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1 Introduction

The Value-at-Risk (VaR) and more generally the Distortion Risk Measures
such as the Expected Shortfall are standard risk measures used in the current
regulations introduced in Finance (Basel 2), or Insurance (Solvency 2) to fix
the required capital (Pillar 1), or to monitor the risk by means of internal
risk models (Pillar 2). These measures can be estimated nonparametrically
such as in the so-called historical simulation used in the standard approaches
of regulation. In the so-called advanced approaches, these measures can be
conditional, that is, take into account the current available information. In
such advanced approaches, the risk dynamic is usually represented by a para-
metric or semi-parametric model, which has to be estimated in a preliminary
step. However, the estimated counterparts of risk measures are subject to
estimation uncertainty. Replacing, in the theoretical formulas, the true pa-
rameter value by an estimator based on n observations of the Profit and Loss
variable, induces an asymptotic bias of order 1/n in the coverage probabil-
ities. This paper shows how to correct for this bias by introducing a new
estimator of the VaR, called Estimation adjusted VaR (EVaR). This adjust-
ment allows for a joint treatment of theoretical and estimation risks, taking
into account for their possible dependence.

1.1 Parametric dynamic risk model

More precisely, let us consider a parametric dynamic model for a Markov
Profit and Loss (P&L) process (y;), with a parametric conditional cumulative
distribution function (cdf) of y; given y:—1, denoted Fy, (- | yt—1). The model
can be written as :

Yt = g(yt—17007€t)7 t > tOv tO S Z7 (1)

with an initial value y;, assumed to be independent of (e;), which is a se-
quence of independent and identically distributed (i.i.d.) variables. The
distribution of €; can be assumed standard normal without loss of general-
ity!, 6 € R? is the true parameter value and ¢ : R x R¢ x R — R is a
continuous function, strictly increasing with respect to the last component.
We denote by a the inverse of the function g w.r.t. the last component,
which provides the expression of the Gaussian nonlinear innovation [see e.g.
Gouriéroux, Jasiak (2005)| in terms of unknown parameter and observed P

& L

'Let us denote by ® the cdf of the standard normal. Then the autoregressive formula
(1) is satisfied with e, = &~ [Fy, (y | ye—1)]-




et = a(yi—1,0, yr)- (2)
When 6 is known, the conditional VaR at risk level o € (0,1) is defined
by :

P_1[y: < —VaRy ()] = «, (3)
where P,_; denotes the historical distribution conditional on y;_;. This is
the opposite of the quantile at level o of the conditional distribution P;_1.
Condition (3) is equivalent to :

Pi_1]9(yi—1,00,e1) < —VaRy(a)] = «
<= P_iler < a{yi—1,6p, —VaRi(a)}] = «a,
that is, to a VaR computed on the Gaussian nonlinear innovation ;. Let ®

denote the cumulative distribution function (cdf) of the standard normal dis-
tribution. We deduce that a[y;_1, 0y, —VaR;(a)] = ®~!(a), or equivalently :

VaR¢ (@) = —glyi—1,00, " (av)].

For instance, in a conditionally Gaussian risk model with autoregressive drift
and volatility:

ye = 1(yi—1,00) + o(yi—1,60)es, € ~1IN(0, 1), (4)

the theoretical conditional VaR is:

VaRy(a) = —pu(y-1,00) = 0(yi-1,00)® " (a).

1.2 Estimated VaR

In practice the true parameter value is unknown and replaced by an estimate
0., say, based on n observations of the P&L. Thus, the conventional plug-in
VaR predictor is :

VaRy,(0) = ~glyi-1:0n, @~ (o). (5)
For instance, in the risk model with autoregressive drift and volatility (4), we
get: VaRy, 1(a) = —p(yi—1,0n) — 0(yi—1,0,)® (). As observed by Hansen
(2006), this practice does not provide an accurate approximation of the con-
ditional coverage probability. Indeed, the inequality y; < —VaR,(a) is
equivalent to the inequality &, < ®~!(a), where & = a(yt_l,én,yt) is the
nonlinear residual. But the residual distribution is no longer standard nor-
mal. Thus, in general

P,_1ys < —VaR,+(a)] # a+op(1/n),

for instance.



1.3 Estimation risk in the literature

Estimation risk in dynamic models has been considered by several authors.
Berkowitz and O’Brien (2002) observed that the usual VaR estimates are
too conservative. Figlewski (2004) examined the effect of estimation errors
on the VaR by simulation. The bias of the VaR estimator, resulting from
parameter estimation and misspecified errors distribution, was studied for
ARCH(1) models by Bao and Ullah (2004). In the i.i.d. setting, Inui, Kijma
and Kitano (2005) showed that the nonparametric VaR estimator (that is
an empirical quantile) may have a strong positive bias when the distribution
features fat tails. Christoffersen and Gongalves (2005) studied the loss of
accuracy in VaR and ES due to estimation error, and constructed bootstrap
predictive confidence intervals for risk measures. Hartz, Mittnik and Paolella
(2006) proposed a resampling method based on bootstrap to correct bias in
VaR forecasts for the normal-GARCH model. For GARCH models with
heavy-tailed errors distributions, Chan, Deng, Peng and Xia (2007) derived
the asymptotic distributions of extremal estimated quantiles (that is, the
estimated VaR with « tending to zero with n). Escanciano and Olmo (2010,
2011) studied the effects of estimation risk on backtesting procedures. They
showed how to correct the critical values in standard tests used to assess
VaR models.

These analyses are compatible with the approach of Basel 2 regulation,
which distinguishes the reserve for the theoretical risk (corresponding to the
estimated VaR) and the reserve for the estimation risk.

1.4 Outline of our paper

Our approach is different. We propose a method to directly adjust the
VaR to estimation risk, by computing an Estimation adjusted VaR, denoted
EVaR,, (o), ensuring the right conditional coverage probability at order 1/n,
that is,

P,_1lyr < —EVaR,, ;(a)] = a4+ op(1/n).

Our goal is similar to that of Hansen (2006), who derived adjustments of
interval forecasts to account for parameter estimation (see also Lonnbark,
(2010)). His assumptions and results will be compared to ours in Section 2.

In Section 2, we explain how the VaR can be adjusted when the parameter
has been estimated on a base estimation period. We get an explicit form of
the adjustment at order 1/n, where n is the length of the estimation period.
We also provide the adjustment at order 1/n of the conditional coverage
probability. Applications to stochastic volatility models and drift-volatility



models are presented in Section 3. Numerical illustrations are provided in
Section 4. We first discuss the finite sample properties of the estimation
adjusted VaR. Then, the methodology is applied to the analysis of extremes
of the returns on S&P index. Section 5 concludes. The proofs are gathered
in appendices.

2 Estimation adjusted VaR

As noted above, an Estimation adjusted VaR is directly derived from the con-
ditional quantile of the residual distribution. We first derive an asymptotic
expansion at order 1/n of the residual distribution. Then, this expansion is
used to obtain the associated expansion of the residual quantile function.

2.1 Expansion of the residual

Let us assume that the parameter is estimated on a base estimation period
t=—n,...,—1, say, of large length n, with —n = ¢y + 1, and that the asso-
ciated estimator of parameter 6 is consistent and asymptotically normal :

V(B — 60) % N(0,9), (6)

where ) is a positive definite matrix and % denotes the convergence in
distribution.

Assuming that function a is twice continuously differentiable w.r.t pa-
rameter 6, we have :

~

& = G(yt—h@myt)
Oa(yi—1, 0o, ~
= a(yt-1,0,yt) + W(en —bo)
£ 0 — 007 L (1, B,y — o) + op (1)
m n\tn 0 8989/ Yt—1,V0, Yt n\tn 0 op n
= &+ Wiy +op(l/n), (7)
1 Oa R
where: W, = (Yt—1, 00, y¢)vV/n(0, — )

NG
1 N , d%a A
+%\/ﬁ(0n — 6o) W(Qt—h to, yt)\/a(en — 0o)- (8)

Thus the nonlinear residual £; is the sum of the Gaussian nonlinear innova-
tion €; and a stochastic term of higher order equal to 1//n.



2.2 Expansion of the residual quantile

We deduce from (7) that the residual quantile is approximately equal to the
quantile of the sum e; + Wy ,,, where W;,, is negligible with respect to ;.
The expansion of the quantile of such a sum is given in the following Lemma,
which can be seen as a second-order Bahadur’s expansion, in which the
different elements receive an interpretation in terms of conditional moments
of random variables (see Appendix A.1).

Lemma 1 Suppose that X, = X + W,, where X,,, X, W,, are real random
variables. For any n assume that the function x — E(W! | X = x) is twice
differentiable, for ¢ = 1,2, and the pdf f of X is twice differentiable. In

0
addition, assume E(W2 | X = ), %E[Wg | X =z] (resp. E(W, | X =x)

3}
and a—E[Wn | X = xz]) tend to zero and are of the same stochastic order as
x

n — oo. Let fxw, denote the joint pdf of (X, W,,). Let, for z,w € R such
that fxw,(z,w) # 0,

1 |w]
C N
(z1w) Ixw, (z,w) /|w

For z € R assume that E|W,|>0%) < oo for some v > 0, and

*fxw,

W(z + z,w)| dz.

