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uncertainty. Replacing, in the theoretical formulas, the true parameter value by an esti-

mator based on n observations of the Profit and Loss variable, induces an asymptotic bias

of order 1/n in the coverage probabilities. This paper shows how to correct for this bias

by introducing a new estimator of the VaR, called Estimation adjusted VaR (EVaR). This

adjustment allows for a joint treatment of theoretical and estimation risks, taking into

account for their possible dependence. The estimator is derived for a general parametric
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1 Introduction

The Value-at-Risk (VaR) and more generally the Distortion Risk Measures
such as the Expected Shortfall are standard risk measures used in the current
regulations introduced in Finance (Basel 2), or Insurance (Solvency 2) to fix
the required capital (Pillar 1), or to monitor the risk by means of internal
risk models (Pillar 2). These measures can be estimated nonparametrically
such as in the so-called historical simulation used in the standard approaches
of regulation. In the so-called advanced approaches, these measures can be
conditional, that is, take into account the current available information. In
such advanced approaches, the risk dynamic is usually represented by a para-
metric or semi-parametric model, which has to be estimated in a preliminary
step. However, the estimated counterparts of risk measures are subject to
estimation uncertainty. Replacing, in the theoretical formulas, the true pa-
rameter value by an estimator based on n observations of the Profit and Loss
variable, induces an asymptotic bias of order 1/n in the coverage probabil-
ities. This paper shows how to correct for this bias by introducing a new
estimator of the VaR, called Estimation adjusted VaR (EVaR). This adjust-
ment allows for a joint treatment of theoretical and estimation risks, taking
into account for their possible dependence.

1.1 Parametric dynamic risk model

More precisely, let us consider a parametric dynamic model for a Markov
Profit and Loss (P&L) process (yt), with a parametric conditional cumulative
distribution function (cdf) of yt given yt−1, denoted Fθ0(· | yt−1). The model
can be written as :

yt = g(yt−1, θ0, εt), t > t0, t0 ∈ Z, (1)

with an initial value yt0 assumed to be independent of (εt), which is a se-
quence of independent and identically distributed (i.i.d.) variables. The
distribution of εt can be assumed standard normal without loss of general-
ity1, θ0 ∈ R

d is the true parameter value and g : R × R
d × R 7→ R is a

continuous function, strictly increasing with respect to the last component.
We denote by a the inverse of the function g w.r.t. the last component,
which provides the expression of the Gaussian nonlinear innovation [see e.g.
Gouriéroux, Jasiak (2005)] in terms of unknown parameter and observed P
& L :

1Let us denote by Φ the cdf of the standard normal. Then the autoregressive formula
(1) is satisfied with εt = Φ−1[Fθ0 (yt | yt−1)].
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εt = a(yt−1, θ0, yt). (2)

When θ0 is known, the conditional VaR at risk level α ∈ (0, 1) is defined
by :

Pt−1[yt < −VaRt(α)] = α, (3)

where Pt−1 denotes the historical distribution conditional on yt−1. This is
the opposite of the quantile at level α of the conditional distribution Pt−1.
Condition (3) is equivalent to :

Pt−1[g(yt−1, θ0, εt) < −VaRt(α)] = α

⇐⇒ Pt−1[εt < a{yt−1, θ0,−VaRt(α)}] = α,

that is, to a VaR computed on the Gaussian nonlinear innovation εt. Let Φ
denote the cumulative distribution function (cdf) of the standard normal dis-
tribution. We deduce that a[yt−1, θ0,−VaRt(α)] = Φ−1(α), or equivalently :

VaRt(α) = −g[yt−1, θ0,Φ
−1(α)].

For instance, in a conditionally Gaussian risk model with autoregressive drift
and volatility:

yt = µ(yt−1, θ0) + σ(yt−1, θ0)εt, εt ∼ IIN(0, 1), (4)

the theoretical conditional VaR is:

VaRt(α) = −µ(yt−1, θ0)− σ(yt−1, θ0)Φ
−1(α).

1.2 Estimated VaR

In practice the true parameter value is unknown and replaced by an estimate
θ̂n, say, based on n observations of the P&L. Thus, the conventional plug-in
VaR predictor is :

VaRn,t(α) = −g[yt−1; θ̂n,Φ
−1(α)]. (5)

For instance, in the risk model with autoregressive drift and volatility (4), we
get: VaRn,t(α) = −µ(yt−1, θ̂n)− σ(yt−1, θ̂n)Φ

−1(α). As observed by Hansen
(2006), this practice does not provide an accurate approximation of the con-
ditional coverage probability. Indeed, the inequality yt < −VaRn,t(α) is

equivalent to the inequality ε̂t < Φ−1(α), where ε̂t = a(yt−1, θ̂n, yt) is the
nonlinear residual. But the residual distribution is no longer standard nor-
mal. Thus, in general

Pt−1[yt < −VaRn,t(α)] 6= α+ oP (1/n),

for instance.
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1.3 Estimation risk in the literature

Estimation risk in dynamic models has been considered by several authors.
Berkowitz and O’Brien (2002) observed that the usual VaR estimates are
too conservative. Figlewski (2004) examined the effect of estimation errors
on the VaR by simulation. The bias of the VaR estimator, resulting from
parameter estimation and misspecified errors distribution, was studied for
ARCH(1) models by Bao and Ullah (2004). In the i.i.d. setting, Inui, Kijma
and Kitano (2005) showed that the nonparametric VaR estimator (that is
an empirical quantile) may have a strong positive bias when the distribution
features fat tails. Christoffersen and Gonçalves (2005) studied the loss of
accuracy in VaR and ES due to estimation error, and constructed bootstrap
predictive confidence intervals for risk measures. Hartz, Mittnik and Paolella
(2006) proposed a resampling method based on bootstrap to correct bias in
VaR forecasts for the normal-GARCH model. For GARCH models with
heavy-tailed errors distributions, Chan, Deng, Peng and Xia (2007) derived
the asymptotic distributions of extremal estimated quantiles (that is, the
estimated VaR with α tending to zero with n). Escanciano and Olmo (2010,
2011) studied the effects of estimation risk on backtesting procedures. They
showed how to correct the critical values in standard tests used to assess
VaR models.

These analyses are compatible with the approach of Basel 2 regulation,
which distinguishes the reserve for the theoretical risk (corresponding to the
estimated VaR) and the reserve for the estimation risk.

1.4 Outline of our paper

Our approach is different. We propose a method to directly adjust the
VaR to estimation risk, by computing an Estimation adjusted VaR, denoted
EVaRn,t(α), ensuring the right conditional coverage probability at order 1/n,
that is,

Pt−1[yt < −EVaRn,t(α)] = α+ oP (1/n).

Our goal is similar to that of Hansen (2006), who derived adjustments of
interval forecasts to account for parameter estimation (see also Lönnbark,
(2010)). His assumptions and results will be compared to ours in Section 2.

In Section 2, we explain how the VaR can be adjusted when the parameter
has been estimated on a base estimation period. We get an explicit form of
the adjustment at order 1/n, where n is the length of the estimation period.
We also provide the adjustment at order 1/n of the conditional coverage
probability. Applications to stochastic volatility models and drift-volatility
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models are presented in Section 3. Numerical illustrations are provided in
Section 4. We first discuss the finite sample properties of the estimation
adjusted VaR. Then, the methodology is applied to the analysis of extremes
of the returns on S&P index. Section 5 concludes. The proofs are gathered
in appendices.

2 Estimation adjusted VaR

As noted above, an Estimation adjusted VaR is directly derived from the con-
ditional quantile of the residual distribution. We first derive an asymptotic
expansion at order 1/n of the residual distribution. Then, this expansion is
used to obtain the associated expansion of the residual quantile function.

2.1 Expansion of the residual

Let us assume that the parameter is estimated on a base estimation period
t = −n, . . . ,−1, say, of large length n, with −n = t0 + 1, and that the asso-
ciated estimator of parameter θ0 is consistent and asymptotically normal :

√
n(θ̂n − θ0)

d→ N(0,Ω), (6)

where Ω is a positive definite matrix and
d→ denotes the convergence in

distribution.
Assuming that function a is twice continuously differentiable w.r.t pa-

rameter θ, we have :

ε̂t = a(yt−1, θ̂n, yt)

= a(yt−1, θ0, yt) +
∂a(yt−1, θ0, yt)

∂θ′
(θ̂n − θ0)

+
1

2n

√
n(θ̂n − θ0)

′ ∂2a

∂θ∂θ′
(yt−1, θ0, yt)

√
n(θ̂n − θ0) + oP (1/n)

= εt +Wt,n + oP (1/n), (7)

where: Wt,n =
1√
n

∂a

∂θ′
(yt−1, θ0, yt)

√
n(θ̂n − θ0)

+
1

2n

√
n(θ̂n − θ0)

′ ∂2a

∂θ∂θ′
(yt−1, θ0, yt)

√
n(θ̂n − θ0). (8)

Thus the nonlinear residual ε̂t is the sum of the Gaussian nonlinear innova-
tion εt and a stochastic term of higher order equal to 1/

√
n.
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2.2 Expansion of the residual quantile

We deduce from (7) that the residual quantile is approximately equal to the
quantile of the sum εt + Wt,n, where Wt,n is negligible with respect to εt.
The expansion of the quantile of such a sum is given in the following Lemma,
which can be seen as a second-order Bahadur’s expansion, in which the
different elements receive an interpretation in terms of conditional moments
of random variables (see Appendix A.1).

Lemma 1 Suppose that Xn = X + Wn where Xn,X,Wn are real random
variables. For any n assume that the function x 7→ E(W ℓ

n | X = x) is twice
differentiable, for ℓ = 1, 2, and the pdf f of X is twice differentiable. In

addition, assume E(W 2
n | X = x),

∂

∂x
E[W 2

n | X = x] (resp. E(Wn | X = x)

and
∂

∂x
E[Wn | X = x]) tend to zero and are of the same stochastic order as

n → ∞. Let fX,Wn denote the joint pdf of (X,Wn). Let, for z, w ∈ R such
that fX,Wn(z, w) 6= 0,

C(z, w) =
1

fX,Wn(z, w)

∫ |w|

−|w|

∣

∣

∣

∣

∂2fX,Wn

∂x2
(z + x,w)

∣

∣

∣

∣

dx.

