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1. Introduction

Despite the considerable attention given to the autoregressive conditional heteroscedastic-
ity (ARCH) model and its generalization, the GARCH model, relatively few papers have
examined the issue of forecasting. Engle and Kraft (1983) considered predictions of ARMA
processes with ARCH errors. Engle and Bollerslev (1986) and Baillie and Bollerslev (1992)
studied predictions of the conditional mean in ARMA model with GARCH errors, and pre-
diction of conditional variances in GARCH(p, q) models. Andersen and Bollerslev (1998)
discussed the predictive qualities of GARCH, making a clear distinction between the predic-
tion of volatility and that of the squared returns. Karanasos (2002) considered predicting
the conditional mean and variance from an ARMA model with GARCH in mean effects.
Pascual, Romo and Ruiz (2005) proposed a Bootstrap procedure to obtain prediction den-
sities of returns and volatilities of GARCH processes. Pellegrini, Ruiz and Espasa (2012)
analyze the effects of differencing GARCH with stochastic trend on the prediction intervals.

In this paper, our aim is to investigate the problem of predicting powers of the process
(ǫt), defined as a solution of the general stochastic model

{
ǫt = σtηt
σt = σ(ǫt−1, ǫt−2, . . . ; θ0)

(1)

where (ηt) is a sequence of independent and identically distributed (iid) random variables,
ηt being independent of {ǫu, u < t}, θ0 ∈ Rm is a parameter belonging to a parameter space
Θ, and σ : R∞ × Θ → (0,∞). The variable σ2

t is generally referred to as the volatility of
ǫt in the econometric literature.2

Most conditional volatility models can be embedded in Model (1). A leading model,
the most widely used among practitioners, is the GARCH(1,1) model where σ2

t = ω0 +
α0ǫ

2
t−1 + β0σ

2
t−1 and θ0 = (ω0, α0, β0)

′ ∈ (0,∞) × [0,∞) × [0, 1). For this model we have
σ2
t =

∑∞
i=1 β

i−1(ω0+α0ǫ
2
t−i) which is of the form (1). Other specifications satisfying (1) are

the GARCH(p, q), the asymmetric power GARCH(p, q) model proposed by Ding, Granger
and Engle (1993), and the ARCH(∞) introduced by Robinson (1991). In GARCH models,
it is generally assumed that Eηt = 0, but we do not make this assumption.

1.1. Two approaches for predicting powers
For any real number r such that E|ηt|r < ∞, the best predictor in mean square of |ǫt|r is
the conditional expected value

Et−1(|ǫt|r) = σr
tE|ηt|r, (2)

where Et−1 denotes expectation conditional on the infinite past. We will also consider the
optimal prediction of log |ǫt| given by

Et−1(log |ǫt|) = log σt + E log |ηt|, (3)

provided that E log |ηt| exists. This case can be seen as the limit of the case (2) when r = 0,
via the Box-Cox transformation log |x| = limr→0(|x|r − 1)/r.

2The choice of an appropriate GARCH model, including the orders, is clearly an important
issue: see for instance Li (Chapter 6, 2004) for diagnostic tests in GARCH models, and Francq and
Zakoïan (Chapter 5, 2010) for the selection of GARCH orders.



2 C. Francq and J-M. Zakoian

To estimate the volatility in Model (1) a scale constraint is required on the sequence (ηt),
for evident identifiability reasons. The standard assumption Eη2t = 1 is required for the
consistency of the Gaussian quasi-maximum likelihood estimator (QMLE), while the least
absolute deviations estimator (LADE) requires the condition median(η2t ) = 1. However,
the constraint E|ηt|r = 1, with r 6= 0, can be used as well. In view of this, we consider two
approaches for predicting |ǫn+1|r, given observations (ǫ1, . . . , ǫn):

• A fully parametric one-step approach in which θ0 is estimated under the assumption
that E|ηt|r = 1 when r 6= 0, and E log |ηt| = 0 when r = 0. The prediction of |ǫn+1|r
(resp. log |ǫn+1|) based on (2) (resp. (3)) is then the estimated value of σr

n+1 (resp.
log σn+1).

• A mixed (parametric and non parametric) two-step approach in which θ0 is estimated
by the practitioner’s favorite estimator under a relevant identifiability assumption
(for instance the QMLE under E|ηt|2 = 1, or the LADE under median(η2t ) = 1), and
E|ηt|r (or E log |ηt| when r = 0) is estimated non-parametrically. The prediction of
|ǫn+1|r (resp. log |ǫn+1|) based on (2) (resp. (3)) is the estimated value of σr

n+1 (resp.
log σn+1) multiplied by the estimate of E|ηt|r (resp. plus the estimate of E log |ηt|).

The mixed approach seems more natural. Many statistical procedures include two steps,
involving the estimation of a characteristic of the error distribution in the second step.
Examples include Generalized Least Squares (the errors variance), adaptive estimation (the
errors density) and value-at-risk estimation in GARCH-type models (a quantile of the errors
distribution). The fully parametric approach is novel, to our knowledge, and, as we shall
demonstrate, it can provide efficiency gains over the more natural approach.

1.2. Non Gaussian QML
For the reparameterized model under the identifiability constraint E|η0|r = 1 with r 6= 2,
the QMLE is generally inconsistent. For our prediction problem with r 6= 2, we there-
fore consider a generalized QMLE based on an instrumental density h different from the
Gaussian. This QMLE coincides with the MLE when the error’s distribution f is correctly
specified (that is when h = f). To keep the robustness of the standard QML, it should also
be consistent for any error distribution f satisfying E|η0|r = 1. This will imply a choice
of h depending on the prediction problem, that is on r. Newey and Steigerwald (1997)
studied the identification conditions required for the consistency of non Gaussian QMLE’s
in general conditional heteroskedastic models. In the case of standard GARCH models,
Berkes and Horváth (2004) derived the asymptotic distribution of such estimators. Fan,
Qi and Xiu (2010), and Francq, Lepage and Zakoian (2011) proposed two-stage procedures
based on non Gaussian QMLE for estimating standard GARCH models under the standard
identifiability condition. In the latter references, alternative QML criteria are introduced
to achieve better efficiency than the Gaussian QMLE. By contrast, in the fully parametric
approach of the present paper, the QML criterion will be imposed by the prediction problem
under consideration.

1.3. Interest of predicting powers r 6= 2
The prediction of ǫ2t , which is also the prediction of the volatility under the assumption
that Eη2t = 1, is obviously important for financial applications but it does not appear to be
sufficient.
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i) Interest of considering r > 2. The conditional moments of financial returns are an
important measure of the market fluctuation. The conditional kurtosis, defined as the
ratio of the fourth conditional moment over the squared volatility has drawn attention in
the finance literature (see for instance Brooks, Burke, Heravi and Persand (2005) and the
references therein). Conditional distributions of financial series typically display a sharp
peak around zero as well as fat tails. To measure the fluctuations of tails, it is therefore
sensible to evaluate how Et−1(ǫ

4
t )/{Et−1(ǫ

2
t )}2 varies with time. If the GARCH model is

correctly specified, this ratio should be constant. Estimation of the conditional kurtosis can
thus be the basis of a formal specification test. In this paper we focus on the estimation of
such conditional moments and leave this issue for further investigation.

ii) Interest of considering 0 ≤ r < 2. As argued by Taylor (2007, p. 398), "return
outliers are amplified when they are squared and then forecast errors are typically very
large compared with other times. Consequently another popular proxy [of volatility] is the
absolute return." Indeed, when one suspects that second or fourth-order moments do not
exist, it is sensible to consider predictions of absolute returns, or even smaller powers of
returns as measures of the future price volatility.

iii) Interest of considering r < 0. For some applications, for instance duration time
between events, it may be worth fitting a GARCH-type model to the inverses of the data.
Autoregressive conditional duration (ACD) models were introduced by Engle and Russell
(1998) for the analysis of durations. ACD can be seen as squares of GARCH models applied
to duration data, xt say (where t denotes the t-th transaction, and xt the duration between
the (t− 1)-th and t-th transactions). Such models are appropriate to capture the clustering
of large durations: a GARCH effect is detected if the empirical correlations between present

and past durations, Ĉorr(xt, xt−k) for k > 0, say, are significant. However, it may be of
interest to capture clustering of small durations. Indeed, such small durations are likely
to reflect high volatility of prices. If significant empirical correlations between present and

past inverse durations, Ĉorr(x−1
t , x−1

t−k) for k > 0, are found, it is thus sensible to adjust
a GARCH model to the inverse of such duration data, ǫt = 1/xt. The usual GARCH
methodology allows to optimally predict ǫ2t , but one is mostly interested in predicting xt
or x2t . To this aim, we need to predict |ǫt|r with r = −1 or r = −2. In the supplementary
document, we present an empirical example showing that such significant autocorrelations
are detected for the inverses of durations between transactions.

1.4. Contributions of this paper

For the general Model (1), we study the aforementioned methods for predicting |ǫn+1|r or
log |ǫn+1|. For the first step of the mixed procedure, we focus on two methods: the Gaussian
QMLE and the LADE.

Our main contributions are the following: 1) we introduce the one-step method, based on
a generalized QML; 2) we obtain a complete characterization of the omnibus instrumental
densities, that is those which render the generalized QMLE universally consistent; 3) the
asymptotic properties of the generalized QMLE are derived for Model (1); 4) the asymptotic
properties of the mixed approach are derived; 5) for the standard GARCH model, we obtain
surprisingly simple expressions for the Asymptotic Relative Efficiency (ARE) of the fully
parametric method with respect to mixed methods in which either the QML or the LAD
estimation is used in first step.
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1.5. Organization of the paper
Section 2 is devoted to the strong consistency and asymptotic normality (AN) for generalized
QMLE, based on an instrumental density h, in Model (1). The choice of h is solved for the
prediction problems (2)-(3), by characterizing the functions h for which the consistency is
achieved under a given condition E|ηt|r = 1 or under the condition E log |ηt| = 0. Section
3 is devoted to the asymptotic properties of the two-step approach based on the Gaussian
QML. For the standard GARCH(p, q), we show that the ARE of the one-step estimator only
depends on the power r and moments of the iid process. Section 4 completes the comparison
of the two approaches, by considering the LADE, instead of the Gaussian QMLE, for the
two-step method. Section 5 proposes empirical applications based on financial data. The
most technical assumptions and proofs are deferred to Appendix A. Complementary results,
proofs and illustrations are collected in Appendix B.

2. Asymptotic properties of non-Gaussian QMLE

The asymptotic results of this paper will be established under the following assumption,
which can be made more explicit for specific forms of the volatility function σ (for classical
GARCH see Nelson (1990), Bougerol and Picard (1992)).

A0: (ǫt) is a strictly stationary and ergodic solution of (1).

Given observations ǫ1, . . . , ǫn, and arbitrary initial values ǫ̃i for i ≤ 0, we define σ̃t(θ) =
σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ). This random variable will be used as a proxy of σt(θ) =
σ(ǫt−1, ǫt−2, . . . , ǫ1, ǫ0, ǫ−1, . . . ; θ). We choose an arbitrary integrable and positive function
h, in general a density, which can be called instrumental density, and define the QML
criterion

Q̃n(θ) =
1

n

n∑

t=1

g(ǫt, σ̃t(θ)), g(x, σ) = log
1

σ
h
(x
σ

)
. (4)

Let the QMLE
θ̂n,h = argmax

θ∈Θ
Q̃n(θ)

for some compact space Θ. This estimator is the standard Gaussian QMLE when h is the
standard Gaussian density φ.

2.1. Identifiability conditions
To be able to identify the parameters in Model (1) it is necessary to impose a constraint on
(ηt). For the sake of predicting |ǫt|r, a natural constraint in view of (2)-(3), is

A1: E|η0|r = 1 when r 6= 0, and E log |η0| = 0 when r = 0.

We make the following assumption on the volatility function, for some ω > 0.

A2: Almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ. Moreover, σt(θ0)/σt(θ) = 1 a.s. iff
θ = θ0.

For the consistency of the estimator θ̂n,h, we assume that the function σ → Eg(η0, σ) is
valued in [−∞,+∞) and has a unique maximum at 1:

A3: Eg(η0, σ) < Eg(η0, 1) ∀σ > 0, σ 6= 1.
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Let f denote the density of η0, when existing. To interpret A3, denote by K(f, f∗) =
E log(f/f∗)(η0) the Kullback-Leibler "distance" between f and a density f∗. Let hσ(x) =
σ−1h(σ−1x), the density of σY where Y has the density h. Then A3 can be written

K(f, h) < K(f, hσ), ∀σ > 0, σ 6= 1.

This condition means that there is no way to obtain a density closer to f by scaling h. It
is clear by the Jensen inequality that A3 is always satisfied for the MLE, that is if h = f .
However, in general f is unknown and cannot be chosen as the instrumental density. When
h 6= f, A3 entails a moment condition on η0, which may be incompatible with A1. For
instance when h = φ, we find that A3 reduces to Eη20 = 1. This condition is compatible
with A1 only when r = 2. It is therefore important to characterize the functions h which
make A1 and A3 compatible. This will be done in Section 2.3.

2.2. Asymptotic properties of the generalized QMLE
Apart from identifiability assumptions, technical conditions are required for the asymptotic
properties of the generalized QMLE. Let H0 be the set of the instrumental densities h > 0
which are differentiable over R∗ = R \ {0}. For some constants δ ∈ R and C0 > 0, let

A4: h ∈ H0 with |uh′(u)
h(u) | ≤ C0(1 + |u|δ) for all u ∈ R∗ and E|η0|δ <∞.

A5: For any x ∈ Rm, we have: x′
(

∂σ2
t

∂θi

)
i=1,...,m

= 0, a.s. ⇒ x = 0.

A4 is a mild assumption which vanishes for instance when the instrumental density has the
form h(u) = K1|u|λ exp{K2|u|r}, for some constants λ,K1,K2. In this case, the inequality
is satisfied with δ = r and the condition E|η0|δ < ∞ thus follows from A1. Assumption
A5 is required for the invertibility of the matrix J involved in the asymptotic variance of
the estimator. For specific forms of σt, for instance if the model is a standard GARCH,
the condition reduces to standard assumptions on the lag polynomials of the volatility. For
the reader’s convenience, additional technical assumptions, A6-A10, are reported in the
appendix. The following is an extension of results (Theorems 1.1 and 1.2) proven by Berkes
and Horváth (2004) for the standard GARCH.

Theorem 2.1. If A0-A4 and A6 hold, for constants δ ∈ R and C0 > 0, then

θ̂n,h → θ0, a.s.

where θ0 is the true parameter value in Model (1) under the identifiability condition A1.
If, in addition, A7-A10 hold and Eg2(η0, 1) 6= 0 then

√
n
(
θ̂n,h − θ0

)
L→ N (0, 4τ2h,fJ

−1)

where

J = J(θ0) = E

(
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0)

)
and τ2h,f =

Eg21(η0, 1)

{Eg2(η0, 1)}2
,

with g1(x, σ) = ∂g(x, σ)/∂σ and g2(x, σ) = ∂g1(x, σ)/∂σ.
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This result contains, as particular cases, the AN for the MLE (when h = f) and for the
QMLE (when r = 2 and h = φ). In the former case we have

τ2f,f =

{
E

(
1 +

f ′(η0)

f(η0)
η0

)2
}−1

.