E[[Wo|" | X = 2] = o E(Wa| | X = 2)}, (9)
E[W, 204 | X = 2] = o{ E(W2| X =2)} and (10)
sup E{C(z, W,)'" TV | X = 2} < . (11)

Then the following expansions hold, for z € R and u € (0,1):

Fa(2) = F(z) = —E[W,|X=2f(z)
+% {%E[Wﬁ | X =a]+E(W; | X = z)m%g(x)}x:z e
+o{EW} | X = 2]},
Gn(u) — Gu) = E[W, |X =G(u)]
1

2 | Ox ox
+o{EW} | X = G(u)]},

-3 {EVar[Wn | X = a] + Var(Wy | X = I)M}
=G (u)

where F and G denote, respectively, the cdf and quantile function of the
variable X, while F,, and G,, denote the same functions for X,,.



Proof: see Appendix A.2.

The assumptions of this lemma can be considerably reduced in particular
cases. In particular, it is illustrated for Gaussian variables in Appendix A.3.
In the special case where W,, = ¢,W, with &, a scalar tending to zero,
the expansion for the quantile of X,, was derived by Gouriéroux, Laurent,
Scaillet (2000), Martin, Wilde (2002). Our version of this lemma controls
the residual term in this expansion.

Lemma 1 can be used to derive an asymptotic expansion of the con-
ditional quantile of é;, by using (7). We denote by (0%a/dy*)(yi_1,0,)
and (0%g/0x*)(y;_1,0,-) the k-th order derivatives of the functions y

a(yi—1,0,y) and x — g(y;—1, 0, x), respectively. Let || - || denote any norm on
R4,
Proposition 1 Suppose that the estimator 0, based on observations
Y1, .- Y—n Salisfies the asymptotic behavior (6), technical assumptions dis-
played in Appendix A.J on the function a and its derivatives, and
Elfn — 00 | yi—1] = op(1/n), (12)
Varly/n(0n, — 0o) | ye—1] = Q@+ op(1), (13)
E[|VA(0n = 00)[*) | y—1] = Op(1), (14)

where t > 0 and v > 0 is introduced in the technical assumptions. Then, the
conditional quantile of €; has the following expansion:

{60, @7 ()}

g0y = 7o) - YOy,
where
d%a 0 Oa
bi(bo,e) = [QW(%1’0’y)6_g(yt1’90’5)9_0(yt1’0’y)

da Oa
_8% (yt—17 07 y)Q%(yt—l, 0, y)

0%a
- TT’{W(%—L 9, y)QH

Moreover, we also have

0=00,y=g(yt—1,00,¢)

bt(GO)s)
d%a Oa 2 dg dg
= {6—2/2(,%—17 07 y) — € (6_y(yt—17 07 y)) } w(yt—h 07 5)9%(%—17 07 6)
Oa 0?g
+—(ye-1,0,9)Tr <Q—(yt—17975)>] : (15)
Jy 060" 0=00,y=9(yt—1,00,€)



Proof: see Appendix A.5.

Remark 1: When the first-order autoregressive model takes the additive
form v = p(yi—1,00) + €, the adjustment term (15) reduces to:

o o _82“
bi(0o,e) = _Ew(yt_h 9)9%(%—1, 0) +Tr (03939’ (y1-1,0) 69—, '

It is interesting to note that b;{f, ®~*(a)} > 0, at least for a sufficiently
small. Indeed, the first term in the right-hand side is strictly positive for € <
0 (because {2 is positive definite) and tends to infinity as ¢ decreases, whereas
the second term does not depend on €. This means, that asymptotically, the
estimation effect is to lower the quantiles for small values of «.?

2.3 Conditional bias reduction

The regularity conditions in Proposition 1 concern the conditional distri-
bution of the estimator 6, given y;_1. Indeed, the estimator depends on
observations on a base period and these observations are dependent of fu-
ture variables. It is assumed that this dependence can be neglected at the
first-order. It is important to note that even if the estimator is unbiased,
or of order smaller than 1/n, that is, if E(6, — 6y) = op(1/n), this is not
sufficient to ensure the negligibility of the conditional bias (the first equality
in (12)). To illustrate this, let us consider the prediction problem in the
AR(1) model y; = py;—1 +uy, where (uy) is an independent white noise. The
optimal one-step ahead prediction of 1,1 in the L? sense is py;, which can be
estimated by py:, where p is an estimator of p obtained from the observations
Y1, .-+, Yn with n < ¢. The estimated prediction is thus unbiased if and only
if E[(p — p)ye) = 0. The conditional moment assumption E(p —p | y;) =0
implies prediction unbiasedness, but the unconditional one, E(p — p) = 0,
does not.

A preliminary automatic approach, such as a conditional jacknife, can
be applied to remove the conditional bias before applying the formula in
Proposition 1. The jacknife technique was introduced by Quenouille (1956).
See Chambers (2012) for a recent investigation of the use of the jackknife
as a method of estimation in stationary autoregressive models. Phillips and
Yu (2005) proposed a method of bias reduction based on the jacknife tech-
nique for the pricing of bond options and other derivative securities. Our
problem is not standard because the first part of (12) concerns the bias of

2By equation (15), the same conclusion holds for the general case under the assumption
that g is convex in 6 and a is convex in its last component around (y;—1, 0, —VaR¢()).



the estimator conditional on a future variable. The next result shows how a
jacknife correction can be introduced in our framework to get satisfied the
assumption of unbiasedness.

Proposition 2 Let 6, = argming Qn(0;y-1,...,y—n). Suppose that the
following expansion holds for the conditional bias of the estimator

B~ 00|y = 200, (y1,00) + 0p(1/m), (16)

where Cp(yt,00) = Op(1) in R and A is a known real valued function. Let,
form = 2¢,

)

A1 . (2 .
Hé ) — argr%nQe(H;y—h e Y—p), H,E = argrrgnQe(H;yfefl, e Y—20)-

A Jacknife estimator based on this subsampling scheme is given by

1
At — At +0)

o) = (AW - A +00;"),

and we have: X
E(05) — 0o | y) = op(1/n).

The proof is straightforward. Therefore, Assumption (12) is satisfied for this
conditional jacknife adjusted estimator, whenever condition (16) is satisfied.
An illustrative example, in which the other assumptions of Proposition 1 are
also satisfied, is developed in Appendix A.6.

2.4 Definition of the Estimation Adjusted VaR

We deduce from Proposition 1 the estimation adjusted VaR for P& L, de-
noted EVaR,, ;(«). A more precise terminology would distinguish the EVaR
defined by:

EVaRi(a) = —g[yt—1; 6o, ¢¢, (v, 00)],
from the estimated EVaR, in which the estimate én is substituted to the true

parameter value 0y. For expository purpose, we denote the estimated EVaR
by EVaR,, ; and do not mention the term "estimated".

Definition 1 The estimation adjusted VaR is given by :
EVaRy (@) = =glyi—1; 0n, 4z, (@, 0)), (17)

where

by (0, @ ()

G (0,0n) = 7o) - D

(18)



Thus, EVaR,, ¢(«) is obtained by substituting the estimate 6, to the true
parameter value 6y (as for the standard estimated VaR, see Section 1), but
also by substituting the estimated a-quantile of the nonlinear residual to the
a-quantile of the Gaussian nonlinear innovation.

Remark 2: In view of Remark 1, for the additive model we have:
EVaR,, () > VaR,, (), (19)

at least for small a. The required capital is deduced from the estimated VaR
by a formula of the type

59
RC; = max (VaRn,t(a), % Z VaRmh(a)) ,

h=0
where k is a trigger parameter, which can be controlled by the regulator.
If the trigger parameter is fixed, inequality (19) shows that the required
capital above can imply an insufficient risk coverage by VaR, :(«a), since
the estimation risk has not been taken into account. If this insufficient
risk coverage is observed at several consecutive periods, the regulator might
either increase the trigger parameter in the above formula to compensate the
mishedging, or ask for substituting EVaR,,; to VaR,, ;.