For z ∈ R assume that E|Wn|2(1+ν) < ∞ for some ν > 0, and

E[|Wn|1+ν | X = z] = o{E(|Wn| | X = z)}, (9)

E[|Wn|2(1+ν) | X = z] = o{E(W 2
n | X = z)} and (10)

sup
n

E{C(z,Wn)
1+1/ν | X = z} < ∞. (11)

Then the following expansions hold, for z ∈ R and u ∈ (0, 1):

Fn(z)− F (z) = −E[Wn | X = z]f(z)

+
1

2

{

∂

∂x
E[W 2

n | X = x] + E(W 2
n | X = x)

∂ log f(x)

∂x

}

x=z

f(z)

+o{E[W 2
n | X = z]},

Gn(u)−G(u) = E[Wn | X = G(u)]

−1

2

{

∂

∂x
Var[Wn | X = x] + Var(Wn | X = x)

∂ log f(x)

∂x

}

x=G(u)

+o{E[W 2
n | X = G(u)]},

where F and G denote, respectively, the cdf and quantile function of the
variable X, while Fn and Gn denote the same functions for Xn.
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Proof: see Appendix A.2.
The assumptions of this lemma can be considerably reduced in particular

cases. In particular, it is illustrated for Gaussian variables in Appendix A.3.
In the special case where Wn = εnW , with εn a scalar tending to zero,
the expansion for the quantile of Xn was derived by Gouriéroux, Laurent,
Scaillet (2000), Martin, Wilde (2002). Our version of this lemma controls
the residual term in this expansion.

Lemma 1 can be used to derive an asymptotic expansion of the con-
ditional quantile of ε̂t, by using (7). We denote by (∂ka/∂yk)(yt−1, θ, ·)
and (∂kg/∂xk)(yt−1, θ, ·) the k-th order derivatives of the functions y 7→
a(yt−1, θ, y) and x 7→ g(yt−1, θ, x), respectively. Let ‖ · ‖ denote any norm on
R
d.

Proposition 1 Suppose that the estimator θ̂n based on observations
y−1, . . . , y−n satisfies the asymptotic behavior (6), technical assumptions dis-
played in Appendix A.4 on the function a and its derivatives, and

E[θ̂n − θ0 | yt−1] = oP (1/n), (12)

Var[
√
n(θ̂n − θ0) | yt−1] = Ω + oP (1), (13)

E[‖√n(θ̂n − θ0)‖4(1+ν) | yt−1] = OP (1), (14)

where t > 0 and ν > 0 is introduced in the technical assumptions. Then, the
conditional quantile of ε̂t has the following expansion:

qε̂t(α, θ0) = Φ−1(α)− bt{θ0,Φ−1(α)}
2n

+ oP (1/n) ,

where

bt(θ0, ε) =

[

2
∂2a

∂y∂θ′
(yt−1, θ, y)

∂g

∂ε
(yt−1, θ0, ε)Ω

∂a

∂θ
(yt−1, θ, y)

−ε
∂a

∂θ′
(yt−1, θ, y)Ω

∂a

∂θ
(yt−1, θ, y)

−Tr

{

∂2a

∂θ∂θ′
(yt−1, θ, y)Ω

}]

θ=θ0,y=g(yt−1,θ0,ε)

.

Moreover, we also have

bt(θ0, ε)

=

[{

∂2a

∂y2
(yt−1, θ, y)− ε

(

∂a

∂y
(yt−1, θ, y)

)2
}

∂g

∂θ′
(yt−1, θ, ε)Ω

∂g

∂θ
(yt−1, θ, ε)

+
∂a

∂y
(yt−1, θ, y)Tr

(

Ω
∂2g

∂θ∂θ′
(yt−1, θ, ε)

)]

θ=θ0,y=g(yt−1,θ0,ε)

. (15)
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Proof: see Appendix A.5.

Remark 1: When the first-order autoregressive model takes the additive
form yt = µ(yt−1, θ0) + εt, the adjustment term (15) reduces to:

bt(θ0, ε) =

[

−ε
∂µ

∂θ′
(yt−1, θ)Ω

∂µ

∂θ
(yt−1, θ) + Tr

(

Ω
∂2µ

∂θ∂θ′
(yt−1, θ)

)]

θ=θ0

.

It is interesting to note that bt{θ0,Φ−1(α)} > 0, at least for α sufficiently
small. Indeed, the first term in the right-hand side is strictly positive for ε <
0 (because Ω is positive definite) and tends to infinity as ε decreases, whereas
the second term does not depend on ε. This means, that asymptotically, the
estimation effect is to lower the quantiles for small values of α.2

2.3 Conditional bias reduction

The regularity conditions in Proposition 1 concern the conditional distri-
bution of the estimator θ̂n given yt−1. Indeed, the estimator depends on
observations on a base period and these observations are dependent of fu-
ture variables. It is assumed that this dependence can be neglected at the
first-order. It is important to note that even if the estimator is unbiased,
or of order smaller than 1/n, that is, if E(θ̂n − θ0) = oP (1/n), this is not
sufficient to ensure the negligibility of the conditional bias (the first equality
in (12)). To illustrate this, let us consider the prediction problem in the
AR(1) model yt = ρyt−1+ut, where (ut) is an independent white noise. The
optimal one-step ahead prediction of yt+1 in the L2 sense is ρyt, which can be
estimated by ρ̂yt, where ρ̂ is an estimator of ρ obtained from the observations
y1, . . . , yn with n ≤ t. The estimated prediction is thus unbiased if and only
if E[(ρ̂ − ρ)yt] = 0. The conditional moment assumption E(ρ̂ − ρ | yt) = 0
implies prediction unbiasedness, but the unconditional one, E(ρ̂ − ρ) = 0,
does not.

A preliminary automatic approach, such as a conditional jacknife, can
be applied to remove the conditional bias before applying the formula in
Proposition 1. The jacknife technique was introduced by Quenouille (1956).
See Chambers (2012) for a recent investigation of the use of the jackknife
as a method of estimation in stationary autoregressive models. Phillips and
Yu (2005) proposed a method of bias reduction based on the jacknife tech-
nique for the pricing of bond options and other derivative securities. Our
problem is not standard because the first part of (12) concerns the bias of

2By equation (15), the same conclusion holds for the general case under the assumption
that g is convex in θ and a is convex in its last component around (yt−1, θ,−VaRt(α)).
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the estimator conditional on a future variable. The next result shows how a
jacknife correction can be introduced in our framework to get satisfied the
assumption of unbiasedness.

Proposition 2 Let θ̂n = argminΘQn(θ; y−1, . . . , y−n). Suppose that the
following expansion holds for the conditional bias of the estimator

E(θ̂n − θ0 | yt) =
A(t)

n
Cn(yt, θ0) + oP (1/n), (16)

where Cn(yt, θ0) = OP (1) in R
d and A is a known real valued function. Let,

for n = 2ℓ,

θ̂
(1)
ℓ = argmin

Θ
Qℓ(θ; y−1, . . . , y−ℓ), θ̂

(2)
ℓ = argmin

Θ
Qℓ(θ; y−ℓ−1, . . . , y−2ℓ).

A Jacknife estimator based on this subsampling scheme is given by

θ̂(J)n =
1

A(t)−A(t+ ℓ)
(A(t)θ̂

(2)
ℓ −A(t+ ℓ)θ̂

(1)
ℓ ),

and we have:
E(θ̂(J)n − θ0 | yt) = oP (1/n).

The proof is straightforward. Therefore, Assumption (12) is satisfied for this
conditional jacknife adjusted estimator, whenever condition (16) is satisfied.
An illustrative example, in which the other assumptions of Proposition 1 are
also satisfied, is developed in Appendix A.6.

2.4 Definition of the Estimation Adjusted VaR

We deduce from Proposition 1 the estimation adjusted VaR for P& L, de-
noted EVaRn,t(α). A more precise terminology would distinguish the EVaR
defined by:

EVaRt(α) = −g[yt−1; θ0, qε̂t(α, θ0)],

from the estimated EVaR, in which the estimate θ̂n is substituted to the true
parameter value θ0. For expository purpose, we denote the estimated EVaR
by EVaRn,t and do not mention the term "estimated".

Definition 1 The estimation adjusted VaR is given by :

EVaRn,t(α) = −g[yt−1; θ̂n, qε̂t(α, θ̂n)], (17)

where

qε̂t(α, θ̂n) = Φ−1(α) − bt(θ̂n,Φ
−1(α))

2n
. (18)
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Thus, EVaRn,t(α) is obtained by substituting the estimate θ̂n to the true
parameter value θ0 (as for the standard estimated VaR, see Section 1), but
also by substituting the estimated α-quantile of the nonlinear residual to the
α-quantile of the Gaussian nonlinear innovation.

Remark 2: In view of Remark 1, for the additive model we have:

EVaRn,t(α) > VaRn,t(α), (19)

at least for small α. The required capital is deduced from the estimated VaR
by a formula of the type

RCt = max

(

VaRn,t(α),
k

60

59
∑

h=0

VaRn,t−h(α)

)

,

where k is a trigger parameter, which can be controlled by the regulator.
If the trigger parameter is fixed, inequality (19) shows that the required
capital above can imply an insufficient risk coverage by VaRn,t(α), since
the estimation risk has not been taken into account. If this insufficient
risk coverage is observed at several consecutive periods, the regulator might
either increase the trigger parameter in the above formula to compensate the
mishedging, or ask for substituting EVaRn,t to VaRn,t.

Remark 3: There exists an alternative bootstrap approach to the estima-
tion adjusted VaR. More precisely, let us denote by ε̂−n, . . . , ε̂−1 the residuals
computed on the base period. Let us consider n independent drawings in the
set {ε̂−n, . . . , ε̂−1}, denoted by ε̂h−n, . . . , ε̂

h
−1, and compute recursively the set

of simulated values yht = g(yht−1, θ̂n, ε̂
h
t ), t = −n, . . . ,−1, using an initial

value. This simulated observation set can be used to deduce an ML or QML
bootstrapped estimator θ̂hn, say, and thus a bootstrapped residual for date
t ≥ 0 by ε̂ht = a(yt−1, θ̂

h
n, yt). This procedure can be replicated H = 100

times, say, and the set of residuals ε̂ht , h = 1, . . . , 100 can be ranked by

increasing order as ε̂
(1)
t < ε̂

(2)
t < . . . < ε̂

(100)
t . A bootstrapped adjusted VaR,

for α = 5%, say, can then be defined by:

BVaRn,t(α) = −g[yt−1; θ̂n, ε̂
(5)
t ].

This approach is in the spirit of the Monte-Carlo correction of testing proce-
dures to satisfy the type I-error restriction in finite sample (see e.g. Dufour
and Kiviet, 1997). Our approach with a closed form correction avoids the
computational cumbersome H = 100 estimations of the dynamic model on
the base period. Moreover, as seen below, the consequence of the adjustment
on the coverage probabilities are known in our case, and is more difficult to
derive in closed form for the bootstrap approach.
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2.5 Expansion of the coverage probability

Let us now discuss the conditional coverage probabilities.3 We know that
the theoretical VaR satisfies the exact restriction on the coverage probability
given by (3), but this theoretical VaR depends on the unknown parameter
value and thus cannot be used in practice. The next proposition shows that
the error on the conditional coverage probability is of order 1/n (resp. strictly
smaller than 1/n), when the standard estimated VaR (resp. the EVaR) is
used. This justifies ex-post the estimation adjustment of the VaR.