We also have τ2φ,f = (Eη40 − 1)/4 when r = 2 and we retrieve the standard result.

Remark 1. The results of Theorem 2.1 can be compared with those obtained in other
articles for the Gaussian QMLE of general formulations similar to (1). Straumann and
Mikosch (2006) studied the Gaussian QMLE for conditionally heteroscedastic models where
the volatility has the form σ2

t = g(ǫt−1, . . . , ǫt−p, σ
2
t−1, . . . , σ

2
t−q; θ). More recently Bardet

and Wintenberger (2009) proved the asymptotic properties of the Gaussian QMLE for a
general class of multidimensional causal processes encompassing (1). However, their con-
ditions for consistency and AN require the existence of moments of orders 2 and 4 for ǫt,
respectively, which we do not need for the class (1). Our sole moment assumptions are on
ηt. For GARCH processes, the existence of moments for ηt does not imply finite moments
for ǫt: see for instance Figures 2.8 and 2.10 in Francq and Zakoian (2010).

Remark 2. These results can also be compared with those, already mentioned in the
introduction, using non Gaussian QMLE. Except in the case r = 2, our parameter θ0 is not
the GARCH parameter, denoted by θ∗0 in the sequel (see Equation (6)), which is estimated in
the aforementioned articles. Fan, Qi and Xiu (2010) propose a method for estimating θ∗0 in
the standard GARCH model, using a very general QML and two optimization procedures.
For the same models and the same parameter θ∗0 , the approach of Francq, Lepage and
Zakoian (2011) only requires one optimization procedure but uses more specific QMLs.

2.3. Choice of the instrumental density
A given function h can be said to be omnibus for our prediction problem if Assumptions
A1 and A3 are compatible for any distribution of η0. In this section, we will show that
under A4, the class of the omnibus functions h reduces, for a given r, to the class C(r) of
functions of the form





c|x|λ−1 exp (−λ|x|r/r) , if r > 0,
c|x|−λ−1 exp (λ|x|r/r) , if r < 0,√
λ/π|2x|−1 exp

{
−λ(log |x|)2

}
, if r = 0,

for constants λ, c > 0. The following proposition, whose proof is straightforward, shows
that, for a given r, the QMLE based on h ∈ C(r) does not depend on c and λ.

Proposition 1. If the instrumental function h belongs to C(r) then the generalized
QMLE is given by

θ̂n,h =





argminθ∈Θ

∑n
t=1 log σ̃

r
t (θ) +

|ǫt|r
σ̃r
t (θ)

, if r 6= 0,

argminθ∈Θ

∑n
t=1

{
log |ǫt|

σ̃t(θ)

}2

, if r = 0.
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Table 1. Choice of h depending on the prediction problem.
Problem constraint solution instrumental density h τ2

h,f

Et−1 |ǫt|r , r > 0 E |ηt|r = 1 σr
t c|x|λ−1 exp (−λ|x|r/r) , λ > 0

E|ηt|
2r−1

r2

Et−1 |ǫt|r , r < 0 E |ηt|r = 1 σr
t c|x|−λ−1 exp (λ|x|r/r) , λ > 0

E|ηt|
2r−1

r2

Et−1 log |ǫt| E log |ηt| = 0 log σt

√

λ/π|2x|−1 exp
{

−λ(log |x|)2
}

E(log |ηt|)2

Table 2. Asymptotic efficiency of the ML with respect to the Generalized QML, for
the Gaussian distribution, as a function of r.
r 0.01 0.1 0.25 0.5 1 1.5 2 2.5 3.5 4.5 9

τ2
h,f/τ

2
f,f 2.43 2.12 1.78 1.44 1.14 1.03 1 1.02 1.19 1.53 9.04

The previous result shows that when r 6= 0, the non Gaussian QMLE can be interpreted as
a standard QMLE obtained by transforming the data ǫ2t in |ǫt|r.3 The following proposition
shows that A3 can be omitted in Theorem 2.1 when h is chosen in C(r).

Proposition 2. Let h ∈ H0 be such that A4 holds. Then

A3 holds for any distribution of η0 satisfying A1 iff h ∈ C(r).

In view of Propositions 1 and 2, it is not restrictive to choose h in the set C(r) with λ = 1.
The choice of the instrumental density h is thus entirely determined by r, that is by the
prediction problem. This is summarized in Table 1. The last column provides the factors
τ2h,f which, by Theorem 2.1, measures the impact of h on the asymptotic variance of the
QMLE.

The next result, which is established in the supplementary document, characterizes the
set of densities f of ηt for which a given h is optimal.

Corollary 1. Let the assumptions of Theorem 2.1 hold for some h ∈ C(r). Then the
generalized QMLE based on h coincides with the MLE when the density f of ηt belongs to
C(r).

Conversely, when f 6∈ C(r) but is such that τ2f,f exists, any generalized QMLE based on

h ∈ C(r) is asymptotically inefficient in the sense that τ2f,f < τ2h,f .

The loss of efficiency of the non Gaussian QML with respect to the ML is illustrated in
Table 2 for Gaussian errors.

3. Mixed approach based on the Gaussian QML

The mixed approach involves two steps. In a first step, the model is estimated by the stan-
dard QMLE and, in a second step, the expectation involved in (2) (or (3)) is estimated using
the estimated rescaled innovations. To obtain the asymptotic properties of this method, it
is necessary to derive the joint asymptotic distribution of the estimators of the two steps.

3When r = 0, the prediction of log |ǫt| is equivalent to the prediction of the conditional mean in
the regression model yt = log σt(θ0)+ et, where yt = log |ǫt| and et = log |ηt|. Gouriéroux, Monfort
and Trognon (1984) showed that the consistent Pseudo maximum likelihood estimators (PMLE)
are the minimizers of the objective functions

∑n
t=1

log h(yt, log σ̃t(θ)), where h(x,m) belongs to the
family of the linear exponential densities of mean m. Such PMLE do not coincide with our QMLE
because our estimator optimizes the likelihood of a scale parameter (see (4)) whereas the PMLE
optimizes the likelihood of a location parameter.
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To be able to apply the standard Gaussian QMLE, we need to reparameterize the model
when A1 holds. Assume that

B0: Eη40 <∞ and E|η0|2r <∞ when r 6= 0, E log2 |η0| <∞ when r = 0,

and let
η∗t =

ηt√
Eη2t

.

The following assumption is required to reparameterize the model.

B1: There exists a function F such that for any θ ∈ Θ, for any K > 0, and any (xi)i

Kσ(x1, x2, . . . ; θ) = σ(x1, x2, . . . ; θ
∗), where θ∗ = F (θ,K).

Standard GARCH models obviously verify this assumption with

F (θ,K) = (K2ω,K2α1, . . . ,K
2αq, β1, . . . , βp)

′ (5)

and usual notations. Let θ∗0 = F (θ0,
√
µ2) where µs = E|ηt|s for s 6= 0. The reparameterized

model is {
ǫt = σ∗

t η
∗
t , Eη∗2t = 1,

σ∗
t = σ(ǫt−1, ǫt−2, . . . ; θ

∗
0)

(6)

The Gaussian QMLE of θ∗0 , denoted by θ̂∗n, is defined as a maximizer over Θ of
n−1

∑n
t=1 log

[
σ̃−1
t (θ)φ

{
σ̃−1
t (θ)ǫt

}]
. Let the rescaled residuals η̂∗t = ǫt/σ̂

∗
t , where σ̂∗

t =

σ(ǫt−1, ǫt−2, . . . , ǫ̃0, ǫ̃−1, . . . ; θ̂
∗
n). We define

µ̂∗
r =

1

n

n∑

t=1

|η̂∗t |r, µ∗
r = E|η∗t |r =

1

µ
r/2
2

, for r 6= 0,

µ̂∗
0 =

1

n

n∑

t=1

log |η̂∗t |, µ∗
0 = E log |η∗t | = −1

2
logµ2, for r = 0,

and κs =
E|ηt|s

µ
s/2
2

for any s 6= 0.

3.1. Asymptotic distribution of (θ̂∗n, µ̂
∗
r)

Theorem 3.1. If A0-A2, B0, B1 and, with δ = max(2, r), A6, A9-A10 hold, and

θ∗0 ∈
◦
Θ, then θ̂∗n → θ∗0 , µ̂

∗
r → µ∗

r a.s. and
( √

n
(
θ̂∗n − θ∗0

)
√
n(µ̂∗

r − µ∗
r)

)
L→ N

{
0,Σr :=

(
(κ4 − 1)J−1

∗ −λrJ−1
∗ Ω∗

−λrΩ′
∗J

−1
∗ σ2

µ∗
r

)}
, (7)

where

J∗ = E

(
1

σ∗4
t

∂σ2
t (θ

∗
0)

∂θ

∂σ2
t (θ

∗
0)

∂θ′

)
, Ω′

∗ = E

(
1

σ∗2
t

∂σ2
t (θ

∗
0)

∂θ′

)

and
λr =

r

2
κr(κ4 − 1)− (κ2+r − κr), σ2

µ∗
r
= κ2r − κ2r +

r

2
κr(λr − κ2+r + κr)

for r 6= 0, and

λ0 =
κ4 − 1

2
− Cov

(
log |ηt|,

η2t
µ2

)
, σ2

µ∗
0
= Var (log |ηt|) + λ0 −

κ4 − 1

4
.
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Remark 3. In the proof, the following relation, of independent interest, is established:

Ω′
∗J

−1
∗ Ω∗ = 1. (8)

To show this equality we use an argument based on asymptotic results. A direct proof,
based on algebra, can be given in the standard GARCH case (see Appendix B).

Remark 4. In the proof of (8) it is shown that µ̂∗
2 = µ∗

2(= 1), a.s. This entails that,
when r = 2, the two approaches for predicting ǫ2t are the same. In this case, the asymptotic

distribution for µ̂∗
r is degenerate and θ̂∗n has the same limiting normal distribution as θ̂n,φ.

Remark 5. In the centered Gaussian case, Σr is block-diagonal. Indeed, if ηt follows a

N (0, N
−2/r
r ) distribution where r > −1 and Nr = E|U |r if U is N (0, 1) distributed, then

κ4 = 3 and κs = (s− 1)κs−2 for s > 1. It follows that λr = 0.

3.2. Comparison of predictors
By the direct approach, based on the generalized QMLE θ̂n,h, the optimal pre-

diction En|ǫn+1|r is estimated by σ̃r(ǫn, ǫn−1, . . . ; θ̂n,h). By the mixed approach,

based on the Gaussian QMLE θ̂∗n in Model (6), the same optimal prediction is

estimated by σ̃r(ǫn, ǫn−1, . . . ; θ̂
∗
n)µ̂

∗
r = σ̃r(ǫn, ǫn−1, . . . ;F (θ̂

∗
n, {µ̂∗

r}1/r)). The optimal

prediction En log |ǫn+1| can similarly be estimated by log σ̃(ǫn, ǫn−1, . . . ; θ̂n,h) and

log σ̃(ǫn, ǫn−1, . . . ; θ̂
∗
n) + µ̂∗

0 = log σ̃(ǫn, ǫn−1, . . . ;F (θ̂
∗
n, e

µ̂∗
0 )). To compare the predictors

it suffices to compare the asymptotic distributions of θ̂n,h and θ̃n = Gr(θ̂
∗
n, µ̂

∗
r) with

Gr(θ̂
∗
n, µ̂

∗
r) = F (θ̂∗n, {µ̂∗

r}1/r) if r 6= 0, and G0(θ̂
∗
n, µ̂

∗
0) = F (θ̂∗n, e

µ̂∗
0 )). Using the strong

consistency of (θ̂∗n, µ̂
∗
r), in Theorem 3.1, we have, under smoothness assumptions on the

function F ,
θ̃n → θ0 = Gr(θ

∗
0 , µ

∗
r), a.s.

and
√
n
(
θ̃n − θ0

)
L→ N

(
0,

[
∂Gr(θ

∗
0 , µ

∗
r)

∂(θ′, µ)

]
Σr

[
∂Gr(θ

∗
0 , µ

∗
r)

′

∂(θ′, µ)′

])
. (9)

The problem is thus to compare

4τ2h,fJ
−1 and Γr =

[
∂Gr(θ

∗
0 , µ

∗
r)

∂(θ′, µ)

]
Σr

[
∂Gr(θ

∗
0 , µ

∗
r)

′

∂(θ′, µ)′

]
.

The comparison can be explicitly done for the standard GARCH(p, q) model and some of
its extensions. This is the object of the next section.

3.3. The standard GARCH(p, q) case
To our knowledge, the mildest assumptions for the

√
n consistency and AN of the Gaussian

QMLE for standard GARCH with iid errors admitting a finite fourth-order moment were
obtained by Berkes, Horváth and Kokoszka (2003) and Francq and Zakoïan (2004). In this
section, the results of Theorem 2.1 are applied to the standard GARCH(p, q) model

{
ǫt = σtηt
σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i +

∑p
j=1 β0jσ

2
t−j

(10)
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where θ0 = (ω0, α01, . . . , β0p)
′ satisfies ω0 > 0, α0i ≥ 0, β0j ≥ 0. Let θ̂∗n = (ω̂∗, α̂∗

1, . . . , β̂
∗
p) be

the Gaussian QMLE of θ∗0 = (µ2ω0, µ2α01, . . . , µ2α0q, β01, . . . , β0p)
′. Let Aθ(z) =

∑q
i=1 αiz

i

and Bθ(z) = 1 −∑p
j=1 βjz

j. Let γ(A0) denote the top-Lyapunov exponent associated to
Model (10) (see e.g. Francq and Zakoïan (2004)). For the standard GARCH, several
assumptions of Section 2 can be made more explicit as follows.

C: γ(A0) < 0; ∀θ ∈ Θ,
∑p

j=1 βj < 1 and ω > ω for some ω > 0; |η0| has a non
degenerate distribution; if p > 0, Aθ0(z) and Bθ0(z) have no common root, Aθ0(1) 6=
0, and α0q + β0p 6= 0.

The next theorem, which is proven in the supplementary document, provides the asymp-
totic distributions of the estimators of θ0 involved in the two methods.

Theorem 3.2 (Standard GARCH(p, q)). Let r 6= 0. For h ∈ C(r), E|η0|r = 1,

E|η0|2r <∞ and under C, the one-step estimator of θ0 ∈
◦
Θ satisfies

√
n
(
θ̂n,h − θ0

)
L→ N

{
0,

(
2

r

)2(
κ2r
κ2r

− 1

)
J−1

}
. (11)

Under the same assumptions and Eη40 < ∞, the two-step estimator is given by θ̃n =

({µ̂∗
r}2/rω̂∗, {µ̂∗

r}2/rα̂∗
1, . . . , {µ̂∗

r}2/rα̂∗
q , β̂

∗
1 , . . . , β̂

∗
p) and satisfies

√
n
(
θ̃n − θ0

)
L→ N

{
0, (κ4 − 1)J−1 +

[(
2

r

)2(
κ2r
κ2r

− 1

)
− (κ4 − 1)

]
θ0θ

′
0

}
(12)

where θ0 =

(
θ
[1:q+1]
0

0p

)
, θ

[1:q+1]
0 = (ω0, α01, . . . , α0q)

′.