Remark 3: There exists an alternative bootstrap approach to the estima-
tion adjusted VaR. More precisely, let us denote by é_,,,...,£_1 the residuals
computed on the base period. Let us consider n independent drawings in the
set {é_p,...,é_1}, denoted by &" ... &"  and compute recursively the set
of simulated values yJ' = g(yf_l,én,éf}), t = —n,...,—1, using an initial
value. This simulated observation set can be used to deduce an ML or QML
bootstrapped estimator éﬁ, say, and thus a bootstrapped residual for date
t>0hbyé = a(yt_l,éz,yt). This procedure can be replicated H = 100
times, say, and the set of residuals é?, h =1,...,100 can be ranked by
increasing order as égl) < égQ) <... < égloo). A bootstrapped adjusted VaR,
for a = 5%, say, can then be defined by:

BVaRnyt(a) = —glyi—1; ém é£5)]-

This approach is in the spirit of the Monte-Carlo correction of testing proce-
dures to satisfy the type I-error restriction in finite sample (see e.g. Dufour
and Kiviet, 1997). Our approach with a closed form correction avoids the
computational cumbersome H = 100 estimations of the dynamic model on
the base period. Moreover, as seen below, the consequence of the adjustment
on the coverage probabilities are known in our case, and is more difficult to
derive in closed form for the bootstrap approach.



2.5 Expansion of the coverage probability

Let us now discuss the conditional coverage probabilities.®> We know that
the theoretical VaR satisfies the exact restriction on the coverage probability
given by (3), but this theoretical VaR depends on the unknown parameter
value and thus cannot be used in practice. The next proposition shows that
the error on the conditional coverage probability is of order 1/n (resp. strictly
smaller than 1/n), when the standard estimated VaR (resp. the EVaR) is
used. This justifies ex-post the estimation adjustment of the VaR.

Proposition 3 Under the assumptions of Proposition 1, the conditional cov-
erage probability of the standard estimated VaR is such that:

~1(g,
o 02 1 Lot (a)} +op (1)

(20)

Pt,1 [yt < — VaRm(a)] =

where ¢ denotes the density function of the standard Gaussian distribution,
and the conditional coverage probability of the estimation adjusted VaR is
given by

Pi_1lys < —EVaR, ()] = a+op (1/n). (21)

Proof: The conditional probabilities in the right-hand side of (20) can be
written under the form P,_i[e; < z|, allowing to apply Lemma 1. A Taylor
expansion allows to handle the right-hand side of (21), which is written under

the form P;_j[e; < z(6,,)]. See Appendix A.7 (in Appendix A.8 we give an
alternative proof, following the lines of Hansen (2006)). O

Remark 4: Hansen (Theorem 2, 2006) derived a different expression for the
conditional coverage probability, under the following (implicit) alternative
assumption (see the last equality on p. 396, and Appendix A.8 below):

E[VaR, (o) — VaR¢(a) | ye—1] = op(1/n),
Var[v/n{VaR, +(a) — VaRe(a)} | 1—1] = X(6p) + op(1),
for some positive definite matrix ¥(6p). This conditional unbiasedness as-

sumption differs from our assumption (12), since it is written on the esti-
mated VaR and not on the estimated parameter. It seems more appropriate

31t is more appropriate for risk management to consider the accuracy of the conditional
coverage probability than that of the VaR itself. Indeed, the coverage probability is the
basic diagnostic tool used by the regulator to check ex-post the adequacy of the selected
reserves.

10



to write a more primitive condition, that is, a condition on the estimator
of the parameter itself. Indeed, as seen in Section 2.3, the conditional bias
on the estimator can often be reduced by applying a conditional jacknife,
whereas a similar approach does not exist to correct the conditional bias in
the VaR estimation.

In Hansen (2006) the term b;{6p, ® ()} is replaced by:

ct{Ho,fI)_l(a)}

2, a ?
= {g—yQ{ytl,Go, —VaRy(a)} — @~ (a) <g—y{yt1,90,—VaRt(Q)}) }

0 )
xa—g,(yt—hﬁo,@*l(a))() (1—1, 00, ().

99
06
By comparison with (15), we see that the term

2

S st VoR@)Tr (20 2 00 @} ) . (2
is missing in Hansen’s result. If the asymptotic conditional unbiasedness
assumption on 0,, is satisfied, we generally have a bias on VaR,, (), except in
the very special case where function g is linear in parameter . The additional
term (22) appearing in the expression of b;{f, ® ()} corrects for this bias
on VaR,, ;(«). Finally, the linearity of function g with respect to 6 is generally
not fulfilled, except in simple models such as y; = pu + pyr—1 + o, &4 ~

N(0,1) with 6 = (u, p,0)’.

2.6 Extension to higher-order autoregressive models

In practical situations, it may be worth considering dynamic models with a
longer memory, such as:

Yt = g(ytfl) .. ayt*p)e()aet))

where p > 1 denotes the autoregressive order and (g;) is an i.i.d. sequence of
standard normal variables. When function g is invertible w.r.t. &, this model
can be equivalently written as e = a(y¢—1,. .., Yt—p, 0o, yt). The estimation
adjusted VaR is now given by:

A~ ~

EvaRn,t(a) - _g(yt—17 e 7yt—p; 0717 Qét (CE, 071))7

where ¢z, (a,0,) is defined by (18), and b, is defined as in Proposition 1
with y;—1 replaced by y¢—1,...,y—p. It is easily checked that Propositions

11



~

1 and 3 continue to hold under the regularity conditions: E[y/n(6, — to) |
Yt—155--- ,?/t—p, 61‘,] — OP(nj1/2)) Va‘r[\/a(en - 90) | Yt—1y55--- )ytfpa 61‘,] =0 +
op(1), and (0/0uVar[\/n(0n — 600) | Yt—1,s- -, Yt—p, U] )u=e, = op(1).

3 Applications to stochastic drift and volatility
models

As an illustration, we consider below stochastic drift and volatility models,
for which explicit formulas for the estimation adjusted VaR can be derived
and interpreted .

3.1 Stochastic volatility model

The first class of models is of the form:
Yt = Ut(QO)H(ﬁt), (23)

where 0,(0p) is a positive function of the past of y;, depending on an unknown
parameter 6y, H is a continuous increasing function and (g;) is a sequence
of i.i.d. standard normal variables. When H is the identity function, we get
conditionally normal observations. By selecting another increasing function
H, we can change the form of the conditional distribution of y; and allow for
heavy-tailed conditional distributions. The variable o04(fp) is a conditional
scale factor. It is the conditional standard-deviation of y; if the variance of
H(ey) exists and is equal to 1. This specification encompasses, in particu-
lar, the standard ARCH(q) model, with possibly non Gaussian conditional
distribution.

In such models, the unknown parameter value 0y is usually estimated ei-
ther by the Maximum Likelihood (ML) method, or by the Quasi-Maximum
Likelihood (QML) applied as if the distribution of H (g;) were standard nor-
mal. Other estimation methods can also be considered, as the quantile re-
gression for instance (see Koenker and Zhao (1996) for an extension of quan-
tile regression to linear ARCH models). For this method, the non differentia-
bility of the optimization criterion would have to be taken into account. The
strong consistency and asymptotic normality in GARCH models has been
established for the QML estimator under mild conditions by Berkes, Horvath
and Kokoszka (2003) and Francq and Zakoian (2004), and for the ML esti-
mator by Berkes and Horvath (2004); see also Francq and Zakoian (2010).
Under regularity conditions (in particular En? = 1, where 1, = H(g;), for

12



the QML method), these papers show that the ML (or QML) estimator 0,
of 0, satisfies 8,, — 0y, a.s., and

(0, — o) d N(O,¢J7Y), I_& (041 9o} (0o) 60;:2(00)> ,(24)

(6) 00 0

where the coefficient £ depends on the estimation method. More precisely,
we have

E(n}) —1, for the QML method,
= 2
¢ 4/E { (1 + algygf(nt)nt) } , for the ML method,

where f denotes the density of n, = H(g;). Note that the QML approach
requires rather thin tails for 7, since E(nj}) has to be finite.
For Model (23), we have

9(yi-1,0,8) = 01(0)H (), alys—1,0,y) = H '(y/o4(0)).
By applying Proposition 1, we get an explicit form of the EVaR.
Corollary 1 For the volatility model (23),

i) the estimated VaR is given by:
VaR, 1(a) = —oy(0n) H{® (@)} = —04(0,)G (),
where G is the quantile function of ny = H(gy);

i1) under the assumptions of Proposition 1, the estimation adjusted VaR is
given by:

EVaR, +(a)
= VaR,(«a)

11 90y(0n) a doy(0,) [H2(e) [ Ologh(e) .
2n Ut(én) 89/ " 89 h(g) 86 EZ@_I(Q)

920,(0,) ~

L H{o ()} 1 [WQn

+2n

+0p(1/n),

where h(c) = OH(e)/de, and Q, is a consistent estimator of the asymp-
totic variance of Oy ;

13



iii) in the standard ARCH case, the estimation adjusted VaR is given by:

EVaR, +(a)

_i 1 aat(ﬁn)A aat(ﬁn)
2ng,(0,) 00 " 00

[f}fj(j) {Mogf(e) . fﬂ%f@}}ﬂ_l(aﬁ@u/n),

= VaR,(«a)

Proof: see Appendix A.9.
In the Gaussian case we have H(¢) = ¢ and the inequality:

EVaR,, () > VaR,, (o),

for a« < 0.5. For such values of «, taking into account the estimation
step in the evaluation of the quantile increases the reserve. For very
small «, the difference between the estimated EVaR and VaR can be
large and is path-dependent. In standard GARCH models, the quantity
p (lén) %(én)ﬂn%(én) is bounded, and this difference is approximately pro-
portional to the current volatility. In high-volatility periods, the increase of
reserve due to the estimation risk is large.