Proposition 3 Under the assumptions of Proposition 1, the conditional cov-
erage probability of the standard estimated VaR is such that:

Pt−1[yt < −VaRn,t(α)] = α+
bt{θ0,Φ−1(α)}

2n
φ
{

Φ−1(α)
}

+ oP (1/n) ,

(20)

where φ denotes the density function of the standard Gaussian distribution,
and the conditional coverage probability of the estimation adjusted VaR is
given by

Pt−1[yt < −EVaRn,t(α)] = α+ oP (1/n) . (21)

Proof: The conditional probabilities in the right-hand side of (20) can be
written under the form Pt−1[εt < z], allowing to apply Lemma 1. A Taylor
expansion allows to handle the right-hand side of (21), which is written under
the form Pt−1[εt < z(θ̂n)]. See Appendix A.7 (in Appendix A.8 we give an
alternative proof, following the lines of Hansen (2006)). 2

Remark 4: Hansen (Theorem 2, 2006) derived a different expression for the
conditional coverage probability, under the following (implicit) alternative
assumption (see the last equality on p. 396, and Appendix A.8 below):

E[VaRn,t(α)− VaRt(α) | yt−1] = oP (1/n),

Var[
√
n{VaRn,t(α) − VaRt(α)} | yt−1] = Σ(θ0) + oP (1),

for some positive definite matrix Σ(θ0). This conditional unbiasedness as-
sumption differs from our assumption (12), since it is written on the esti-
mated VaR and not on the estimated parameter. It seems more appropriate

3It is more appropriate for risk management to consider the accuracy of the conditional
coverage probability than that of the VaR itself. Indeed, the coverage probability is the
basic diagnostic tool used by the regulator to check ex-post the adequacy of the selected
reserves.
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to write a more primitive condition, that is, a condition on the estimator
of the parameter itself. Indeed, as seen in Section 2.3, the conditional bias
on the estimator can often be reduced by applying a conditional jacknife,
whereas a similar approach does not exist to correct the conditional bias in
the VaR estimation.

In Hansen (2006) the term bt{θ0,Φ−1(α)} is replaced by:

ct{θ0,Φ−1(α)}

=

{

∂2a

∂y2
{yt−1, θ0,−VaRt(α)} − Φ−1(α)

(

∂a

∂y
{yt−1, θ0,−VaRt(α)}

)2
}

× ∂g

∂θ′
(yt−1, θ0,Φ

−1(α))Ω
∂g

∂θ
(yt−1, θ0,Φ

−1(α)).

By comparison with (15), we see that the term

∂a

∂y
{yt−1, θ0,−VaRt(α)}Tr

(

Ω
∂2g

∂θ∂θ′
{yt−1, θ0,Φ

−1(α)}
)

, (22)

is missing in Hansen’s result. If the asymptotic conditional unbiasedness
assumption on θ̂n is satisfied, we generally have a bias on VaRn,t(α), except in
the very special case where function g is linear in parameter θ. The additional
term (22) appearing in the expression of bt{θ0,Φ−1(α)} corrects for this bias
on VaRn,t(α). Finally, the linearity of function g with respect to θ is generally
not fulfilled, except in simple models such as yt = µ + ρyt−1 + σεt, εt ∼
N (0, 1) with θ = (µ, ρ, σ)′.

2.6 Extension to higher-order autoregressive models

In practical situations, it may be worth considering dynamic models with a
longer memory, such as:

yt = g(yt−1, . . . , yt−p, θ0, εt),

where p ≥ 1 denotes the autoregressive order and (εt) is an i.i.d. sequence of
standard normal variables. When function g is invertible w.r.t. εt, this model
can be equivalently written as εt = a(yt−1, . . . , yt−p, θ0, yt). The estimation
adjusted VaR is now given by:

EVaRn,t(α) = −g(yt−1, . . . , yt−p; θ̂n, qε̂t(α, θ̂n)),

where qε̂t(α, θ̂n) is defined by (18), and bt is defined as in Proposition 1
with yt−1 replaced by yt−1, . . . , yt−p. It is easily checked that Propositions

11



1 and 3 continue to hold under the regularity conditions: E[
√
n(θ̂n − θ0) |

yt−1, , . . . , yt−p, εt] = oP (n
−1/2), Var[

√
n(θ̂n − θ0) | yt−1, , . . . , yt−p, εt] = Ω +

oP (1), and (∂/∂uVar[
√
n(θ̂n − θ0) | yt−1, , . . . , yt−p, u])u=εt = oP (1).

3 Applications to stochastic drift and volatility

models

As an illustration, we consider below stochastic drift and volatility models,
for which explicit formulas for the estimation adjusted VaR can be derived
and interpreted .

3.1 Stochastic volatility model

The first class of models is of the form:

yt = σt(θ0)H(εt), (23)

where σt(θ0) is a positive function of the past of yt, depending on an unknown
parameter θ0, H is a continuous increasing function and (εt) is a sequence
of i.i.d. standard normal variables. When H is the identity function, we get
conditionally normal observations. By selecting another increasing function
H, we can change the form of the conditional distribution of yt and allow for
heavy-tailed conditional distributions. The variable σt(θ0) is a conditional
scale factor. It is the conditional standard-deviation of yt if the variance of
H(εt) exists and is equal to 1. This specification encompasses, in particu-
lar, the standard ARCH(q) model, with possibly non Gaussian conditional
distribution.

In such models, the unknown parameter value θ0 is usually estimated ei-
ther by the Maximum Likelihood (ML) method, or by the Quasi-Maximum
Likelihood (QML) applied as if the distribution of H(εt) were standard nor-
mal. Other estimation methods can also be considered, as the quantile re-
gression for instance (see Koenker and Zhao (1996) for an extension of quan-
tile regression to linear ARCH models). For this method, the non differentia-
bility of the optimization criterion would have to be taken into account. The
strong consistency and asymptotic normality in GARCH models has been
established for the QML estimator under mild conditions by Berkes, Horváth
and Kokoszka (2003) and Francq and Zakoïan (2004), and for the ML esti-
mator by Berkes and Horváth (2004); see also Francq and Zakoian (2010).
Under regularity conditions (in particular Eη2t = 1, where ηt = H(εt), for

12



the QML method), these papers show that the ML (or QML) estimator θ̂n
of θ0 satisfies θ̂n → θ0, a.s., and

√
n(θ̂n − θ0)

d→ N(0, ξJ−1), J = E

(

1

σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)

, (24)

where the coefficient ξ depends on the estimation method. More precisely,
we have

ξ =







E(η4t )− 1, for the QML method,

4/E

{

(

1 + ∂ log f
∂y (ηt)ηt

)2
}

, for the ML method,

where f denotes the density of ηt = H(εt). Note that the QML approach
requires rather thin tails for ηt, since E(η4t ) has to be finite.

For Model (23), we have

g(yt−1, θ, ε) = σt(θ)H(ε), a(yt−1, θ, y) = H−1(y/σt(θ)).

By applying Proposition 1, we get an explicit form of the EVaR.

Corollary 1 For the volatility model (23),

i) the estimated VaR is given by:

VaRn,t(α) = −σt(θ̂n)H{Φ−1(α)} = −σt(θ̂n)G(α),

where G is the quantile function of ηt = H(εt);

ii) under the assumptions of Proposition 1, the estimation adjusted VaR is
given by:

EVaRn,t(α)

= VaRn,t(α)

− 1

2n

1

σt(θ̂n)

∂σt(θ̂n)

∂θ′
Ω̂n

∂σt(θ̂n)

∂θ

[

H2(ε)

h(ε)

{

∂ log h(ε)

∂ε
+ ε

}]

ε=Φ−1(α)

+
1

2n
H{Φ−1(α)}Tr

[

∂2σt(θ̂n)

∂θ∂θ′
Ω̂n

]

+ oP (1/n),

where h(ε) = ∂H(ε)/∂ε, and Ω̂n is a consistent estimator of the asymp-
totic variance of θ̂n;

13



iii) in the standard ARCH case, the estimation adjusted VaR is given by:

EVaRn,t(α)

= VaRn,t(α) −
1

2n

1

σt(θ̂n)

∂σt(θ̂n)

∂θ′
Ω̂n

∂σt(θ̂n)

∂θ

×
[

H2(ε)

h(ε)

{

∂ log h(ε)

∂ε
+ ε+

∂ logH(ε)

∂ε

}]

ε=Φ−1(α)

+ oP (1/n),

Proof: see Appendix A.9.
In the Gaussian case we have H(ε) = ε and the inequality:

EVaRn,t(α) > VaRn,t(α),

for α ≤ 0.5. For such values of α, taking into account the estimation
step in the evaluation of the quantile increases the reserve. For very
small α, the difference between the estimated EVaR and VaR can be
large and is path-dependent. In standard GARCH models, the quantity

1
σ2
t (θ̂n)

∂σt

∂θ′ (θ̂n)Ω̂n
∂σt

∂θ (θ̂n) is bounded, and this difference is approximately pro-

portional to the current volatility. In high-volatility periods, the increase of
reserve due to the estimation risk is large.

The following result gives more insight on the mean asymptotic discrep-
ancy between the two estimated VaR’s in the standard ARCH case.

Corollary 2 For a standard ARCH model, under the conditions ensuring
the validity of (24), and if Ω̂n is a strongly consistent estimator of ξJ−1, we
have:

E lim
n→∞

a.s.
n(EVaRn,t(α) −VaRn,t(α))

σt(θ̂n)

= −d
ξ

8

[

H2(ε)

h(ε)

{

∂ log h(ε)

∂ε
+ ε+

∂ logH(ε)

∂ε

}]

ε=Φ−1(α)

:= ∆(α),

where d is the dimension of θ0.

Proof: see Appendix A.10.

The adjustment scale factor ∆(α) involves the number d of parameters to
be estimated and the difference between the estimated VaR’s is proportional
to the ratio d/n. This is a function of the risk level α, which generally tends

14
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Figure 1: ∆(α) with d = 1 and α ∈ (0, 1) (left panel), for the standard Gaussian

distribution (red thick line) and the Laplace distribution (blue dashed line). The

right panel is a zoom for α ∈ (0, 0.05).

to infinity when α is close to either 0 (VaR of a long investment in asset y),
or 1 (VaR of a short investment in asset y). Since function H is increasing,
the sign of ∆(α) is the sign of the term into wide brackets. The pattern of
function ∆ is illustrated in Figure 1 for conditionally Gaussian and Laplace
returns, respectively. As expected the adjustment is larger when the tails
are fatter, that is, for Laplace returns. Finally, function ∆ is symmetric
w.r.t. α = 0.5 due to the symmetry in the standard Gaussian and Laplace
distributions.

