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Abstract

We study the exclusionary properties of nonlinear pricing by dominant

firms in a static environment. Optimal price schedules are nonlinear when

the rivals’ sensitivity to competitive pressure varies with the “contestable

share” of the market. When buyers can dispose of unconsumed units at no

cost, and thus might purchase units they do not need, dominant firms are

prevented from placing too much pressure on rivals, which limits the extent

of inefficient exclusion. When disposal costs are large and sensitivity to

competitive pressure is not monotonic in the contestable share, optimal

price schedules may be locally decreasing and highly nonlinear.
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1 Introduction

In recent years, exclusionary conduct by firms with market power has become
a high-priority issue on the agenda of antitrust agencies. For instance, the
European Commission has made it clear that the emphasis of its enforcement
activities is on “ensuring that undertakings which hold a dominant position do
not exclude their competitors by other means than competing on the merits of
the products or services they provide.” The U.S. Department of Justice concurs
that “whether conduct has the potential to exclude, eliminate, or weaken the
competitiveness of equally efficient competitors can be a useful inquiry”, and
suggests that this inquiry “may be best suited to particular pricing practices.”1

It is indeed in the area of pricing behavior that the so-called “equally efficient
competitor test” most naturally applies. In essence, the test consists in check-
ing that the “effective price” offered by the dominant firm, i.e. the price that
competitors have to match, covers (some appropriate measure of) its costs. A vi-
olation of the test, therefore, is tantamount to a form of below-cost pricing. Such
an outcome, however, says nothing about the precise channel by which the com-
petitive process is harmed. The structure of the test –a price-cost comparison–
might suggest a predatory scenario, whereby the dominant firm would incur a
short-term sacrifice in the hope of later recoupment, but antitrust authorities
are reluctant to engage in such a legally difficult route. As a general rule, they
avoid being specific about possible “theories of harm”, for fear of weakening their
cases in court. On the other hand, jurisprudence, in most countries, imposes a
high standard of proof on defendants putting forward efficiency reasons for their
conduct.

The purpose of the present article is to offer a static scenario of exclusion
that accounts for the various, often highly nonlinear, price schedules observed
in practice. The scenario is consistent with the as efficient competitor test and

1See, respectively, European Commission (2009) and U.S. Department of Justice (2008).
High-profile exclusionary cases involving pricing practices include Virgin v British Air-
ways (S.D.N.Y. 1999 and 2nd Cir. 2001), Concord Boat (8th Cir. 2000), Lepage’s v 3M
(3d Cir. 2003) in the United States; Virgin/British Airways (2000/74/EC of 14 July 1999),
Michelin (COMP/E-2/36.041/PO of 20 June 2001), Tomra (COMP/E-1/38.113, 2006), and
Intel (COMP/C-3 /37.990, 2009) in Europe.
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provides a transparent interpretation of the shape and structure of the tariffs
in terms of competitive pressure placed on rival firms. The scenario highlights
a number of environmental parameters that influence the exclusionary power of
price schedules.

Our anticompetitive scenario relies on a simple incumbency model whereby
the dominant firm commits to a price schedule that is taken as given in the
negotiations between the buyer and rival firms. As a starting point, we assume
that the dominant firm can let the price charged to buyers depend not only on
the quantity it supplies to them but also on the quantity they purchase from
rivals. When the surplus created by rivals is uncertain, we find that the rivals
sell less than the efficient quantity, that distortion increasing with the rivals’
bargaining power vis-à-vis buyers. For a given level of the rivals’ sales, however,
the dominant firm does not need to distort its own quantity, because it can
directly penalize buyers for supplying from rivals.

This preliminary analysis –a multi-unit extension of Aghion and Bolton
(1987)– does not easily carry over to the more interesting case where the dom-
inant firm’s prices cannot explicitly depend on the quantity purchased from
rivals. In this case, indeed, the incentives to purchase from the dominant firm
are provided only through quantity rebates granted to buyers, and large rebates
might induce the latter to opportunistically purchase units from the dominant
firm with no intention to use them. To address buyer opportunism, we adopt a
demand specification that involves two fundamental parameters: disposal costs
and the “contestable share” of the market. This framework is sufficiently rich to
reflect the notions that the dominant firm’s product is a “must-have” good and
that purchasing unneeded units is costly for the buyer.

Disposal costs are incurred by buyers when they fail to consume purchased
units. Their magnitude depends on the particular industry and on the character-
istics of the traded product. Buyer opportunism is unlikely under large disposal
costs as it would then be costly for buyers to purchase units without consuming
them. In the extreme case where disposal costs are infinite, the dominant firm
achieves the same outcome as when the price schedule depends on the quantity
purchased from rivals. On the other hand, low disposal costs, by making buyer
opportunism possible, prevent the dominant firm from placing too much pressure
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on rivals and thus limit the extent of inefficient exclusion. It follows that total
welfare is lower under larger disposal costs. Antitrust agencies should therefore
be particularly vigilant when disposal costs are high or when the price offered
by the dominant firm depends on the quantity purchased from competitors.2

The notion of contestable share has been defined by the European Commis-
sion as “how much of a customer’s purchase requirements can realistically be
switched to a competitor.” In practice, the contestable share is a critical ingre-
dient of the the as-efficient competitor test as it defines the relevant quantity
range over which the price and the cost should be computed. Not surprisingly,
its determination has proved a very contentious issue in recent cases, reinforcing
our view that contestable shares are fundamentally uncertain.

We show that optimal tariffs are nonlinear when the rivals’ sensitivity to
competitive pressure depends on the contestable share. The sensitivity reflects
the extent to which more pressure placed on rivals translates into more exclu-
sion. With no a priori restriction on the shape of the tariffs, we are thus able
to explain a wide variety of patterns. For instance, we find that optimal tariffs
tend to be concave when sensitivity increases with the scale of entry, and hence
the dominant firm wants to place less pressure on larger competitors. When dis-
posal costs are sufficiently large and the sensitivity to competitive pressure is not
monotonic in the contestable share, optimal schedules may exhibit highly nonlin-
ear shapes and admit decreasing parts, as is the case under so-called “retroactive
rebates”,3 a pattern that has received much attention from antitrust enforcers.

The article is organized as follows. Section 2 introduces the model. Section 3
assumes that the dominant firm’s tariff can depend on the quantity purchased
from rivals, thus ruling out the buyer opportunism problem. Section 4 intro-
duces the notions of contestable share and disposal costs. Section 5 solves the
problem when both the surplus generated by rivals and the contestable share
are uncertain, relates the shapes of optimal price schedules to the distribution
of uncertainty, and explains how disposal costs affect the extent of inefficient
exclusion.

2A similar policy recommendation, in the context of market-share contracts, is derived by
Inderst and Shaffer (2010) and Calzolari and Denicolo (2012).

3This kind of rebates, granted for all purchased units once a quantity threshold is reached,
induces downwards discontinuities in price schedules.
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2 The model

A dominant firm, I, competes with a rival, E, to serve a buyer, B. The produc-
tion costs are assumed to be constant and are denoted by cE and cI . We consider
situations where the characteristics of the new, rival good are not yet known,
and hence the cost cE and the buyer’s taste for the new, rival good are still
uncertain. We introduce a multidimensional parameter θE in the buyer’s utility
to model uncertainty about her preference for good E. In contrast, we assume
away any informational asymmetry as to the characteristics of the incumbent’s
good.

If the buyer purchases qI units of good I and qE units of good E, she
earns a gross profit V (qE, qI ; θE). The function V is assumed to be concave
in (qE, qI), with a negative cross-derivative, ∂2V/∂qE∂qI < 0, to reflect the im-
perfect substitutability of the two goods. The total surplus function is given by
W (qE, qI ; cE, θE) = V (qE, qI ; θE) − cEqE − cIqI . We denote by q∗E(cE, θE) and
q∗I (cE, θE) the efficient quantities, i.e. the quantities that maximize W .

2.1 Timing of the game

The order of events reflects the incumbency advantage of the dominant firm and
the uncertainty as to the characteristics of the rival good:4

• First, the buyer and the incumbent design a price schedule, T (qE, qI), to
maximize (and split) their joint expected surplus. At this stage, the buyer
and the dominant firm know the production cost and the characteristics
of good I, but do not know the production cost cE and the characteristics
θE of the new product.

• Next, the buyer and the competitor discover the cost and preference pa-
rameters, cE and θE, relative to the rival good.

• Then, the buyer and the competitor, both knowing the terms of the agree-
ment between the buyer and the incumbent, agree on a price and a quan-
tity. This negotiation takes place under complete information and is as-

4The same timing has been studied in Marx and Shaffer (1999) and Marx and Shaffer
(2004) under complete information.
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sumed to be efficient. For example, B and E can use a two-part tariff
with slope cE. We denote by β the competitor’s bargaining power, which
determines the sharing of the surplus.

• Finally, the buyer purchases from the incumbent. At this stage, the buyer
maximizes her net profit V (qE, qI ; θE) − T (qE, qI), with no consideration
for the incumbent’s profit T (qE, qI) − cIqI . From an ex ante perspective,
this behavior can be seen as opportunistic.