The following result gives more insight on the mean asymptotic discrep-

ancy between the two estimated VaR’s in the standard ARCH case.

Corollary 2 For a standard ARCH model, under the conditions ensuring
the validity of (24), and if Qy, is a strongly consistent estimator of €J~1, we
have:

n(EVaR, +(a) — VaR, +(a))

FE lim a.s. ~

n—o00 Jt(en)

¢ [H?%(e) [0Ologhe) Olog H (z) o
B [ hE) { o T T e }Lqﬂ(a) =8l

where d 1s the dimension of 0.

Proof: see Appendix A.10.

The adjustment scale factor A(«) involves the number d of parameters to
be estimated and the difference between the estimated VaR’s is proportional
to the ratio d/n. This is a function of the risk level a, which generally tends

14
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Figure 1: A(«a) with d =1 and o € (0,1) (left panel), for the standard Gaussian
distribution (red thick line) and the Laplace distribution (blue dashed line). The
right panel is a zoom for «a € (0,0.05).

to infinity when « is close to either 0 (VaR of a long investment in asset y),
or 1 (VaR of a short investment in asset y). Since function H is increasing,
the sign of A(a) is the sign of the term into wide brackets. The pattern of
function A is illustrated in Figure 1 for conditionally Gaussian and Laplace
returns, respectively. As expected the adjustment is larger when the tails
are fatter, that is, for Laplace returns. Finally, function A is symmetric
w.r.t. a = 0.5 due to the symmetry in the standard Gaussian and Laplace
distributions.

3.2 Stochastic drift-volatility model

Suppose now that a conditional mean () is added to (23), as:
Yyt = e(0o) + o(00)H(gr), (e¢) ~ 1IN(O0,1). (25)

This specification encompasses the ARCH-M model (see Engle, Lilien and
Robbins (1987)), with a risk premium in the drift. It also encompasses
AR(p)-ARCH(q) models, with possibly non Gaussian conditional distribu-
tion. The strong consistency and asymptotic normality in ARMA-GARCH
models has been established for the QML estimator by Francq and Zakoian
(2004). In this paper it is shown that, under some regularity conditions (in
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particular En; = 0 and En? = 1, where 1, = H(g;)), the QML estimator 0,
of 0 satisfies

b — 60, as., (b —0p) S N©O,7 T, (26)

where the matrices Z and J are expectations of functions of first and second-
order derivatives of j:(0) and o4(0).
For Model (25) we have

9(ye-1,0,8) = (0) + ou(0)H(e),  alye—1,0,y) = H '[{y — m(6)}/0u(0)].
By applying Proposition 1, we get an explicit form of the EVaR.

Corollary 3 For the stochastic drift-volatility model (25),
i) the estimated VaR is given by
VaRo1(@) = —pui(0n) = 01(0,) H{S™ (@)} = —p14(05) — 04(0,) G (),
where G is the quantile function of ny = H(gy);

ii) under the assumptions of Proposition 1, the estimation adjusted VaR is

given by
EVaR, +(«)
1 1 8Ht(én) -1 8Ut(én) A
g _ = H @ Qn
VaR,, () 20 oy 60) ( 50 + [ (a)] 50

alu’t (én) - 8Ut (én) 1 0 log h(&)
X( o TH T =5 )[h(s){ GE “}L@_l@

o [(H{Ma)}%t“’") - 82”(@")) o

2000 9000’ +op(1/n),

where ), is a consistent estimator of the asymptotic variance of 0,,.

Proof: see Appendix A.11.

4 Numerical Illustrations

4.1 Simulation experiments

To assess the performance of the VaR adjustment in finite sample, we com-
puted the estimator on N = 5,000 independent simulated trajectories of an

ARCH(1) model:
Yt = \/ 1 + a’th—lnt’ e ~ tuv (27)
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where ¢, denotes the standardized Student distribution with v degrees of
freedom. The standardized Student is often employed for GARCH errors in
applied works. The degree of freedom v was chosen in the set {6, 7,10, 00},
corresponding to a kurtosis of 6, 5, 4 and 3, respectively, where the last value
corresponds to the Gaussian distribution. The ARCH coefficient a was al-
lowed to vary in {0.1,0.5,1,1.4,2,2.5}. These values and error distributions
satisfy the strict stationarity condition, a < e~ 108 n,

For each simulated trajectory of length n + H, the ARCH(1) model was
estimated over the first n observations and the remaining H observations
were reserved for VaR evaluations.

Table 1 shows, for a = 0.1, = 0.05 and « = 0.01, the percentages of
violations for the theoretical VaR (computed with the true parameter value)
and the estimated VaR’s: VaR,, (o) and EVaR,, ;(«). For instance, for the
standard VaR estimator, this percentage is defined as the proportion of the
events:

y < —VaR, (o), t=n+1,...n+H,

among the simulated samples. The most striking result is that the adjusted
VaR does a better job than the standard one in any situation. Of course, the
theoretical VaR is often closer to the nominal probability than our estimator,
but the difference is small. By comparison, the standard VaR estimator is
generally twice or three times more distant to the nominal value than the
adjusted VaR. It is also worth noting that our estimator provides satisfactory
results even for fat tailed marginal distributions. Such fat tails occur when
the degree of freedom v is small and/or the ARCH coefficient a is large.
Recall that a fourth-order moment is required for 7, but that no moment
condition is imposed on ;.

Another comparison of the VaR estimators can be based on the expected
shortfall when the VaR is violated, and on the expected excess of reserves
when it is not violated, in percentages of the theoretical VaR. To this aim
we introduce, for each simulated path, the quantities

H _
pYakn 1 Ti 100V @Bnt(a) + 1}
B H_‘:aRn My Va,Rt((X) ’
H
Vol _ L__ 5 joptVefinale) +ul*
+ = VaRn, ,
H— B e VaR,()
VaRn, 1S
Hy T " > Wk, (@)>e
t=n+1
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where 7 = max(z,0) and 2~ = max(—x,0). Similar quantities are defined
for the EVaR estimator and for the VaR at the true parameter value. Table
2 displays the average of the pKaR(90)7 pKaR", pfvaR", pvaR(GO), pVaBn and
piEV“R” over the 5,000 simulations. For this table and the next one, to save
space, we only report results for v = 7 and for the Gaussian distribution
(v = ), and for @ = 0.1 and a = 0.05. The estimation adjusted VaR being
more prudential, the expected shortfall is diminished and compensated by
an increase of the expected excesses of reserves. These features are due to
the complicated mix between the larger value of the EVaR in average and
its behavior in high volatility periods.

To gauge the impact of the sample size used in the estimation step, we
reproduced the experiment of Table 1 for n = 200 instead of n = 100. The
results displayed in Table 3 show that, as expected, increasing n improves
the accuracy of the VaR estimators: the percentages of violations are closer
to the nominal probability, for both the standard estimator and the adjusted
VaR. However, the superiority of the latter estimator remains. Table 4 shows
that the same conclusion holds for n = 250 and H = 250, which corresponds
to approximately one year of daily observation followed by one year of daily
VAR evaluation.

Finally, our estimator is compared with the estimator proposed by
Hansen (2006) (see Remark 4 above). For the same simulated paths as
in Table 1, we show in Table 5 the results obtained with Hansen’s estimator.
Percentages are underlined when they are closer to the nominal probabil-
ity than the percentage obtained with the EVaR estimator. For 55 over 72
cases, the estimator of this paper provides better results than Hansen’s es-
timator. Similar findings, not reported here, were observed for n = 200 and
n = H = 250.

4.2 Application to financial data

We apply the VaR adjustment to daily returns of the SP500 index. The data
range from January 2, 1990 to March 25, 2008. As noted in Section 2.6, our
method can be applied to finite-order Markov models. In particular, this
approach does not apply to GARCH(p, ¢) models with p > 0. We therefore
estimated an ARCH(6) model, by the QML method, from the first n = 250
observations (one year) of the series of centered log-returns. The estimated
model is given by: y; = 647y,

62 = 0.562+0.098y7 | +0.045y2 ,+0.027y? 3+0.103y?_,+0.095y2 40.081y2 ;.
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Table 1: Percentages of violations computed over 5,000 independent simulations of the
ARCH(1) model (27). The model is estimated over a sample of length n = 100 and the

violations are computed over the next H = 30 observations (out-of-sample).