It is interesting to note that when applied to the Gaussian QML (r = 2), the assumptions
of this theorem reduce to those of the aforementioned papers.

The next result allows for a very simple comparison of the efficiencies of the two methods.

Corollary 2 (A criterion for efficiency comparison). Under the assumptions
of Theorem 3.2 the asymptotic variance matrices of the two estimators verify

Varas

{√
n
(
θ̂n,h − θ0

)}
� Varas

{√
n
(
θ̃n − θ0

)}

in the sense of positive semi-definite matrices, if and only if

(
2

r

)2 (
κ2r
κ2r

− 1

)
≥ κ4 − 1. (13)

Remark 6. Surprisingly, the asymptotic efficiency comparison of the two approaches
only depends on r and some moments of the iid process, not on θ0. This result has impor-
tance for practical purposes. It gives a basis for selecting the (asymptotically) more efficient
method, as a function of r and estimated moments of ηt. From the rescaled residuals of a
standard GARCH estimation, one can estimate κr empirically for any value of r, and thus
one should be able to infer which method is asymptotically the best. This will be illustrated
in Section 5.
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Fig. 1. ARE of the one-step QMLE relative to the two step QMLE for Student distributions (left panel)
and GED (right panel) with parameter ν.

Remark 7. An analogous of Theorem 3.2 and Corollary 2 is established for the case
r = 0 in the supplementary document. The two-step estimator is asymptotically more
accurate than the one-step estimator when

4Var(log |η0|) ≥ κ4 − 1.

It is also shown that the asymptotic variances of the two estimators are the limits of the
asymptotic variances in Theorem 3.2 when r goes to 0.

Figure 1 shows the ARE of the one-step QMLE relative to the two step QMLE as
measured by the ratios4

(κ4 − 1)/

(
2

r

)2(
κ2r
κ2r

− 1

)
when r 6= 0,

for Student distributions and Generalized Error Distributions (GED)5, with parameter ν.
For Student distributions (left panel), it is seen that the one-step method outperforms the
indirect one when r ∈ (kν , 2) for some constant kν ranging from 0 (when ν ≤ 6) to 1 (when
ν = 14). On the contrary, for r > 2 and small or negative values of r, the two-step approach
is preferable. The differences are particularly remarkable for small value of ν. As mentioned
in Remark 7, the ARE’s in the case r = 0, displayed as bullets in the graph, are the limits
of the ARE’s when r approaches zero. For the GED, similar conclusions can be drawn for
r ≤ 2, but the direct method can be superior to the two-step approach for r > 2.

4Note however that the term ARE does not refer here to the ratio of the asymptotic variances
of two estimators.

5The density of η0 is of the form f(x) ∝ e−0.5|x|1/ν .



12 C. Francq and J-M. Zakoian

3.4. The Asymmetric Power GARCH(p, q) case
The following nonlinear GARCH(p, q) model was introduced by Ding, Granger and Engle
(1993). Letting x+ = max(x, 0) and x− = min(x, 0) we set, for a given δ > 0,

{
ǫt = σtηt
σδ
t = ω0 +

∑q
i=1 α0i+(ǫ

+
t−i)

δ + α0i−(−ǫ−t−i)
δ +

∑p
j=1 β0jσ

δ
t−j

(14)

where α0i+, α0i−, β0j are nonnegative coefficients, and ω0 > 0. This model allows to capture
the so-called "leverage effect", and generalizes models introduced by Higgins and Bera
(1992), and Zakoïan (1994).

The study conducted for the standard GARCH model can be reproduced for the Asym-
metric Power GARCH. The most striking output of this study is that the conclusion of
Corollary 2 holds true for Model (14): the estimator θ̃n is asymptotically more efficient

than θ̂n,h iff (13) holds. The proof is in Appendix B.

4. Mixed approach based on LAD estimation

The proposed one-step method can be compared not only to the Gaussian QML, but also to
estimation procedures developed in the literature which are known to be relatively efficient
in the case of Non-Gaussian noise; see for instance Davis, Knight and Liu (1992) and Ling
(2005) for the study of M -estimators for autoregressions with infinite variance, Mukherjee
(2008) for the study of M -estimators for GARCH. In this section, we consider a special case
of M -estimation, the LAD estimator defined and studied by Peng and Yao (2003) in the
context of GARCH models. For simplicity, we focus on the standard GARCH(p, q) model
and r 6= 0.

To derive the LADE we reparameterize the model (10) in such a way that the median
of the squared innovation be equal to 1. Assume that

C0: the density fη2 of η2t is continuous and positive at M = median(η2t ) > 0 and
E| log η20 | <∞,

and let η∗∗t = ηt√
M
. The LADE θ̂∗∗n = (ω̂∗∗, α̂∗∗

1 , . . . , β̂
∗∗
p ) of θ∗∗0 =

(Mω0,Mα01, . . . ,Mα0q, β01, . . . , β0p)
′, is defined as a minimizer over Θ of

1

n

n∑

t=1

| log ǫ2t − log σ̃2
t (θ)|. (15)

Let the rescaled residuals

η̂∗∗t =
ǫt
σ̂∗∗
t

, where σ̂∗∗
t = σ(ǫt−1, ǫt−2, . . . , ǫ̃0, ǫ̃−1, . . . ; θ̂

∗∗
n ).

We define, for r 6= 0,

µ̂∗∗
r =

1

n

n∑

t=1

|η̂∗∗t |r, µ∗∗
r = E|η∗∗t |r.

The next theorem, which is proven in the supplementary document, provides the asymp-
totic distributions of the two-step LADE of θ0 and its comparison with the one-step esti-
mator.
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Theorem 4.1 (LAD for the Standard GARCH(p, q)). Let r 6= 0, h ∈ C(r),
E|η0|r = 1, E|η0|2r < ∞, θ∗∗0 ∈

◦
Θ, and let C and C0 hold. Then, the two-step estima-

tor based on LAD given by
˜̃
θn = ({µ̂∗∗

r }2/rω̂∗∗, {µ̂∗∗
r }2/rα̂∗∗

1 , . . . , {µ̂∗∗
r }2/rα̂∗∗

q , β̂
∗∗
1 , . . . , β̂∗∗

p )

satisfies
˜̃
θn → θ0 a.s. Moreover, for any

√
n-consistent minimizer θ̂∗∗n of (15) we have

√
n
(
˜̃
θn − θ0

)
L→ N

{
0, ξ2η2J−1 +

[(
2

r

)2(
κ2r
κ2r

− 1

)
− ξ2η2

]
θ0θ

′
0

}

where ξη2 = 1
2Mfη2 (M) . Furthermore,

Varas

{√
n
(
θ̂n,h − θ0

)}
� Varas

{√
n
(
˜̃
θn − θ0

)}
(16)

if and only if

(
2

r

)2(
κ2r
κ2r

− 1

)
≥ ξ2η2 . (17)

The conclusions are similar to those drawn for the two-step estimator based on the Gaussian
QMLE. The ARE of the one-step QMLE relative to the two-step LADE only depends on
the innovations distribution.

Remark 8. Note that the ARE of the two-step QMLE relative to the two-step LADE,
ξ2η2/(κ4 − 1), does not depend on r. For example, when ηt follows the Student distribution

(respectively the GED) with ν degrees of freedom, the two-step LADE is more efficient than
the two-step QMLE for prediction of any power, i.e. ξ2η2 < κ4 − 1, if and only if ν < 5.52

(respectively ν > 1.51). More generally, for strongly heavy-tailed distributions the method
based on LAD is often more efficient than that based on the QML. It is however possible to
construct counter-examples for which ξη2 is arbitrarily large compared to (κ4−1), regardless
of the tail thickness.

Remark 9. An analogous of Theorem 4.1 is established for the case r = 0 in the
supplementary document. The two-step LADE is asymptotically more accurate than the
one-step QML estimator when 4Var(log |η0|) ≥ ξ2η2 .

5. Numerical Illustrations

In this section we concentrate on the Threshold GARCH(1,1) model

ǫt = σtηt, σt = ω0 + α0+(ǫ
+
t−1) + α0−(−ǫ−t−1) + β0σt−1, (18)

with the notation and the assumptions of (14). Suppose that ǫ1, . . . , ǫn are observed, and
consider three predictors of |ǫn+1|r or log |ǫn+1|: (1) the two-step Gaussian QML predictor;
(2) the two-step LAD predictor; (3) the one-step non-Gaussian QML predictor. In the
following, we propose an "adaptive" procedure for determining the best method and for
computing the appropriate prediction in practice. Then, this procedure will be illustrated
on real data and compared with cruder prediction methods. Simulation experiments are
available in Appendix B.
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5.1. Implementation of the adaptive prediction method
The procedure is described for Model (18) in the case r 6= 0. It can be straightforwardly
modified when r = 0. In view of Section 3.4 and its direct extension to the LAD estimator,
the algorithm works the same way for any model belonging to the standard or Asymmetric
Power GARCH classes.

Step 1. Fit the TGARCH(1,1) model (18) by Gaussian QML.
Step 2. Compute the rescaled residuals η̂∗t = ǫt

σ̂∗
t
. Compute their empirical moments µ̂∗

r ,

µ̂∗
2r, µ̂

∗
4. Compute the empirical median M̂∗, and estimate the density fη∗2 (for instance by

the Kernel method) of the squared residuals η̂∗2t .
Step 3. Compute the quantities

c0 =
µ̂∗
4

µ̂∗2
2

− 1, c1 =

(
2

r

)2(
µ̂∗
2r

µ̂∗2
r

− 1

)
, c2 =

1

{2M̂∗f̂η∗2(M̂∗)}2
.

(i) If c0 = mini=0,1,2 ci, then the Gaussian QMLE can be preferred for the prediction
of |ǫn+1|r. The prediction is computed as σ̂∗r

n µ̂
∗
r .

(ii) If c2 = mini=0,1,2 ci, then the LADE can be preferred. Reestimate the
TGARCH(1,1) model by LAD,6 and compute the η̂∗∗t = ǫt

σ̂∗∗
t

. Compute their empirical

moment µ̂∗∗
r . The prediction of |ǫn+1|r is σ̂∗∗r

n µ̂∗∗
r .

(iii) If c1 = mini=0,1,2 ci, then the one-step estimator can be preferred. Reestimate the
TGARCH(1,1) model by non-gaussian QML, by minimizing

∑n
t=1 log σ̃

r
t (θ) + |ǫt|r/σ̃r

t (θ).
The prediction of |ǫn+1|r is σ̃r

n.
Interestingly, the determination of the more efficient procedure in Step 3 can be based

on the sole estimation by Gaussian QML. Note also that the numbers ci are invariant by
scale transformation of the residuals (which explains that c3 is also an estimator of the
number ξη2 of Theorem 4.1).

5.2. Empirical Illustration
We now consider prediction of powers on daily returns of 10 world stock market indices,
namely the CAC, DAX, DJA, DJI, DJT, DJU, FTSE, Nikkei, SMI and SP500, from January
2, 1990, to October 13, 2011, for the indices for which such historical data exist. Note that
this period of time includes the recent sovereign-debt crises in Europe and US. We checked
that the results are not qualitatively changed by suppressing the recent turbulent period or
by replacing the TGARCH model (18) by a standard GARCH(1,1). Before applying our
procedure to these data, it is of interest to determine, for each series and each power r,
which method is asymptotically the best. This can be done by estimating the ARE of the
one step-method with respect to the two-step methods, as derived in Section 3.2.

5.2.1. Estimating the ARE of the one-step and two-step methods

Figure 2 presents the estimated relative efficiencies of the one-step QMLE relative to the two
step QMLE and LADE for the ten stock index returns. For the left panel, the TGARCH(1,1)
model (18) is estimated by Gaussian QML in a first step. In a second step, the standardized
residuals η̂∗t = ǫt/σ̂

∗
t are computed, from which the ARE estimator, c0/c1, is computed (see

Section 5.1). It is seen that, from an asymptotic point of view, the direct approach should

6For instance (M̂∗ω̂∗, M̂∗α̂∗, β̂∗)′ can be used as initial value for the estimation of θ∗∗0 .
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Fig. 2. Estimated ARE’s of the one-step QMLE relative to the two-step QMLE (left panel) and LAD
estimator (right panel) for stock index returns.

be superior for r ∈ (0.5, 2); the indirect one should be preferable for r > 2 or r < −0.5. For
r ∈ (−0.5, 0.5) the results are more balanced. Turning to the right panel, the TGARCH(1,1)
model (18) is now estimated by LAD in a first step, while the second step allows to compute
the estimated AREs, c2/c1. The direct approach remains superior, for most series, when
r ∈ (0.5, 2). For some series, it is also superior for values of r larger than 2. Conversely, the
two-step method is preferable for the DAX series, whatever r.

5.2.2. Out-of-sample comparisons

For predicting the power r of the next log-return, three competing methods are investigated:
the "historical" prediction which predicts the next value by empirical means of observations
to the power r; the "naive" method7 which uses the power r/2 of the usual prediction of
the squared return; the adaptive method described in Section 5.1.

Our numerical experiments setting is as follows, for each series ǫt of length n. Based on
ǫn2−n1+1, . . . , ǫn2 , with 0 < n1 ≤ n2 < n, the historical prediction of |ǫn2+1|r is computed
from the formula

Historicn2+1 =
1

n1

n2∑

t=n2−n1+1

|ǫt|r.

The Mean Square Prediction Error (MSPE) is thus

1

n− n1

n−1∑

n2=n1

(|ǫn2+1|r − Historicn2+1)
2
.

7the method can be called naive because it targets {Et−1(ǫ
2
t )}

r/2 instead of Et−1|ǫt|
r.
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Table 3. Percentages of MSPE losses with respect to the best method, for prediction of |ǫn+1|
r.

r 0 0 0 0.5 0.5 0.5 1 1 1 2 2 2
method N H A N H A N H A N H A
CAC 28.6 7.3 0 19.2 14.9 0 6 21 0 0 19.3 0
DAX 27.8 6.6 0 17.8 13.7 0 4.5 20.8 0 0 21.7 0.1
DJA 33.3 7.2 0 24.3 16.8 0 7.4 25.1 0 7.2 29.3 0
DJI 34.8 7.8 0 25.3 17.8 0 7.7 26.9 0 0 31 0
DJT 30.2 2.8 0 21.4 6.9 0 6.6 9.1 0 0.5 4.8 0
DJU 30.9 5.1 0 21 13.3 0 5.7 23.5 0 0 28.8 0
FTSE 29.3 6.9 0 20.5 15.6 0 6 23.6 0 0 26.1 0
Nikkei 33.3 4.7 0 26.8 10.6 0 10 16.7 0 0 25.9 0.1
SMI 32.6 9.1 0 22.2 18.8 0 6.5 28.9 0 0 38.3 0.2
SP500 34 7.6 0 22.8 18 0 5.8 27.7 0 2.9 30.8 0

N denotes the naive method, H denotes the historic method, A denotes the adaptive method.

For the two other methods, n1 observations are used to estimate the GARCH models and
the appropriate moments. The same estimated model is kept for the computation of n3

predictions.