It may be unfeasible (e.g. for observational reasons) or legally prohibited to
condition the price schedule T on the quantity purchased from the competitor.
Accordingly, we also study the case where the tariff is independent from qE, i.e.
T (qE, qI) = T (qI). Hereafter, the term “marginal price” refers to the price of an
extra unit of good I, i.e. ∂T (qE, qI)/∂qI when the tariff is allowed to depend on
qE, T ′(qI) for an unconditional tariff.

As regards the timing of negotiation, we assume that the buyer and the
dominant firm cannot renegotiate once uncertainty is resolved. (If they could,
they would simply agree on the optimal tariff under complete information.) The
contribution of the current paper is, on the contrary, to study the shape of the
price schedule under incomplete information. We also assume that the buyer
and the dominant firm cannot renegotiate after the buyer has purchased from
the competitor. In particular, they have a common incentive to renegotiate the
quantity of good I whenever qI does not maximize W (qE, qI ; cE, θE), where qE
is the quantity already purchased from the competitor. Hereafter, the ex post
efficient, renegotiation-proof quantity of incumbent’s good, which maximizes W
given qE, is denoted by q∗I (qE; θE).5

2.2 Deciding how many units to purchase

The last two stages of the game take place under perfect information, given the
price schedule T and the known characteristics of the rival good. The buyer and

5With this slight abuse of notation, we observe that the efficient quantity of incumbent
good, q∗I (cE , θE), coincides with q∗I (q∗E(cE , θE); θE).
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the rival choose the quantities to maximize their joint surplus

SBE(cE, θE) = max
qE ,qI

V (qE, qI ; θE)− T (qE, qI)− cEqE. (1)

It is worth, however, solving for the two quantities sequentially. Suppose the
buyer has purchased qE units from the competitor. Then the buyer picks
qI(qE; θE) to maximize

max
qI

V (qE, qI ; θE)− T (qE, qI). (2)

Whenever the marginal price of an extra unit of good I, ∂T/∂qI , differs from
cI , the quantity qI(qE; θE) chosen by B does not maximize the joint surplus of
B and I, i.e. differs from q∗I (qE; θE). The reason why this may happen is that
the schedule T is also designed to put competitive pressure on the rival, which
may involve setting the marginal price ∂T/∂qI below the marginal cost cI . This
would give the buyer an ex post incentive to buy units of good I in excess of
q∗I (qE; θE).

Anticipating the above decision regarding qI , the buyer and the competitor
choose qE to maximize their joint surplus

SBE(cE, θE) = max
qE

V (qE, qI(qE; θE); θE)− T (qE, qI(qE; θE))− cEqE, (3)

which is equivalent to (1). The buyer and the competitor share the surplus SBE
according to their respective bargaining power and outside options. The com-
petitor’s outside option is normalized to zero. As to the buyer, she may source
exclusively from the incumbent, so her outside option is V (0, qI(0; θE); θE) −
T (0, qI(0; θE)). It follows that the surplus created by the relationship between
B and E is given by

∆SBE(cE, θE) = SBE(cE, θE)− [V (0, qI(0; θE); θE)− T (0, qI(0; θE))] . (4)

Denoting by β ∈ (0, 1) the competitor’s bargaining power vis-à-vis the buyer,
we derive the competitor’s and buyer’s profits:

ΠE = β ∆SBE

ΠB = (1− β) ∆SBE + V (0, qI(0; θE); θE)− T (0, qI(0; θE)).

If β = 0, the competitor has no bargaining power and may be seen as a compet-
itive fringe from which the buyer can purchase any quantity at price cE. On the
contrary, the case β = 1 happens when the competitor has all the bargaining
power vis-à-vis the buyer.
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2.3 Second-best equilibrium and inefficiencies

Ex ante, the buyer and the incumbent design the price schedule to maximize
their expected joint surplus, equal to the total surplus minus the profit left to
the competitor:

EcE ,θEΠBI = EcE ,θE {W (qE, qI ; cE, θE)− ΠE} . (5)

The sharing of the expected joint surplus between the buyer and the incumbent,
and hence the respective bargaining power of each party, play no role in the
following analysis.

From the ex ante perspective, the tariff has two purposes: on the one hand,
extracting rent from the rival, i.e. making ∆SBE as small as possible; on the
other, maximizing the expected welfare W . The rent extraction motive may
generate two kinds of inefficiencies. First, after having purchased qE from the
rival, the buyer may not pick the efficient quantity q∗I (qE; θE), a phenomenon we
call “ex post inefficiency”. Second, as pointed out by competition authorities,
there might be “inefficient foreclosure”: the quantity purchased from the com-
petitor may not be efficient, qE < q∗E. Inefficient foreclosure is complete when
qE = 0 < q∗E, partial when 0 < qE < q∗E. In both cases, the rival is prevented
from selling the efficient number of units of good E.

2.4 Complete information

The complete information case has been studied in Marx and Shaffer (1999)
and Marx and Shaffer (2004). We recall their results using our notations in
Appendix E. The main point is that the second-best allocation is efficient. In
particular, there is no inefficient exclusion.

When the price schedule is allowed to depend on both quantities, B and I
commit on a two-part tariff in qI , whose constant part depends on the quantity
purchased from the rival: T (qE, qI) = cIqI + P (qE). The linear part induces
the efficient choice q∗I (qE, θE) ex post, neutralizing buyer opportunism. The
constant part, P (qE), is used to extract all the surplus created by the rival.
Specifically, the incumbent imposes a “penalty” P (q∗E)−P (0) for supplying from
the competitor. Setting this penalty at W (q∗E, q

∗
I )−W (0, q∗I (0)) guarantees that

ΠE = ∆SBE = 0.
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When the price schedule depends on qI only, there is a tension between buyer
opportunism and rent extraction. Placing too much competitive pressure on the
rival, in practice granting generous quantity rebates, may indeed attract the
buyer, who is tempted to actually purchase the corresponding units from the
incumbent. It may therefore be optimal to let the rival earn a positive profit at
the second-best equilibrium under complete information (see Appendix E).

3 One-dimensional uncertainty

Hereafter, the buyer’s preferences are described with a two-dimensional param-
eter θE = (sE, vE). In this and the next section, however, the component sE is
assumed to be known. The problem under two-dimensional uncertainty is stud-
ied in Section 5. The parameter vE, which enters quasi-linearly in the utility
function, represents the intensity of the taste for good E. The parameter sE
describes how fast the taste for good E declines with the quantity purchased.
The buyer’s gross utility is given by

V (qE, qI ; θE) = vEqE + vIqI − h(qE, qI ; sE),

where h is a convex function of (qE, qI) with first derivatives at (0, 0) equal to
zero and with nonnegative cross derivative. For instance, the function h may
consist of quadratic terms in qE and qI . The preference for good I, represented
by vI , is known ex ante. We denote by ωE = vE − cE ≥ 0 and ωI = vI − cI > 0

the unit surpluses generated by good E and good I respectively. We denote by
[sE, s̄E] and by [ωE, ω̄E] the supports of the random variables sE and ωE. The
cumulative distribution function of sE, denoted by G, is assumed to admit a
positive and continuous density function g on [sE, s̄E]. The distribution of ωE
conditional on sE is denoted by F (.|sE) and is assumed to admit a positive and
continuous density function f(.|sE) on [ωE, ω̄E].

As the parameters cE and the vE intervene only through the unit surplus
ωE = vE − cE and the size of the contestable demand, sE, is assumed to be
known, we are left with a one-dimensional screening problem. The number of
units of good I purchased by the buyer, qI(qE; θE) and the ex post efficient
quantity, q∗I (qE, θE), do not depend on ωE, so we simplify the notations into
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qI(qE) and q∗I (qE). Moreover, we do not mention the known value of sE in the
arguments of qE, ΠE and SBE.

From the analysis of Section 2.2, we know that the rival firm earns ΠE =

β∆SBE, where ∆SBE, given by equation (4), represents the surplus created
by the trade between the buyer and the rival. Under the above quasi-linear
specification, the surplus ∆SBE can be rewritten as

∆SBE(ωE) = max
qE≥0

{ ωEqE + vIqI(qE)− h(qE, qI(qE))− T (qE, qI(qE))

− [ωIqI(0)− h(0, qI(0))− T (0, qI(0)) ] } . (6)

The surplus gain ∆SBE being the upper bound of a family of functions that de-
pend linearly on ωE, is convex in ωE, and hence almost everywhere differentiable.
Its derivative is given by the envelope theorem:

∂ΠE

∂ωE
= βqE(ωE). (7)

The convexity of ΠE thus implies that qE is nondecreasing in ωE. An integration
by parts yields∫ ω̄E

ωE

ΠE(ωE)f(ωE|sE) dωE = ΠE(ωE) + β

∫ ω̄E

ωE

qE(ωE)[1− F (ωE|sE)] dωE.