« a VaR: VaR,,: EVaR, VaR: VaR,,: EVaR, ;.

v==06 v="T
0.01 0.1 0.0102 0.0118 0.0093 0.0100  0.0120 0.0096
0.5 0.0102 0.0130 0.0099 0.0102  0.0128 0.0099
1.0 0.0099 0.0130 0.0098 0.0099 0.0123 0.0096
1.4 0.0103 0.0131 0.0101 0.0096  0.0121 0.0094
2.0 0.0098 0.0122 0.0095 0.0098 0.0124 0.0099
2.5 0.0100 0.0123 0.0098 0.0103  0.0127 0.0102
0.05 0.1 0.0500 0.0545 0.0486 0.0494  0.0533 0.0483
0.5 0.0496 0.0555 0.0486 0.0497  0.0546 0.0489
1.0 0.0501 0.0558 0.0493 0.0505  0.0548 0.0495
1.4 0.0502 0.0557 0.0494 0.0502  0.0548 0.0493
2.0 0.0494 0.0548 0.0486 0.0500  0.0552 0.0501
2.5 0.0503 0.0552 0.0490 0.0497  0.0546 0.0494
0.1 0.1 0.1007 0.1065 0.0997 0.1004  0.1047 0.0993
0.5 0.1001 0.1064 0.0990 0.1005  0.1057 0.0996
1.0 0.1000 0.1069 0.0998 0.0994  0.1051 0.0997
1.4 0.1003 0.1064 0.0994 0.0995 0.1054 0.0995
2.0 0.0999 0.1065 0.0996 0.1010 0.1065 0.1004
2.5 0.1007 0.1068 0.1000 0.0993  0.1044 0.0989

v =10 V=00
0.01 0.1 0.0103 0.0122 0.0101 0.0102  0.0119 0.0098
0.5 0.0094 0.0120 0.0095 0.0103  0.0127 0.0104
1.0 0.0101 0.0125 0.0100 0.0101  0.0129 0.0105
1.4 0.0101 0.0123 0.0101 0.0103  0.0126 0.0105
2.0 0.0101 0.0126 0.0104 0.0101  0.0124 0.0105
2.5 0.0099 0.0120 0.0100 0.0103  0.0122 0.0104
0.05 0.1 0.0504 0.0540 0.0500 0.0500  0.0522 0.0489
0.5 0.0499 0.0537 0.0492 0.0498  0.0530 0.0497
1.0 0.0499 0.0552 0.0506 0.0501  0.0537 0.0504
1.4 0.0503 0.0545 0.0503 0.0509  0.0542 0.0511
2.0 0.0505 0.0557 0.0511 0.0502  0.0539 0.0509
2.5 0.0495 0.0538 0.0498 0.0517  0.0548 0.0515
0.1 0.1 0.1002 0.1036 0.0992 0.1008  0.1035 0.1005
0.5 0.1003 0.1048 0.1005 0.1010  0.1044 0.1012
1.0 0.1000 0.1041 0.0997 0.1000  0.1032 0.1002
1.4 0.0997 0.1040 0.0998 0.1015  0.1043 0.1013
2.0 0.0992 0.1041 0.0999 0.1006  0.1038 0.1008
2.5 0.1005  0.1050 0.1009 0.1007  0.1032 0.1002
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Table 2: Expected shortfall and expected excess of reserves, in percentages of the theo-
retical VaR, computed over the 5,000 simulated paths of Table 1 for v = 7.

VaR(6o) VaRn EVaRn VaR(6p) VaRp EVaRn
p_ - p_ Py Py Py

0.05 0.1 37.09 37.30 37.50 106.99 106.77  108.37
0.5 37.68 37.19 37.43 107.17 106.76  108.33
1.0 36.43 36.13 36.42 107.19 106.95  108.50
1.4 36.18 35.90 35.90 107.25 107.06  108.62
2.0 37.23 36.97 36.88 107.13 106.94  108.53
2.5 37.18 37.11 36.95 107.10 106.93  108.53
0.1 0.1 48.58 48.79 48.90 116.51 116.35  117.45
0.5 49.00 49.08 48.99 116.44 116.44  117.47
1.0 49.27 49.11 49.14 116.59 116.60  117.64
1.4 49.01 49.27 49.12 116.57 116.41  117.48
2.0 49.18 49.54 49.50 116.87 116.69  117.73
2.5 49.65 49.62 49.48 116.41 116.29  117.37

Table 3: As Table 1 for n = 200.

« a VaRt VaRn,t EVaRn it VaRt VaRn,t EVaRn,t

v="T V=00
0.05 0.1 0.05602 0.0525 0.0497 0.0494  0.0508 0.0494
0.5 0.0501 0.0530 0.0503 0.0499 0.0517 0.0500
1.0 0.0500 0.0529 0.0501 0.0498 0.0511 0.0494
1.4 0.0494 0.0524 0.0498 0.0502  0.0517 0.0502
2.0 0.0506 0.0526 0.0501 0.0493 0.0512 0.0496
2.5 0.0497  0.0522 0.0495 0.0504  0.0517 0.0502
0.1 0.1 0.1004 0.1032 0.1002 0.0988  0.1012 0.0998
0.5 0.0996 0.1030 0.1002 0.1007  0.1024 0.1008
1.0 0.0999 0.1025 0.0997 0.0994 0.1019 0.1001
1.4 0.1001 0.1032 0.1003 0.0988  0.1006 0.0991
2.0 0.0984 0.1013 0.0986 0.0995  0.1006 0.0992
2.5 0.1011  0.1041 0.1012 0.0991  0.1008 0.0993
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Table 4: As Table 1 for n = H = 250.

o a VaRt VaRn,t EVaRn it VaRt VaRn,t EVaRn,t

v="T V=00
0.05 0.1 0.05601 0.0518 0.0497 0.0496  0.0508 0.0495
0.5 0.0498 0.0519 0.0498 0.0502  0.0517 0.0504
1.0 0.0498 0.0519 0.0498 0.0498  0.0515 0.0502
1.4 0.0502 0.0521 0.0500 0.0503 0.0514 0.0501
2.0 0.0500 0.0520 0.0499 0.0499 0.0513 0.0500
2.5  0.0502 0.0524 0.0503 0.0497  0.0512 0.0499
0.1 0.1 0.1003 0.1022 0.1000 0.0998 0.1012 0.0999
0.5 0.1001 0.1024 0.1001 0.0994 0.1010 0.0998
1.0 0.1000 0.1024 0.1002 0.1000  0.1015 0.1003
1.4 0.1000 0.1021 0.0998 0.1000 0.1014 0.1002
2.0 0.1001 0.1026 0.1003 0.1003 0.1014 0.1002
2.5 0.1003 0.1026 0.1004 0.1001  0.1014 0.1002

Table 5: Percentages of violations using Hansen’s estimator, computed over the 5,000
independent simulations of Table 1. Percentages are underlined when they are closer to
the nominal probability than those obtained with the EVaR estimator in Table 1.

0.01 0.1 0.0097 0.0099 0.0104 0.0101
0.5 0.0104 0.0103 0.0098 0.0108
1.0 0.0105 0.0100 0.0103  0.0108
1.4 0.0106 0.0098 0.0104 0.0109
2.0 0.0099 0.0102 0.0108 0.0108
2.5 0.0101 0.0105 0.0102 0.0106
0.05 0.1 0.0499 0.0496 0.0509  0.0498
0.5 0.0504 0.0505 0.0503  0.0505
1.0 0.0509 0.0509 0.0518  0.0513
1.4 0.0510 0.0507 0.0514 0.0519
2.0 0.0501 0.0515 0.0522  0.0517
2.5 0.0506 0.0508 0.0508  0.0524
0.1 0.1 0.1018 0.1012 0.1007 0.1016
0.5 0.1017 0.1017 0.1020 0.1024
1.0 0.1023 0.1015 0.1013  0.1012
1.4 0.1018 0.1015 0.1011  0.1024
2.0 0.1020 0.1024 0.1014 0.1019
2.5 01022 0.1005 0.1025 0.1014
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Figure 2: Log-returns of the SP500 and estimated —EVaR’s at the 1% and 5%
levels, from October 30, 2007 to March 25, 2008.

Figure 2 displays the series of the log-returns and the estimated EVaR’s at
the 1% and 5% levels, while Figure 3 displays the estimated VaR and EVaR
at the 1% level, for all dates starting from September 16, 1998, assuming
a Gaussian distribution for 7 (that is, choosing for H the identity func-
tion). The estimated adjusted VaR’s are always larger than the standard
estimated VaR'’s, which is not surprising in view of Corollary 1. The dif-
ference between the two estimated VaR’s can be very large in more volatile
periods, that is, in the more risky periods, with significant consequences in
terms of required capital. This is seen more clearly in Figure 4, which shows
the difference series EVaR,, (0.01) — VaR,, +(0.01). The proportions of log-
returns that are below VaR,, +(0.01) and VaR,, +(0.05) are respectively equal
to 98.45% and 94.74%. With the Estimation adjusted VaR, the proportions
are equal to 98.79% and 95.15%, respectively, indicating the better coverage.
Applying standard unconditional and independence backtesting procedures
(see e.g. Berkowitz, Christoffersen and Pelletier (2009)) lead to accept the
assumption that the violations form a martingale difference sequence with
both estimators. Now, if we consider the mean of the differences between
the returns and the VaR, when this difference is positive, that is the Ex-
pected Shortfall, we get 0.64 for the standard VaR(0.01) and 0.60 for the
EVaR(0.01).
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Figure 3: Log-returns of the SP500 (thick line), estimated —VaR (blue thin line)
and estimated —EVaR (red dashed line) at the 1% level, from October 30, 2007 to
March 25, 2008.