For n1 = n2 = n3 = 300, Table 3 displays the percentages of prediction losses with
respect to the best method. For instance, for r = 0, the MSPEs of the CAC are 1.654 for
the naive method, 1.380 for the historical method and 1.286 for the adaptive method. The
adaptive method is thus the best in this case, implying a percentage of loss of 0, while the
percentages of MSPE losses of the two other methods are 28.6 = 100×(1.654−1.286)/1.286
and 7.3, respectively.

An outstanding feature of the results presented in Table 7 is that the adaptive method
is superior in most cases to its competitors (as indicated by the presence of zeroes in
the adaptive columns). Note that for r = 2, the naive method coincides with the two-
stage Gaussian QML, and also with the generalized QML.8 As expected, the naive method
is spurious for predicting powers which are very different from the square (in particular
r = 0). The performance of the historical method is satisfactory for small values of r but
deteriorates as r increases. Experiments conducted with 30 observations (instead of 300)
in the sample means of the historical method lead to slightly better results (see Appendix
B) for this method, which is however still generally dominated by the adaptive approach.
The overall conclusion of this study is that the adaptive method performs well, the MSPEs
being always smaller than (or very close to) those of the two other methods.

6. Conclusion

We have shown that, in conditionally heteroskedastic models, the optimal predictions of
powers (or the logarithm) of the observed process can be estimated in one step, using a
non Gaussian QML method applied to a reparameterization of the model. We obtained a
complete characterization of the omnibus instrumental densities h which render the gener-
alized QMLE universally consistent. The asymptotic properties of the generalized QMLE
are studied in a quite general framework. We also derived the asymptotic properties of
alternative two-step approaches which combine Gaussian QML or LAD estimation in a first

8The adaptive method, in the case r = 2, sometimes chooses the LAD method which explains
that the results for the adaptive method do not coincide with those of the naive method.
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step, and estimation of the r-th order moment of the innovations in a second step.
In the case of finite-order standard and nonlinear GARCH models, we obtained a sur-

prisingly simple, and easy to estimate, expression for the AREs of the one-step estimator
with respect to the two-step QML and LAD estimators.

We suggest a procedure based on a sole Gaussian QML estimation of the model to de-
termine which method should be used. Applied to a set of stock indices, this procedure
suggests that the one-step approach should in general be used for moderate values of r.
Conversely, for predicting |ǫt|r with r > 2 or r < 0.5, the two-step methods should do a
better job. We compared out-of-sample predictions obtained by the proposed adaptive pro-
cedure with more elementary approaches. The superiority of the adaptive method appears
in a vast majority of cases, whatever the value of r.

A natural extension of this work would consider heteroskedastic models including a
conditional mean. For instance, Ling (2004) introduced a class of double-autoregressive
models and studied the properties of the QMLE, while Audrino and Bühlmann (2009)
developed estimation procedures for a non-parametric class. This extension is left for future
research.

A. Technical assumptions and proofs

Let ∆t(θ) = σ̃t(θ) − σt(θ), at = supθ∈Θ |∆t(θ)|. Constants δ ∈ R and C0 > 0 refer to
Assumption A4. Let C and ρ be generic constants, whose values will be modified along the
proofs, such that C > 0 and 0 < ρ < 1. In assumptions A6 and A9 below, C is allowed to
be a random variable which is measurable with respect to {ǫu, u ≤ 0}.

A6: For any real sequence (xi), the function θ 7→ σ(x1, x2, . . . ; θ) is continuous. When
δ > 0 we have E|ǫ0|s <∞, when δ < −1 we have E supθ∈Θ σ

s
0(θ) <∞ for some s > 0.

We have at ≤ Cρt, a.s.

A7: θ0 belongs to the interior
◦
Θ of Θ.

A8: h is twice differentiable at all u ∈ R∗ with |u2 (h′(u)/h(u))′ | ≤ C0(1 + |u|δ) and
E|η0|2δ <∞.

A9: For any real sequence (xi), the function θ 7→ σ(x1, x2, . . . ; θ) has continuous second-
order derivatives. There exists a neighborhood V (θ0) of θ0 such that

bt := sup
θ∈V (θ0)

∥∥∥∥
∂∆t(θ)

∂θ

∥∥∥∥ ≤ Cρt, a.s.

A10: The following variables have finite expectation:

sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥
4

, sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥
2

, sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σt(θ)

∣∣∣∣
2δ

.

Assumptions A6, A9, A10 are satisfied for standard GARCH models and many ex-
tensions. In particular, see Francq and Zakoïan (2004) for the bounds in Cρt for at and
bt. Assumption A7 is a standard assumption. Assumption A8 reduces to E|η0|2r <∞ for
instrumental densities of the form h(u) = K1|u|λ exp{K2|u|r}, for some constants λ,K1,K2.
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A.1. Proof of Proposition 2
If h ∈ C(r) the implication can be obtained by direct verification, for r > 0, r < 0 and
r = 0. For the converse, it will be sufficient to consider the case r 6= 0, the case r = 0 being
treated along the same lines. For h ∈ H0, we will use the convention that xh′(x)/h(x) is
equal to zero at x = 0. We then have

g1(x, σ) =
∂g(x, σ)

∂σ
= − 1

σ
− h′(x/σ)

h(x/σ)

x

σ2

for σ > 0. Under A4 we have E supσ∈V (1) |g1(η0, σ)| < ∞, for some neighborhood V (1) of
1. The dominated convergence theorem shows that A3 entails the moment condition

E

(
h′(η0)

h(η0)
η0

)
= −1. (19)

The problem is to find h ∈ H0 satisfying (19) for any distribution satisfying A1. The set
of all possible densities h is thus,

H =

{
h ∈ H0 | for any variable η, E|η|r = 1 ⇒ E

(
h′(η)

h(η)
η

)
= −1

}
.

We note that this set contains the set

H′ =

{
h ∈ H0 | ∃λ, h′(x)

h(x)
x+ 1 = λ(|x|r − 1)

}
.

Now we prove that H ⊂ H′. Let h 6∈ H′. If h′(1)/h(1) 6= −1 then h 6∈ H because if η = 1
a.s. then E|η|r = 1 and Eηh′(η)/h(η) 6= −1. Similarly h′(−1)/h(−1) 6= 1 entails h 6∈ H.
Now consider the case where |x1| > 1, |x2| < 1 and λ1 6= λ2

h′(xi)

h(xi)
xi + 1 = λi(|xi|r − 1), i = 1, 2.

Let η such that P (η = xi) = pi > 0 with p1 + p2 = 1, and (|x1|r − 1)p1 + (|x2|r − 1)p2 = 0.
Then E|η|r = 1 and

E

(
h′(η)

h(η)
η

)
+ 1 = λ1(|x1|r − 1)p1 + λ2(|x2|r − 1)p2 = (λ1 − λ2)(|x1|r − 1)p1 6= 0.

We thus have h 6∈ H. We have proven that H = H′. It remains to verify that H = C(r) by
solving the differential equation involved in the definition of H′, and the proposition follows.

2

A.2. Proof of Theorem 2.1
The consistency is a consequence of the following intermediate results:

i) lim
n→∞

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| = 0 , a.s., where Qn(θ) =
1

n

n∑

t=1

g(ǫt, σt(θ)),

ii) if θ 6= θ0 , Eg(ǫ1, σ1(θ)) < Eg(ǫ1, σ1(θ0)) ,

iii) any θ 6= θ0 has a neighborhood V (θ) such that

lim sup
n→∞

sup
θ∗∈V (θ)

Q̃n(θ
∗) < lim sup

n→∞
Q̃n(θ0) , a.s.
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The AN is proven by means of the following intermediate results: for some neighborhood
V (θ0) of θ0 and for any θ∗ between θ̂n,h and θ0,

iv) lim
n→∞

√
n sup

θ∈V (θ0)

∥∥∥∥
∂

∂θ
Qn(θ)−

∂

∂θ
Q̃n(θ)

∥∥∥∥ = 0 , in probability,

v)
∂2

∂θ∂θ′
Qn(θ

∗) → Eg2(η0, 1)

4
J , in probability,

vi)
√
n
∂

∂θ
Qn(θ0)

L→ N
(
0,
Eg21(η0, 1)

4
J

)
,

To save place, we only give the proof of i). This point, as well as iv), which deal with the
effect of the initial values, constitute the most delicate parts of the proof and illustrate the
necessity of assumptions of the form A4, A6 and A9-A10.

Using a Taylor expansion, almost surely

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| ≤ n−1
n∑

t=1

sup
θ∈Θ

|g1(ǫt, σ∗
t (θ))||∆t(θ)|

≤ n−1
n∑

t=1

at sup
θ∈Θ

∣∣∣∣
1

σ∗
t

ǫt
σ∗
t

h′

h

(
ǫt
σ∗
t

)∣∣∣∣+
1

ω
n−1

n∑

t=1

at

≤ n−1
n∑

t=1

at|ǫt|δ sup
θ∈Θ

∣∣∣∣
1

σ∗
t

∣∣∣∣
1+δ

+
C

n

n∑

t=1

at (20)

where σ∗
t (θ) is between σ̃t(θ) and σt(θ). The last two inequalities rest on Assumptions A4

and A2. First suppose δ ≥ −1. Then the supremum in (20) is bounded by C. If δ > 0, by
the Markov inequality and A6, we deduce

∞∑

t=1

P(at|ǫt|δ > ε) ≤
∞∑

t=1

Cρts/δE|ǫt|s
ε

s
δ

<∞

and thus at|ǫt|δ → 0 a.s by the Borel-Cantelli lemma. The first term in (20) thus tends to
zero a.s., when δ > 0, by the Cesàro lemma. Now, if δ ∈ [−1, 0], we note that E|ǫt|δ <
ω−δE|ηt|δ <∞ by A2 and A4. Note also that, for s ∈ (0, 1), the cr inequality (see Loève,
1977) entails (

n−1
n∑

t=1

at|ǫt|δ
)s

≤ n−s/2
∞∑

t=1

Cρts|ǫt|δs.

The last sum is a.s. finite since its expectation is finite by A6 and E|ǫt|δs < ∞ (because
s ∈ (0, 1)). Hence the first term in (20) tends to zero a.s. when δ ∈ [−1, 0]. Now suppose
δ < −1. Observe that supθ∈Θ σ

∗
t (θ) ≤ supθ∈Θ σt(θ) + at. It follows that, letting σt =

supθ∈Θ σt(θ), the first term in (20) can be bounded by

C

n

n∑

t=1

at|ηt|δ{σt + at}−(1+δ) ≤ C

n

n∑

t=1

ρt|ηt|δσ−(1+δ)
t +

C

n

n∑

t=1

ρ−δt|ηt|δ. (21)

Now by A6, there exists s > 0 such that

∞∑

t=1

P(ρt|ηt|δσ−(1+δ)
t > ε) ≤

∞∑

t=1

(
ρ

ts
−(1+δ)Eσs

0

)1/2
E|ηt|

sδ
−2(1+δ)

ε
s

−2(1+δ)

<∞.
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Thus, the first term in the right-hand side of (21) tends to zero a.s. by the Cesàro Lemma.
The second term is treated straightforwardly. We have shown that the first term in the
right-hand side of (20) tends to zero a.s. whatever the value of δ. By A6, the second term
also tends to zero. Thus i) follows. 2

A.3. Proof of Theorem 3.1
It will be sufficient to derive the advanced results for r 6= 0. The same arguments can be
used for r = 0. Because Eη∗2t = 1, the identifiability condition A3, with η0 replaced by η∗0 ,
is satisfied when h is the standard Gaussian density. Note also that A4 and A8 hold with
δ = 2. Thus, by Theorem 2.1, θ̂∗n → θ∗0 a.s. and

√
n
(
θ̂∗n − θ∗0

)
= −J−1

∗
1√
n

n∑

t=1

(
1− η2t

Eη2t

)
1

σ∗2
t

∂σ2
t (θ

∗
0)

∂θ
+ oP (1)

L→ N (0, (κ4 − 1)J−1
∗ ). (22)

Let ηt(θ) = ǫtσ
−1
t (ǫt−1, ǫt−2, . . . ; θ), η̃t(θ) = ǫtσ

−1
t (ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ; θ),

µr(θ) =
1

n

n∑

t=1

|ηt(θ)|r , for r 6= 0, µ0(θ) =
1

n

n∑

t=1

log |ηt(θ)|, for r = 0.

We similarly define µ̃r(θ), by replacing ηt(θ) by η̃t(θ). By A6, it can be shown that

µ̂∗
r = µ̃r(θ̂

∗
n) = µr(θ̂

∗
n) + oP (n

−1/2). (23)

A Taylor expansion gives

µr(θ̂
∗
n) = µr(θ

∗
0) +

∂µr(θ
∗)

∂θ′
(θ̂∗n − θ∗0) (24)

with θ∗ between θ̂∗n and θ∗0 and

∥∥∥∥
∂µr(θ

∗)

∂θ′

∥∥∥∥ ≤ K

n

n∑

t=1

|ηt|r
(
σt(θ0)

σt(θ∗)

)r
1

σ2
t (θ

∗)

∥∥∥∥
∂σ2

t (θ
∗)

∂θ′

∥∥∥∥ .

Using Assumption A10 and the Cauchy-Schwarz inequality, the left hand side has finite
expectation. Thus, in view of the consistency of θ̂∗n to θ∗0 , the last term in (24) converges
to 0 a.s. In view of the convergence of µr(θ

∗
0) to µ∗

r , and using (23), the strong consistency
of µ̂∗

r follows.

Now, by (22), A10 and standard arguments, a Taylor expansion gives

µr(θ̂
∗
n) = µr(θ

∗
0) +

∂µr(θ
∗
0)

∂θ′
(θ̂∗n − θ∗0) + oP (n

−1/2) (25)

with
∂µr(θ

∗
0)

∂θ′
=

−r
2n

n∑

t=1

|η∗t |r
1

σ∗2
t

∂σ2
t (θ

∗
0)

∂θ′
=

−r
2
E|η∗t |rΩ′

∗ + oP (1).
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It follows that

√
n(µ̂∗

r − µ∗
r) =

√
n{µr(θ

∗
0)− µ∗

r} −
r

2
E|η∗t |rΩ′

∗
√
n(θ̂∗n − θ∗0) + oP (1)

=
1√
n

n∑

t=1

(|η∗t |r − µ∗
r)−

r

2
E|η∗t |rΩ′

∗
√
n(θ̂∗n − θ∗0) + oP (1)

=
1√
n

n∑

t=1

(|ηt|r − 1)

µ
r/2
2

− r

2
κrΩ

′
∗
√
n(θ̂∗n − θ∗0) + oP (1). (26)

Noting that Cov(|ηt|r, η2t ) = µ
1+r/2
2 (κ2+r − κr) , we have

Cov

(
√
n
(
θ̂∗n − θ∗0

)
,

1√
n

n∑

t=1

(|ηt|r − 1)

µ
r/2
2

)
= (κ2+r − κr)J

−1
∗ Ω∗ + oP (1).