The buyer and the incumbent design the price schedule to maximize

EωE
ΠBI = EωE

W (qE, qI(qE);ωE)− β
∫ ω̄E

ωE

qE(ωE)[1−F (ωE|sE)] dωE −ΠE(ωE).

The above equation uncovers the general structure of the problem. The choice of
qI relates to ex post efficiency while the choice of qE reflects the tradeoff between
efficiency and rent extraction. By definition of q∗I (qE), we have

EωE
ΠBI ≤

∫ ω̄E

ωE

S v(qE;ωE)f(ωE|sE) dωE − ΠE(ωE),

where, following Jullien (2000), we have defined the “virtual surplus” S v as

S v(qE;ωE) = W (qE, q
∗
I (qE);ωE)− βqE(ωE)

1− F (ωE|sE)

f(ωE|sE)
. (8)

The virtual surplus is the total surplus W (qE, q
∗
I (qE);ωE) adjusted for the infor-

mational rents βqE (1− F (ωE|sE)) /f(ωE|sE) induced by the self-selection con-
straints.
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If the tariff is allowed to depend on qE, a two-part tariff with slope cI ,
T (qE, qI) = cIqI + P (qE), ensures that the buyer picks the ex post efficient
quantity, q∗I (qE), for any prior choice of qE. By (6), we see that the rival’s profit,
ΠE = β∆SBE, depends only on the difference P (qE)−P (0), which thus governs
the efficiency rent tradeoff.

Differentiating the virtual surplus with respect to qE, we find that the second-
best quantity is given by

d

dqE
W (qE(ωE), q∗I (qE);ωE) ≤ β

1− F (ωE|sE)

f(ωE|sE)
, (9)

with equality if qE > 0. Given that WqI (qE, q
∗
I (qE);ωE) = 0, the above total

derivative in qE is equal to the partial derivative WqE(qE, q
∗
I (qE);ωE), which, by

the first-order condition of the buyer’s and rival’s problem (6), coincides with
P ′(qE). If qE(ωE) = 0, then ΠE(ωE) = ∆SBE(ωE) = 0 by (6). If qE(ωE) > 0,
the less efficient rival’s profit, ΠE(ωE), is set to zero by an appropriate choice
of P (qE(ωE)) − P (0). In Appendix A, we check that qE is nondecreasing in
ωE under a standard condition regarding the distribution F , which yields the
following result.

Proposition 1. Suppose sE is known ex ante and (1− F )/f is non-increasing
in ωE. The conditional tariff T (qE, qI) that maximizes the buyer-incumbent
pair’s joint is profit is given by cIqI + P (qE), with

P ′(qE(ωE)) = β
1− F (ωE|sE)

f(ωE|sE)
(10)

for positive values of qE(ωE). The quantity purchased from the dominant firm
(the competitor) is ex post efficient (distorted downwards). The extent of ineffi-
cient exclusion increases with the rival’s bargaining power vis-à-vis the buyer.

Proposition 1 extends the results of Aghion and Bolton (1987) in a multi-
units setting. The difference P (qE) − P (0) can be interpreted as a “penalty”
imposed to the buyer for supplying from the rival. Under the assumption of
the proposition, the penalty is increasing and concave in qE. The constant P (0)

serves to divide the expected surplus between the buyer and the dominant firm.
As WqE is positive and W is concave, we find (complete or partial) inefficient
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foreclosure: qE < q∗E. By concavity of the W , the higher the rival’s bargaining
power vis-à-vis the buyer, β, the more severe the downward distortion of qE.

When the price schedule is not allowed to depend on qE, the tariff T (qI)

governs the choice of the quantities purchased from both suppliers. Ex ante,
the buyer and the dominant firm have only one instrument to manage buyer
opportunism and solve the rent/efficiency tradeoff. For this reason, the anal-
ysis is more complex for unconditional tariffs T (qI) than for conditional tariffs
T (qE, qI), as already illustrated by the complete information case (Lemma E.1).
Intuitively, the buyer and the dominant firm face two forces:

• the desire to neutralize buyer opportunism and to induce an ex post effi-
cient choice of qI , which pushes the marginal price towards the marginal
cost cI ;

• the rent/efficiency tradeoff, which may require to set the marginal price
below cI .

In the next section, we consider an environment where the first force translates
into a simple constraint on the marginal price. Then the rent/efficiency tradeoff
can be solved within the limits allowed by this constraint.

4 “Must-have” good and disposal costs

Hereafter, we specialize to a framework with inelastic buyer demand, meaning
that the buyer’s total consumption will not exceed an exogenous level, even if
prices become very low. This property entails no limitation given the purpose
of our analysis because, as already mentioned, we are not interested in quan-
tity distortions caused by inefficient bilateral bargaining,6 but rather in how
nonlinear pricing by the dominant firm alters the split of the buyer’s purchase
requirements between the two suppliers.

6Recall that we assume away any bilateral inefficiency (e.g. asymmetric information) be-
tween the buyer and each of the two suppliers. In particular, the buyer and the incumbent
would, in the absence of a rival, have no reason to distort the traded quantity. Similarly, we
assume throughout the article that the negotiation between the buyer and the rival takes place
under perfect information and is efficient (see Section 2.1).
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In Section 4.1, we specify the buyer preferences, introducing the size of the
contestable demand and the level of disposal costs. The latter parameter mea-
sures the severity of the buyer opportunism problem, which we discuss in Sec-
tion 4.2. The next two subsections are devoted to solving the problem when the
size of the contestable demand is known ex ante. The analysis will then be used
in Section 5 to solve the multidimensional problem with uncertain contestable
demand.

4.1 Contestable market share and disposal costs

As explained in the introduction, it is often the case that the buyer is not ready
to supply all of her requirements from the rival firm within a reasonable time
horizon. Accordingly, we assume hereafter that the rival can address only a
fraction of the buyer’s demand within the relevant time period. We denote this
fraction by sE. The per unit utility derived from the rival good is vE for the sE
first units and zero beyond.7 The characteristics of good E are thus summarized,
as in Section 3, by a two-dimensional parameter θE = (sE, vE). So far, the
preferences for the two goods are independent. The notion of substitutability
comes from the assumption that the buyer purchase requirements are finite: she
cannot consume more units than a known, fixed limit, which we normalize to
one, and thus must split her requirements between the two goods.

We allow the buyer to purchase more units than needed, but assume that
she incurs a cost if she fails to consume some of the purchased units. We denote
by γ > −cI the disposal cost per unconsumed units. The magnitude of disposal
costs may vary substantially across industries, as disposing of computer chips,
tyres for trucks, or heavy pieces of machineries is likely to entail different costs.
We allow disposal costs to be negative (as long as they remain above −cI), in
which case they represent in fact revenues from reselling unused quantities on a
secondary market. Disposal costs also depend on the seller’s ability to impose
or to prevent particular uses of the purchased units and on the buyer’s ability
to avoid monitoring by the dominant firm. Throughout the paper, the level of

7The assumption that the rival firm can address at most a fraction of the buyer’s demand
may also reflect a competitor’s capacity constraint. In both interpretations of the model, the
buyer never purchases more than sE from the competitor in equilibrium: qE ≤ sE .
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the disposal costs is assumed to be common knowledge.

Having purchased quantities qE and qI from the rival and the dominant firm,
the buyer chooses consumption levels xE and xI so as to maximize

vE min(xE, sE) + vIxI − γ(qE − xE)− γ(qI − xI)

subject to the constraints xE ≤ qE, xI ≤ qI , and xE + xI ≤ 1: the buyer cannot
consume more than she has purchased nor more than her total requirement. We
denote by V (qE, qI ; θE) the buyer’s indirect utility, i.e. the value of the utility
at the solution to the above maximization program. It can be checked that the
function V is concave and piecewise linear in (qE, qI) and has a non-positive
cross-derivative, ∂2V/∂qE∂qI ≤ 0, which reflects the substitutability between
the incumbent and rival goods.

When qE ≤ sE and qI ≤ 1− qE, the functions V and W have simple expres-
sions: V (qE, qI ; θE) = vEqE + vIqI and W (qE, qI ; θE) = ωEqE + ωIqI .

Efficiency Suppose first that the buyer has purchased qE units from the rival,
with 0 < qE ≤ sE, and considers buying a unit of good I in excess of 1 − qE.
If vE > vI , the buyer would dispose of this extra unit of good I, her utility
would therefore decrease by γ, and the total surplus by cI + γ. It follows that
the ex post efficient quantity is q∗I (qE; θE) = 1− qE in this case. If vI > vE, the
buyer would consume the extra unit of good I and dispose of a unit of good E
instead, hence an effect on buyer’s utility and total surplus given by vI − vE − γ
and ωI − vE − γ respectively. It follows that in both cases the ex post efficient
quantity of good I given qE is given by

q∗I (qE; θE) =

{
1− qE if ωI ≤ vE + γ

1 if ωI ≥ vE + γ.

