 ≤ maxl∈N (Tn,γ) cl

n|N (Tn,γ)|1/2
O(1).

The last term tends to zero due to [C9]. From the definition of vn, equation (15) and condition
[C1] one can deduce that

‖vn‖∞ =
maxl(Tn,γql − cl)+∑

l cl(Tn,γql − cl)+
≤ Tn,γ maxl ql

n
(∑

l(Tn,γql − cl)2
+

)1/2O(1)

≤ maxl ql
n|N (Tn,γ)|1/2 maxl ql

O(1) =
O(1)

n|N (Tn,γ)|1/2
.

This inequality yields n‖vn‖2∞‖vn‖20 = O(|N (Tn,γ)|/n). Therefore, [L3] follows from [C8].

Finally, to check that [L4] is true, we notice that n‖vn‖∞‖vn‖1/30 = O(|N (Tn,γ)|
1
3
− 1

2 ) = o(1)
and

‖vn‖33
‖vn‖32

=

∑
l(Tn,γql − cl)3

+(∑
l(Tn,γql − cl)2

+

)3/2 ≤ maxl ql(∑
l(ql −

cl
Tn,γ

)2
+

)1/2 ≤ C
1/2
1

|N (Tn,γ)|1/2
.
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Thus, all the conditions of Proposition 6 are fulfilled and, therefore,

γn(F0,F1(Cr∗n,γ)) ≥ 2Φ
(
− n(1− δ)

2
√

2
‖vn‖2

)
+ o(1).

Since this equation is true for every δ ∈ (0, 1− C), it is also true for δ = 0, and the claim of
Theorem 2 follows from (15).

Appendix B: Proofs of lemmas and propositions of Section 3

B.1. Proof of Lemma 1

Let us write Πf = Π1f + Π2f , where Π1 and Π2 are the orthogonal projectors in L2(∆) onto
the subspaces span{ϕl : l ∈ N1(T )} and span{ϕl : l ∈ N2(T )}, respectively. We first assume
that the inequality

∑
l c
−1
l <∞ is fulfilled.

On the one hand, using the Cauchy-Schwarz inequality,

‖Π2f‖44 =

∫
∆

(∑
l∈N2(T )

θl[f ]ϕl(t)
)4
dt ≤ 22d

(∑
l∈N2(T )

|θl[f ]|
)4

≤ 22d
(∑

l∈N2(T )
clθl[f ]2

)2(∑
l∈N2(T )

c−1
l

)2
≤ 22d

(∑
l∈N2(T )

c−1
l

)2
.

On the other hand,

‖Π1f − Π̂fn‖44 =

∫
∆

( ∑
l∈N1(T )

(
θ̂l − θl[f ]

)
ϕl(t)

)4

dt

=

∫
∆

(
1

n

n∑
i=1

∑
l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)4

dt.

Using Fubini’s theorem and Rosenthal’s inequality, for some constant C > 0, we get

Ef‖Π1f − Π̂fn‖44 ≤
C

n4

∫
∆

n∑
i=1

Ef

( ∑
l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)4

dt

+
C

n4

∫
∆

{ n∑
i=1

Ef

( ∑
l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)2}2

dt

By Hölder’s inequality, we get

Ef

( ∑
l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)4

≤ |N1(T )|3
∑

l∈N1(T )

Ef
(
xiϕl(ti)− θl[f ]

)4
ϕl(t)4

≤ 22d|N1(T )|3
∑

l∈N1(T )

Ef
(
f(ti)ϕl(ti) + ξiϕl(ti)− θl[f ]

)4
= O(|N1(T )|4),



Minimax testing of hypotheses defined via quadratic functionals 29

where we used the fact that E[ξ4] < ∞ and that E[f(ti)
4] ≤ 22d(

∑
l c
−1
l )2 < ∞ under the

conditions of the lemma. Similar arguments lead to∫
∆

{ n∑
i=1

Ef

( ∑
l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)2}2

dt = O(n2|N1(T )|4),

which implies that Ef‖Π1f − Π̂fn‖44 = O(|N1(T )|4/n2). Combining the obtained evaluations,
we get

Ef‖Πf − Π̂fn‖44 ≤
|N1(T )|4

n2
+ C

(∑
l:cl>T

c−1
l

)2
.

The required consistency follows from the assumption |N (Tn)| = o(n1/2).