3.2 Stochastic drift-volatility model

Suppose now that a conditional mean µt(θ0) is added to (23), as:

yt = µt(θ0) + σt(θ0)H(εt), (εt) ∼ IIN(0, 1). (25)

This specification encompasses the ARCH-M model (see Engle, Lilien and
Robbins (1987)), with a risk premium in the drift. It also encompasses
AR(p)-ARCH(q) models, with possibly non Gaussian conditional distribu-
tion. The strong consistency and asymptotic normality in ARMA-GARCH
models has been established for the QML estimator by Francq and Zakoïan
(2004). In this paper it is shown that, under some regularity conditions (in
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particular Eηt = 0 and Eη2t = 1, where ηt = H(εt)), the QML estimator θ̂n
of θ0 satisfies

θ̂n → θ0, a.s.,
√
n(θ̂n − θ0)

d→ N(0,J −1IJ−1), (26)

where the matrices I and J are expectations of functions of first and second-
order derivatives of µt(θ) and σt(θ).

For Model (25) we have

g(yt−1, θ, ε) = µt(θ) + σt(θ)H(ε), a(yt−1, θ, y) = H−1[{y − µt(θ)}/σt(θ)].
By applying Proposition 1, we get an explicit form of the EVaR.

Corollary 3 For the stochastic drift-volatility model (25),

i) the estimated VaR is given by

VaRn,t(α) = −µt(θ̂n)− σt(θ̂n)H{Φ−1(α)} = −µt(θ̂n)− σt(θ̂n)G(α),

where G is the quantile function of ηt = H(εt);

ii) under the assumptions of Proposition 1, the estimation adjusted VaR is
given by

EVaRn,t(α)

= VaRn,t(α) −
1

2n

1

σt(θ̂n)

(

∂µt(θ̂n)

∂θ′
+H

[

Φ−1(α)
] ∂σt(θ̂n)

∂θ′

)

Ω̂n

×
(

∂µt(θ̂n)

∂θ
+H

[

Φ−1(α)
] ∂σt(θ̂n)

∂θ

)

[

1

h(ε)

{

∂ log h(ε)

∂ε
+ ε

}]

ε=Φ−1(α)

+
1

2n
Tr

[(

H{Φ−1(α)}∂
2σt(θ̂n)

∂θ∂θ′
+

∂2µt(θ̂n)

∂θ∂θ′

)

Ω̂n

]

+ oP (1/n),

where Ω̂n is a consistent estimator of the asymptotic variance of θ̂n.

Proof: see Appendix A.11.

4 Numerical Illustrations

4.1 Simulation experiments

To assess the performance of the VaR adjustment in finite sample, we com-
puted the estimator on N = 5, 000 independent simulated trajectories of an
ARCH(1) model:

yt =
√

1 + ay2t−1ηt, ηt ∼ tν , (27)
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where tν denotes the standardized Student distribution with ν degrees of
freedom. The standardized Student is often employed for GARCH errors in
applied works. The degree of freedom ν was chosen in the set {6, 7, 10,∞},
corresponding to a kurtosis of 6, 5, 4 and 3, respectively, where the last value
corresponds to the Gaussian distribution. The ARCH coefficient a was al-
lowed to vary in {0.1, 0.5, 1, 1.4, 2, 2.5}. These values and error distributions
satisfy the strict stationarity condition, a < e−E log η2t .

For each simulated trajectory of length n+H, the ARCH(1) model was
estimated over the first n observations and the remaining H observations
were reserved for VaR evaluations.

Table 1 shows, for α = 0.1, α = 0.05 and α = 0.01, the percentages of
violations for the theoretical VaR (computed with the true parameter value)
and the estimated VaR’s: VaRn,t(α) and EVaRn,t(α). For instance, for the
standard VaR estimator, this percentage is defined as the proportion of the
events:

yt < −VaRn,t(α), t = n+ 1, . . . n+H,

among the simulated samples. The most striking result is that the adjusted
VaR does a better job than the standard one in any situation. Of course, the
theoretical VaR is often closer to the nominal probability than our estimator,
but the difference is small. By comparison, the standard VaR estimator is
generally twice or three times more distant to the nominal value than the
adjusted VaR. It is also worth noting that our estimator provides satisfactory
results even for fat tailed marginal distributions. Such fat tails occur when
the degree of freedom ν is small and/or the ARCH coefficient a is large.
Recall that a fourth-order moment is required for ηt, but that no moment
condition is imposed on yt.

Another comparison of the VaR estimators can be based on the expected
shortfall when the VaR is violated, and on the expected excess of reserves
when it is not violated, in percentages of the theoretical VaR. To this aim
we introduce, for each simulated path, the quantities

pV aRn
− =

1

HV aRn
+

n+H
∑

t=n+1

100
{V aRn,t(α) + yt}−

V aRt(α)
,

pV aRn
+ =

1

H −HV aRn
+

n+H
∑

t=n+1

100
{V aRn,t(α) + yt}+

V aRt(α)
,

HV aRn
+ =

1

H

n+H
∑

t=n+1

1lV aRn,t(α)>yt ,
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where x+ = max(x, 0) and x− = max(−x, 0). Similar quantities are defined
for the EVaR estimator and for the VaR at the true parameter value. Table

2 displays the average of the p
V aR(θ0)
+ , pV aRn

+ , pEV aRn
+ , p

V aR(θ0)
− , pV aRn

− and

pEV aRn
− over the 5, 000 simulations. For this table and the next one, to save

space, we only report results for ν = 7 and for the Gaussian distribution
(ν = ∞), and for α = 0.1 and α = 0.05. The estimation adjusted VaR being
more prudential, the expected shortfall is diminished and compensated by
an increase of the expected excesses of reserves. These features are due to
the complicated mix between the larger value of the EVaR in average and
its behavior in high volatility periods.

To gauge the impact of the sample size used in the estimation step, we
reproduced the experiment of Table 1 for n = 200 instead of n = 100. The
results displayed in Table 3 show that, as expected, increasing n improves
the accuracy of the VaR estimators: the percentages of violations are closer
to the nominal probability, for both the standard estimator and the adjusted
VaR. However, the superiority of the latter estimator remains. Table 4 shows
that the same conclusion holds for n = 250 and H = 250, which corresponds
to approximately one year of daily observation followed by one year of daily
VAR evaluation.

Finally, our estimator is compared with the estimator proposed by
Hansen (2006) (see Remark 4 above). For the same simulated paths as
in Table 1, we show in Table 5 the results obtained with Hansen’s estimator.
Percentages are underlined when they are closer to the nominal probabil-
ity than the percentage obtained with the EVaR estimator. For 55 over 72
cases, the estimator of this paper provides better results than Hansen’s es-
timator. Similar findings, not reported here, were observed for n = 200 and
n = H = 250.

4.2 Application to financial data

We apply the VaR adjustment to daily returns of the SP500 index. The data
range from January 2, 1990 to March 25, 2008. As noted in Section 2.6, our
method can be applied to finite-order Markov models. In particular, this
approach does not apply to GARCH(p, q) models with p > 0. We therefore
estimated an ARCH(6) model, by the QML method, from the first n = 250
observations (one year) of the series of centered log-returns. The estimated
model is given by: yt = σ̂tη̂t,

σ̂2
t = 0.562+0.098y2t−1+0.045y2t−2+0.027y2t−3+0.103y2t−4+0.095y2t−5+0.081y2t−6.
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Table 1: Percentages of violations computed over 5, 000 independent simulations of the

ARCH(1) model (27). The model is estimated over a sample of length n = 100 and the

violations are computed over the next H = 30 observations (out-of-sample).

α a VaRt VaRn,t EVaRn,t VaRt VaRn,t EVaRn,t

ν = 6 ν = 7
0.01 0.1 0.0102 0.0118 0.0093 0.0100 0.0120 0.0096

0.5 0.0102 0.0130 0.0099 0.0102 0.0128 0.0099
1.0 0.0099 0.0130 0.0098 0.0099 0.0123 0.0096
1.4 0.0103 0.0131 0.0101 0.0096 0.0121 0.0094
2.0 0.0098 0.0122 0.0095 0.0098 0.0124 0.0099
2.5 0.0100 0.0123 0.0098 0.0103 0.0127 0.0102

0.05 0.1 0.0500 0.0545 0.0486 0.0494 0.0533 0.0483
0.5 0.0496 0.0555 0.0486 0.0497 0.0546 0.0489
1.0 0.0501 0.0558 0.0493 0.0505 0.0548 0.0495
1.4 0.0502 0.0557 0.0494 0.0502 0.0548 0.0493
2.0 0.0494 0.0548 0.0486 0.0500 0.0552 0.0501
2.5 0.0503 0.0552 0.0490 0.0497 0.0546 0.0494

0.1 0.1 0.1007 0.1065 0.0997 0.1004 0.1047 0.0993
0.5 0.1001 0.1064 0.0990 0.1005 0.1057 0.0996
1.0 0.1000 0.1069 0.0998 0.0994 0.1051 0.0997
1.4 0.1003 0.1064 0.0994 0.0995 0.1054 0.0995
2.0 0.0999 0.1065 0.0996 0.1010 0.1065 0.1004
2.5 0.1007 0.1068 0.1000 0.0993 0.1044 0.0989

ν = 10 ν = ∞
0.01 0.1 0.0103 0.0122 0.0101 0.0102 0.0119 0.0098

0.5 0.0094 0.0120 0.0095 0.0103 0.0127 0.0104
1.0 0.0101 0.0125 0.0100 0.0101 0.0129 0.0105
1.4 0.0101 0.0123 0.0101 0.0103 0.0126 0.0105
2.0 0.0101 0.0126 0.0104 0.0101 0.0124 0.0105
2.5 0.0099 0.0120 0.0100 0.0103 0.0122 0.0104

0.05 0.1 0.0504 0.0540 0.0500 0.0500 0.0522 0.0489
0.5 0.0499 0.0537 0.0492 0.0498 0.0530 0.0497
1.0 0.0499 0.0552 0.0506 0.0501 0.0537 0.0504
1.4 0.0503 0.0545 0.0503 0.0509 0.0542 0.0511
2.0 0.0505 0.0557 0.0511 0.0502 0.0539 0.0509
2.5 0.0495 0.0538 0.0498 0.0517 0.0548 0.0515

0.1 0.1 0.1002 0.1036 0.0992 0.1008 0.1035 0.1005
0.5 0.1003 0.1048 0.1005 0.1010 0.1044 0.1012
1.0 0.1000 0.1041 0.0997 0.1000 0.1032 0.1002
1.4 0.0997 0.1040 0.0998 0.1015 0.1043 0.1013
2.0 0.0992 0.1041 0.0999 0.1006 0.1038 0.1008
2.5 0.1005 0.1050 0.1009 0.1007 0.1032 0.1002
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Table 2: Expected shortfall and expected excess of reserves, in percentages of the theo-

retical VaR, computed over the 5, 000 simulated paths of Table 1 for ν = 7.