Next consider the efficient level of qE. When ωI ≤ vE + γ, purchasing one extra
unit from E and efficiently buying one unit less from I change the surplus W
by ωE − ωI . When ωI ≥ vE + γ, we necessarily have ωI > ωE and hence it is
efficient to supply exclusively from I. The efficient quantities are therefore given
by

(q∗E(cE, θE), q∗I (cE, θE)) =

{
(sE, 1− sE) if ωE > ωI

(0, 1) if ωE < ωI .
(11)

13



Hence inefficient foreclosure occurs when 0 ≤ qE < sE while ωE > ωI . Inefficient
foreclosure is complete or partial according to whether the above inequality
0 ≤ qE holds as an equality or is strict.

4.2 The consequences of buyer opportunism

We explain in this section how the possibility of buyer ex post opportunism
affects the design of an unconditional tariff T (qI). Assume that the incumbent
subsidizes the purchase of good I to the point that the marginal price T ′(qI)
is below −γ in some interval. The buyer would purchase the corresponding
units from the dominant firm even if she does not need them. She would indeed
find it optimal to dispose of the units at cost γ and to pocket the subsidy.
Over-purchasing would be ex post profitable because the negative price would
outweigh the disposal cost.

Yet the buyer and the dominant firm would soon realize that this outcome
is suboptimal from an ex ante point of view. Anticipating the opportunistic
behavior of the buyer, they would modify the above schedule, offering the buyer,
together with the quantity q̂I at price T (q̂I), the possibility to buy less units
than q̂I , say qI ≤ q̂I , in return for a payment slightly below T (q̂I) + γ(q̂I − qI).
This change would avoid useless production and disposal costs, without affecting
the profit left to the competitor.

A symmetric reasoning shows that it is never optimal ex ante to sell units
above the buyer’s reservation price, vI . The buyer and the dominant firm should
always grant the buyer the opportunity to purchase as many units as she wants
at a price slightly below vI . The next proposition, proved in Appendix B, shows
that the buyer and the dominant firm are better off committing to a price sched-
ule with marginal price between −γ and vI . The main point to be checked is
that this requirement does not raise the rent left to the rival.

Proposition 2. The buyer and the dominant firm are better off using a tar-
iff with marginal price between −γ and vI . The quantity purchased from the
dominant firm is ex post efficient: qI = q∗I (qE; θE) = 1− qE, for any (cE, θE).

Proposition 2 is an optimality result that holds whether or not the buyer and
the dominant firm know good E’s characteristics when signing the contract and
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whether or not the tariff is allowed to depend on qE. This result guarantees that
the buyer purchases the number units corresponding to her total demand.8 We
are thus able to focus attention on the split of the buyer’s requirements between
the two suppliers.

Given ex post efficiency, the surplus in the buyer/rival relationship can be
written as

SBE(sE, ωE) = max
qE

V (qE, q
∗
I (qE; θE); θE)− T (q∗I (qE; θE))− cEqE

= max
qE

vE min(qE, sE)− cEqE + vI(1− qE)− T (1− qE).(12)

Proposition 2 has strong implications for unconditional tariffs. To state this
implications, we introduce the notion of super-efficiency. We say that the rival
firm is super-efficient if and only if ωE > vI + γ. When γ tends to −cI , super-
efficiency becomes equivalent to standard efficiency. When disposal costs are
infinite, there are no super-efficient rivals.

Corollary 1. When the tariff is not allowed to depend on qE, super-efficient
rivals serve all of the contestable demand.

Proof. The maximand in (12) increases in qE on the interval [0, sE]. Indeed its
derivative is given by

ωE − vI + T ′(1− qE) ≥ ωE − vI − γ,

which is positive if the rival firm is super-efficient.

As γ tends to −cI , the condition that all units of good I are sold at a price
above −γ represents a stronger constraint. At the limit γ = −cI , the condition
T ′(qI) ≥ −γ leaves no scope for anticompetitive exclusion. The desire to avoid
buyer opportunism dominates the rent extraction motive. On the other hand,
as γ tends to +∞, buyer opportunism becomes a less severe problem. The buyer
and the dominant firm can more easily exploit their incumbency advantage to
extract rents from the rival, even when it is very efficient.

8As mentioned at the end of Section 2.1, it also implies that the buyer and the incumbent
have no joint incentive to renegotiate the quantity qI once the buyer has purchased qE from
the rival.
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In contrast, when the tariff is allowed to depend on qE, the surplus ωEqE +

vI(1− qE)− T (qE, 1− qE) does not necessarily increase with qE, even for super-
efficient rivals, because of the first argument in the tariff. Using a conditional
tariff, the buyer and the dominant firm can induce ex post efficiency while keep-
ing latitude to extract rent from the rival. For instance, under complete infor-
mation, we have seen that the rent is fully extracted (see Proposition E.1). To
illustrate, consider the complete information case.

Complete information We know from Lemma E.1 that a conditional tar-
iff T (qE, qI) makes it possible to extract all the surplus generated by the rival.
Consider now the case of an unconditional tariff T (qI) and suppose first that
the rival is efficient but not super-efficient: ωI < ωE < vI + γ, the value of ωE
being known to the buyer and the incumbent. Then these two players agree
on a two-part tariff with marginal price slightly above vI − ωE, thus offering a
surplus slightly below ωE per unit of good I. To sell units to the buyer, the
rival must match this offer, and hence give up all the surplus to the buyer. He
therefore serves all of the contestable demand, earning negligible profit. The
incumbent sells the remaining units.9 The allocation is efficient. The buyer and
the incumbent appropriate the entire surplus even if they do not know the size
of the contestable market.

On the other hand, if the rival is super-efficient, ωE > vI + γ, the buyer and
the incumbent cannot exert the competitive pressure reflected in the marginal
price vI − ωE. Such a subsidy would indeed induce the buyer to purchase too
many units of good I and to incur disposal costs, which is suboptimal. The best
the buyer and the incumbent can do is to set the marginal price at −γ, thus
offering a surplus of vI + γ per unit of good I. The rival keeps ωE − vI − γ per
unit of good E sold to the buyer.

We conclude that under complete information and an unconditional tar-
iff T (qI), the rival’s profit is max [0, β(ωE − vI − γ)sE] at the optimum. (This
expression of the rival’s profit is a particular case of (E.1).) Only super-efficient
rivals earn a positive profit. Extracting all the surplus created by super-efficient

9The fixed part of the tariff determines the sharing of the surplus between the buyer and
the incumbent.
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rivals is impossible because the competitive pressure that can be placed on them
is limited by buyer opportunism.

4.3 Virtual surplus and elasticity of entry

As in Section 3, we assume that the buyer and the incumbent know the size of
the contestable demand, sE, when agreeing on the price schedule T .10 With no
loss of generality, we can assume ex post efficiency (Proposition 2), and replace
qI with 1− qE in the expression of the buyer-rival surplus:

SBE(sE, ωE) = max
qE

vE max(qE, sE) + vI(1− qE)− cEqE − T (1− qE).

The rival’s profit is given by ΠE = β∆SBE, where ∆SBE is the surplus created
by the buyer-rival relationship:

∆SBE(sE, ωE) = max
qE

vE max(qE, sE)− cEqE − vIqE − T (1− qE) + T (0, 1).

Relying on Proposition 2, we restrict attention to tariffs satisfying−γ ≤ T ′(qI) ≤
vI , for which the function to be maximized in qE decreases beyond sE. We may
therefore assume that qE never exceeds sE and rewrite the surplus gain ∆SBE

as
∆SBE(sE, ωE) = max

qE≤sE
(ωE − vI)qE − T (1− qE) + T (0, 1). (13)

Following the same as analysis as in Section 3, we compute the virtual surplus,
i.e. the total surplus corrected for the informational rent left to the rival:

S v(qE; sE, vE, cE) = ωI +

[
ωE − ωI − β

1− F (ωE|sE)

f(ωE|sE)

]
qE. (14)

Hereafter , the bracketed term in (14) is denoted by sv(sE, ωE) and called the
“virtual surplus per unit”. We now introduce the notion of elasticity of entry,
which expresses the sensitivity of entry to competitive pressure:

ε(ωE|sE) =
ωEf(ωE|sE)

1− F (ωE|sE)
. (15)

This quantity is interpreted as follows. Setting a constant marginal price T ′ = p

amounts to offering the surplus vI − p per unit of good I. Rivals with ωE

10This assumption will be dropped in Section 5.
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above (below) this value serve all of the contestable demand (are inactive). The
fraction of active rivals, for a given size of the contestable demand, sE, is thus
1 − F (vI − p|sE). Decreasing the price p, or equivalently raising the offered
surplus, places more competitive pressure on the rival, and hence reduces the
fraction of active rivals, in the proportion given by the above elasticity. In the
remainder of the paper, we maintain the following assumption regarding the
distribution of ωE given sE.

Assumption 1. For any given size of the contestable demand sE, the elasticity
of entry, ε(ωE|sE), is nondecreasing in ωE. Moreover, if ω̄E = ∞, the upper
bound of ε(ωE|sE) as ωE rises is greater than one, for all sE. Finally, ωI belongs
to the support of F : ωE < ωI < ω̄E.