Let us consider the case Σ ⊂ Wσ
2 (R). Without loss of generality, we will assume that Σ =

Wσ
2 (R) and cl =

∑d
i=1(2πli)

2σi/R2. The computations remain the same as in the previous case
but the term ‖Π2f‖44 is bounded using Sobolev inequality (Kolyada, 1993). Indeed, choosing
σ′ so that σ′i = (1− τ)σi and τ < 1− d/(4σ̄) (this implies that σ̄′ > d/4), we get

‖Π2f‖24 ≤ C‖Π2f‖2Wσ′
2

= C

[ ∑
l∈N2(T )

d∑
i=1

(2πli)
2σ′iθl[f ]2

]
≤ C

[ ∑
l∈N2(T )

dτ
(
clR

2
)1−τ

θl[f ]2
]

≤ C(d/T )τR2(1−τ)

[ ∑
l∈N2(T )

clθl[f ]2
]
≤ C(d/T )τR2(1−τ).

This completes the proof, since the last term tends to zero as T →∞.

B.2. Proof of Lemma 2

Let us introduce ΠJf =
∑
k∈[1,2J ]d αJ,kϕJ,k. We first decompose the empirical coefficients as

follows:

α̂J,k =
1

n

n∑
i=1

ϕJ,k(ti)xi =
1

n

n∑
i=1

ϕJ,k(ti)f(ti) +
1

n

n∑
i=1

ϕJ,k(ti)ξi := α̃J,k + εj,k.

Then, using standard arguments, we have∥∥∥Πf − Π̂fn

∥∥∥4

4
≤ 33

(∥∥∥ ∑
k∈[1,2J ]d

(αJ,k − α̃J,k)ϕJ,k

∥∥∥4

4
+
∥∥∥ ∑
k∈[1,2J ]d

εJ,kϕJ,k

∥∥∥4

4
+
∥∥∥Πf −ΠJf

∥∥∥4

4

)
with

∥∥Πf − ΠJf
∥∥4

4
= O(2−4Jσ). Furthermore, by well-known properties of wavelet bases

(Cohen, 2003) and the Rosenthal inequality,

Ef

∥∥∥ ∑
k∈[1,2J ]d

(αJ,k − α̃J,k)ϕJ,k

∥∥∥4

4
= O(2Jd)

∑
k

Ef (αJ,k − α̃J,k)4 = O

(
22Jd

n2

)
and

E
∥∥∥ ∑
k∈[1,2J ]d

εJ,kϕJ,k

∥∥∥4

4
= O(2Jd)

∑
k

E[ε4J,k] = O(2Jd)
∑
k

E
( 1

n2

n∑
i=1

ϕ2
J,k(ti)

)2

= 22JdO
( 1

n2
+

2Jd

n3

)
.
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Finally we obtain, uniformly over f ∈ Σ, Ef‖Πf − Π̂fn‖4 = O
(

22Jd

n2 + 23Jd

n3 + 2−4Jσ
)
, and the

announced result follows.

Appendix C: Proof of Proposition 4

We are going to check that all the assumptions of Theorem 1 and Theorem 2 are satisfied.
We can use the Sobolev embedding theorem (Kolyada, 1993) for [C7]: if σ̄ > d/4, then [C7]
is satisfied. For the pilot estimator proposed in subsection 3.2, [C6] holds as well. Since the
Fourier basis is uniformly bounded, checking [C3] is straightforward.

Let now Tn,γ = (C∗γr
∗
n)−2(1 + 2κ−1), where r∗n and C∗γ are defined in Proposition 4. We will

show that

• Tn,γ satisfies (15),
• r∗n,γ defined by (16) satisfies r∗n,γ ∼ C∗γr∗n,
• conditions [C1], [C2], [C5], [C8] and [C9] are fulfilled.

To this end, we need an asymptotic analysis of the terms

I0(T ) =
∑
l∈Zd

(
ql −

cl
T

)2

+
, I1(T ) =

∑
l∈Zd

ql

(
ql −

cl
T

)
+

and I2(T ) = I1(T )− I0(T ). For the first one, it holds that

I0(T ) =
∑
l∈Zd

( d∏
j=1

(2πlj)
2αj −

d∑
i=1

(2πli)
2σi

T

)2

+
.

For every i ∈ {1, . . . , d}, we set

mi =
T γi

2π
, γi =

1

2σi(1− δ)
and xl,i =

2πli
T γi

=
li
mi
.