α a p
V aR(θ0)
− pV aRn

− pEV aRn

− p
V aR(θ0)
+ pV aRn

+ pEV aRn

+

0.05 0.1 37.09 37.30 37.50 106.99 106.77 108.37
0.5 37.68 37.19 37.43 107.17 106.76 108.33
1.0 36.43 36.13 36.42 107.19 106.95 108.50
1.4 36.18 35.90 35.90 107.25 107.06 108.62
2.0 37.23 36.97 36.88 107.13 106.94 108.53
2.5 37.18 37.11 36.95 107.10 106.93 108.53

0.1 0.1 48.58 48.79 48.90 116.51 116.35 117.45
0.5 49.00 49.08 48.99 116.44 116.44 117.47
1.0 49.27 49.11 49.14 116.59 116.60 117.64
1.4 49.01 49.27 49.12 116.57 116.41 117.48
2.0 49.18 49.54 49.50 116.87 116.69 117.73
2.5 49.65 49.62 49.48 116.41 116.29 117.37

Table 3: As Table 1 for n = 200.

α a VaRt VaRn,t EVaRn,t VaRt VaRn,t EVaRn,t

ν = 7 ν = ∞
0.05 0.1 0.0502 0.0525 0.0497 0.0494 0.0508 0.0494

0.5 0.0501 0.0530 0.0503 0.0499 0.0517 0.0500
1.0 0.0500 0.0529 0.0501 0.0498 0.0511 0.0494
1.4 0.0494 0.0524 0.0498 0.0502 0.0517 0.0502
2.0 0.0506 0.0526 0.0501 0.0493 0.0512 0.0496
2.5 0.0497 0.0522 0.0495 0.0504 0.0517 0.0502

0.1 0.1 0.1004 0.1032 0.1002 0.0988 0.1012 0.0998
0.5 0.0996 0.1030 0.1002 0.1007 0.1024 0.1008
1.0 0.0999 0.1025 0.0997 0.0994 0.1019 0.1001
1.4 0.1001 0.1032 0.1003 0.0988 0.1006 0.0991
2.0 0.0984 0.1013 0.0986 0.0995 0.1006 0.0992
2.5 0.1011 0.1041 0.1012 0.0991 0.1008 0.0993
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Table 4: As Table 1 for n = H = 250.

α a VaRt VaRn,t EVaRn,t VaRt VaRn,t EVaRn,t

ν = 7 ν = ∞
0.05 0.1 0.0501 0.0518 0.0497 0.0496 0.0508 0.0495

0.5 0.0498 0.0519 0.0498 0.0502 0.0517 0.0504
1.0 0.0498 0.0519 0.0498 0.0498 0.0515 0.0502
1.4 0.0502 0.0521 0.0500 0.0503 0.0514 0.0501
2.0 0.0500 0.0520 0.0499 0.0499 0.0513 0.0500
2.5 0.0502 0.0524 0.0503 0.0497 0.0512 0.0499

0.1 0.1 0.1003 0.1022 0.1000 0.0998 0.1012 0.0999
0.5 0.1001 0.1024 0.1001 0.0994 0.1010 0.0998
1.0 0.1000 0.1024 0.1002 0.1000 0.1015 0.1003
1.4 0.1000 0.1021 0.0998 0.1000 0.1014 0.1002
2.0 0.1001 0.1026 0.1003 0.1003 0.1014 0.1002
2.5 0.1003 0.1026 0.1004 0.1001 0.1014 0.1002

Table 5: Percentages of violations using Hansen’s estimator, computed over the 5, 000

independent simulations of Table 1. Percentages are underlined when they are closer to

the nominal probability than those obtained with the EVaR estimator in Table 1.

α a ν = 6 ν = 7 ν = 10 ν = ∞

0.01 0.1 0.0097 0.0099 0.0104 0.0101
0.5 0.0104 0.0103 0.0098 0.0108
1.0 0.0105 0.0100 0.0103 0.0108
1.4 0.0106 0.0098 0.0104 0.0109
2.0 0.0099 0.0102 0.0108 0.0108
2.5 0.0101 0.0105 0.0102 0.0106

0.05 0.1 0.0499 0.0496 0.0509 0.0498
0.5 0.0504 0.0505 0.0503 0.0505
1.0 0.0509 0.0509 0.0518 0.0513
1.4 0.0510 0.0507 0.0514 0.0519
2.0 0.0501 0.0515 0.0522 0.0517
2.5 0.0506 0.0508 0.0508 0.0524

0.1 0.1 0.1018 0.1012 0.1007 0.1016
0.5 0.1017 0.1017 0.1020 0.1024
1.0 0.1023 0.1015 0.1013 0.1012
1.4 0.1018 0.1015 0.1011 0.1024
2.0 0.1020 0.1024 0.1014 0.1019
2.5 0.1022 0.1005 0.1025 0.1014

21



0 20 40 60 80 100

−4
−2

0
2

4

Figure 2: Log-returns of the SP500 and estimated −EVaR’s at the 1% and 5%

levels, from October 30, 2007 to March 25, 2008.

Figure 2 displays the series of the log-returns and the estimated EVaR’s at
the 1% and 5% levels, while Figure 3 displays the estimated VaR and EVaR
at the 1% level, for all dates starting from September 16, 1998, assuming
a Gaussian distribution for ηt (that is, choosing for H the identity func-
tion). The estimated adjusted VaR’s are always larger than the standard
estimated VaR’s, which is not surprising in view of Corollary 1. The dif-
ference between the two estimated VaR’s can be very large in more volatile
periods, that is, in the more risky periods, with significant consequences in
terms of required capital. This is seen more clearly in Figure 4, which shows
the difference series EVaRn,t(0.01) − VaRn,t(0.01). The proportions of log-
returns that are below VaRn,t(0.01) and VaRn,t(0.05) are respectively equal
to 98.45% and 94.74%. With the Estimation adjusted VaR, the proportions
are equal to 98.79% and 95.15%, respectively, indicating the better coverage.
Applying standard unconditional and independence backtesting procedures
(see e.g. Berkowitz, Christoffersen and Pelletier (2009)) lead to accept the
assumption that the violations form a martingale difference sequence with
both estimators. Now, if we consider the mean of the differences between
the returns and the VaR, when this difference is positive, that is the Ex-
pected Shortfall, we get 0.64 for the standard VaR(0.01) and 0.60 for the
EVaR(0.01).
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Figure 3: Log-returns of the SP500 (thick line), estimated −VaR (blue thin line)

and estimated −EVaR (red dashed line) at the 1% level, from October 30, 2007 to

March 25, 2008.

5 Concluding remarks

The substitution of an estimate to the unknown parameter value in the
expression of the theoretical VaR can imply a bias in the coverage probability
of the reserve, and a significant underestimation of the required capital.
In the current regulation, this problem is circumvented in a rather ad hoc
way by introducing an additional reserve to hedge the so-called estimation
risk. However, the treatments of market and estimation risks are performed
separately, without taking into account the possible dependence between
these risks.

In this paper, we developed an alternative approach, which consists in
jointly considering the two types of risks, by simply introducing an estima-
tion adjustment to the VaR. This adjustment involves closed-form formulas,
which were illustrated in the case of stochastic drift-volatility models. It
represents a convenient approach compared to the numerical estimation of
the residual quantile by bootstrap.
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Figure 4: Log-returns of the SP500, estimated VaR’s and difference EVaRn,t-

VaRn,t at the 5% level, from September 16, 1998 to March 25, 2008.
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Appendices

A.1 Second-order Bahadur’s expansion

Proposition 4 Consider a sequence of one-dimensional continuous distributions
with cdf Fn converging to a cdf F , and positive densities fn converging to a positive
density f , as n goes to infinity. Also assume that the first-order derivative of fn
converges to that of f . Let Gn (resp. G) denote the quantile function of Fn (resp.
F ). Then the following expansion holds, for u ∈ (0, 1),

Gn(u)−G(u)

= −
(

Fn − F

f

)

[G(u)] +

(

Fn − F

f

)

[G(u)]

(

fn − f

f

)

[G(u)]

−1

2

∂ log f

∂x
[G(u)]

[(

Fn − F

f

)

[G(u)]

]2

+o{(Fn − F )2[G(u)]} + o{(Fn − F )[G(u)](fn − f)[G(u)]}.

Proof. i) First-order expansion. The assumptions of continuous distributions with
strictly positive densities entails that Fn{Gn(u)} = F{G(u)} = u, for all u ∈ (0, 1).
Hence

F [Gn(u)]− Fn[Gn(u)] = F [Gn(u)]− F [G(u)]

= f [G(u)][Gn(u)−G(u)] + o[(Gn −G)(u)].

Moreover,

F (Gn(u)) = F [G(u)] + [Gn(u)−G(u)]f [G(u)] + o[(Gn −G)(u)], (28)

Fn(Gn(u)) = Fn[G(u)] + [Gn(u)−G(u)]fn[G(u)] + o[(Gn −G)(u)]. (29)

Thus, we have

F [G(u)]− Fn[G(u)] + [Gn(u)−G(u)]{f [G(u)]− fn[G(u)]}
= f [G(u)][Gn(u)−G(u)] + o[(Gn −G)(u)].

Since fn converges to f , we deduce:

Gn(u)−G(u) =
(F − Fn)[G(u)]

f [G(u)]
+ o[(Gn −G)(u)]. (30)

ii) Second-order expansion. By similar arguments, the existence of quantile density
functions gn and g, defined as the derivatives of Gn and G, entails

(Fn − F )[G(u)] =
(G−Gn)(u)

g(u)
+ o{(Fn − F )[G(u)]}.

This shows that o{(Fn − F )[G(u)]}) = o[(Gn −G)(u)], allowing to write (30) as

Gn(u)−G(u) =
(F − Fn)[G(u)]

f [G(u)]
+ o{(Fn − F )[G(u)]}. (31)
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A second-order expansion is similarly obtained and is given by

F [Gn(u)]− Fn[Gn(u)] = F [Gn(u)]− F [G(u)]

= f [G(u)][(Gn −G)(u)]

+
1

2

∂f

∂x
[G(u)][(Gn −G)(u)]2 + o[(Gn −G)(u)]2.

It follows that

Gn(u)−G(u)

= [f [G(u)]]−1

(

1− 1

2

∂ log f

∂x
[G(u)][(Gn −G)(u)] + o[(Gn −G)(u)]

)

×{F [Gn(u)]− Fn[Gn(u)]}. (32)

Next, similar to (28)-(29),

F (Gn(u)) = F [G(u)] + [Gn(u)−G(u)]f [G(u)] +
1

2

∂f

∂x
[G(u)][Gn(u)−G(u)]2

+o[(Gn −G)2(u)],

Fn(Gn(u)) = Fn[G(u)] + [Gn(u)−G(u)]fn[G(u)] +
1

2

∂fn
∂x

[G(u)][Gn(u)−G(u)]2

+o[(Gn −G)2(u)].