The monotonicity of the elasticity of entry holds in particular when the
hazard rate f/(1−F ) is nondecreasing in ωE, a usual assumption in the nonlinear
pricing literature. It is also true in the limit case where the elasticity does not
depend on ωE; this happens when ωE, conditionally on sE, follows a Pareto
distribution, given by 1 − F (ωE|sE) = (ωE/ωE)−ε(sE); the elasticity of entry is
then constant in ωE and equal to ε(sE).

4.4 Efficiency-rent tradeoff and disposal costs

When β = 0, the virtual surplus coincides with the total welfare and is thus
maximum at the efficient quantity, namely sE if ωE > ωI , zero otherwise. For
positive β, however, there is a tradeoff between inducing efficient entry and
extracting the rival’s rent, as the expression of the virtual surplus shows. The
buyer and the incumbent want to exert pressure on the rival to extract rent,
which distorts the entry decision.

Hereafter, the maximization of the virtual surplus for a given size of the
contestable market is called the “relaxed problem”. We denote by qr

E the solution
of this problem.

Lemma 1. The virtual surplus S v(qE; sE, vE, cE) attains its maximum at qr
E

given by

qr
E(sE, ωE) =

{
0 if ωE ≤ ω̂E(sE)

sE otherwise,
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where ω̂E(sE) ∈ (ωI , ω̄E) is the unique solution to

ω̂E(sE)− ωI
ω̂E(sE)

=
β

ε(ω̂E(sE)|sE)
. (16)

The efficiency-rent tradeoff leads to more inefficient exclusion as the rival’s bar-
gaining power, β, rises and the elasticity of entry, ε, falls.

Proof. The virtual surplus attains its maximum at qE = sE if sv > 0 and at
qE = 0 if sv < 0. The unit virtual surplus sv, which can be expressed as

sv(sE, ωE) = ωE[1− β/ε(ωE|sE)]− ωI ,

is positive if and only if
ωE − ωI
ωE

>
β

ε(ωE|sE)
.

The left-hand side increases in ωE, and the right-hand side is nonincreasing in ωE
by the first part of Assumption 1, which yields the uniqueness of a solution (16).
Moreover, the virtual surplus per unit is negative for ωE = ωI and positive for
ωE = ω̄E when ω̄E <∞. If ω̄E =∞, the second-part of Assumption 1 guarantees
that sv is positive for high values of ωE. Hence the existence of a solution to
equation (16) lying between ωI and ω̄E.

The above observations also show that ω̂E increases with β and decreases
with ε.

The threshold ω̂E(sE) summarizes the efficiency-rent tradeoff (henceforth
abbreviated as ERT) at a given level of sE. Equation (16) shows an analogy with
the textbook monopoly pricing formula. The buyer-incumbent pair indeed has a
monopoly power over entry, or more precisely over the quantity produced by the
smaller rival. The buyer and the incumbent jointly act like a monopoly towards
the rival, setting ω̂E to extract rent at the cost of reducing the probability of
entry. When the threshold ω̂E is higher, the tradeoff pushes towards less entry.
The higher ε, the more reactive the rival: the buyer and the incumbent cannot
easily extract rents and cannot place strong competitive pressure on the rival,
hence a lower ω̂E, and more entry.

A high value of β means that the bargaining power of the buyer vis-à-vis
the competitor is low, and hence the latter will get a higher rent, which makes
rent extraction a more serious issue and pushes towards less entry, i.e. a higher
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threshold ω̂E(sE). On the contrary, in the limit case where the buyer has all the
bargaining power vis-à-vis the rival (β = 0), there is no tradeoff, and hence no
inefficient exclusion: ω̂E(sE) coincides with the efficient threshold ωI .

Proposition 3. If the tariff cannot be made contingent upon qE, the equilibrium
outcome depends on the level of the disposal costs:

• When ω̂E < vI+γ, the rival serves all of the contestable demand if ωE > ω̂E

and is inactive otherwise;

• When vI + γ < ω̂E, the rival serves all of the contestable demand if it is
super-efficient (ωE > vI +γ), and is inactive otherwise, as under complete
information.

By letting the price schedule depend on qE, the buyer and the incumbent can
achieve the same outcome as under infinite disposal cost.

Proof. Considering an unconditional tariff T (qI) and ignoring first the issue of
buyer opportunism, we maximize the virtual surplus as explained in Lemma 1.
Rivals with ωE < ω̂E are not active, and hence earn zero profit; this includes
inefficient rivals (ωE < ωE < ωI), but also some efficient ones (ωI < ωE < ω̂E).
Rivals with ωE > ω̂E serve all of the contestable demand and, from (7), earn a
positive profit, β(ωE− ω̂E)sE. The rival with marginal type ωE = ω̂E earns zero
profit:

∆SBE(sE, ω̂E) = (ω̂E − vI)sE + T (1)− T (1− sE) = 0,

implying that the average incremental price [T (1) − T (1 − sE)]/sE is equal to
vI − ω̂E. When ω̂E < vI + γ, the buyer and the incumbent may set the price
of contestable units at vI − ω̂E, without generating buyer opportunism because
this price is above −γ.

When vI + γ < ω̂E, the above marginal price would induce the buyer to
purchase too many units from the incumbent. We know from Corollary 1 that
it is optimal for the buyer and the incumbent to let super-efficient rivals serve
all of the contestable demand. This is done by setting the marginal price at −γ.
Only super-efficient rivals are active, earning β(ωE − vI − γ)sE, as under perfect
information (see Appendix E).
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The above conflict between managing buyer opportunism and extracting op-
timally the surplus created by the competitor disappears under a conditional
tariff. The condition for full surplus appropriation, ∆SBE(sE, ω̂E) = 0, is indeed
that

T (0, 1)− T (sE, 1− sE)

sE
= vI − ω̂E (17)

This condition is met when T (qE, qI) is equal to (ω̂E − ωI)qE + cIqI up to an
additive constant. The marginal price ∂T/∂qI = cI induces the efficient choice
of qI given qE. The penalty ∂T/∂qE = ω̂E − ωI serves to extract the surplus
generated by the rival of type ω̂E.11

Effective price and market foreclosure The price that “the competitor
will have to match” to serve the contestable units is called the “effective price”
by the European Commission (European Commission (2009), para. 41). This
price reflects the competitive pressure placed on the rival. When the tariff only
depends on the quantity purchased from the incumbent, the effective price is
simply the average incremental price of the contestable units. When the tariff
also depends on the quantity purchased from the rival, buying more from the
rival (as opposed to buying less from the incumbent) may trigger a penalty that
affects the effective price of the contestable units, so the effective price is given
by the left-hand side of (17).

To make sure that the competitor serves all of the contestable demand if
ωE ≥ ω̂E and is inactive otherwise, the buyer and the incumbent want to set
the effective price at vI − ω̂E, thus offering the surplus ω̂E per unit of good I

and forcing the rival with type ω̂E to give up all the surplus to the buyer. With
an unconditional price schedule, this is possible only if when vI − ω̂E ≥ −γ. In
general the effective price is set to max(vI−ω̂E,−γ) to avoid buyer opportunism.

The tradeoff between efficiency and rent extraction results in some efficient
rivals being fully foreclosed in equilibrium, namely rivals with ωI < ωE < ω̂E.
Inefficient foreclosure arises due to incomplete information as in Aghion and
Bolton (1987). The fraction of efficient types that are inactive increases with
the rival’s bargaining power vis-à-vis the buyer (ω̂E increases with β).

11Notice that the above expression of ∂T/∂qE is consistent with (10) as ω̂E − ωI = β[1 −
F (ω̂E |sE)]/f(ω̂E |sE).
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5 Two-dimensional uncertainty

Building on the one-dimensional analysis of Section 4, we now introduce uncer-
tainty about the size of the contestable demand, sE. This parameter, as the
utility vE, depends on the characteristics of the rival good, which are not yet
known when the buyer and the incumbent agree on the price schedule. Facing
uncertainty about both sE and vE, they maximize the expected virtual surplus∫∫

sv(sE, ωE)qE(sE, ωE) dF (ωE|sE) dG(sE)

over all implementable quantity functions qE, where sv is the unit virtual surplus
defined in Section 4.3. Recall that the virtual surplus is positive for ωE > ω̂E(sE)

and negative for ωE < ω̂E(sE), where ω̂E(sE) is the ERT threshold given by (16).
Hereafter, we call the curve with equation ωE = ω̂E(sE) in the (sE, ωE)-plan the
ERT line. The next lemma, proved in Appendix C, relates the shape of this line
to the primitives of the model.

Lemma 2. When the elasticity of entry, ε(ωE|sE), does not depend on sE, the
ERT-line is flat and the random variables sE and ωE are independent. When
the elasticity of entry increases (decreases) with sE, the ERT-line is decreasing
(increasing) and ωE first-order stochastically decreases (increases) with sE.