It follows from (26) that Cov
(√

n
(
θ̂∗n − θ∗0

)
,
√
n(µ̂∗

r − µ∗
r)
)
= −λrJ−1

∗ Ω∗+ oP (1). We also

have Var (
√
n(µ̂∗

r − µ∗
r)) = κ2r − κ2r +

r
2κr{λr − (κ2+r − κr)}Ω′

∗J
−1
∗ Ω∗ + oP (1). Finally, the

CLT for martingale differences and the Wold-Cràmer device entail (7), provided that (8)
holds. Now we prove (8). First note that λ2 = 0. Because µ∗

2 = 1, the previous expansion
writes, when r = 2, Var (

√
n(µ̂∗

2 − 1)) = (κ4 − 1)(1− Ω′
∗J

−1
∗ Ω∗) + oP (1). Note that by B1,

for any c > 0, cσ̃(θ̂∗n) = σ̃(F (θ̂∗n, c)). Then the maximum of the function c 7→ Q̃n(F (θ̂
∗
n, c)),

where Q̃n is defined in (4) with h = φ, is uniquely obtained for c = µ̂∗
2. Because c = 1 also

yields a maximum, by definition of the QMLE, we must have µ̂∗
2 = 1, a.s. The conclusion

follows. 2

B. Complementary results

B.1. Proof of Corollary 1
The direct part is straightforward since we have seen that the QMLE does not depend on
the choice of h ∈ C(r).

Now suppose f 6∈ C(r) for r 6= 0. Then, by Cauchy-Schwarz

τ2h,f
τ2f,f

= Var

(
1 +

f ′(η0)

f(η0)
η0

)
Var

( |η0|r − 1

r

)

≥
{

Cov

(
f ′(η0)

f(η0)
η0,

|η0|r
r

)}2

=

{
E

(
f ′(η0)

f(η0)
η0

|η0|r
r

)
+

1

r

}2

= 1

where the last equality is obtained by integration by part. The inequality is strict except if

1 +
f ′(η0)

f(η0)
η0 = K(|η0|r − 1), a.s.

for some constant K. The last equality is equivalent to f ∈ C(r), as seen in the proof of
Proposition 2. A similar argument holds when r = 0. 2
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B.2. Complementary results for the proof of Theorem 2.1
For the consistency, it remains to show ii) and iii), and for the asymptotic normality it
remains to show iv)-vi).

To prove ii), it suffices to use A2-A3 and

g(ǫt, σt(θ)) = g

(
ηt,

σt(θ)

σt(θ0)

)
− log σt(θ0).

Indeed, we have

E{g(ǫ1, σ1(θ))− g(ǫ1, σ1(θ0))} = E

{
g

(
ηt,

σt(θ)

σt(θ0)

)
− g(ηt, 1)

}
≤ 0,

with equality if and only if θ = θ0.

Now we will show iii). For any θ ∈ Θ and any positive integer k, let Vk(θ) be the open
ball with center θ and radius 1/k. We have,

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n(θ
∗)

≤ lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Qn(θ
∗) + lim sup

n→∞
sup
θ∈Θ

|Qn(θ) − Q̃n(θ)|

≤ lim sup
n→∞

n−1
n∑

t=1

sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) a.s.

where the second inequality comes from i). Note that since h is integrable and differentiable,
h is bounded. It follows, by A2, that

E sup
θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) < log

1

ω
+ C <∞. (27)

Using an ergodic theorem for stationary and ergodic processes (Xt) such that E(Xt) exists
in R ∪ {−∞,+∞} (see Billingsley, 1995, p. 284 and 495), it follows that

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

Q̃n(θ
∗) ≤ EXt,k(θ), Xt,k(θ) = sup

θ∗∈Vk(θ)∩Θ

g(ǫt, σt(θ
∗)) .

When k tends to infinity, the sequence {Xt,k(θ)}k decreases toXt(θ) = g(ǫt, σt(θ)). Thus
{X−

t,k(θ)}k increases to X−
t (θ). By the Beppo-Levi theorem, EX−

t,k(θ) ↑ Eθ0X
−
t (θ) when

k ↑ +∞. By (27), the fact that the sequence {X+
t,k(θ)}k is decreasing, and the Lebesgue

theorem, EX+
t,k(θ) ↓ EX+

t (θ) when k ↑ +∞. Thus we have shown that EXt,k converges to
E{Xt(θ)} when k → ∞. By ii), iii) is proved.

As in the proof of Theorem 2.1 in Francq and Zakoïan (2004), the consistency is a
consequence of a standard compactness argument and of the intermediate results i)-iii).

Now we prove iv). We have

∂

∂θ
Qn(θ) =

1

n

n∑

t=1

g1(ǫt, σt(θ))
∂σt(θ)

∂θ
,

∂

∂θ
Q̃n(θ) =

1

n

n∑

t=1

g1(ǫt, σ̃t(θ))
∂σ̃t(θ)

∂θ
.
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It follows that

sup
θ∈V (θ0)

√
n

∥∥∥∥
∂

∂θ
Qn(θ)−

∂

∂θ
Q̃n(θ)

∥∥∥∥

≤ sup
θ∈V (θ0)

1√
n

n∑

t=1

|g1(ǫt, σt(θ)) − g1(ǫt, σ̃t(θ))|
∥∥∥∥
∂σt(θ)

∂θ

∥∥∥∥

+ sup
θ∈V (θ0)

1√
n

n∑

t=1

|g1(ǫt, σ̃t(θ))|
∥∥∥∥
∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥ . (28)

Similarly to (20), the last term is bounded on V (θ0) by

C√
n

n∑

t=1

bt

{
|ǫt|δ sup

θ∈V (θ0)

∣∣∣∣
1

σ̃t(θ)

∣∣∣∣
1+δ

+ 1

}

≤ C√
n

n∑

t=1

bt|ηt|δ sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σ̃t(θ)

∣∣∣∣
δ

+
C√
n

n∑

t=1

bt. (29)

We will prove that there exists s > 0 such that

sup
t
E sup

θ∈V (θ0)

{
σt(θ0)

σ̃t(θ)

}δs

<∞. (30)

A Taylor expansion gives, for σ∗
t (θ) between σt(θ0) and σ̃t(θ),

{
σt(θ0)

σ̃t(θ)

}δs

=

{
σt(θ0)

σt(θ)

}δs

− 2δs∆t(θ){σt(θ0)}δs
{

1

σ∗
t (θ)

}δs+1

≤
{
σt(θ0)

σt(θ)

}δs

+ Cρt{σt(θ0)}δs

since δs > 0 for s small enough. The first term in the right-hand side admits a finite
expectation when s ≤ 2 using A10. The second term admits a finite expectation, hence
(30) is proved.

We have E|ηt|δs <∞ for s ∈ (0, 1). Therefore, by (30),

E

( ∞∑

t=1

ρts/2|ηt|δs/2 sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σ̃t(θ)

∣∣∣∣
δs/2

)
<∞

and thus the random variable inside the bracket is a.s. finite. It follows that

(
n−1/2

n∑

t=1

bt|ηt|δ sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σ̃t(θ)

∣∣∣∣
δ
)s/2

≤ n−s/4C
∞∑

t=1

ρts/2|ηt|δs/2 sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σ̃t(θ)

∣∣∣∣
δs/2

→ 0

which shows that the first term in the right-hand side of (29) goes to zero a.s. as n tends to
infinity. The second term is handled in a straightforward way. Thus the last term in (28)
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converges to zero a.s. as n tends to infinity. Now note that

g2(x, σ) :=
∂g1(x, σ)

∂σ
=

1

σ2

[
1 + 1{x 6=0}

x

σ

{
2
h′

h
+
x

σ

(
h′

h

)′}(x
σ

)]
. (31)

From A4 and A8, the first term in the right-hand side of (28) is bounded by

sup
θ∈V (θ0)

1√
n

n∑

t=1

|g2(ǫt, σ∗
t )||∆t(θ)|

∥∥∥∥
∂σt(θ)

∂θ

∥∥∥∥

≤ C√
n

n∑

t=1

at

(
1 + |ǫt|δ sup

θ∈V (θ0)

∣∣∣∣
1

σ∗
t

∣∣∣∣
2+δ
)

sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥ (32)

where σ∗
t = σ∗

t (θ) is between σ̃t(θ) and σt(θ). For δ > 0 there exists s ∈ (0, 2δ) such that,
by the cr and Cauchy-Schwarz inequalities

E

( ∞∑

t=1

at(1 + |ǫt|δ) sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥

)s/2δ

≤
∞∑

t=1

ρst/2δ{E(1 + |ǫ0|s)}1/2


E

(
sup

θ∈V (θ0)

∥∥∥∥
1

σ0(θ)

∂σ0(θ)

∂θ

∥∥∥∥

)s/δ




1/2

<∞

by A6 and A10. For δ ∈ [−1, 0] and s ∈ (0, 1) we have, similarly, using E|ǫ0|δ ≤ ωδE|η0|δ,

E

( ∞∑

t=1

at(1 + |ǫt|δ) sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥

)s/2

≤
∞∑

t=1

ρts/2{E(1 + |ǫ0|sδ)}1/2
{
E

(
sup

θ∈V (θ0)

∥∥∥∥
1

σ0(θ)

∂σ0(θ)

∂θ

∥∥∥∥

)s}1/2

<∞.

The case δ < −1 is treated in the same fashion, using an inequality similar to (21). By
arguments already used, we conclude that the first term in the right-hand side of (28) goes
to zero a.s. as n tends to infinity. Thus iv) is established. The invertibility of J follows
from A5.

Now we establish v). In view of A4 and A8, we have

∥∥∥∥
∂2Qn(θ)

∂θ∂θ′

∥∥∥∥ =

∥∥∥∥∥
1

n

n∑

t=1

∂2g(ǫt, σt(θ))

∂θ∂θ′

∥∥∥∥∥

=

∥∥∥∥∥
1

n

n∑

t=1

g2(ǫt, σt(θ))
∂σt(θ)

∂θ

∂σt(θ)

∂θ′
+ g1(ǫt, σt(θ))

∂2σt(θ)

∂θ∂θ′

∥∥∥∥∥

≤ C

n

n∑

t=1

(
1 +

∣∣∣∣
σt(θ0)ηt
σt(θ)

∣∣∣∣
δ
)(∥∥∥∥

1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥

+

∥∥∥∥
1

σ2
t (θ)

∂σt(θ)

∂θ

∂σt(θ)

∂θ′

∥∥∥∥
)
.
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Hence

E sup
θ∈V (θ0)

∥∥∥∥
∂2Qn(θ)

∂θ∂θ′

∥∥∥∥ ≤ C

by the Hölder inequality, A8 and A10. The ergodic theorem then implies that

lim
n→∞

sup
θ∈V (θ0)

∥∥∥∥
∂2Qn(θ)

∂θ∂θ′
− ∂2Qn(θ0)

∂θ∂θ′

∥∥∥∥

≤ E sup
θ∈V (θ0)

∥∥∥∥
∂2g(ǫt, σt(θ))

∂θ∂θ′
− ∂2g(ǫt, σt(θ0))

∂θ∂θ′

∥∥∥∥ , a.s.

By the dominated convergence theorem, the last expectation tends to zero when the neigh-
borhood V (θ0) tends to the singleton {θ0}. The consistency of θ̂n,h thus entails

lim
n→∞

∣∣∣∣
∂2Qn(θ

∗)

∂θ∂θ′
− ∂2Qn(θ0)

∂θ∂θ′

∣∣∣∣ = 0, a.s.

In view of (19),

Eg1(ǫt, σt(θ0))
∂2σt(θ0)

∂θ∂θ′
= 0

and by (31), g2(ǫt, σt(θ0)) = g2(ηt, 1)σ
−2
t (θ0). By the ergodic theorem

lim
n→∞

∂2Qn(θ0)

∂θ∂θ′
=
Eg2(ηt, 1)

4
J, a.s.

and v) is established.

To prove vi) it suffices to note that

√
n
∂

∂θ
Qn(θ0) =

1√
n

n∑

t=1

g1 (ηt, 1)
1

2σ2
t (θ0)

∂σ2
t (θ0)

∂θ

and to apply a CLT for square integrable stationary martingale differences (see Billingsley
(1961)).

Now, from A7 and the consistency of θ̂n,h, a Taylor expansion yields

0 =
√
n
∂

∂θ
Qn(θ̂n,h) +

√
n
∂

∂θ
Q̃n(θ̂n,h)−

√
n
∂

∂θ
Qn(θ̂n,h)

=
√
n
∂

∂θ
Qn(θ0) +

∂2

∂θ∂θ′
Qn(θ

∗)
√
n(θ̂n,h − θ0)

+
√
n

(
∂

∂θ
Q̃n(θ̂n,h)−

∂

∂θ
Qn(θ̂n,h)

)
,

where θ∗ is between θ̂n,h and θ0. Applying iv), v), vi), the proof of the asymptotic normality
is complete.
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B.3. Complementary results for the proof of Theorem 3.1
Proof of (23): Using A2 and A6, we have

|µ̃r(θ)− µr(θ)| ≤ 1

n

n∑

t=1

|ǫt|
|∆t(θ)|

σt(θ)σ̃t(θ)

≤ 1

nω2

n∑

t=1

at|ǫt| ≤
C

n

∞∑

t=1

ρt|ǫt|.

By A6, E|ǫt|s < ∞ for some s ∈ (0, 1). By the cr-inequality, E (
∑∞

t=1 ρ
t|ǫt|)s ≤∑∞

t=1 ρ
tE|ǫt|s <∞. It follows that

sup
θ∈Θ

|µ̃r(θ)− µr(θ)| = O(1/n) a.s.

which is a stronger result than (23).
Proof of (25): A Taylor expansion yields

µr(θ̂
∗
n) = µr(θ

∗
0) +

∂µr(θ
∗
0)

∂θ′
(θ̂∗n − θ∗0) +

1

2
(θ̂∗n − θ∗0)

′ ∂
2µr(θ

∗)

∂θ∂θ′
(θ̂∗n − θ∗0)

where θ∗ is between θ̂∗n and θ∗0 and

∂µr(θ)

∂θ′
=

−r
2n

n∑

t=1

|ηt(θ)|r
1

σ2
t (θ)

∂σ2
t (θ)

∂θ′

∂2µr(θ)

∂θ∂θ′
=

(
r

2
+
r2

4

)
1

n

n∑

t=1

|ηt(θ)|r
1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′

− r

2n

n∑

t=1

|ηt(θ)|r
1

σ2
t (θ)

∂2σ2
t (θ)

∂θ∂θ′

Since

|ηt(θ)|2r =
σ2r
t (θ0)

σ2r
t (θ)

|ηt|2r,

the ergodic theorem, the Cauchy-Schwarz inequality and A10 show that

lim
n→∞

sup
θ∈V (θ0)

∥∥∥∥
∂2µr(θ)

∂θ∂θ′

∥∥∥∥ <∞.

Since, almost surely, θ∗ ∈ V (θ0) for n large enough, we have

lim
n→∞

∥∥∥∥
∂2µr(θ

∗)

∂θ∂θ′

∥∥∥∥ = OP (1).