Thus

(F − Fn)[Gn(u)] = F [G(u)]− Fn[G(u)] + {f [G(u)]− fn[G(u)]}(Gn(u)−G(u))

+o[(Gn −G)2(u)].

Thus, using (32) and (31), the conclusion follows from:

Gn(u)−G(u)

= [f [G(u)]]−1

(

1− 1

2

∂ log f

∂x
[G(u)][(Gn −G)(u)] + o[(Gn −G)(u)]

)

×
[

(F − Fn)[G(u)] + (Gn −G)(u){(f − fn)[G(u)]}+ o[(Gn −G)2(u)]
]

= [f [G(u)]]−1

(

1− 1

2

∂ log f

∂x
[G(u)][(Gn −G)(u)] + o[(Gn −G)(u)]

)

×
[

(F − Fn)[G(u)] +

(

(F − Fn)[G(u)]

f [G(u)]
+ o{(Fn − F )[G(u)]}

)

×{(f − fn)[G(u)]} + o[(Gn −G)2(u)]
]

.

2
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A.2 Proof of Lemma 1.

We shall prove the following intermediate results.

i) −Fn(z)− F (z)

f(z)
= E(Wn | X = z)− 1

2
E

(

W 2
n

∂ log fX,Wn
(z,Wn)

∂x
| X = z

)

+o[E(W 2
n | X = z)],

ii) E

(

W 2
n

∂ log fX,Wn
(z,Wn)

∂x
| X = z

)

=
∂ log f(z)

∂z
E
(

W 2
n | X = z

)

+

[

∂

∂x
E
(

W 2
n | X = x

)

]

x=z

,

iii)
f(z)− fn(z)

f(z)
=

∂

∂z
E(Wn | X = z) +

(

∂ log f(z)

∂z

)

E(Wn | X = z)

+o[E(|Wn| | X = z)].

To prove i) we note that

F (z)− Fn(z) = P (X < z)− P (X +Wn < z)

=

∫
(
∫ z

z−w

fX,Wn
(x,w)dx

)

dw. (33)

Hence, by a Taylor expansion of the joint pdf with remainder in the integral form
we get

F (z)− Fn(z) =

∫
(
∫ z

z−w

fX,Wn
(z, w)dx

)

dw

+

∫
(
∫ z

z−w

{fX,Wn
(x,w) − fX,Wn

(z, w)}dx
)

dw

=

∫

wfX,Wn
(z, w)dw +

∫

∂fX,Wn

∂x
(z, w)

(
∫ z

z−w

(x− z)dx

)

dw

+

∫
(
∫ z

z−w

∫ x

z

∂2fX,Wn

∂x2
(u,w)(x − u)dudx

)

dw,

By inverting the integrals in u and x, the latter term can be written as

1

2

∫
(
∫ w

0

∂2fX,Wn

∂x2
(z − w + x,w)x2dx

)

dw

27



and is bounded in absolute value by

1

2

∫

w2

(

∫ |w|

0

∣

∣

∣

∣

∂2fX,Wn

∂x2
(z + x,w)

∣

∣

∣

∣

dx

)

dw

=
f(z)

2

∫

w2fWn|X=z(w)

(

1

fX,Wn
(z, w)

∫ |w|

0

∣

∣

∣

∣

∂2fX,Wn

∂x2
(z + x,w)

∣

∣

∣

∣

dx

)

dw

≤ f(z)

2
E{W 2

nC(Wn, z) | X = z}

≤ f(z)

2
E(W 2(1+ν)

n | X = z)E{C(z,Wn)
1+1/ν | X = z},

by Hölder’s inequality, and using the decomposition of the joint density
fX,Wn

(z, w) = fWn|X=z(w)f(z) into the product of the conditional density of Wn

given X = z and the marginal density of X . In view of (10) and (11) the conclusion
of i) follows.

Next, we show ii). We have

E

(

W 2
n

∂ log fX,Wn
(z,Wn)

∂x
| X = z

)

=
∂ log f(z)

∂x
E
(

W 2
n | X = z

)

+

∫

w2

(

∂

∂x
fWn|X=x(w)

)

x=z

dw

=
∂ log f(z)

∂x
E
(

W 2
n | X = z

)

+
∂

∂x

(
∫

w2fWn|X=x(w)dw

)

x=z

,

and ii) is proven.
Now we turn to iii). By differentiation of (33) and another Taylor expansion

we obtain, for some z∗ between z − w and z,

f(z)− fn(z) =

∫

{fX,Wn
(z, w)− fX,Wn

(z − w,w)}dw,

=

∫

∂fX,Wn

∂z
(z, w)wdw −

∫ ∫ z−w

z

∂2fX,Wn

∂x2
(u,w)(z − w − u)dudw

:= I1 + I2.

We have

I1 = f(z)
∂

∂z

(
∫

fWn|X=z(w)wdw

)

+
∂f

∂z
(z)

∫

fWn|X=z(w)wdw

= f(z)

{

∂

∂z
E(Wn | X = z) +

(

∂ log f(z)

∂z

)

E(Wn | X = z)

}

.
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Moreover, for w > 0, by arguments used to prove i),

|I2| ≤
∫

w

∫ z

z−w

∣

∣

∣

∣

∂2fX,Wn

∂x2
(u,w)

∣

∣

∣

∣

dudw

=

∫

w

∫ 0

−w

∣

∣

∣

∣

∂2fX,Wn

∂x2
(x+ z, w)

∣

∣

∣

∣

dxdw

≤ f(z)E{|Wn|C(Wn, z) | X = z}
≤ f(z)E(|Wn|1+ν | X = z)E{C(z,Wn)

1+1/ν | X = z}
In view of (9) and (11) the conclusion of iii) follows.

The first expansion in Lemma 1 is a consequence of i) and ii). To establish
the second expansion, we use Proposition 4. By substituting the approximations in
i)-iii) into Bahadur’s expansion we have:

Gn(u)−G(u)

= E[Wn | X = G(u)]

+

(

−1

2

∂ log f(z)

∂z
E(W 2

n | X = z)− 1

2

∂

∂z
E(W 2

n | X = z)

+E(Wn | X = z)
∂

∂z
E(Wn | X = z) +

∂ log f(z)

∂z
{E(Wn | X = z)}2

−1

2

∂ log f(z)

∂z
{E(Wn | X = z)}2

)

z=G(u)

+ o[{E[Wn | X = G(u)]}2],

from which the conclusion follows. 2

A.3 Illustration of Lemma 1 for Gaussian variables

Suppose that (X,Wn) is a Gaussian vector with

X ∼ N (m,σ2), Wn ∼ N (τn, ξ
2
n), Cov(X,Wn) = ρnσξn,

where ρn ∈ [0, 1), τn → 0 and ξ2n → 0 as n → ∞. Then we have

Fn(z) = Φ

(

z −m− τn
√

σ2 + ξ2n + 2ρnσξn

)

:= Φ(zn),

F (z) = Φ

(

z −m

σ

)

,

Gn(u) = m+ τn +
√

σ2 + ξ2n + 2ρnσξnΦ
−1(u), G(u) = m+ σΦ−1(u).

Given X = z the distribution of Wn is N
(

τn + ρnξn
z−m
σ , (1− ρ2n)ξ

2
n

)

. Thus,

E(Wn | X = z) = τn + ρnξn
(z −m)

σ
, Var(Wn | X = z) = (1− ρ2n)ξ

2
n,

E(W 2
n | X = z) =

(

τn + ρnξn
z −m

σ

)2

+ (1− ρ2n)ξ
2
n.
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Moreover, ∂ log f(x)
∂x = −x−m

σ2 . Hence,

Gn(u)−G(u)− E[Wn | X = G(u)]

+
1

2

{

∂

∂x
Var[Wn | X = x] + Var(Wn | X = x)

∂ log f(x)

∂x

}

x=G(u)

=

{

(
√

σ2 + ξ2n + 2ρnσξn − σ)− ρnξn − 1

2σ
(1− ρ2n)ξ

2
n

}

Φ−1(u)

= o(ξ2n).

Now, letting an = ξn/σ, a Taylor expansion yields:

−Fn(z)− F (z)

f(z)

= −σ(zn − z0) +
1

2
(zn − z0)

2(z −m) + o(zn − z0)
2

= τn(1− ρnan) + (z −m)

{

ρnan +
1

2
a2n(1− 3ρ2n) +

τ2n
2σ2

}

+
(z −m)2

σ2
ρnanτn +

(z −m)3

2σ2
ρ2na

2
n + o(a2n + τ2n + τnan)

= −E[Wn | X = z] +
1

2

{

∂

∂x
E[W 2

n | X = x] + E(W 2
n | X = x)

∂ log f(x)

∂x

}

x=z

+o{E[W 2
n | X = z]}.

The result of Lemma 1 is then verified by direct computation in the Gaussian case.
Finally, it can be checked that the assumptions of this lemma, in particular

(11), are satisfied in this case.

A.4 Technical assumptions used in Proposition 1

Let us denote

Z1(u, yt−1) =

(

∂a

∂θ′
(yt−1, θ, g(yt−1, θ0, u))

)

θ=θ0

,

Z2(u, yt−1) =

(

∂2a

∂θ∂θ′
(yt−1, θ, g(yt−1, θ0, u))

)

θ=θ0

.

We have

Wt,n = Z1(εt, yt−1)(θ̂n − θ0) +
1

2
(θ̂n − θ0)

′Z2(εt, yt−1)(θ̂n − θ0).

The following assumptions are made in Proposition 1. For some ν > 0,

(a) E[‖Zi(εt, yt−1)‖2(1+ν) | yt−1] < ∞, for i = 1, 2.
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(b) The functions a(yt−1, θ, ·),
∂a

∂θ′
[yt−1, θ, ·] and

∂2a

∂θ∂θ′
[yt−1, θ, ·] are twice differ-

entiable.

(c) The joint density of (εt,Wt,n) conditional on yt−1 satisfies condition (11).

A.5 Proof of Proposition 1

i) Let us derive the first expression for the quantile adjustment. The proof relies on
expansion (7) and Lemma 1, with X = εt, Wn = Wt,n and expectations replaced
by expectations conditional on yt−1.

Hence, for any multiplicative norm,

|Wt,n|2(1+ν) ≤ 22(1+ν)

n1+ν
‖Z1(εt, yt−1)‖2(1+ν)‖√n(θ̂n − θ0)‖2(1+ν)

+‖Z2(εt, yt−1)‖2(1+ν)‖√n(θ̂n − θ0)‖4(1+ν).

Thus:

E[|Wt,n|2(1+ν) | yt−1]

≤ 22(1+ν)

n1+ν
E[‖Z1(εt, yt−1)‖2(1+ν) | yt−1]E[‖√n(θ̂n − θ0)‖2(1+ν) | yt−1]

+
1

n2(1+ν)
E[‖Z2(εt, yt−1)‖2(1+ν) | yt−1]E[‖√n(θ̂n − θ0)‖4(1+ν) | yt−1],

which is finite by Assumptions (a), in Appendix A.4, and (14).