Assuming first infinite disposal costs, we explain how the shape of the opti-
mal unconditional price schedule depends on the variations of the elasticity of
entry. When the elasticity of entry is nondecreasing in the size of the contestable
demand, the buyer and the incumbent want to exert less competitive pressure
on larger rivals, which essentially results in concave tariffs (Section 5.1). The
other cases require a more careful analysis because the relaxed solution is not
implementable (Section 5.2). We then consider decreasing and non-monotonic
elasticity of entry (Sections 5.3 and 5.4). Finally, we introduce finite disposal
costs and show that conditioning the tariff on the quantity purchased from the
rival makes it possible for the buyer and the incumbent to achieve the same
outcome as under infinite disposal costs (Section 5.5).
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5.1 Nondecreasing elasticity of entry

When sE and ωE are independent, the ERT line is flat, as represented on Fig-
ure 1a. For each size of the contestable market, the problem is the same form as
in Section 4.4. It follows that the optimal tariff is affine, with the same effective
price as above, namely vI − ω̂E, see Figure 1b.

Figure 1a: Quantity purchased from the
rival in the (sE , ωE) plan

Figure 1b: Optimal price schedule (case
vI > ω̂E)

From now on, we consider cases where the elasticity of entry is not constant
with sE and show that two-part tariffs are no longer optimal: the optimal tariff
must exhibit some curvature. We start with the case where the elasticity in-
creases with sE: larger competitors, i.e. competitors with a larger contestable
demand, are more sensitive to competitive pressure. Under this circumstance,
the efficiency-rent tradeoff leads the buyer and the incumbent to place less com-
petitive pressure on larger competitors.

Proposition 4. When the elasticity of entry ε(ωE|sE) increases with sE, the
effective price, pe(qE), increases with qE. The price schedule is concave in a
neighborhood of qI = 1. It is globally concave if ω̂E is concave or moderately
convex in sE. The equilibrium features inefficient exclusion. Partial foreclosure
is not present.

Proof. When ε(ωE|sE) increases with sE, the ERT threshold, ω̂E, given by (16),
decreases with sE, see Figure 2a. Solving the problem separately for each sE,
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Figure 2a: Second best with ε(ωE |sE)

increasing in sE

Figure 2b: Optimal price schedule with
sE = 0 and vI < ω̂E(0)

the buyer and the incumbent set the effective price pe(sE) at vI − ω̂E(sE), which
increases in sE. According to equation (13), the buyer and the rival then maxi-
mize

(ωE − vI)qE + pe(qE)qE = (ωE − vI)qE + [vI − ω̂E(qE)]qE = [ωE − ω̂E(qE)]qE

over qE ≤ sE. As ω̂E(qE) decreases with qE, the rival with type (sE, ωE) is either
inactive, qE = 0 if ωE < ω̂E(sE), or serves all the contestable demand, qE = sE

if ωE > ω̂E(sE), see Figure 2a.
To prove that the price schedule is concave in a neighborhood of qI = 1, we

differentiate
T (qI) = T (1) + (vI − ω̂E(1− qI))(qI − 1)

with respect to qI , which yields T ′(qI) = (vI − ω̂E(1− qI)) + ω̂′E(1− qI)(qI − 1)

and T ′′(qI) = 2ω̂′E(1− qI)− ω̂′′E(1− qI)(qI − 1). The term ω̂′E, which is negative
for any qI , tends to make the tariff concave. Assuming that ω̂′′E(0) is not infinite,
we get T ′′(1) = 2ω̂′E(0) < 0, hence the concavity at the top.

Proposition 4 assumes that the rival becomes more sensitive to competitive
pressure as the size of the contestable market rises. Under this assumption, the
buyer and the dominant firm want to exert less pressure on larger rivals, and
the optimal effective price pe(qE) = [T (1)− T (1− qE)]/qE increases with qE.
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It is worthwhile noticing that the effective price is negative for small values
of qE whenever ω̂E(sE) is larger than vI –the case shown on Figures 2a and 2b.
The price schedule thus gives the buyer strong incentives to supply exclusively
from the dominant firm.

5.2 General case

In the above section, the optimal price schedule has been obtained by solving the
rent-efficiency tradeoff separately for each size of the contestable market. This
method, however, does not in general yield an incentive compatible allocation.
To illustrate, suppose that the ERT line is as shown on Figure 3. The solution to
the relaxed problem, which is zero below this line and sE above, is not incentive
compatible. Indeed, the rival of type B = (ωE, sE) is inactive and earns zero
profit, while the rival A = (ωE, s

′
E), s′E < sE, serves all of the contestable

demand. It follows that rival B has an incentive to sell s′E and mimic rival A.
Hence, in this example, solving the relaxed problem does not yield the second-
best allocation.

Figure 3: ERT line (dashed). Here, the relaxed solution is not implementable.

We now characterize implementable quantity functions and offer a heuristic
derivation of second-best allocations. The main idea is that configurations like
that of Figure 3 give rise to partial foreclosure, for which an appropriate first-
order condition must be derived. We do not insist on the mathematical resolution
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of the problem, which is relegated in a technical appendix available from the
authors.12 The readers interested only by the qualitative results regarding the
shape of optimal price schedules should proceed directly to Section 5.3.

Implementable quantity functions The buyer and the competitor maxi-
mize their joint surplus, knowing the unconditional price schedule T (qI) agreed
upon by the buyer and the incumbent. They choose a quantity qE that depends
on the competitor’s characteristics, (sE, ωE), which gives rise to a “quantity
function” qE(sE, ωE). Assume infinite disposal costs (γ = +∞) and relying on
Proposition 2, we can restrict attention to price schedules whose marginal does
not exceed vI . A quantity function qE(sE, ωE) is implementable with an un-
conditional price schedule if and only if there exists a function T (qI) satisfying
T ′(qI) ≤ vI such that qE(sE, ωE) is solution to (13) for all (sE, ωE).

As qE is nondecreasing in ωE, there exists, for any sE > 0, a threshold
Ψ(sE) such that the buyer supplies all contestable units from the competitor,
qE(sE, ωE) = sE, if and only if ωE > Ψ(sE). We define the boundary line
ωE = Ψ(sE) associated to the quantity function qE(sE, ωE) by

Ψ(sE) = inf{x ∈ [ωE, ω̄E] | qE(x, sE) = sE},

with the convention Ψ(sE) = ω̄E when the above set is empty. Above the
boundary line, qE(sE, ωE) equals sE; below that line, it is independent on sE.

Boundary line and quantity function As shown on Figure 4, an imple-
mentable quantity function qE(., .) is entirely described by the associated bound-
ary line. The bunching sets, i.e. the sets on which the quantity qE(sE, ωE) is
constant, are determined by the boundary line. They can be of three types:
(i) vertical lines above points on the boundary line where that line decreases
(e.g. qE = s3

E and qE = s4
E on the Figure); (ii) “L”-shaped unions of vertical

lines above and horizontal lines above and at the right of points where the bound-
ary line increases (e.g. qE = s1

E, qE = s2
E and qE = s5

E ); (iii) two-dimensional
areas whose left border is vertical, being included either in the ωE-axis (then

12Deneckere and Severinov (2009) propose a method for solving a more general class of
problems, which relies on a characterization of “isoquants”. We exploit here the particular
shape of these curves, see in particular Figure 4 below.
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qE = 0, see the shaded area on Figure 4) or in a vertical part of the boundary
line (see the light shaded area on Figure 9b).

Figure 4: Implementable quantity function (isolines)

Partial foreclosure Increasing parts of the boundary function thus translate
into horizontal bunching segments or into two-dimensional bunching areas, and
hence into partial foreclosure: 0 < qE(sE, ωE) < sE for some types located below
the boundary. (For instance, type B on Figure 4 sells qE = s2

E, which is lower
than the size of its contestable market.) In such regions, the constraint qE ≤ sE

is slack: increasing sE does not allow the competitor to enter at a larger scale
and qE does not depend on sE.

Shape of the boundary line and curvature of the tariff In Appendix G,
we explain how to recover the price schedule T from the boundary function Ψ

and we link the shape of the price schedule to that of the boundary line. Flat
parts of the boundary line correspond to linear parts of the tariff (see Figure 1a
and 1b) and increasing parts of the boundary line correspond to convex parts of
the tariff (see Figures 6a and 6b, or the interval A1A3 on Figures 7a and 7b). In
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both cases, the constraint qE ≤ sE in the buyer-competitor pair’s problem (13)
is not binding.

In contrast, the curvature of the tariff may change along decreasing parts of
the boundary: the tariff is concave near local maxima of the boundary line and
convex near local minima. Local maxima of the boundary line thus correspond
to inflection points of the tariff. An example is the point A3 on Figures 7a
and 7b.

Construction of the optimal allocation We now explain intuitively how to
derive the optimal boundary line ωE = Ψ(sE) from the ERT line ωE = ω̂E(sE).