Noting that, in view of (22), we have θ̂∗n − θ∗0 = OP (n
−1/2), we obtain

µr(θ̂
∗
n) = µr(θ

∗
0) +

∂µr(θ
∗
0)

∂θ′
(θ̂∗n − θ∗0) +OP (n

−1),

which implies (25).
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B.4. Complementary results for the standard GARCH
Proof of Theorem 3.2. To prove (11) we note that Assumptions A4 and A8 are satisfied
with δ = r. Assumptions A6 and A9 are satisfied because the strict stationarity implies
the existence of a moment of order s, for some s > 0 (see Berkes et al (2003), Lemma 2.3),
and by Equations (4.6) and (4.33) in Francq and Zakoïan (2004). The latter paper also
established the second part of A2 and A10. The convergence (11) follows from Theorem
2.1.

The expression of the two-step estimator θ̃n follows from (5). The convergence in distri-
bution (12) follows from Theorem 3.1. Let Γr denote the asymptotic variance in (12). To
derive an explicit expression for Γr we use (9) and the following calculations. Denote by L
the lag operator. The derivatives of σ2

t (θ) verify

Bθ(L)
∂σ2

t

∂ω
(θ) = 1, Bθ(L)

∂σ2
t

∂αi
(θ) = ǫ2t−i, i = 1, . . . , q,

Bθ(L)
∂σ2

t

∂βj
(θ) = σ2

t−j(θ), j = 1, . . . , p. (33)

In view of (5), Bθ0(L) = Bθ∗
0
(L). Moreover σ2

t−j(θ
∗
0) = µ2σ

2
t−j(θ0). Thus

∂σ2
t (θ

∗
0)

∂θ
= A

∂σ2
t (θ0)

∂θ
, A =

(
Iq+1 0
0 µ2Ip

)
. (34)

It follows that

J∗ = µ−2
2 AJA, Ω∗ = µ−1

2 AΩ, (35)

where Ω = E
(

1
σ2
t

∂σ2
t (θ0)
∂θ

)
. Hence, the asymptotic variance of Theorem 3.1 is given by

Σr =

(
(κ4 − 1)µ2

2A
−1J−1A−1 −λrµ2A

−1J−1Ω
−λrµ2Ω

′J−1A−1 σ2
µ∗
r

)
(36)

Moreover, in view of Gr(θ
∗
0 , µ

∗
r) =

(
(µ∗

r)
2/rω∗

0 , . . . , (µ
∗
r)

2/rα∗
0q, β

∗
01, . . . , β

∗
0p

)′
we have

[
∂Gr(θ

∗
0 , µ

∗
r)

∂(θ′, µ)

]
=

[
1

µ2
A

2

r
µ

r
2
2 θ0

]
. (37)

Hence the asymptotic variance of the reparameterized QMLE of the two-step approach

Γr = (κ4 − 1)J−1 − λr
2

r
µ

r
2
2

(
θ0Ω

′J−1 + J−1Ωθ
′
0

)
+ σ2

µ∗
r

(
2

r
µ

r
2
2

)2

θ0θ
′
0.

Now we will show that

J−1Ω = θ0, Ω′J−1Ω = 1 (38)

The second equality follows from (35) and (8) but we give a direct proof. In view of (33),
we have

Bθ(L)
∂σ2

t (θ)

∂θ[1:q+1]′
θ[1:q+1] = ω +

q∑

i=1

αiǫ
2
t−i = Bθ(L)σ

2
t (θ),
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Because, by assumption C and the positivity of the βj , the roots of the polynomial Bθ(L)
are outside the unit circle, it follows that

∂σ2
t (θ0)

∂θ[1:q+1]′
θ
[1:q+1]
0 =

∂σ2
t (θ0)

∂θ′
θ0 = σ2

t (θ0), (39)

The first equality in (38) follows. We also have Ω′θ0 = 1. The second equality in (38)

follows. Because µ
r/2
2 = 1/κr, we thus have, by (38)

Γr = (κ4 − 1)J−1 +

[
σ2
µ∗
r

(
2

rκr

)2

− 4

rκr
λr

]
θ0θ

′
0

= (κ4 − 1)J−1 +

(
2

rκr

)2 [
κ2r − κ2r +

r

2
κr(λr − κ2+r + κr)− rκrλr

]
θ0θ

′
0

= (κ4 − 1)J−1 +

(
2

rκr

)2 [
κ2r − κ2r −

r

2
κr

{ r
2
κr(κ4 − 1)

}]
θ0θ

′
0,

which completes the proof of (12). The theorem is established. 2

Theorem B.1 (Standard GARCH(p, q) when r = 0). For h ∈ C(0), E log |η0| = 0,

E log2 |η0| <∞ and under C, the one-step estimator of θ0 ∈
◦
Θ satisfies

√
n
(
θ̂n,h − θ0

)
L→ N

{
0, 4Var(log |η0|)J−1

}
. (40)

Under the same assumptions and Eη40 < ∞, the two-step estimator is given by θ̃n =

(e2µ̂
∗
0 ω̂∗, e2µ̂

∗
0 α̂∗

1, . . . , e
2µ̂∗

0 α̂∗
q , β̂

∗
1 , . . . , β̂

∗
p) and satisfies

√
n
(
θ̃n − θ0

)
L→ N

{
0, (κ4 − 1)J−1 + [4Var(log |η0|)− (κ4 − 1)] θ0θ

′
0

}
. (41)

Proof. We note that (40) does not straightforwardly follow from Theorem 2.1 because
Assumptions A4 and A8 are not satisfied when r = 0 and h ∈ C(0). However, tedious com-
putation shows that the conclusion of Theorem 2.1 continues to hold under the assumptions
of Theorem B.1.

To prove (41), we use the following expansion, similar to (26),

√
n(µ̂∗

0 − µ∗
0) =

1√
n

n∑

t=1

(log |ηt| − E log |ηt|)−
1

2
Ω′

∗
√
n(θ̂∗n − θ∗0) + oP (1).

Moreover, observe that [
∂G0(θ

∗
0 , µ

∗
0)

∂(θ′, µ)

]
=

[
1

µ2
A 2θ0

]
.

The conclusion follows along the same lines as in the proof of Theorem 3.2. 2

The link between Theorems 3.2 and B.1 is given by the following result, showing the
continuity at r = 0 of the limiting distribution of the two estimators θ̃n and θ̂n,h.
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Proposition 3 (Continuity of the asymptotic variance at r = 0). Let U de-
note a fixed variable (that is independent of r) and assume that

η0
d
=

U

(E|U |r)1/r .

Then, under the assumptions of Theorems 3.2 and B.1, we have

lim
r→0

(
2

r

)2(
κ2r
κ2r

− 1

)
= 4Var(log |η0|).

Proof. Note that EU4 <∞ and E(log |U |)2 <∞. Let f(r) = E|U |r. Then, by application
of the Lebesgue theorem, f ′(r) = E(|U |r log |U |) and f ′′(r) = E(|U |r{log |U |}2) for r small
enough. Hence

E|U |r = 1 + rE(log |U |) + r2

2
E({log |U |}2) + o(r2).

Thus

E|U |2r − (E|U |r)2 = r2Var(log |U |) + o(r2).

Because
κ2r
κ2r

− 1 =
E|U |2r
(E|U |r)2 − 1,

the result straightforwardly follows. 2

The following is the analogue of Corollary 2 for the case r = 0.

Corollary 3 (A criterion for efficiency comparison when r = 0). Under the
assumptions of Theorem B.1, the asymptotic variance matrices of the two estimators verify

Varas

{√
n
(
θ̂n,h − θ0

)}
� Varas

{√
n
(
θ̃n − θ0

)}
(42)

in the sense of positive semi-definite matrices, if and only if

4Var(log |η0|) ≥ κ4 − 1. (43)

Proof of Corollaries 2 and 3. It follows from Theorem 3.2 that, for r 6= 0,

Varas{
√
n
(
θ̂n,h − θ0

)
} − Varas{

√
n
(
θ̃n − θ0

)
}

=

[(
2

r

)2(
κ2r
κ2r

− 1

)
− (κ4 − 1)

]
(J−1 − θ0θ

′
0)

A similar result holds for r = 0, by Theorem B.1. It remains to show that

J−1 � θ0θ
′
0. (44)

In view of (39),

θ
′
0J = E(Zt), Zt =

1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ
.
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Thus J − Jθ0θ
′
0J = Var(Zt) is positive semi-definite. It follows that

y′J(J−1 − θ0θ
′
0)Jy = y′(J − Jθ0θ

′
0J)y ≥ 0, ∀y ∈ Rq+1, y 6= 0.

Setting x = Jy, we thus have

x′(J−1 − θ0θ
′
0)x ≥ 0, ∀x ∈ Rq+1, x 6= 0

and (44) is proven. 2

Note that (44) has interest beyond the proof. In particular, it can be used to obtain a
simple lower bound for the asymptotic variance of the generalized QMLE.

B.5. Complementary results for the LAD estimation
We start by proving the following result, giving the joint asymptotic distribution of the
LADE and µ̂∗∗

r . Let θ0
∗∗

, J∗∗ and Ω∗∗ be defined as θ0, J∗ and Ω∗ but with θ∗∗0 instead of
θ∗0 .

Theorem B.2 (LADE for the Standard GARCH(p, q)). When r 6= 0, under the

assumptions of Theorem 4.1, θ̂∗∗n → θ∗∗0 , µ̂∗∗
r → µ∗∗

r a.s. and for any
√
n-consistent mini-

mizer (θ̂∗∗n ) of the criterion defined in (15), we have
( √

n
(
θ̂∗∗n − θ∗∗0

)
√
n(µ̂∗∗

r − µ∗∗
r )

)
L→ N (0,Σ∗

r), (45)

where

Σ∗
r =

(
ξ2η2J−1

∗∗ −arθ0
∗∗

−arθ0
∗∗′

σ2
µ∗∗
r

)
,

and

ar =
ξη2

M r/2

{r
2
ξη2 + δr

}
, δr = E(|ηt|r1lη2

t>M )− E(|ηt|r1lη2
t<M ),

σ2
µ∗∗
r

=
1

M r

{
E|ηt|2r − 1 + rξη2

(r
4
ξη2 + δr

)}
.

When r = 0, under the assumptions of Theorem B.1, the previous results hold with

a0 = ξη2

{
1

2
ξη2 + δ0

}
, δ0 = E(log |ηt|1lη2

t>M )− E(log |ηt|1lη2
t<M ),

σ2
µ∗∗
0

= Var(log |η0|) + ξη2

(
1

4
ξη2 + δ0

)
.

Proof. Proceeding as in the proof of Theorem 2.1, to prove the strong consistency of θ̂∗∗n
we check the intermediate results

i) lim
n→∞

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| = 0 , a.s.

ii) if θ 6= θ0 , E| log ǫ2t − log σ2
t (θ)| < E| log ǫ2t − log σ2

t (θ0)| ,
iii) any θ 6= θ0 has a neighborhood V (θ) such that

lim sup
n→∞

sup
ϑ∈V (θ)

Q̃n(ϑ) < lim sup
n→∞

Q̃n(θ0) , a.s.
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with

Q̃n(θ) =
1

n

n∑

t=1

| log ǫ2t − log σ̃2
t (θ)|, Qn(θ) =

1

n

n∑

t=1

| log ǫ2t − log σ2
t (θ)|.

We have, using the elementary inequality ||z − y| − |z|| ≤ |y| and already used arguments,

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| ≤
1

n

n∑

t=1

sup
θ∈Θ

| log σ2
t (θ)− log σ̃2

t (θ)| ≤
1

n

n∑

t=1

Cρt ≤ C

n
,

which proves i). Now for z 6= 0,

|z − y| − |z| = −ysgn(z) + 2(y − z)(1l0<z<y − 1ly<z<0) ≥ −ysgn(z) (46)

with equality only if y = z. Hence, for any σ > 0,

E| log |η∗∗0 | − log σ| − E| log |η∗∗0 || ≥ −(log σ)E{sgn(log |η∗∗0 |)} = 0,

the inequality being strict unless if σ = 1, the equality following from the fact that
median(|η∗∗0 |) = 1.

Hence, for any σ > 0,

E| log |η∗∗0 | − log σ| − E| log |η∗∗0 || ≥ −(log σ)E{sgn(log |η∗∗0 |)} = 0,

the equality following from the fact that median(|η∗∗0 |) = 1. Now we show that the in-
equality is strict whence σ 6= 1. For instance, let σ > 1 and suppose E| log |η∗∗0 | −
log σ| −E| log |η∗∗0 || = 0, that is, in view of (46), E

{
(log σ − log |η∗∗0 |)1l0<log |η∗∗

0 |<log σ

}
= 0.

Then, because the variable under the expectation is nonnegative, log σ = log |η∗∗0 | or
1l0<log |η∗∗

0 |<logσ = 0. a.s. We are led to a contradiction, because log |η∗∗0 | has a positive
density on some interval (0, ǫ) with ǫ > 0. The case σ < 1 can be handled similarly. Result
ii) straightforwardly follows and the proof of iii) being standard, it is omitted.

Now we turn to the asymptotic normality. Following the lines of proof of Davis, Knight
and Liu (Lemma 2.2 and Remark 1, 1992), it can be shown that

√
n
(
θ̂∗∗n − θ∗∗0

)
= −ξη2J−1

∗∗
1√
n

n∑

t=1

(1lη2
t>M − 1lη2

t<M )
1

σ∗∗2
t

∂σ2
t (θ

∗∗
0 )

∂θ
+ oP (1)

L→ N (0, ξ2η2J−1
∗∗ ). (47)

This asymptotic distribution was obtained by Peng and Yao (2003) under similar assump-
tions, in particular C0. Similar to (26) we have

√
n(µ̂∗∗

r − µ∗∗
r ) =

1√
n

n∑

t=1

(|η∗∗t |r − µ∗∗
r )− r

2
E|η∗∗t |rΩ′

∗∗
√
n(θ̂∗∗n − θ∗∗0 ) + oP (1)

= M−r/2

(
1√
n

n∑

t=1

(|ηt|r − 1)− r

2
Ω′

∗∗
√
n(θ̂∗∗n − θ∗∗0 ) + oP (1)

)
.

We have

Cov

(
√
n
(
θ̂∗∗n − θ∗∗0

)
,

1√
n

n∑

t=1

(|ηt|r − 1)

)
= −δrξη2J−1

∗∗ Ω∗∗ + o(1).
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It follows that

Cov
(√

n
(
θ̂∗∗n − θ∗∗0

)
,
√
n(µ̂∗∗

r − µ∗∗
r )
)

= −arJ−1
∗∗ Ω∗∗ + o(1).

We also have

Var
(√
n(µ̂∗∗

r − µ∗∗
r )
)

=
1

M r

{
E|ηt|2r − 1 + rξη2

(
rξη2

4
+ δr

)}
+ o(1).

using (8), which obviously holds with θ∗0 replaced by θ∗∗0 .
The case r = 0 is handled similarly, using the expansion

√
n(µ̂∗∗

0 − µ∗∗
0 ) =

1√
n

n∑

t=1

(log |ηt| − E log |ηt|)−
1

2
Ω′

∗∗
√
n(θ̂∗∗n − θ∗∗0 ) + oP (1).