Note that, as δ < 1, we have γi > 0. With this notation,

I0(T ) = T
2δ

1−δm1 · . . . ·md

∑
l∈Zd

( d∏
j=1

|xl,j |2αj −
d∑
i=1

|xl,i|2σi
)2

+
/(m1 · . . . ·md).

As mi →∞ for every i, we can replace the sums by integrals

I0(T ) ∼ T
4δσ̄+d

2(1−δ)σ̄

(2π)d

∫
∑d
i=1 |xj |

2σj<
∏d
j=1 |xj |

2αj

( d∏
j=1

|xj |2αj −
d∑
i=1

|xi|2σi
)2
dx.

Next, we make the change of variables yj = x
2σj
j , j = 1, . . . , d and set D =

{
y ∈ Rd+ :∑d

j=1 yj <
∏d
i=1 y

αi/σi
i

}
. We get

I0(T ) ∼ T
4δσ̄+d

2(1−δ)σ̄

πdσ1 . . . σd

∫
D

( d∏
i=1

y
αi
σi
i −

d∑
j=1

yj

)2
y

1
2σ1
−1

1 . . . y
1

2σd
−1

d dy.
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Now, we make another change of variables: zi = yi
(∏d

j=1 y
αj/σj
j

)−1
. Note that

∏d
i=1 z

αi/σi
i =(∏d

i=1 y
αi/σi
i

)1−δ
. Therefore, using the notation Σd =

{
z ∈ Rd+ : ‖z‖1 ≤ 1

}
,

I0(T ) ∼ T
4δσ̄+d

2(1−δ)σ̄

πdσ1 . . . σd

∫
Σd

( d∏
i=1

z
αi
σi
i

) 4σ̄+d−2dσ̄
2σ̄(1−δ)

(1− ‖z‖)2z
1

2σ1
−1

1 . . . z
1

2σd
−1

d ∆(z) dz,

where ∆(z) is the Jacobian. Standard algebra yields ∆(z) =
(∏d

i=1 z
αi/σi
i

)d/(1−δ)
/(1 − δ).

Next we give an explicit form for this integral I0(T ) ∼ π−dT
4δσ̄+d

2(1−δ)σ̄ I, where

I =
1(∏d

i=1 σi
)
(1− δ)

∫
Σd

( d∏
i=1

z
αi
σi
i

) 4σ̄+d
2σ̄(1−δ)

(1− ‖z‖1)2z
1

2σ1
−1

1 . . . z
1

2σd
−1

d dz.

Now, Liouville formula (see for instance Ingster and Stepanova (2011)) combined with the
well-known identity

∫ 1
0 u

α−1(1− u)β−1 du = Γ(α)Γ(β)/Γ(α+ β) yields

I =

∏d
i=1 Γ

(
1

2σi
+ αi

σi
4σ̄+d

2σ̄(1−δ)
)(∏d

i=1 σi
)
(1− δ)Γ

(
1

2σ + (2 + 1
2σ ) δ

1−δ
) ∫ 1

0
(1− u)2u

d
2σ̄

+
(4σ̄+d)δ
2σ̄(1−δ)−1

du

=
2
∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1− δ)Γ(κ+ 3)

=
2
∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1− δ)(κ+ 2)Γ(κ+ 2)

=
2πdC(d,σ,α)

κ+ 2
.

Therefore,

I0(T ) ∼ 2C(d,σ,α)

κ+ 2
T

4δσ̄+d
2(1−δ)σ̄ .

Very similar computations imply that, as T →∞, we have

I1(T ) ∼ T
4δσ̄+d

2(1−δ)σ̄

πd

∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1− δ)Γ(κ+ 2)

= C(d,σ,α)T
4δσ̄+d

2(1−δ)σ̄ .

Note now that (15) is equivalent to n2T 2I0(T ) ∼ 8T 4(I1(T ) − I0(T ))2z2
1−γ/2. Using the

asymptotic equivalents for I0 and I1 we have derived above, one directly checks that the
value of Tn,γ proposed in Proposition 4 satisfies (15). Furthermore, since (16) is equivalent to
(r∗n,γ)2 = I1(Tn,γ)/Tn,γI2(Tn,γ), we get r∗n,γ = C∗γr

∗
n(1 + o(1)), as announced in proposition.