Now, since the conditional moments of
√
n(θ̂n − θ0) given yt−1 and εt do not

depend on the latter, it is clear that the assumptions on terms of the same stochastic
orders in Lemma 1 are satisfied. Moreover, we have:

E[|Wt,n|1+ν | εt, yt−1]

≤ 21+ν

n(1+ν)/2
‖Z1(εt, yt−1)‖2(1+ν)E[‖√n(θ̂n − θ0)‖2(1+ν) | εt, yt−1]

+
1

n1+ν
‖Z2(εt, yt−1)‖2(1+ν)E[‖√n(θ̂n − θ0)‖4(1+ν) | εt, yt−1] = op(n

−1/2),

and similarly, E[|Wt,n|2(1+ν) | εt, yt−1] = op(n
−1), which establishes (9) and (10).

Thus the assumptions of Lemma 1.
Next we turn to the computation of the conditional quantile of ε̂t given yt−1.

By

E[Wt,n | εt, yt−1] = Z1(εt, yt−1)E[θ̂n − θ0 | εt, yt−1]

+
1

2
Tr
[

Z2(εt, yt−1)E[(θ̂n − θ0)(θ̂n − θ0)
′ | εt, yt−1]

]

,

Var[Wt,n | εt, yt−1] =
1

n
Z1(εt, yt−1)Var[

√
n(θ̂n − θ0) | εt, yt−1]Z1(εt, yt−1)

′

+oP (1/n),
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we get:

qε̂t(α, θ0)− Φ−1(α)

= E[Wt,n | εt, yt−1]

−1

2

{

∂

∂x
Var[Wt,n | εt = x, yt−1]− xVar(Wt,n | εt = x, yt−1)

}

x=Φ−1(α)

+ oP (1/n) .

The announced result follows.
ii) The second expression for bt(θ0, ε) is a consequence of the following links

between partial derivatives. To simplify notations, write a(yt−1, θ, y) = a(θ, y) and
g(yt−1, θ, x) = g(θ, x). By assumption, y = g(θ, x) ⇔ x = a(θ, y). It follows from
y = g(θ, a(θ, y)) and x = a(θ, g(θ, x)) that

∂g

∂θ
(θ, a(θ, y)) +

∂g

∂x
(θ, a(θ, y))

∂a

∂θ
(θ, y) = 0,

∂a

∂θ
(θ, g(θ, x)) +

∂a

∂y
(θ, g(θ, x))

∂g

∂θ
(θ, x) = 0, (34)

and

∂2g

∂θ∂θ′
(θ, a(θ, y)) +

∂2g

∂x∂θ
(θ, a(θ, y))

∂a

∂θ′
(θ, y) +

∂a

∂θ
(θ, y)

∂2g

∂x∂θ′
(θ, a(θ, y))

+
∂2g

∂x2
(θ, a(θ, y))

∂a

∂θ
(θ, y)

∂a

∂θ′
(θ, y) +

∂g

∂x
(θ, a(θ, y))

∂2a

∂θ∂θ′
(θ, y)

= 0, (35)

∂2a

∂θ∂θ′
(θ, g(θ, x)) +

∂2a

∂y∂θ
(θ, g(θ, x))

∂g

∂θ′
(θ, x) +

∂g

∂θ
(θ, x)

∂2a

∂y∂θ′
(θ, g(θ, x))

+
∂2a

∂y2
(θ, g(θ, x))

∂g

∂θ
(θ, x)

∂g

∂θ′
(θ, x) +

∂a

∂y
(θ, g(θ, x))

∂2g

∂θ∂θ′
(θ, x)

= 0. (36)

Now, in view of (36) we have

∂a

∂y
(θ0, g(θ, ε))Tr

(

Ω
∂2g

∂θ∂θ′
(θ, ε)

)

= −Tr

(

Ω
∂2a

∂θ∂θ′
(θ0, g(θ, ε))

)

− 2
∂g

∂θ′
(θ, ε)Ω

∂2a

∂θ∂y
(θ0, g(θ, ε))

−∂2a

∂y2
(θ0, g(θ, ε))

∂g

∂θ′
(θ, ε)Ω

∂g

∂θ
(θ, ε).
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It follows, by using (34), that the right-hand side of (15) is given by:

−ε

(

∂a

∂y
(θ0, g(θ, ε))

)2
∂g

∂θ′
(θ, ε)Ω

∂g

∂θ
(θ, ε)

−2
∂g

∂θ′
(θ, ε)Ω

∂2a

∂θ∂y
(θ0, g(θ, ε))− Tr

(

Ω
∂2a

∂θ∂θ′
(θ0, g(θ, ε))

)

= −ε
∂a

∂θ′
(θ0, g(θ, ε))Ω

∂a

∂θ
(θ0, g(θ, ε))

+2
∂g

∂x
(θ, ε)

∂a

∂θ′
(θ0, g(θ, ε))Ω

∂2a

∂θ∂y
(θ0, g(θ, ε))

−Tr

(

Ω
∂2a

∂θ∂θ′
(θ0, g(θ, ε))

)

= bt{θ, ε},

and the proof of Proposition 1 is completed. 2

A.6 The jacknife for bias reduction

To illustrate the use of the jacknife technique to remove the conditional bias of the
estimator, consider the AR(1) model with intercept θ0

yt = θ0 + ρyt−1 + εt, |θ0| < 1, (εt)
i.i.d.∼ N (0, 1) (37)

where, for simplicity, the autoregressive coefficient ρ is known. Given observations,
y−1, . . . , y−n−1, θ0 can be consistently estimated by

θ̂n =
1

n

n
∑

i=1

(y−i − ρy−i−1) = θ0 +
1

n

n
∑

i=1

ε−i.

The expansion yt = θ0
1−ρ +

∑∞
i=−t ρ

t+iε−i shows that the joint distribution of

(yt,
√
n(θ̂n − θ0)), for t ≥ 0 is

N
(

(

my

0

)

,

(

1
1−ρ2

1√
n

1−ρn

1−ρ ρt+1

1√
n

1−ρn

1−ρ ρt+1 1

))

, my =
θ0

1− ρ
,

from which we deduce

E(
√
n(θ̂n − θ0) | yt) =

ρt+1

√
n
(1− ρn)(1 + ρ)(yt −my),

which is of the form (16) with A(t) = ρt. Thus the conditional bias of the estimator
is of order 1/n and Assumption (12) is not satisfied. We also have

Var[
√
n(θ̂n − θ0) | yt] = 1−

(

1√
n
(1 − ρn)ρt+1

)2

= 1 + oP (1),
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showing that Assumption (13) is satisfied. Because the distribution of
√
n(θ̂n − θ0)

conditional on yt is Gaussian, Assumption (14) is also satisfied. Finally, the tech-
nical assumptions displayed in Appendix A.4 are verified: we have a(yt−1, θ, yt) =
yt − θ − ρyt−1, Z1(u, yt−1) = −1, Z2(u, yt−1) = 0 showing that (a) and (b) hold
true; moreover, it can be verified that condition (11) is satisfied, by noting that
C(z, w) ≤ (|w| + |z|)2/φ(z) and by using again the fact that the distribution of

θ̂n − θ0 conditional on yt−1 is Gaussian and thus admits moments at any order.
To adjust for the bias, a Jacknife estimator can be constructed. For simplicity

assume that n = 2ℓ and let

θ̂(1)n =
1

ℓ

ℓ
∑

i=1

(y−i − ρy−i−1), θ̂(2)n =
1

ℓ

n
∑

i=ℓ+1

(y−i − ρy−i−1).

A Jacknife estimator based on this subsampling scheme is given by

θ̂(J)n =
1

1− ρℓ
(θ̂(2)n − ρℓθ̂(1)n ).

Indeed, we have

E(θ̂(J)n − θ0 | yt) =
ρt+1+ℓ − ρℓρt+1

ℓ(1− ρℓ)
(1− ρℓ)(1 + ρ)(yt −my) = 0.

The joint distribution of (yt,
√
n(θ̂

(J)
n − θ0)), for t ≥ 0 is

N
(

(

my

0

)

,

(

1
1−ρ2 0

0 2 1+ρ2ℓ

(1−ρℓ)2

))

,

showing that, in this model, the jacknife estimator is independent from the yt’s for
t ≥ 0. We also have

Var[
√
n(θ̂(J)n − θ0) | yt] = 2

1 + ρ2ℓ

(1 − ρℓ)2
= 2 + oP (1),

showing that the bias reduction comes at a price, namely an increase of the variance.
Such a bias and variance trade-off in jacknife estimators has often be noted (see
Phillips and Yu (2005) for a discussion of this issue in the context of option prices).

A.7 Proof of Proposition 3.

The conditional probability of violation with the standard VaR estimator given by
(5) is

Pt−1[yt < −VaRn,t(α)] = Pt−1[g(yt−1; θ̂n, ε̂t) < g(yt−1; θ̂n,Φ
−1(α))]

= Pt−1[ε̂t < Φ−1(α)], (38)
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because g is strictly increasing in its last argument. Similarly, with the estimation
adjusted VaR estimator defined in (17) we have

Pt−1[yt < −EVaRn,t(α)] = Pt−1[ε̂t < qε̂t(α, θ̂n)].

Lemma 1 entails the following expansion for the c.d.f. of ε̂t, keeping the notations
of the proof of Proposition 1:

Pt−1[ε̂t < z]

= Φ(z)− E[Wt,n | εt, yt−1]φ(z)

+
1

2

{

∂

∂x
E[W 2

t,n | εt = x, yt−1]− xE(W 2
t,n | εt = x, yt−1)

}

x=z

φ(z) + oP (1/n)

= Φ(z) +
bt(θ0, z)

2n
φ(z) + oP (1/n) ,

since we have seen that E[Wt,n | εt, yt−1] is of order oP (1/n). It follows that

Pt−1[ε̂t < Φ−1(α)] = α+
bt{θ0,Φ−1(α)}

2n
φ
(

Φ−1(α)
)

+ oP (1/n) ,

which, from (38), proves (20). Now, using a Taylor expansion of Φ around Φ−1(α),

Pt−1[ε̂t < qε̂t(α, θ̂n) | θ̂n]

= Φ(qε̂t(α, θ̂n)) +
bt(θ0, qε̂t(α, θ̂n))

2n
φ(qε̂t(α, θ̂n)) + oP (1/n)

= Φ(Φ−1(α)) − bt{θ̂n,Φ−1(α)}
2n

φ(Φ−1(α)) +
bt{θ0,Φ−1(α)}

2n
φ(Φ−1(α))

+ oP (1/n)

= α+ oP (1/n)

in view of the convergence of θ̂n to θ0. Thus (21) is proven. 2

A.8 Another way to derive the coverage probability

i) Let us consider the type of proof followed by Hansen (2006) (proof of Theorem

2), which differs from that of Appendix A.7. We have, for any real variable Z(θ̂n)

P [yt < Z(θ̂n) | yt−1] = P [g(θ0, εt) < Z(θ̂n) | yt−1]

= P [εt < a(θ0, Z(θ̂n)) | yt−1]

= E{P [εt < a(θ0, Z(θ̂n)) | yt−1, θ̂n] | yt−1}
= E{Φ[a(θ0, Z(θ̂n))] | yt−1}, (39)
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using the simplified notation of Appendix A.5 ii). Let a(θ0, Z(θ0)) = u. A Taylor
expansion around θ0 gives

Φ[a(θ0, Z(θ̂n))]

= Φ(u) + φ(u)
∂a

∂y
(θ0, Z(θ0))

∂Z

∂θ′
(θ0)(θ̂n − θ0)

+
1

2
(θ̂n − θ0)

′
[{

φ′(u)

(

∂a

∂y
(θ0, Z(θ0))

)2

+ φ(u)
∂2a

∂y2
(θ0, Z(θ0))

}

∂Z

∂θ

∂Z

∂θ′
(θ0)

+φ(u)
∂a

∂y
(θ0, Z(θ0))

∂2Z

∂θ∂θ′
(θ0)

]

(θ̂n − θ0)

+op(‖θ̂n − θ0‖2).