Consider a point (sE, ωE) above the ERT line. If the virtual surplus is always
positive at the right of this point, there is no objection to setting qE = sE. In
contrast, if the virtual surplus is negative at the right of this point, setting
qE = sE implies that qE will have to be positive in an area where the virtual
surplus is negative. By a standard ironing procedure, we show that the expected
virtual surplus on horizontal bunching segments is zero. Denoting by [AB] such
a segment (see Figure 5b), we get

E( sv | [AB] ) = 0, (18)

with the boundary conditions that the virtual surplus is positive at A and zero
at B. This leads to the following construction of the optimal boundary line
ωE = Ψ(sE). We first draw the ERT line ωE = ω̂E(sE). For sE = s̄E, we
set Ψ(s̄E) = ω̂E(s̄E). Then we consider lower values of sE. If the ERT line
decreases at s̄E, the boundary coincides with the ERT line, as long as it remains
decreasing. When the ERT line starts increasing (possibly at s̄E), we know that
there is horizontal bunching. Equation (18) provides a unique value for Ψ(sE).
If the candidate boundary hits the ERT line at some value of sE, it must be on
a decreasing part of that line and, from that value on, the optimal boundary
coincides with the ERT line (as long as ω̂E remains decreasing). Proposition D.1
in Appendix D presents three different sets of sufficient conditions under which
the above construction indeed yields the optimal allocation.13

13When none of the three sufficient conditions holds, the increasing parts of the optimal
boundary line may have vertical portions, generating two-dimensional bunching areas. A
vertical ironing procedure is thus needed (see Appendix H.5).
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Figure 5a: The relaxed solution lo-
cally decreases with sE .

Figure 5b: ERT line ω̂E (dashed).
Optimal boundary Ψ (solid)

The sufficient conditions of Proposition D.1 are fairly mild. A first sufficient
condition is f being nondecreasing in ωE. A second set of sufficient conditions
is the hazard rate f/(1 − F ) being nondecreasing in ωE and the range of the
entry elasticity being not too wide (condition (D.1)). A third set of sufficient
conditions consists of the elasticity of entry being nondecreasing in ωE, as stated
in Assumption 1,14 and of another condition on the range of ε, (D.2), more
restrictive than (D.1). Technically, the conditions (D.1) and (D.2) involve the
rival’s bargaining power, β, and the minimum and maximum values of ε in the
whole distribution of types, ε and ε̄. Even the stronger condition (D.2) is not
very restrictive, in the sense that it allows for a wide range [ε, ε̄].15

5.3 Decreasing elasticity of entry

We now turn to the case where the elasticity of entry is decreasing with sE: larger
competitors, i.e. competitors with a larger contestable demand, are less sensitive
to competitive pressure. Under this circumstance, the efficiency-rent tradeoff

14Assumption 1 is weaker than f or f/(1− F ) being nondecreasing in ωE .
15For instance, if the rival’s bargaining power, β, equals one, the elasticity of entry may

vary freely between ε = 1.2 and ε̄ = 3.98, or between ε = 5 and ε̄ = 26.64. If β equals .75,
then the elasticity of entry may vary freely between ε = 1.2 and ε̄ = 5.99, or between ε = 5

and ε̄ = 33.59.
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leads the buyer and the incumbent to place more competitive pressure on larger
competitors, and the optimal price schedule is convex. Although convex price
schedules are rarely seen in practice, this mechanism is important to understand
the more general shapes exhibited in the next section.

Proposition 5. Assume that ε(ωE|sE) decreases with sE and the assumptions
of Proposition D.1 hold. Then the optimal tariff is convex. The equilibrium
outcome exhibits inefficient exclusion, in the form of both full and partial fore-
closure.

Proof. When ε(ωE|sE) decreases with sE, the ERT line ω̂E is monotonically
increasing and cannot be the optimal boundary line, as this would violate in-
centive compatibility. Hence the presence of horizontal pooling segments. As
explained in Section 5.2 and expressed by equation (18), the expected virtual
surplus on these horizontal segments must be zero. Under each of the sufficient
assumptions presented in Proposition D.1, the boundary line ωE = Ψ(sE) given
by ∫ s̄E

Ψ−1(ωE)

sv(s, ωE)f(ωE|s)g(s) ds = 0.

is nondecreasing, and hence determines the optimal quantity function, see Fig-
ure 6a. The light shaded area on the figure represents the set of types for
which the competitor is partially foreclosed. For all sE ∈ [sE, s̄E], ωE = Ψ(sE)

and s′E > sE, the solution of the buyer-competitor problem (13) is interior
for (s′E, ωE), and the solution, qE = sE, is given by the first-order condition
T ′(1 − sE) = vI − Ψ(sE) or T ′(qI) = vI − Ψ(1 − qI), which is nondecreasing
in qI as Ψ is nondecreasing. We conclude that the price-quantity schedule T is
convex.

The price schedule plays the role of a barrier to expansion. Some efficient
competitor types are active but prevented to serve all the contestable demand
When his type lies in the light shaded triangle represented on Figure 6a, the
efficient rival sells only part of the contestable demand, i.e. is partially foreclosed
from the market.

A small observed market share of the competitor reflects either a small con-
testable demand or the presence of partial foreclosure. These situations are
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Figure 6a: ERT line (dashed), optimal
boundary line (solid) with ε(ωE |sE) ↘
in sE .

Figure 6b: Optimal price schedule with
sE = 0 and vI > ω̂E(1).

qualitatively very different. In the first one, the competitor is frustrated because
he had to abandon a fraction of his surplus to the buyer. However, depending
on the interpretation of sE, either he cannot produce more or the buyer is not
interesting in buying more from the rival. In the second case (partial foreclo-
sure), the competitor is not only deprived of some surplus, but is also frustrated
because he cannot sell all the units that the buyer would like to acquire in the
absence of price schedule.

5.4 Non-monotonic elasticity of entry

We now turn to a case where the elasticity of entry is non monotonic with the
size of the contestable demand, sE. We assume that the elasticity of entry is
first decreasing then increasing as the size of the contestable demand rises: com-
petitors with intermediate size are less sensitive to competitive pressure than
competitors with small or large size. Under this circumstance, the efficiency-
rent tradeoff induces the buyer and the incumbent to place strong competitive
pressure on competitors with intermediate size and less on small or large com-
petitors. In other words, the ERT line is inverted U-shaped.

We rely on Figures 7a and 7b to explain the shape of the optimal price
schedule in this instance. The pictures are drawn under the assumption that
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Figure 7a: ERT line (dashed), optimal
boundary line (solid) with ε(ωE |sE) U-
shaped in sE

Figure 7b: Optimal price schedule with
sE = 0 and s̄E = 1

ω̂E(0) < vI < max ω̂E. The optimal boundary line wE = Ψ(sE), which is
increasing up to A3 and decreasing beyond that point, is represented by the
solid curve on Figure 7a. The ERT line is first increasing up to the point A3

(dashed line on Figure 7a), then decreasing and coincident with the boundary
line. The corresponding price schedule is represented on Figure 7b (smooth thin
line).

The equation of the optimal boundary line between A1 and A3 follows from
the bunching condition that the expected surplus on horizontal bunching seg-
ments is zero. For instance, to find the point A2, we write the condition for
the segment [A2A4], with A4 being on the ERT line. As seen in Section 5.3,
the quantity negotiated between the buyer and the competitor is given by the
first-order condition: T ′(1− sE) = vI −Ψ(sE); the price-quantity schedule T is
convex in this region.

Between A3 and A5, we recover the tariff by expressing that the quantity
purchased from the rival is constant on the bunching segments. For example, if
the rival is at A4, the buyer-rival pair is indifferent between buying s1

E or s2
E:

(ωE − vI)s1
E − T (1 − s1

E) = (ωE − vI)s2
E − T (1 − s2

E). As T (1 − s1
E) is known,

one can infer T (1 − s2
E). At points A2 and A4, we have ωE = vI , and hence

T (1 − s1
E) = T (1 − s2

E), as shown on Figure 7b. It is readily confirmed that
T ′′ = 0 at A3, i.e. T has an inflexion point.
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Figure 8: Retroactive rebate approximating an optimal price schedule

Thus, an inverted U-shaped boundary line corresponds to a price schedule
that is neither globally concave nor globally convex. The decreasing part of
the price schedule gives the buyer a strong incentive to supply from the incum-
bent beyond the point A2. This kind of incentives is exacerbated in so-called
“retroactive rebates”, see Figure 8, that are granted for all units once a quantity
threshold is reached. Such rebates induce downwards discontinuities in price-
quantity schedules. When the distribution of types is continuous, the optimal
tariff is continuous. If instead the size of the contestable demand took only a
finite number of values, a retroactive rebate, such as the one superimposed on
Figure 8, would be optimal.

5.5 Disposal costs and conditional tariffs

In the above example with infinite disposal costs (and a continuous distribution
of types), each point in the price schedule, even in regions where it is decreasing,
is chosen by some rival type. That is no longer the case if the buyer can get rid
of unconsumed units at a finite cost and opportunistically purchase more than
her requirements.