5 Concluding remarks

The substitution of an estimate to the unknown parameter value in the
expression of the theoretical VaR can imply a bias in the coverage probability
of the reserve, and a significant underestimation of the required capital.
In the current regulation, this problem is circumvented in a rather ad hoc
way by introducing an additional reserve to hedge the so-called estimation
risk. However, the treatments of market and estimation risks are performed
separately, without taking into account the possible dependence between
these risks.

In this paper, we developed an alternative approach, which consists in
jointly considering the two types of risks, by simply introducing an estima-
tion adjustment to the VaR. This adjustment involves closed-form formulas,
which were illustrated in the case of stochastic drift-volatility models. It
represents a convenient approach compared to the numerical estimation of
the residual quantile by bootstrap.
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Figure 4: Log-returns of the SP500, estimated VaR’s and difference EVaR,, ¢-
VaR,,+ at the 5% level, from September 16, 1998 to March 25, 2008.
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Appendices

A.1 Second-order Bahadur’s expansion

Proposition 4 Consider a sequence of one-dimensional continuous distributions
with cdf F,, converging to a cdf F, and positive densities f, converging to a positive
density f, as n goes to infinity. Also assume that the first-order derivative of f,
converges to that of f. Let Gy, (resp. G) denote the quantile function of F,, (resp.
F). Then the following expansion holds, for u € (0,1),

Gp(u) — G(u)

= (B e+ (B 6w (2 e

2
5 getien | (25 ) e
+o{(Fa = F)?[G(u)]} + o (Fn = F)[G(W)](fa = HIG(W)]}.

Proof. i) First-order expansion. The assumptions of continuous distributions with

strictly positive densities entails that F,,{G,(u)} = F{G(u)} = u, for all u € (0, 1).
Hence

FlGn(u)] = Fo[Gn(u)] = FlGn(u)] - F|G(u)]

= JIGW)][Gn(u) = G(u)] + o[(Gn — G)(u)].

Moreover,
F(Gn(u)) = F[G(u)] + [Gn(u) = GW)]fIG(w)] + ol(Gn — G)(w)],  (28)
Eo(Gn(u)) = FolG(u)] + [Gn(u) — G(u)] fu[G(w)] + o[(Gn — G)(u)]. (29)

Thus, we have

FlG(w)] = Fo[G(uw)] + [Gn(u) = Gu){F[G(u)] = fulG(uw)]}
= [flGW)][Gn(u) = G(u)] + o[(Gn — G)(u)].

Since f,, converges to f, we deduce:

(F - F,)[G(u)]
Gp(u) —Gu) = ————————+0[(Gn—G)(u)l. 30
n(u) = G(u) FIGW) [(Gn = G)(u)] (30)
11) Second-order expansion. By similar arguments, the existence of quantile density
functions g, and g, defined as the derivatives of G,, and G, entails

(Fu — F)Cw)] = % T o{ (Fn - F)GW))}.
This shows that o{ (F,, — F)[G(u)]}) = o[(Gr, — G)(u)], allowing to write (30) as
Gulu) — Glu) = W T o{(F, — F)[G(u)]}. (31)
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A second-order expansion is similarly obtained and is given by

FlGn(u)] = FulGr(u)] FlGn(u)] = FlG(u)]
FIGW[(Gn = G)(u)]

1 8f 2 2
+5 55 [C G = G)W)]” +ol(Gn — G)(u)]".

It follows that

Gulu) ~ Glu)
6N (1- 3752 6IG, - W] +ol(Gn - 6w
<{FIGa(w)] ~ PG (w)]) (32
Next, similar to (28)-(29),
F(Gafw) = Fwwn+maw—awuwwn+¥%wwmamn—awﬁ
+ol(G — 0],
Fu(Gulw) = FulG00] + [Gulw) —~ Gl fuG0] + 3 22 G [Ga) ~ G
+ol(G — G ).
Thus
(F~ F)Ga(w] = FG@) - BIGW)] + {fG)] ~ ]} (Galw) - Gl)

+o[(Grn = G)*(u)].
Thus, using (32) and (31), the conclusion follows from:

Gn(u) = G(u)

_ 1y 1810gf

GW)][(Gn = G)(w)] + o[(Grn = G)(u)]
[(F ) [G(u (G = G)W{(f = WG]} + o[(Gn — G)*(u)]

B . 1 810gf [GW)][(Gr — G)(w)] + o[ (G — G)(u)])

@ FGw)] + C AL of(, - PGt )

<{(f = f)[G)]} + 0[(Gn — G)*(u)]] -
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A.2 Proof of Lemma 1.

We shall prove the following intermediate results.

2 aac
+0[E(W3 | X = 2)],

iiy E (Wgalogfxvg; o) | x z) = 781025(2% (W2 | X = 2)

SETICAR SIS

o B0 0 L, (20f) .
i) T—(%E(an(— )+( o )E(Wn|X— )

FolE(Wal | X = 2)].

To prove i) we note that

F(z) — Fu(z) P(X<z)—P(X+W,<2)

/ ( / iw Fm () w)dx) duw. (33)

Hence, by a Taylor expansion of the joint pdf with remainder in the integral form

we get
/ < B fx,wn(z,w)dz> du
+f </;w{fwin (2,0) = Fxm, (z,w)}dx) du
=[x Gowav [ 25 Ot (- ) < / Zw(xz)d:c> duw
/ (/ . / 623;);2”/ )(xU)dudx) do.

By inverting the integrals in uw and x, the latter term can be written as

1 wanX,Wn 2
§/</0 W(zfuﬂrz,w)x d:c> dw

F(z) — Fu(2)
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and is bounded in absolute value by
[w]
l/wQ (/ d:c) dw
2 0
G / 2 /“’
= = w* fw, | x==(w) fXsz :

< @E{W,%C(Wn, 2) | X =z}

)
2

02fXW

83@2 z+:cw

O fx W
ox?

(z + z,w)

d:c) dw

< L parzam | x o B{oG W) X = ),
by Holder’s inequality, and using the decomposition of the joint density
Ixw, (2, w) = fw,|x=-(w)f(z) into the product of the conditional density of W,
given X = z and the marginal density of X. In view of (10) and (11) the conclusion
of i) follows.

Next, we show ii). We have

g (Wialogfx,g;(%wn) |X Z>
ol

_ %@E(me— / ( S x=aw ))m_zdw
o1 0

= XS gz x =2t a_(/ N W"X—””(w)dw)x_;

and ii) is proven.
Now we turn to iii). By differentiation of (33) and another Taylor expansion
we obtain, for some z* between z — w and z,

FG) = 12 =[x (eow) = Fraw, s - w,w))dw,
= /an W (z, w)wdw — //Z ’ 82‘5;2”/ (u, w)(z — w — w)dudw
= Il -+ .[2.

We have

L= ﬁ( / Fov s )wdw)+— / Fov s (w)wio

5
- {aﬁ (W | X = )+(61%Z())E(Wn|xzz)}.
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Moreover, for w > 0, by arguments used to prove i),

2
|| < / / 0 fXW u, w)| dudw
0 32fX O Lew,
= / / B (x4 z,w)| dedw
< FRE{(W,|C(W,,2) | X = 2}
< ( VE(IWal'* | X = 2)B{C(2, W) T/ | X = 2}

In view of (9) and (11) the conclusion of iii) follows.

The first expansion in Lemma 1 is a consequence of i) and ii). To establish
the second expansion, we use Proposition 4. By substituting the approximations in
1)-iii) into Bahadur’s expansion we have:

Gn(u) — G(u)
— B[W, | X = Glw)
10

_10log f(2) pone v 10 pow? ) x —
+< 5 o5 EW;| X ==2) 55, EW;| X =2)
+EM/LX—25 E(W, | X =2)+ Qf%ﬂl@mV|X—z}
10lo
i e USSR (CUAR S}
z=G(u)
from which the conclusion follows. O

A.3 Illustration of Lemma 1 for Gaussian variables
Suppose that (X, W,,) is a Gaussian vector with
X ~ N(m, 02)7 Wy, ~ N(Tnafi)a Cov(X, Wp) = pnoén,

where p,, € [0,1), 7, — 0 and £2 — 0 as n — oo. Then we have

z—m—Tp o
? <\/02 +E2+ 2pna§n> = lan),
F(z) = @(Zam),

Gn(u) = m+m7,+ \/02 +&2+ 20,06, 07 (u), Gu) =m+ad (u).