It remains to check that for the sequence Tn,γ � n
4σ̄(1−δ)

4σ̄+d conditions [C1], [C2], [C5], [C8]
and [C9] are fulfilled. Using the same method as the one used above to evaluate I0, we get

|N (Tn,γ)| � n
2d

4σ̄+d and M(Tn,γ) =
∑

l∈N (Tn,γ)

q2
l � n

2(4δσ̄+d)
4σ̄+d . (40)

The assumption σ̄ > d/4 implies |N (Tn,γ)| log |N (Tn,γ)| = o(n) and, as a consequence, con-
ditions [C4] and [C8] are true. Furthermore, the second relation in (40) combined with
δ < 1 implies [C2]. Condition [C5] follows from the fact that all the nonzero entries of q are
lower-bounded by 1.

In order to check [C1] and [C9], we need to find an upper bound for maxl∈N (Tn,γ) ql. In the
following calculations, the term C is a constant which depends only on d, α and σ and can
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vary from line to line. Let l ∈ N (T ), then cl ≤ Tql, which implies, for every i = 1, . . . , d,

l
2(σi−αi)
i ≤ CT

∏
j 6=i l

2αj
j . In particular

l
2(σ1−α1)
1 ≤ CT

∏
j 6=1

l
2αj
j , l

2(σ2−α2)
2 ≤ CT

∏
j 6=2

l
2αj
j , l

2(σ3−α3)
3 ≤ CT

∏
j 6=3

l
2αj
j . (41)

Injecting the first inequality of (41) in the second one, we obtain

l
2(σ2−α2)
2 ≤ CT

(∏
j≥3

l
2αj
j

)(∏
j≥2

l
2αj
j

) α1
σ1−α1 ≤ CT

(∏
j≥3

l
2αj
j

) σ1
σ1−α1

(
l2α2
2

) α1
σ1−α1 .

Hence

l2σ2
2 ≤ C

(
T
∏

j≥3
l
2αj
j

) 1
1−α1/σ1−α2/σ2 (42)

and by symmetry,

l2σ1
1 ≤ C

(
T
∏

j≥3
l
2αj
j

) 1
1−α1/σ1−α2/σ2 . (43)

Next, using (42), (43) and the third inequality in (41), we get

l2σ3
3 ≤ C

(
T
∏

j≥4
l
2αj
j

) 1
1−α1/σ1−α2/σ2−α3/σ3 .

Iterations of the previous process lead to the inequality maxj l
2σj
j ≤ CT 1/(1−δ). Therefore,

maxl∈N (T ) ql = C
∏d
j=1 l

2αj
j ≤ CT

δ
1−δ . Combining this bound with Tn,γ � n

4σ̄(1−δ)
4σ̄+d and (40)

yields the inequalities of [C1] and [C9].

Appendix D: Proof of Proposition 5

As in the previous subsection, we begin with the calculation of I0. Setting xl,i = 2πli

T
1

σ−1
and

using the same method to get an integral, we have

I0 = T
4

σ−1

∑
l∈Zd

[
‖xl‖22 − (β>xl)

2 − ‖xl‖2σ2σ
]2

+

∼ T
d+4
σ−1

(2π)d

∫
Rd

[
‖x‖22 − (β>x)2 − ‖x‖2σ2σ

]2

+
dx.

This implies the asymptotic relation I0 ∼ C0T
d+4
σ−1 with the constant C0 = 1

(2π)d

∫
Rd
[∑d

i=1(xi−
1
d

∑d
j=1 xj)

2 −
∑d

i=1 x
2σ
i

]2
+
dx. Similar computations yield I1 ∼ C1T

(d+4)/(σ−1) and I2 ∼
C2T

(d+4)/(σ−1), where C1 and C2 have the values given in the paragraph preceding the propo-
sition.

The rest of the proof can be carried out exactly in the same way as the proof of the previous

proposition, based on the relation N(T ) � T
d

σ−1 and M(T ) � T
d+4
σ−1 .
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Appendix E: Proofs of results stated in Section 4

E.1. Proof of Theorem 3

The arguments are almost the same as in the proof of Theorem 1. We use the array wn with
entries wl = ql1{l∈N (T )}/M(T )1/2 and the kernel Gn(t1, t2) =

∑
l∈Lwlϕl(t1)ϕl(t2) in order

to define the linear U-test statistic:

Un =

(
n

2

)−1/2 ∑
1≤i<j≤n

xixjGn(ti, tj).