If Z(θ0) is a function of yt−1, it follows from (39) and Assumption (12) that

P [yt < Z(θ̂n) | yt−1]

= Φ(u) +
φ(u)

2n

[{

∂2a

∂y2
(θ0, Z(θ0))− u

(

∂a

∂y
(θ0, Z(θ0))

)2
}

∂Z

∂θ′
Ω
∂Z

∂θ
(θ0)

+
∂a

∂y
(θ0, Z(θ0))Tr

(

Ω
∂2Z

∂θ∂θ′
(θ0)

)]

+ op(1/n). (40)

ii) In the special case of the VaR, we have

Z(θ̂n) = −VaRn,t(α) = g[θ̂n,Φ
−1(α)],

∂Z

∂θ
(θ0) =

∂g

∂θ
[θ0,Φ

−1(α)], u = Φ−1(α)

and we get (20), using formula (15) for bt{θ0,Φ−1(α)}. Similarly, we obtain (21).

iii) Comparison with Hansen’s (2006) expansion for the coverage probability.
Starting from (39), Hansen makes a Taylor expansion around Z(θ0) (instead of θ0).
Doing this we get

Φ[a(θ0, Z(θ̂n))]

= Φ(u) + φ(u)
∂a

∂y
(θ0, Z(θ0))(Z(θ̂n)− Z(θ0))

+
φ(u)

2

{

∂2a

∂y2
(θ0, Z(θ0))− u

(

∂a

∂y
(θ0, Z(θ0))

)2
}

(Z(θ̂n)− Z(θ0))
2

+op([Z(θ̂n)− Z(θ0)]
2).

Assuming that

E[Z(θ̂n)− Z(θ0) | yt−1] = oP (1/n),

Var[
√
n(Z(θ̂n)− Z(θ0)) | yt−1] = σ2(θ0) + oP (1),
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we find

P [yt < Z(θ̂n) | yt−1]

= Φ(u) +
φ(u)

2n

{

∂2a

∂y2
(θ0, Z(θ0))− u

(

∂a

∂y
(θ0, Z(θ0))

)2
}

σ2(θ0) + op(1/n).

Comparing with (40) we see that the term

φ(u)

2n

∂a

∂y
(θ0, Z(θ0))Tr

(

Ω
∂2Z

∂θ∂θ′
(θ0)

)

,

is missing. This term corresponds to the first-order bias of Z(θ̂n), since we have

Z(θ̂n) = Z(θ0) +
∂Z

∂θ′
(θ0)(θ̂n − θ0) + (θ̂n − θ0)

′ ∂2Z

∂θ′∂θ
(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖2).

Thus, under our assumption (12),

E[Z(θ̂n)− Z(θ0) | yt−1] =
1

n
Tr

(

Ω
∂2Z

∂θ∂θ′
(θ0)

)

+ op(1/n).

In general, this expectation cannot be neglected at order 1/n if (12) holds.

A.9 Proof of Corollary 1

We have

a(yt−1, θ, g(yt−1, θ0, ε)) = H−1

(

σt(θ0)

σt(θ)
H(ε)

)

.

We deduce

∂a

∂θ
(yt−1, θ, g(yt−1, θ0, ε)) =

−1

h
{

H−1
(

σt(θ0)
σt(θ)

H(ε)
)}

σt(θ0)

σ2
t (θ)

∂σt

∂θ
H(ε),

(

∂a

∂θ
(yt−1, θ, g(yt−1, θ0, ε))

)

θ=θ0

= −K(ε)
1

σt(θ0)

∂σt

∂θ
(θ0),

where K(ε) = 1/(∂ logH(ε)/∂ε). By differentiating again w.r.t. ε, we get
(

∂2a

∂θ∂ε
(yt−1, θ, g(yt−1, θ0, ε))

)

θ=θ0

= −∂K(ε)

∂ε

1

σt(θ0)

∂σt

∂θ
(θ0),

and w.r.t. θ′, we get
(

∂2a

∂θ∂θ′
(yt−1, θ, g(yt−1, θ0, ε))

)

θ=θ0

= K(ε)

[

−∂ log h(ε)

∂ε
K(ε) + 2

]

1

σ2
t (θ0)

∂σt

∂θ

∂σt

∂θ′
(θ0)

−K(ε)
1

σt(θ0)

∂2σt

∂θ∂θ′
(θ0).
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By applying the formula in Proposition 1 we get

bt(θ0, ε) =
−1

σ2
t (θ0)

∂σt(θ0)

∂θ′
Ω
∂σt(θ0)

∂θ
K2(ε)

{

∂ log h(ε)

∂ε
+ ε

}

+
K(ε)

σt(θ0)
Tr

{

∂2σt

∂θ∂θ′
(θ0)Ω

}

.

It follows from (17)-(18) that

EVaRn,t(α) = −g
[

yt−1; θ̂n,Φ
−1(α)− bt(θ̂n,Φ

−1(α))/2n
]

= −σt(θ̂n)H
[

Φ−1(α) − bt(θ̂n,Φ
−1(α))/2n

]

= −σt(θ̂n)H [Φ−1(α)] + σt(θ̂n)h[Φ
−1(α)]bt(θ̂n,Φ

−1(α))/2n+ oP (1/n).

It suffices to replace (θ0, ε) by (θ̂n,Φ
−1(α)) in the above formula for bt(θ0, ε) to get

the announced result. 2

A.10 Proof of Corollary 2

In the standard ARCH model we have

∂2σt

∂θ∂θ′
=

−1

σt

∂σt

∂θ

∂σt

∂θ′
.

Thus, in view of Corollary 1, we have

EVaRn,t(α) − VaRn,t(α) = −a[Φ−1(α)]
σt(θ̂n)

8n

1

σ4
t (θ̂n)

∂σ2
t

∂θ′
(θ̂n)Ω̂n

∂σ2
t

∂θ
(θ̂n).

where

a(ε) =
H2(ε)

h(ε)

{

∂ log h(ε)

∂ε
+ ε+

∂ logH(ε)

∂ε

}

.

Hence, from the strong consistency of θ̂n to θ0, almost surely

lim
n→∞

n
EVaRn,t(α) − VaRn,t(α)

σt(θ̂n)
=

ξ

8
a(α)

1

σ4
t (θ0)

∂σ2
t

∂θ′
(θ0)J

−1 ∂σ
2
t

∂θ
(θ0).

The conclusion follows by

E

(

1

σ4
t (θ0)

∂σ2
t

∂θ′
(θ0)J

−1 ∂σ
2
t

∂θ
(θ0)

)

= Tr

{

E

(

1

σ4
t (θ0)

∂σ2
t

∂θ′
(θ0)J

−1 ∂σ
2
t

∂θ
(θ0)

)}

= Tr

{

E

(

1

σ4
t (θ0)

∂σ2
t

∂θ
(θ0)

∂σ2
t

∂θ′
(θ0)J

−1

)}

= Tr(Id) = d.
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A.11 Proof of Corollary 3

We have

a(yt−1, θ, g(yt−1, θ0, ε)) = H−1

(

µt(θ0)− µt(θ)

σt(θ)
+

σt(θ0)

σt(θ)
H(ε)

)

.

We deduce

∂a

∂θ
(yt−1, θ, g(yt−1, θ0, ε)) =

−
{

µt(θ0)−µt(θ)+σt(θ0)H(ε)
σ2

t
(θ)

∂σt

∂θ + 1
σt(θ)

∂µt

∂θ

}

h
{

H−1
(

µt(θ0)−µt(θ)
σt(θ)

+ σt(θ0)
σt(θ)

H(ε)
)} ,

(

∂a

∂θ
(yt−1, θ, g(yt−1, θ0, ε))

)

θ=θ0

=
−1

σt(θ0)

[

K(ε)
∂σt

∂θ
(θ0) +

1

h(ε)

∂µt

∂θ
(θ0)

]

.

By differentiating again w.r.t. ε, we get

(

∂2a

∂θ∂ε
(yt−1, θ, g(yt−1, θ0, ε))

)

θ=θ0

=
−1

σt(θ0)

[

∂K(ε)

∂ε

∂σt

∂θ
(θ0)−

∂h(ε)

∂ε

1

h2(ε)

∂µt

∂θ
(θ0)

]

.

By applying the formula in Proposition 1 we get

bt(θ0, ε) =
1

σ2
t (θ0)

[

∂σt(θ0)

∂θ′
Ω
∂σt(θ0)

∂θ
K2(ε)

{

2
∂ logK(ε)

∂ε
− ε

}

+2
∂σt(θ0)

∂θ′
Ω
∂µt(θ0)

∂θ

K(ε)

h(ε)

{

∂ log(K/h)(ε)

∂ε
− ε

}

+
∂µt(θ0)

∂θ′
Ω
∂µt(θ0)

∂θ

1

h2(ε)

{

2
∂ log h(ε)

∂ε
− ε

}]

.

It follows from (17)-(18) that

EVaRn,t(α)

= −g
[

yt−1; θ̂n,Φ
−1(α) − bt(θ̂n,Φ

−1(α))/2n
]

= −µt(θ̂n)− σt(θ̂n)H
[

Φ−1(α) − bt(θ̂n,Φ
−1(α))/2n

]

= −µt(θ̂n)− σt(θ̂n)H [Φ−1(α)] + σt(θ̂n)h[Φ
−1(α)]bt(θ̂n,Φ

−1(α))/2n+ oP (1/n).

It suffices to replace (θ0, ε) by (θ̂n,Φ
−1(α)) in the above formula for bt(θ0, ε) to get

the announced result. 2
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