2

Proof of Theorem 4.1 and Remark 9. The proof of Theorem 4.1 follows the lines
of proof of Theorem 3.2. Note that, because η∗∗t = ηt√

M
, we have, similar to 36 and (37),

Σr =

(
ξ2η2M2(A∗)−1J−1(A∗)−1 −arM(A∗)−1J−1Ω

−arMΩ′J−1(A∗)−1 σ2
µ∗∗
r

)
,

[
∂Gr(θ

∗∗
0 , µ∗∗

r )

∂(θ′, µ)

]
=

[
1

M
A∗ 2

r
M

r
2 θ0

]
, A∗ =

(
Iq+1 0
0 MIp

)
.

Using (38), the asymptotic variance

[
∂Gr(θ

∗∗
0 , µ∗∗

r )

∂(θ′, µ)

]
Σ∗

r

[
∂Gr(θ

∗∗
0 , µ∗∗

r )′

∂(θ′, µ)′

]

of the reparameterized LADE of the two-step approach follows. Thus, using (11),

Varas

{√
n
(
θ̂n,h − θ0

)}
− Varas

{√
n
(
˜̃θn − θ0

)}

=

[(
2

r

)2(
κ2r
κ2r

− 1

)
− ξ2η2

]
(J−1 − θ0θ

′
0),

and the equivalence between (16) and (17) is deduced from (44).
Remark 9 follows from Theorem B.2 and

[
∂G0(θ

∗∗
0 , µ∗∗

0 )

∂(θ′, µ)

]
=

[
1

M
A∗ 2θ0

]
.

2

The ARE of the one-step QMLE relative to the two-step LADE only depends on the
innovations distribution and is illustrated in Figure 3.
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Fig. 3. Same as Figure 1 for the two-step LAD estimator.

B.6. Procedure in the case r = 0
When r = 0, that is for the prediction of log |ǫn+1|, the procedure can be modified as follows,
starting from Step 2, in view of Remarks 7 and 9.

Step 2. Compute the rescaled residuals η̂∗t = ǫt
σ̂∗
t
. Compute the empirical moment µ̂∗

4 of

these residuals, and the empirical mean and variance of the log-absolute residuals, Ê(log |η|)
and V̂ar(log |η|) respectively. Compute the empirical median M̂∗, and estimate the density
fη∗2 of the η̂∗2t .

Step 3. Compute the quantities

c0 =
µ̂∗
4

µ̂∗2
2

− 1, c1 = 4V̂ar(log |η|), c2 =
1

{2M̂∗f̂η∗2(M̂∗)}2
.

(i) If c0 = mini=0,1,2 ci, then the Gaussian QMLE can be preferred for the prediction

of log |ǫn+1|. The prediction is computed as log σ̂n + Ê(log |η|).
(ii) If c2 = mini=0,1,2 ci, then the LADE can be preferred. Reestimate the model

by LAD, and compute the η̂∗∗t = ǫt
σ̂∗∗
t

. Compute the empirical mean Ê(log |η∗∗|) of the

log-absolute residuals. The prediction of |ǫn+1|r is log σ̂∗∗
n + Ê(log |η∗∗|).

(iii) If c1 = mini=0,1,2 ci, then the one-step estimator can be preferred. Reestimate
the model by non-gaussian QML, by minimizing

n∑

t=1

{
log

|ǫt|
σ̃t(θ)

}2

.

The prediction of |ǫn+1|r is log σ̃n.

B.7. Comparison of the two-step QMLE and LADE
We have seen that the asymptotic relative efficiency of the two-step QML with respect to the
two-step LAD method for predicting |ǫn+1|r does not depend on r. To see how it depends
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Fig. 4. ARE of the two-step QMLE relative to the two-step LAD for GED (left panel) and Student
distributions (right panel) in function of ν.

on the distribution of ηt, we show the ARE for GED and Student distributions in Figure 4.
As expected, the right graph shows that the LADE is preferable for fat tailed distributions.
The left graph shows that for distributions close to the Gaussian or the Laplace, the QML
is asymptotically better; when ν increases, the tails increase for the GED and the LADE
tends to be the best.

B.8. Simulation experiments
The first set of simulation experiments aims to compare the effective relative efficiencies of
the 1-step method based on the generalized QMLE, the 2-step method based on the QMLE
and the 2-step method based on the LADE. We simulated N = 500 independent trajectories
of size n = 10200 of GARCH(1,1) models ǫt = σtηt, in which ηt follows the generalized error
distribution with ν degrees of freedom, GED(ν). The GARCH parameters have been chosen
in such a way to obtain, for all values of r and ν, the usual parameterization

{
ǫt = σ∗

t η
∗
t , Eη∗2t = 1

σ∗2
t = 1 + 0.05ǫ2t−1 + 0.7σ∗2

t−1.

For each of the N simulations, the first n1 = 200 values were used to estimate the GARCH
parameters and the moments required by the last two methods. The last n2 = 10000 values
were used to compute the mean square prediction errors (MSPE) given, in the case r 6= 0,
by

1

n2

n−1∑

t=n1

(|ǫt+1|r − Pt,h)
2 ,

1

n2

n−1∑

t=n1

(|ǫt+1|r − P ∗
t )

2 ,
1

n2

n−1∑

t=n1

(|ǫt+1|r − P ∗∗
t )2

where Pt,h = σ̃r(ǫn, . . . , ǫ1; θ̂n1,h) are the one-step predictions and P ∗
t = σ̃r(ǫt, . . . , ǫ1; θ̂

∗
n1
)µ̂∗

r

and P ∗∗
t = σ̃r(ǫt, . . . , ǫ1; θ̂

∗∗
n1
)µ̂∗∗

r are the two-step predictions based respectively on the
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Table 4. Percentages of MSPE losses with respect to the unfeasible optimal predictor, for
predicting the power r of a GARCH(1,1) model with ηt ∼ GED(ν).

r ν = 0.1 ν = 0.5
Naive 1-step 2-QML 2-LAD Naive 1-step 2-QML 2-LAD

0 21.3 0.8 0.6 0.8 33.1 0.9 0.7 0.9
0.5 17 1 0.8 1.2 27.1 1.1 1 1.3
1 8.6 1 0.9 1.6 13.4 1.2 1.1 1.6
2 1.2 1.2 1.2 3.4 1.3 1.3 1.3 2.8
r ν = 2 ν = 3

Naive 1-step 2-QML 2-LAD Naive 1-step 2-QML 2-LAD
0 90.4 1.1 1.9 1.3 132.8 1.2 3 1.2

0.5 95.7 1.6 3 3.7 168.5 1.4 7 1.8
1 38.3 1.7 2.8 2.5 162.7 5.3 19.1 3.4
2 5.7 5.7 5.7 6.4 45.4 45.4 45.4 8.3

Gaussian QMLE and the LADE. These MSPE have been compared to those obtained
with the naive predictor σ̃r(ǫt, . . . , ǫ1; θ̂

∗
n1
) and with the (approximated9) optimal predictor

σ̃r(ǫn, . . . , ǫ1; θ0). As expected, the minimal MSPE were always obtained with the optimal
predictor. Table 4 gives the percentages of relative MSPE losses with respect to the optimal
predictor over the N replications. As expected, the naive predictor entails important effi-
ciency losses, except in the case r = 2 where this method coincides with the 1-step GQMLE
and with the 2-step QMLE. Obviously, Table 4 confirms that the naive method must be
avoided. In accordance with the asymptotic theory (see Remark 8), the ranking of the
2-step QML and 2-step LAD methods does not depend on r, the LADE is preferred when
ν is large (i.e. ν = 3) and the QML is slightly better when ν = 0.1 or ν = 0.5, whereas the
two methods are almost equivalent when ν = 2. As expected from Figures 1-3, the 1 step
method is the best for all the values of ν and r considered in Table 4, except for r = 2 and
ν = 3 where the method based on the LAD is much more efficient.

In a second set of simulation experiments, we assess the effective performance of the
adaptive method. We simulated N = 500 independent trajectories of size n = 10500
of a GARCH(1,1) model, with 3 different designs for the parameter (ω0, α0, β0) and for
the distribution of the noise ηt. For each trajectory, the first 500 observations are used to
estimate the GARCH models and the relevant moments of the noise, whereas the last 10000
values are used to compute the percentages of MSPE for predicting a given power r by the
different methods. In Design A, ηt follows a multimodal distribution, a mixture of 3 normal
distributions of the form

ηt ∼ πφ(x) +
1− π

2
φ(x +m) +

1− π

2
φ(x −m), (48)

where φ(·) denotes the standard gaussian density. We took π = 1/2 and m = 10, so that
the distribution of ηt is such that c2 is much greater than c0 and c1. Table 5 displays the
percentages of MSPE losses with respect to the best prediction method among the four
methods employed, that is, the naive, 1-step, 2-step and adaptive procedures. For Design
A, we chose α0 = 0.10 and β0 = 0.8 (the results are not sensitive to the value of ω0), and
we took r = 1.5. Of course, similar results are obtained for other choices of the parameters.

9This estimator is said to be an "approximation" of the optimal predictor because it is based on
a finite number of past values. It is introduced as a benchmark but it can not be used in practice
because θ0 is unknown.
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Table 5. Percentages of MSPE losses with respect to the asymptotically
optimal prediction method.

Naive 1-step 2-step QML 2-step LAD Adaptive
Design A 2.9 0.2 0 66.3 0
Design B 418.4 0 10.2 1.9 1.7
Design C 1088.9 0 43 2.5 1.6

Table 6. Number of choices of each method by the
adaptive method.

1-step 2-step QML 2-step LAD
Design A 500 0 0
Design B 1 84 415
Design C 37 136 327

Table 5 confirms that, as expected the LADE is much less efficient than the other methods
for that design. In Design B, the distribution of ηt is chosen to be the Cauchy distribution.
We also chose r = 0.45, so that the moment of order 2r exist, as required with the 1-step
method. Since the dispersion of the noise is high, the GARCH parameter should be chosen
smaller than in Design A to obtain a strict stationary solution. We thus took α0 = 0.005
and β0 = 0.8. This design should penalize the 2-step QML method because the required
moments do not exist. Indeed, Table 5 shows that the 2-step QML method induces an
important efficiency loss. In Design C keeps the parameters of Design B, except that ηt
follows a mixture distribution of the form (48), where φ(·) is replaced by the Cauchy density.
As expected, the best method is the 1-step method in that case. Interestingly, the adaptive
method is always close to the optimal method in terms of MSPE. Table 6 gives the number
of times that each method is selected by the adaptive method. In the framework of Design
A, the adaptive method always makes the right choice. In Designs B and C, the adaptive
method often makes suboptimal choices, but the MSPE is however close to the optimal.

B.9. Complementary empirical results
In this section we come back to the prediction problem of the daily returns of the 10 world
stock market indices of Section 5. We study the sensitivity of the results to i) a change of
model, and to ii) a change of period for the data sets. Because stationarity is crucial for
our results, we start by considering this issue.

B.9.1. Stationarity of returns

Figure 5 displays the sample paths of the CAC, DAX, FTSE, Nikkei, SMI and SP500 prices
and returns. Similar graphs were obtained for the 4 other indices. While the non stationar-
ity of prices is clear from these drawings, the sample paths of returns are compatible with
stationarity. This is confirmed by Figure 6 showing the empirical autocorrelations of such
returns. The significance bands computed for a GARCH(1,1)10 show that these autocor-
relations are compatible with a GARCH(1,1) model for the returns. In the GARCH(1,1)
framework, a formal test of strict stationarity can be done. Applying the test developed by

10See Francq and Zakoian (2009). The R-code can be downloaded at
http://www.runmycode.org/CompanionSite/site.do?siteId=23.
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Fig. 5. Sample paths of the CAC, DAX, FTSE, Nikkei, SMI and SP500 prices (left graphs) and returns
(right graphs).

Francq and Zakoian (2012), we conclude that the stationarity cannot be rejected, at any
reasonable significance levels, for the returns.

B.9.2. Complement to Table 3

For n1 = n2 = n3 = 300, Table 7 displays the percentages of prediction losses with respect
to the best method, for r = −0.5, r = 0, r = 0.5, r = 1, r = 1.5 and r = 2.

B.9.3. Using a standard GARCH instead of a TARCH

We first re-estimate the ARE of the methods assuming a standard GARCH(1,1) model

ǫt = σtηt, σ2
t = ω0 + α0ǫ

2
t−1 + β0σ

2
t−1, (49)

instead of the TGARCH(1,1) model (49). Figure 7 is very similar to Figure 2, which leads
again to the conclusion that the one-step method is often the most efficient when r ∈ (0.5, 2),
but is always dominated when r > 2 or r is small.

Note that Figures 2 and 7 do not directly compare the ARE of the 2-step LAD with
respect to the 2-step Gaussian GMLE. These ARE do not depend on r, but just on the
distribution of the iid noise. Table 8 indicates that the ranking of the 2 method may depend
on the volatility model, but for the 5 European indices the LADE is often expected to be
more efficient than the QMLE, whereas this is the opposite for the 5 other indices.
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Fig. 6. Empirical autocorrelation functions of the CAC, DAX, FTSE, Nikkei, SMI and SP500 returns.
Standard significance bands (at the level 95%) of a strong white noise are displayed in dotted lines,
significance bands for a GARCH(1,1) process are displayed in solid lines.
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Fig. 7. Estimated ARE’s of the one-step QMLE relative to the two-step QMLE (left panel) and LAD
estimator (right panel) for stock index returns. As Figure 2, but the volatility model is the GARCH(1,1)
model (49) instead of the TGARCH(1,1) model (49).
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Table 7. Percentages of MSPE losses with respect to the best method, for prediction of |ǫn+1|
r.

r -0.5 -0.5 -0.5 0 0 0 0.5 0.5 0.5
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 12.9 1.3 0 28.6 7.3 0 19.2 14.9 0
DAX 8.1 0.8 0 27.8 6.6 0 17.8 13.7 0
DJA 4.8 0.5 0 33.3 7.2 0 24.3 16.8 0
DJI 7.8 0.8 0 34.8 7.8 0 25.3 17.8 0
DJT 1.3 0 0.3 30.2 2.8 0 21.4 6.9 0
DJU 11.2 0.6 0 30.9 5.1 0 21 13.3 0
FTSE 5.4 0 0 29.3 6.9 0 20.5 15.6 0
Nikkei 4.8 0.4 0 33.3 4.7 0 26.8 10.6 0
SMI 12.5 1.7 0 32.6 9.1 0 22.2 18.8 0
SP500 11.3 1 0 34 7.6 0 22.8 18 0

r 1 1 1 1.5 1.5 1.5 2 2 2
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 6 21 0 0.2 22.4 0 0 19.3 0
DAX 4.5 20.8 0 0 24.9 0.9 0 21.7 0.1
DJA 7.4 25.1 0 0.5 27.4 0 7.2 29.3 0
DJI 7.7 26.9 0 0 32.4 0.4 0 31 0
DJT 6.6 9.1 0 1 8.7 0 0.5 4.8 0
DJU 5.7 23.5 0 0 30.2 0.7 0 28.8 0
FTSE 6 23.6 0 0 28.7 0.5 0 26.1 0
Nikkei 10 16.7 0 0.7 22.5 0 0 25.9 0.1
SMI 6.5 28.9 0 0 35.9 0.7 0 38.3 0.2
SP500 5.8 27.7 0 0 33.1 0.8 2.9 30.8 0

Table 8. Estimates of the ARE’s c0/c2 of the LAD method with respect to the Gaussian QML
method for predicting powers of the stock index returns.