Given X = z the distribution of W, is N (7, + pn&n =2, (1 — p2)&2) . Thus,

BW|X=2) = mtpuea e Var(Wa | X =2 = (- )€,

gj
—
N
X
|

—m

2
EW? | X =2) = (Tn+pngnz )+<1—pi>fi.
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Olog f(x) __
ox -

Gnl(u) — G(u) — E[W, | X = G(u)]

Moreover, —+*—*. Hence,

A ! _ Qs ()
+3 {%Var[Wn | X =a]+ Var(Wn | X = 2)— 2= 2=G(u)

(VT g T 206 - ) - s - 1= Rt o
= o(&).
Now, letting ay, = &, /0, a Taylor expansion yields:
_Fa(2) — F(2)
/()
= —o(zn—20) + %(zn — 20)%(z = m) + o(2n, — 20)?

T

1 2
= Tn(]. - pnan) + (Z - m) {pnan + 50'721(1 - 3/)%) + = }

202
(z —m)? (z —m)3
T T
1[0 2 2 dlog f(x)
EIW, | X =+ 5 {GLEWVE | X o] + EWE | X =) BT L

+o{E[W? | X = z]}.

pray +o(a + 73 + Than)

The result of Lemma 1 is then verified by direct computation in the Gaussian case.
Finally, it can be checked that the assumptions of this lemma, in particular
(11), are satisfied in this case.

A.4 Technical assumptions used in Proposition 1

Let us denote

da
Z1(U;yt71) = (@(ytlaeag(ytlvooau))> )
0=6,
d%a
Zo(u,yp—1) = W(ytﬂ,@,g(ytAa@o,u)) -
We have
. 1 . .
Win = Zi(et,yi—1)(0n — 6o) + 5(9n —00) Za(et, yt—1)(0n — bo).

The following assumptions are made in Proposition 1. For some v > 0,

(a) E[”Zi(stvytfl)”ﬂl-i_y) | ytfl] < 09, for i = 172
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(b) The functions a(y;_1,6,") 0
e functions a(y:—1,0, 600

entiable.

[y+—1,0,] and [yt—1,0,] are twice differ-

da
o
(¢) The joint density of (e¢, Wy, ) conditional on y,_; satisfies condition (11).

A.5 Proof of Proposition 1

i) Let us derive the first expression for the quantile adjustment. The proof relies on
expansion (7) and Lemma 1, with X = ¢, W,, = W, ,, and expectations replaced
by expectations conditional on ;1.

Hence, for any multiplicative norm,

2201+) 2(14v) 4 2(14v)
T 1 Z1 (e, ye—) I [Vn(0n — 60)]124

1 Za(ee ye- 1) IIPHH [ V(G — 00) | 1)

|Wt,n|2(1+y) <

Thus:
E[|Wt,n|2(1+y) |yt71]
< 722(1“)}5 A 2(14v) E 0,, — 0o)||2++)
< o EllZi(es gl | ye—1] E[l[V1(0n — 60)]| | ye-1]

+ E[|| Za (e, ye-)IIPT) | ye-a] BV G — 00)I*F) | o],

n21+v)

which is finite by Assumptions (a), in Appendix A.4, and (14).

Now, since the conditional moments of \/*r_z(én — 6) given y;—1 and &; do not
depend on the latter, it is clear that the assumptions on terms of the same stochastic
orders in Lemma 1 are satisfied. Moreover, we have:

E[|Wt,n|1+u | €t7yt—1]

21+V ~
< 2 ) P ENVRG, — )20 |y

1 A _
+ 7 1226y )P BlVA(On — 00) 10 | &1,y a] = 0p(n7'72),
and similarly, E[|[W; |23t | &4, 9,-1] = 0,(n™"), which establishes (9) and (10).
Thus the assumptions of Lemma 1.

Next we turn to the computation of the conditional quantile of &; given y;_1.
By

EWinleonyi1] = Ziler,ye—1)E[fn — 00 | €1, y:-1]
1 N R
+5T | Za(etsyi-1) ElBn — 00) (0n = 00)' | 0,91
1 .
Var[Wt,n | Et,yt—l] = EZ1(€t7yt—1)Vaf[\/ﬁ(9n - 90) | €t,yt—1]Z1(€t,yt71)/
+0P(1/n)a
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we get:

gz, (a, 00) — @ (a)
= E[Win|et,ye—1]

1(0
-5 {£Var[Wt,n | et = x,ye 1] —aVar(Wy, | &0 = $7yt—1)}

+op(1/n).

=P 1(a)

The announced result follows.

ii) The second expression for b:(6p,¢) is a consequence of the following links
between partial derivatives. To simplify notations, write a(y;—1,0,y) = a(f,y) and
9(yi—1,0,2) = g(0,z). By assumption, y = ¢g(0,z) < = = a(f,y). It follows from
y = 9(0,a(0,y)) and = = a(6, g(6, x)) that

20 6,0(0,0) + 2(0,0(0,1)) 55(0:0) = 0,
5 0.900.2)) + 2 0.9(6.0) S30.5) = o (31)
and
2 2 2
0 0.0(0,9) + -0 (0,0(6.)) 5 (6.) + Do (6.) 5 (6,(6,9))
2 a a 2
+02160,0(0,9) 220, 4) 22 (0,9) + 220, a(0,1)) o (0.9)
= 0, (35)
2 2 2
i 090,00 + 55 (0.9(6,2) 50 (6,2) + 5 (0.0) 5 (6906, )
2 2
+53(0.900.2) S56.0) 50 (6.0) + 57 (0,9(6,2)) 5 0,3)
= 0. (36)
Now, in view of (36) we have
2—3(90, 9(6,€))Tr (Q 869 (6. g))
= Tr (g 60.9(0.9)) ~ 208 0.0 (0. 9(0,0)
5360, 9(6.2)) 517 (6,005 0.).
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It follows, by using (34), that the right-hand side of (15) is given by:

da 2 dg ag

& (Geng0.en ) S50,
ag 0%a 0%a
25070 Vg, 0900 €) = T ( AR (9’5)))
6 da

= 89/ (907 (955)) 90 (907 (955))

dg da 0%a

+28_(9 5)89/(90, g(0,e)Q 960y ———(00,9(0,¢))

82
~Tr ( 8989/ (907 (955))) = bt{eag}a
and the proof of Proposition 1 is completed. O

A.6 The jacknife for bias reduction

To illustrate the use of the jacknife technique to remove the conditional bias of the
estimator, consider the AR(1) model with intercept 6y

iid.

Yyt = bo + pyt—1 + 1, 60| < 1, (1) "~ N(0,1) (37)
where, for simplicity, the autoregressive coefficient p is known. Given observations,
Y_1,---,Y—n_1, Bg can be consistently estimated by

i1 - 1o
= EZ py—i—l):90+ﬁzg—i-
=1 =1
The expansion y; = lefp o, p'Te_; shows that the joint distribution of

(y1, V(0 — 0p)), for t > 0 is

1 1 1—p" t+1
N ( o ) L ol m, = %
) — 41 ) )
0 VR ! 1=p

from which we deduce

E(Wnb, —6o) | y) = pﬁ(l =" )1+ p)(y: — my),

which is of the form (16) with A(¢) = p*. Thus the conditional bias of the estimator
is of order 1/n and Assumption (12) is not satisfied. We also have

2
1
(1— pn)pt+1) =1+4o0p(1),

Var[v/n(0, —00) | ye] =1 — (%
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showing that Assumption (13) is satisfied. Because the distribution of \/n(0,, — 6p)
conditional on y; is Gaussian, Assumption (14) is also satisfied. Finally, the tech-
nical assumptions displayed in Appendix A.4 are verified: we have a(y;—1,0,y:) =
Yt — 0 — pyi—1, Z1(u,y4-1) = —1,Z2(u,ys—1) = 0 showing that (a) and (b) hold
true; moreover, it can be verified that condition (11) is satisfied, by noting that
C(z,w) < (Jw| + |2|)?/¢(2) and by using again the fact that the distribution of
én — 6y conditional on y;_1 is Gaussian and thus admits moments at any order.

To adjust for the bias, a Jacknife estimator can be constructed. For simplicity
assume that n = 2¢ and let

£ n
. 1 A 1
o) = 7 Y (Wi —py—i-1), 07 = 7 > - (y—i = py—i1)-
A Jacknife estimator based on this subsampling scheme is given by
A 1 A A
W) — = (p(2) _ Hp(1)y.

Indeed, we have
tH1+0 0t
BOY) — gy | y) =2 —LL
( | {0

The joint distribution of (y:, \/ﬁ(éél) —0p)), for t >0 is

1 0
N < My > ) e 14p% )
< 0 0 2(l—pe)2

showing that, in this model, the jacknife estimator is independent from the y;’s for
t > 0. We also have

(1= ")+ p)(ye —my) =0.