We write as Un = Un,0 + Un,1 + Un,2, where

Un,0 =

(
n

2

)−1/2∑
i<j

ξiξjGn(ti, tj), Un,1 =

(
n

2

)−1/2∑
i<j

(ξif(tj) + ξjf(ti))Gn(ti, tj)

and Un,2 =
(
n
2

)−1/2∑
i<j f(ti)f(tj)Gn(ti, tj). The first and the second moments of this U-

statistic are described in the next result, in which we use the notation Tw[f ] =
∑

l wlθl[f ]ϕl.

Lemma 9. Let wn = (wl,n)l∈L be an array containing only a finite number of nonzero
entries and such that

∑
l∈Lw

2
l,n = 1. Let L(wn) be the support of wn. The expectation of the

U-statistic Un is given by:

Ef [Un] = Ef [Un,2] = h̄n[f,wn] =
(n(n− 1)

2

)1/2∑
l

wlθ
2
l [f ].

Furthermore, if [D2] holds true, then E[U2
n,0] = 1, E[U2

n,1] ≤ 2D2‖wn‖2∞‖wn‖0‖f‖22 and

Var[Un,2] ≤ D2‖wn‖2∞‖wn‖0‖f‖44 +
2n

3
‖f · Tw[f ]‖22.

Proof. This result can be proved along the lines of the proof of Lemma 3. The only difference
is in the evaluation of the term An,2, for which we have

An,2 =
4

n(n− 1)

(
n

3

) ∑
l,l′∈L(wn)

wlwl′θl[f ]θl′ [f ]
{∫

f(t)2ϕl(t)ϕl′(t) dt
}

=
2(n− 2)

3

{∫
f(t)2

(∑
l

wlθl[f ]ϕl(t)
)2
dt
}
≤ 2n

3
‖f · Tw[f ]‖22.

This yields the desired result.

Let us now study the type I and type II error probabilities of the test φn(T ) = 1{|Un(T )|>u}.

Evaluation of type I error Using Tchebychev’s inequality, for every u > |E[Un(T )]|, we
have

sup
f∈F0

Pf
(
|Un(T )| > u

)
≤ sup

f∈F0

Pf

(∣∣Un(T )− E[Un(T )]
∣∣ > u−

∣∣E[Un(T )]
∣∣)

≤ sup
f∈F0

Var(Un(T ))

(u− |E[Un(T )]|)2
.
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Let us denote νn,T = nT−1(2M(T ))−1/2. Using Lemma 9, we get

|E[Un(T )]| ≤ n√
2M(T )

∣∣∣ ∑
l∈N (T )

qlθ
2
l [f ]

∣∣∣ = Tνn,T

∣∣∣ ∑
l∈N (T )

qlθ
2
l [f ]

∣∣∣.
Since, under H0, we have Q[f ] =

∑
l qlθl[f ]2 = 0 and

∑
l clθl[f ]2 ≤ 1, the last sum can be

bounded as follows:
∣∣∑

l∈N (T ) qlθ
2
l [f ]

∣∣ =
∣∣∑

l:|ql|<cl/T qlθ
2
l [f ]

∣∣ ≤ T−1
∑

l clθl[f ]2 ≤ T−1. Thus,

|E[Un(T )]| = |h̄n[wn, f ]| ≤ νn,T . Combining this bound with those of Lemma 9, we arrive at

sup
f∈F0

Pf (φn(T ) = 1) ≤ 3(1 + 2D1D2D
2
3 +D1D2D

4
3 + 2nD4/(3M(T ))

(u− νn,T )2

=
B1 +B2nM(T )−1

2(u− νn,T )2

Consequently, if we choose u ≥ νn,T +
(
B1 +B2nM(T )−1

)1/2
γ−1/2, then supf∈F0

Pf (φn(T ) =
1) ≤ γ

2 .

Evaluation of type II error Using similar arguments, we get

sup
f∈F1(ρ)

Pf (φn(T ) = 0) = sup
f∈F1(ρ)

Pf (|Un(T )| ≤ u)

≤ sup
f∈F1(ρ)

Pf
(
|E[Un(T )]| − |Un(T )− E[Un(T )]| ≤ u

)
≤ sup

f∈F1(ρ)
Pf
(
2−1/2Tνn,T |Q[f ]| − νn,T −

∣∣Un(T )− E[Un(T )]
∣∣ ≤ u)

≤ P
(
2−1/2Tνn,Tρ

2 −
∣∣Un(T )− E[Un(T )]

∣∣ ≤ u+ νn,T
)
.