CAC DAX DJA DJI DJT DJU FTSE Nikkei SMI SP500
TGARCH 1.26 3.51 0.65 0.84 1.33 0.98 1.08 0.59 3.19 0.96
GARCH 0.99 3.05 0.74 0.60 0.94 0.83 0.68 0.70 1.32 0.76
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Table 9. As Table 7, but the volatility is assumed to follow a standard GARCH(1,1) instead of a
TGARCH(1,1).

r -0.5 -0.5 -0.5 0 0 0 0.5 0.5 0.5
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 12.7 0 0.4 25.8 0 0.2 18 3.4 0
DAX 8.8 0.6 0 33.5 5.9 0 23.9 11.8 0
DJA 4.9 0.3 0 35.6 5.3 0 26.8 12.9 0
DJI 7.7 0.3 0 34.1 4.5 0 26.4 12.7 0
DJT 1.3 0 0.1 33.1 3.1 0 25 7.4 0
DJU 12.5 0.5 0 33.6 5.7 0 25.1 13.8 0
FTSE 5.4 0 0.1 28.1 5 0 19.9 11.3 0
Nikkei 4.8 0.1 0 36.7 3.3 0 32.1 9.2 0
SMI 12.5 0.9 0 33.7 6.4 0 23.8 13.6 0
SP500 11.3 0.3 0 34.7 4.4 0 24.2 12.3 0

r 1 1 1 1.5 1.5 1.5 2 2 2
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 5 7.1 0 0 9.8 0.1 0 9.6 0
DAX 8.5 16.7 0 1.1 18.1 0 0.2 12.7 0
DJA 9.3 20.1 0 0.7 22.3 0 0 19 0
DJI 8.1 15.7 0 1.8 15.9 0 0 18.5 1.1
DJT 9.9 11.1 0 1.8 9.9 0 0 5.2 0.7
DJU 8.9 23.5 0 0.9 28.3 0 0 24.2 0
FTSE 7.3 16.6 0 1.1 20.1 0 0 19.7 0.1
Nikkei 13.4 14.9 0 3 20.1 0 0.1 20.9 0
SMI 8.2 20.8 0 1.2 24.7 0 0.5 25 0
SP500 7.6 19.9 0 0.6 22.6 0 0.3 20.5 0

Table 9 and Table 7 are very similar, except that the relative MSPE losses of the Naive
and Historic methods are globally more important for the TGARCH than for the standard
GARCH. The Historic method being model-free, larger losses with respect to the adaptive
method based on the TGARCH than with the one based on the standard GARCH is an
indicator that the TGARCH model does a slightly better job for the predictions. For the
two models, the adaptive method is clearly the most efficient.

B.9.4. Using a subperiod of the data set

Figure 8 and Tables 10 are respectively similar to Figure 7 and Table 9, except that the
data cover the period from January 2, 1990, to January 22, 2009. The results are not much
affected by the fact that the period does not include anymore the recent sovereign-debt
crises in Europe and US.

Table 11 presents results similar to those of Table 10 but for empirical means based on
30 returns (instead of 250) in the historical method. For r = −0.5 the results worsen. For
positive values of r the results are generally better with 30 observations, but the adaptive
method remains superior (the percentages being always equal or very close to zero).



Predictions of powers of ARCH 41

−1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

r

es
tim

at
ed

 r
el

at
iv

e 
ef

fic
ie

nc
y 

1−
st

ep
/2

−
st

ep

CAC
DAX
DJA
DJI
DJT
DJU
FTSE
Nikkei
SMI
SP500

−1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

r

es
tim

at
ed

 r
el

at
iv

e 
ef

fic
ie

nc
y 

1−
st

ep
/2

−
st

ep
 L

A
D

CAC
DAX
DJA
DJI
DJT
DJU
FTSE
Nikkei
SMI
SP500

Fig. 8. As Figure 7, but for the period from January 2, 1990, to January 22, 2009.

Table 10. As Table 9, but for the period from January 2, 1990, to January 22, 2009.
r -0.5 -0.5 -0.5 0 0 0 0.5 0.5 0.5

Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 10.3 0.2 0 28.9 1.6 0 22.2 7.1 0
DAX 9.5 0.9 0 32.5 6.5 0 23.1 14.5 0
DJA 17.9 0.1 0 34.2 3.9 0 19.6 8.1 0
DJI 15.2 0.1 0 32.3 2.6 0 19.1 6.7 0
DJT 9.5 0 0 32.1 1.8 0 19.8 4.5 0
DJU 9.2 0.3 0 30.5 3.2 0 21.1 7.6 0
FTSE 13.7 0.5 0 30.6 4.1 0 22.4 8.2 0
Nikkei 7.3 0.5 0 35.8 4 0 30.2 10.7 0
SMI 9.1 0.8 0 32.2 7.2 0 22.8 17.3 0
SP500 9.3 0 0.2 31.5 3.4 0 14.8 8.7 0

r 1 1 1 1.5 1.5 1.5 2 2 2
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 6.3 12.3 0 0 15.1 0.3 0 11.5 0
DAX 8 19.9 0 1.1 19.3 0 0 12.4 0.1
DJA 3.5 10.2 0 0 10.1 1.1 0 6.7 0.2
DJI 2.8 5 0 0 2.7 0 0 5.2 0.5
DJT 6 6.7 0 1 6.1 0 0.2 2.5 0
DJU 6.7 15.6 0 0.4 22.7 0 0 21.8 0
FTSE 9.1 10.7 0 2.1 12.3 0 0 11.2 0.1
Nikkei 11.9 17.7 0 2.4 23.3 0 0.1 24.3 0
SMI 7.8 26.9 0 1.4 30.9 0 0.3 30.7 0
SP500 0.5 9.8 0 0 8.6 1.5 0 4.2 0.1
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Table 11. As in Table 10 but for empirical means based on the last 30 returns (historical method).

r -0.5 -0.5 -0.5 0 0 0 0.5 0.5 0.5
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 10.3 2.2 0 30 0 0.9 23.1 0 0.8
DAX 9.5 2.6 0 32.5 1.1 0 23.1 0.7 0
DJA 17.9 1.6 0 34.2 1 0 20.7 0 0.9
DJI 15.2 1.5 0 34.4 0 1.5 21.4 0 1.9
DJT 9.5 2.3 0 32.1 0 0 22.1 0 1.9
DJU 9.2 2.6 0 31.3 0 0.6 23.2 0 1.8
FTSE 13.7 1.7 0 30.6 0.4 0 23.1 0 0.6
Nikkei 7.3 3 0 35.8 0.4 0 30.2 2 0
SMI 9.1 2.1 0 32.2 0.8 0 22.8 2.1 0
SP500 9.1 1.7 0 33 0 1.1 15.8 0 0.9

r 1 1 1 1.5 1.5 1.5 2 2 2
Naive Historic Adaptive Naive Historic Adaptive Naive Historic Adaptive

CAC 6.5 0 0.1 0 1.5 0.3 0.1 0 0.1
DAX 8 1.9 0 1.1 2.8 0 0 0.2 0.1
DJA 4.8 0 1.3 0 0.5 1.1 0 0.3 0.2
DJI 6.9 0 4 4.3 0 4.3 0 0.6 0.5
DJT 8.3 0 2.2 3.1 0 2 2.5 0 2.3
DJU 6.7 2.3 0 0.4 8.1 0 0 9.4 0
FTSE 9.9 0 0.7 2.1 1.1 0 0 2.3 0.1
Nikkei 11.9 5.8 0 2.4 10.9 0 0.1 14.1 0
SMI 7.8 6.6 0 1.4 11.8 0 0.3 16.5 0
SP500 0.6 0 0.1 0 1.8 1.5 0 1.2 0.1
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B.9.5. Duration models

The dynamics of duration between stock price changes has attracted much attention in the
econometrics literature. Engle and Russell (1998) proposed the Autoregressive Conditional
Duration (ACD) model, which assumes that the duration between price changes has the
dynamics of the square of a GARCH:

{
xi = ψiηi, (ηi) ∼ iid
ψi = ω0 +

∑q
k=1 α0kxi−k +

∑p
j=1 β0jψi−j

(50)

with ω0 > 0, α0k ≥ 0, β0j ≥ 0. An alternative specification that does not constrain the sign
of the coefficients is the logarithmic ACD proposed by Bauwens and Giot (2000), which can
be written as follows:

{
xi = eφiηi, (ηi) ∼ iid
φi = ω0 +

∑q
k=1 α0k log xi−k +

∑p
j=1 β0jφi−j

(51)

It is clear that both ACD models are of the form (1). Figure 9 displays the empirical
autocorrelation functions for the absolute returns of the SP500, the inverse absolute returns
of the SP500, IBM durations data, and the inverse IBM durations. For the stock index
the absolute returns appear strongly autocorrelated, showing that a GARCH-type model
is compatible with the series. For the inverse returns, a GARCH model would not be
compatible with the autocorrelations.

B.10. The Asymmetric Power GARCH(p, q) case
Pan, Wang and Tong (2008) established that the strict stationarity condition writes γ(B0) <
0, where γ(B0) is the top-Lyapunov exponent associated to Model (14). This condition
entails the invertibility of the polynomial Bθ0(z) and allows to write the model under the
form (1). It also ensures the existence of E|ǫt|s for some s > 0.

With obvious notation, Assumption B1 holds with

F (θ,K) = (Kδω,Kδα1+,K
δα1−, . . . ,K

δαq−, β1, . . . , βp)
′.

Hamadeh and Zakoïan (2011) showed that the following assumption entails AN of the
Gaussian QMLE of θ0 = (ω0, α01+, . . . , α0q−, β01, . . . , β0p)′.

D: γ(B0) < 0; ∀θ ∈ Θ,
∑p

j=1 βj < 1 and ω > ω for some ω > 0; if P (ηt ∈ Γ) = 1
for a set Γ, then Γ has a cardinal |Γ| > 2; P [ηt > 0] ∈ (0, 1); if p > 0, Bθ0(z) has
no common root with Aθ0+(z) and Aθ0−(z). Moreover Aθ0+(1) +Aθ0−(1) 6= 0 and
α0q,+ + α0q,− + β0p 6= 0.

Theorem B.3 (Asymmetric Power GARCH(p, q)). Let r 6= 0. For h ∈ C(r),
E|η0|r = 1, E|η0|2r <∞ and under D, the one-step estimator of θ0 ∈

◦
Θ satisfies (11).

Under the same assumptions and Eη40 < ∞, the two-step estimator is given by θ̃n =

({µ̂∗
r}δ/rω̂∗, {µ̂∗

r}δ/rα̂∗
1+, . . . , {µ̂∗

r}δ/rα̂∗
q−, β̂

∗
1 , . . . , β̂

∗
p) and satisfies

√
n
(
θ̃n − θ0

)

L→ N
{
0, (κ4 − 1)J−1 +

(
δ

2

)2
[(

2

r

)2(
κ2r
κ2r

− 1

)
− (κ4 − 1)

]
θ0θ

′
0

}
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Fig. 9. Empirical autocorrelation functions for: i) absolute returns of the SP500 (top left), ii) inverse
absolute returns of the SP500 (top right). iii) IBM durations (bottom left), i) inverse IBM durations
(bottom right)
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where θ0 =

(
θ
[1:2q+1]
0

0p

)
, θ

[1:2q+1]
0 = (ω0, α01+, . . . , α0q−)′.

Moreover, the conclusion of Corollary 2 holds true for Model (14): the estimator θ̃n is

asymptotically more efficient than θ̂n,h iff (13) holds.

Proof. To prove the AN, we have already seen in the proof of Theorem 3.2 that Assumptions
A4 and A7 are satisfied with δ = r. Assumptions A5 and A8 are satisfied by the same
arguments as in Theorem 3.2 and using Pan, Wang and Tong (2008), and Hamadeh and
Zakoïan (2011). The latter paper also established the second part of A2 and A9. The AN
follows from Theorem 2.1.

Because Gr(θ
∗′

0 , µ
∗
r) =

(
(µ∗

r)
δ/rω∗

0 , . . . , (µ
∗
r)

δ/rα∗
0q−, β

∗
01, . . . , β

∗
0p

)′
we have

[
∂Gr(θ

∗′

0 , µ
∗
r)

∂(θ′, µ)

]
=

[
µ
− δ

2
2 Aδ

δ

r
µ

r
2
2 θ0

]
, Aδ =

(
I2q+1 0

0 µ
δ
2
2 Ip

)
.

Similarly to (33), the derivatives of σδ
t (θ) verify

Bθ(L)
∂σδ

t

∂ω
(θ) = 1,

Bθ(L)
∂σδ

t

∂αi+
(θ) = (ǫ+t−i)

δ, Bθ(L)
∂σδ

t

∂αi−
(θ) = (−ǫ−t−i)

δ, i = 1, . . . , q,

Bθ(L)
∂σδ

t

∂βj
(θ) = σδ

t−j , j = 1, . . . , p.

It follows that, similarly to (38)

J−1
δ Ωδ = θ0, Ω′

δJ
−1
δ Ωδ = 1 (52)

where

Jδ = E

(
1

σ2δ
t

∂σδ
t

∂θ

∂σδ
t

∂θ′
(θ0)

)
=

(
δ

2

)2

J, Ωδ = E

(
1

σδ
t

∂σδ
t

∂θ
(θ0)

)
=
δ

2
Ω.

Thus

J−1Ω =
δ

2
θ0, Ω′J−1Ω = 1 (53)

Moreover, similarly to (34), we have

∂σ2
t (θ

∗
0)

∂θ
= µ

1− δ
2

2 Aδ
∂σ2

t (θ0)

∂θ
. (54)

It follows that, similar to (35),

J∗ = µ−δ
2 AδJAδ, Ω∗ = µ

−δ/2
2 AδΩ. (55)

Hence, the asymptotic variance of Theorem 3.1 is given by

Σr =

(
(κ4 − 1)µδ

2A
−1
δ J−1A−1

δ −λrµδ/2
2 A−1

δ J−1Ω

−λrµδ/2
2 Ω′J−1A−1

δ σ2
µ∗
r

)
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Therefore, the asymptotic variance of the reparameterized QMLE of the two-step approach

Γr =

[
µ
− δ

2
2 Aδ

δ

r
µ

r
2
2 θ0

]
Σr

[
µ
− δ

2
2 A′

δ
δ
rµ

r
2
2 θ

′
0

]

= (κ4 − 1)J−1 − λr
δ

r
µ

r
2
2

(
θ0Ω

′J−1 + J−1Ωθ
′
0

)
+ σ2

µ∗
r

(
δ

r
µ

r
2
2

)2

θ0θ
′
0.

In view of (53), the asymptotic variance follows.
Finally, the conclusion of Corollary 2 holds true for Model (14), since

Varas

{√
n
(
θ̂n,h − θ0

)}
− Varas

{√
n
(
θ̃n − θ0

)}

=

[(
2

r

)2(
κ2r
κ2r

− 1

)
− (κ4 − 1)

](
J−1 −

(
δ

2

)2

θ0θ
′
0

)

and

J−1 �
(
δ

2

)2

θ0θ
′
0.

2
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