1+ p2€

—— =2+4o0p(1),

1o~ 2tort

showing that the bias reduction comes at a price, namely an increase of the variance.
Such a bias and variance trade-off in jacknife estimators has often be noted (see
Phillips and Yu (2005) for a discussion of this issue in the context of option prices).

Var[v/n(05) — 6o) | y] = 2

A.7 Proof of Proposition 3.

The conditional probability of violation with the standard VaR estimator given by
(5) is

Pi_q[ys < —VaR, ()] = Ptfl[g(ytfl;én;ét) < g(yt71§éna¢_1(a))]
= Ptfl[{::t < @71(04)], (38)
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because g is strictly increasing in its last argument. Similarly, with the estimation
adjusted VaR estimator defined in (17) we have

P_1[yr < —EVaR, ()] = Pi_1[é < qe, (o, 0,)].

Lemma 1 entails the following expansion for the c.d.f. of &;, keeping the notations
of the proof of Proposition 1:

Pt—l[ét < Z]
= ®(2) — EWin | e, ye-1]0(2)

10
+§ {%E[Wgn | et =2, y-1] — xE(an |er = 3U7yt—1)} ¢(2) + op (1/n)

bt(eo, Z)

= 20+ 2n

¢(z) + op (1/n),

since we have seen that E[W,,, | e, yi—1] is of order op (1/n). It follows that

P <o) = at M2 (0o10)) 4 op (1/m),

which, from (38), proves (20). Now, using a Taylor expansion of ® around ®~!(a),

P& < ge, (Oé,én) | én]

= B(qz, (a,0,)) + bt(ﬂo,q+§m,9n))

bi{fn, @~ ()}
2n

34z, (,0,)) + op (1/n)
be{fo, @~ (a)}

= (@ () - =

+op(1/n)
= a+ op(1/n)

¢~ (o)) + $(2~(a))

in view of the convergence of 8, to . Thus (21) is proven. |

A.8 Another way to derive the coverage probability

i) Let us consider the type of proof followed by Hansen (2006) (proof of Theorem
2), which differs from that of Appendix A.7. We have, for any real variable Z(0,,)

Plye < Z(6n) | ye-1] = Plg(00,e1) < Z(0n) | y11]
= Pler < a(bo, Z(02)) | ye—1]
= E{Pl < a(eoa Z(0n) | ye-1,0n] | ye1}
= BE{®[a(0o, Z(0n))] | y1-1}, (39)
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using the simplified notation of Appendix A.5 ). Let a(fy, Z(6p)) = u. A Taylor
expansion around 6, gives

®[a(fo, Z(6n ))]
= )+ 60 5 00, 2(00)) 5 (00) 0 00)

L0y H¢< ) (500, 2600) + 055 00,2 <eo>>} SLALATS

000 5 (00 Z(60) 35000 O — 00

+0p(116 — 6ol).
If Z(6p) is a function of y;_1, it follows from (39) and Assumption (12) that

yt<Z |

- H (6.2 u(§“<90,2<90>>>}2592—§<90>

82
(90, (90 T’I“ ( 8989/(90))] +0p(1/n). (40)
1) In the special case of the VaR, we have

07z 69

Z(én) = —VaR, (a) = g[@m (I>_1(04)], 50 —(6p) = 20

[907 (0&)], U= q)_l(a)

and we get (20), using formula (15) for b;{0y, ®~*(a)}. Similarly, we obtain (21).

iii) Comparison with Hansen’s (2006) expansion for the coverage probability.
Starting from (39), Hansen makes a Taylor expansion around Z () (instead of 6y).
Doing this we get

e 260
= ®(u)+ou ) (00, 2(60))(2(00) — 2(60))
2 {2 560, 2060) — u (G160, Z(60) ) } (2(6:) - 2(00))?

+0p([Z(0n) — Z(60)]°).

Assuming that

E(Z(0,) = Z(00) | y—1] = op(1/n),
Var[\/a(Z(0n) = Z(00)) | ye—1] = o*(60) + 0p(1),
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we find

P[yt<Z( n) | ye—1]

2 a 2
= o+ 49 {g S 60, 2000)) — (500,200 }a%) +oyl1/n).

2n

Comparing with (40) we see that the term

. 2
%g_y(eo, (90))T7“( a(i;ao'(%))

is missing. This term corresponds to the first-order bias of Z(6,,), since we have

2

A 0°Z
9n790)+(9 —6p)

Z(9n):Z(90)+ 2000

%(90)( —"(60)(0n 90)+0p(|\én*90||2)~

Thus, under our assumption (12),

2

EZ(0n) — Z(00) | yr_1] = %TT <Qa‘?9£, (90)) +o,(1/n).

In general, this expectation cannot be neglected at order 1/n if (12) holds.

A.9 Proof of Corollary 1

We have 0
a(ytflaovg(ytflae()ag)) = H71 (O;((HO))H(E)> .
t
We deduce
da -1 Ut(eo) Jdoy
_(yt—1797g(yt—159075)) = 2 _H(E)’
" i () 0
Oa 1 Ooy
= —K e
(89 (1,9, 9 (-1, 60, € )))9_90 (E)Jt(ﬁo) 00 (Bo),

where K(¢) = 1/(0log H(¢)/0¢). By differentiating again w.r.t. ¢, we get

d%a  0K(e) 1 doy
(898 (yt 179 g(yt 17907 )))9_90 = _Tdt(eo)W(HO%

and w.r.t. 0, we get

62
(aeae,(yt 179 g(yt 1)907 )))

=0,

B _ Ologh(e) 1 doy Doy

- K(E)[ 0z K(E)”} 260 00 o9 %)
1 820t

—K(e)

o+ (60) 0006 (6o)-
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By applying the formula in Proposition 1 we get

bt (905 E)

=1 90¢(0p) 00(00) ..o dlog h(e)
~ oi(0y) 00 @ 00 K Oe e

K(e) 020y
o) { 9609 WQ} |

It follows from (17)-(18) that

EVaR, (a) =

—g [41-150n, @71 (@) = 100, @7 () /20]
o (0,)H [cp-l(a) — be(f,, 3 (@) /m}
—01(0) H[@ ()] + 04(0,)B[® " ()b (B, @ (@) /21 + 0p(1/).

It suffices to replace (6o, &) by (6,, ® '()) in the above formula for b, (6o, €) to get
the announced result. ad

A.10 Proof of Corollary 2
In the standard ARCH model we have

820't - -1 80',5 aat

0000 o, 00 00"

Thus, in view of Corollary 1, we have

EVaR,, ¢(«) — VaR, (o) = fa[CI)*l(a)]

where

8n 0'? (én

N
QD
x

_ H?*(e) [0loghle) dlog H (¢)
ale) = h(e) { Oe +E+T}'

Hence, from the strong consistency of 6, to 0o, almost surely

EVaR,, () — VaR, () & 1 8;%2

2
_100;

lim n
n— 00

= 2a(a)

Jt(@n) 8 021(90) BYa (90)J W(QO)'

The conclusion follows by

0'21 (9()) 89/

E(Laitz(eo)tllaig(eo)) = TY{E

_, 00
90 oT(d5) oo )7 W(QO)) }




A.11 Proof of Corollary 3

We have
_ bo) — u(0) | oe(bo)
0. g 0.c)) = HL (Falo H(e) ).

a(Yt—1,0,9(yt—1,00,€)) ( 2(0) + 72(0) (e)

We deduce
t(00) —p+(0)+0+(00) H(
O 1,0, (1, 60,2)) = B "’%}
% t—1,Y, t—1,Y0, - B e (00)—pe (0) o 90
h{H 1( e + S H )}
8 -1 80t ]. aut
0 0 = ——— | K(e)—(6¢
(89(% 1 g(yt 1,Y0, )))9:90 O't(eo) |: (5) 89( ) :|
By differentiating again w.r.t. €, we get
62
0 0
(898 (yt 15 g(yt 1, Y0, )))9_00

-1 aK(s)%( )78h(€) 1 %(9 )
= o6) | 0 90" de h2(e) 00 V|
By applying the formula in Proposition 1 we get
1 dot(6p) . 00¢(00) o Olog K (g)
= Q K 22— —
b (8o, €) 72 (6o) [ 00" a9 K ) 0e c
aat(9())ﬂaﬂt(9()) K(e) [ dlog(K/h)(e) .
a0’ 00 h(e) Oe

8ut(90) aut(Qo) 1 810g h(E) B
M TR TS L S

+2

It follows from (17)-(18) that
EVaR, ()
= =g 110,971 (0) = bu(0n, © 7 (@) /20)
= (0, — oo (0)H [qu(a) - bt(én,qu(a))/m}
= —p(0n) — 00 (0,) H[® ()] + 04(0,)2[@ ()] by (0, @ () /20 + 0 (1/n).

Tt suffices to replace (6, ) by (én, ®~!(a)) in the above formula for b;(6p, €) to get
the announced result. O
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