This can also be written as:

sup
f∈F1(ρ)

Pf (φn(T ) = 0) ≤ P
(∣∣Un(T )− E[Un(T )]

∣∣ ≥ (2−1/2Tρ2 − 1)νn,T − u
)
.

Using the Tchebychev inequality and the evaluations obtained in Lemma 9, we get

sup
f∈F1(ρ)

Pf (φn(T ) = 0) ≤ B1 +B2nM(T )−1

2
(
(2−1/2Tρ2 − 1)νn,T − u

)2 .
Clearly, the right hand-side of this inequality is lower than γ/2 if

ρ2 ≥
[
u+

1

γ

(
B1 +

B2n

M(T )

)1/2] √2

Tνn,T
+

√
2

T
.

This completes the proof of Theorem 3.

E.2. Proof of Corollary 1

It is enough to remark that (since M(·) is increasing and Tn ≤ T 0
n)√

M(Tn)

n
≤
√
M(T 0

n)

n
� 1

T 0
n

≤ 1

Tn

and 1√
n
≤ T−1

n . In view of these inequalities, the claim of the corollary immediately follows

from Theorem 3.
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E.3. Proof of Theorem 4

We start by proving that the minimax rate of separation is lower bounded by n−1/4. Let
la = argminl∈La{cl} for a ∈ {+,−}. We define two functions f0 and f1 as linear combinations
of the basis functions ϕl− and ϕl+ . More precisely, fi = θi,−ϕl− + θi,+ϕl+ , for i = 0, 1, with

θ2
0,− =

|ql+ |
cl− |ql+ |+ cl+ |ql− |

θ2
0,+ =

|ql− |
cl−ql+ + cl+ |ql− |

and, for some z > 0,

θ1,− = θ0,− θ2
1,+ = θ2

0,+ − z/
√
n.

One easily checks that f0 ∈ F0 and f1 ∈ F1(rn) with r2
n = zql+/

√
n. Furthermore, the

Kullback-Leibler divergence K(Pf0 , Pf1) =
∫

log
dPf0
dPf1

dPf0 between the probability measures

Pf0 and Pf1 can be bounded as follows:

K(Pf0 , Pf1) = E

(
Ef0

[
log

dPf0

dPf1

(x1, . . . , xn, t1, . . . , tn)

∣∣∣∣t1, . . . , tn

])
= E

(
Ef0

[ n∑
i=1

(xi − f1(ti))
2 − (xi − f0(ti))

2

∣∣∣∣t1, . . . , tn

])
= nE

[(
f0(t1)− f1(t1)

)2]
= n

∑
a∈{+,−}

(θ0,a − θ1,a)
2

= n
(
θ0,+ − |θ2

0,+ − zn−1/2|1/2
)2 ≤ z2(2θ0,+)−2.

To conclude, it suffices to use inequality (2.74) from (Tsybakov, 2009), which implies that
γn(F0,F1(rn)) ≥ 0.25e−z

2(2θ0,+)−2
= γ for z = 2θ0,+[ln(4γ)−1]1/2.

It remains to prove the second assertion of the theorem. To ease notation, we write Tn instead
of T 0

n and set

Qa[f ] =
∑

l∈La
qlθ

2
l [f ] and Fa = {f : Qa[f ] = 0}, for a ∈ {+,−}.

Let us assume that M+(Tn) ≥ M−(Tn). We use the fact that testing Q[f ] = 0 against
|Q[f ]| ≥ r2

n, with f ∈ Σ is harder than testing Q+[f ] = 0 against Q+[f ] ≥ r2
n, with f ∈ F−.

The rest of the proof follows the same steps as those of the proof of Theorem 2. As indicated
in Remark 4, we use as πn the simplified prior for which θl’s are independent Gaussian random
variables with zero mean and variance al = ql

2TnM+(Tn)1{l∈L+∪N (Tn)}. It is an easy exercice to

show that conditions [L1]-[L5] of Proposition 6 are fulfilled with δ = 1/2. This completes the
proof of the theorem.
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