According to Proposition 2, the possibility of buyer opportunism just adds
the extra constraint that the marginal price is above −γ. As stated in Corol-
lary 1, under an unconditional price schedule, super-efficient rivals serve all of
the contestable demand, which, in terms of boundary line, simply means:

Ψ(sE) ≤ vI + γ
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for all sE. Conversely, we show in Appendix I that if the boundary line remains
below vI + γ, the marginal price T ′ remains above −γ. This property implies
that the only change due to the presence of finite disposal costs concerns super-
efficient competitors. To state this point formally, we slightly change the nota-
tions, denoting by qE(sE, ωE; γ) the optimal quantity function and by Ψ(sE; γ)

the optimal boundary function when the magnitude of the disposal costs is given
by the parameter γ.

Proposition 6. Assume that one of the sufficient conditions of Proposition D.1
holds. Then, relative to the situation with infinite disposal costs, the existence
of finite disposal costs

• does not affect the optimal quantity purchased from the rival, except possibly
for super-efficient rivals;

• lowers (raises) or leaves unchanged the buyer-incumbent pair’s expected
profit (the total welfare);

• alters the equilibrium if and only if the efficiency-rent tradeoff requires the
exclusion of some super-efficient competitors.

Proof. The proof follows from the construction of the optimal boundary line.
For ωE < vI + γ, we use the same method as under γ = ∞, which, under the
assumptions of Proposition D.1, yields an implementable quantity functions. For
ωE ≥ vI + γ, we know that qE = sE: super-efficient competitors serve all of the
contestable demand. Hence, to obtain the optimal boundary line under γ <∞,
one has to truncate the corresponding line when γ =∞ as follows:16

Ψ(sE; γ) = min(Ψ(sE;∞), vI + γ).

The truncation does not change the boundary line when there are no super-
efficient competitors, ω̄E ≤ vI + γ, or when the efficiency-rent tradeoff requires
that any super-efficient competitor serve all of the contestable demand, i.e.
ω̂E(sE) ≤ vI + γ for all sE.

16The truncation of the boundary line generalizes the formula for the effective price when
sE is known, pe = max(vI − ω̂E ,−γ), see Section 4.4.
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On the other hand, suppose that ω̂E(sE) > vI + γ for some value of sE.
Then the construction of Ψ under γ = +∞ shows that the maximum of Ψ is
larger than vI + γ: the constraint T ′ ≥ −γ is binding and the possibility of
buyer opportunism under finite disposal costs lowers the buyer-incumbent pair’s
profit.

The possibility of ex post buyer opportunism under finite disposal costs pre-
vents the buyer and the incumbent from placing too strong a competitive pres-
sure on the rival, thus protecting super-efficient competitors from exclusion (but
not against rent-shifting). The presence of finite disposal costs therefore limits
the extent of inefficient foreclosure and hence improves the welfare compared to
the case γ =∞. We now turn to conditional price schedules.

Proposition 7. Conditioning the tariff on the quantity purchased from the com-
petitor allows the buyer and the incumbent to earn the same profit as if disposal
costs were infinite.

Proof. When the price schedule does not depend on qE, it can be recovered from
the quantity function qE(., .) by

T (1)−T (1− q) = (vI −ωE)q+ ∆SBE(sE, ωE) = (vI −ωE)q+

∫ ωE

ωE

qE(x, sE) dx.

with q = qE(sE, ωE), see Appendix G. When the price schedule depends on qE,
the expression (13) for the surplus from the trade between the buyer and the
competitor must be replaced with

∆SBE(sE, ωE) = max
qE≤sE

(ωE − vI)qE − T (qE, 1− qE) + T (0, 1),

and the above method allows to recover the function T (qE, 1 − qE) instead of
T (qI) from the quantity function. In other words, the whole schedule T (qE, qI) is
not identified; only its values for (qE, 1−qE) are. This implies that the constraint
on the marginal price, ∂T/∂qI ≥ −γ, has no bite for conditional tariffs. For
instance, tariffs of the form T (qE, qI) = P (qE) + cIqI induce the efficient choice
of qI given qE, i.e. are not subject to buyer opportunism, and generate any
effective price function [T (0, 1) − T (qE, 1 − qE)]/qE. It follows that the set of
implementable quantity functions with conditional tariffs does not depend on
γ ∈ [0,+∞], and coincides with the set of quantity functions implementable
with unconditional tariffs for γ =∞.
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When the price-quantity schedule depends only on qI , the presence of fi-
nite disposal cost prevents the exclusion of super-efficient competitors, because
the incumbent must account for ex post buyer opportunism. Conditional tar-
iffs make it possible for the buyer and the incumbent to overcome the buyer
opportunism problem and to exclude super-efficient competitors.
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Appendix

A Proof of Proposition 1

From (9), we get

WqE(qE(ωE), q∗I (qE(ωE));ωE) ≤ β
1− F (ωE)

f(ωE)
, (A.1)

where q∗I (qE) is given by WqI (qE, q
∗
I (qE);ωE) = 0. Differentiating the latter

equation with respect to qE yields

WqEqI + (q∗I )
′(qE)WqIqI = 0.

By concavity of W , the left-hand side of (A.1) is non-increasing in qE:

d

dqE
WqE(qE, q

∗
I (qE);ωE) = WqEqE +WqEqI (q

∗
I )
′ = WqEqE −

(WqEqI )
2

WqIqI

≤ 0.

The left-hand side of (A.1) is increasing in ωE. By assumption, the right-hand
side is non-increasing in ωE. It follows that qE increases with ωE.

B Proof of Proposition 2

The proof follows from two lemmas.

Lemma B.1. Starting from any tariff T , we can find a tariff T̂ such that the
marginal price T̂ ′ is greater than or equal to −γ and the surplus of the buyer-
incumbent pair is not lower under T̂ than under T . The buyer never purchases
more than her total requirements: qI(qE; θE) ≤ 1− qE for any qE.

Proof. Starting from any tariff T , we define T̂ as

T̂ (qI) = inf
q≥qI

T (q) + γ(q − qI). (B.1)

The tariff T̂ is affine with slope −γ in regions where the lower bound in (B.1) is
reached at q > qI . Formally, we have: T̂ (qI) = T (qI) + (γ − λ)(q − qI), where q
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is a solution to the above problem and λ is the Lagrange multiplier associated
to the constraint q ≥ qI . The envelope theorem yields T̂ ′(qI) = λ− γ ≥ −γ.

First we check that the buyer and the rival choose the same quantity qE

under the tariffs T and T̂ . Let U(qE) and Û(qE) denote the buyer’s net utility
if she has purchased units qE units from the competitor under T and T̂ :

U(qE) = max
qI

V (qE, qI)− T (qI) and Û(qE) = max
qI

V (qE, qI)− T̂ (qI).

As T̂ ≤ T , we have: Û ≥ U . Suppose that, under T̂ , it is optimal for the buyer
to purchase q̂I from the incumbent if she has purchased qE from the competitor.
By construction of T̂ , there exists qI ≥ q̂I such that T̂ (q̂I) equals or is arbitrarily
close to T (qI)+γ(qI− q̂I). Observing that buying an extra unit of good I cannot
deteriorate the buyer’s utility by more than −γ, i.e. ∂V/∂qI ≥ −γ, we get:

Û(qE) = V (q̂I , qE)− T̂ (q̂I) = V (q̂I , qE)− γ(qI − q̂I)− T (qI) ≤ V (qI , qE)− T (qI).

It follows that Û(qE) ≤ U(qE), and hence Û(qE) = U(qE) for any qE. To decide
on the quantity qE, the buyer and the rival maximize U(qE)−cEqE under tariff T
and Û(qE)− cEqE under tariff T̂ . As the two objectives coincide, they agree on
the same quantity under the two tariffs: qE(cE, θE) = q̂E(cE, θE) for any cE, θE.
For the same reason, the rival’s profit, β∆SBE = β[U(qE)−U(0)− cEqE], is the
same under T and T̂ .

Second, we check that under tariff T̂ the buyer may purchase less that 1−qE
from the incumbent and that the total welfare is not lower under T̂ than under T .
Let qE and qI denote the purchased quantities under tariff T . As T̂ (qI) ≤ T (qI),
the buyer may always choose to purchase the same quantity from the incumbent
(q̂I = qI) under the tariffs T and T̂ :

U(qE) = Ũ(qE) = V (qE, qI)− T (qI) ≤ V (qE, qI)− T̂ (qI).

Now consider the special case where qI > 1 − qE. As explained at the end of
Section 4.1, purchasing one extra unit of good I in the region where qI > 1− qE
decreases the buyer utility by γ if vE > vI or if qE = 0 and by vI − vE − γ if
vI > vE and qE > 0. In the latter case, the buyer would indeed consume the
extra unit of good I and dispose of a unit of the rival good instead. Yet this
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latter case is impossible here because the buyer and the rival would reduce qE in
the first place, thus improving their joint surplus V (qE, qI)− T (qI)− cEqE. We
conclude that ∂V/∂qI = −γ in this region. Under tariff T̂ , the buyer is better
off purchasing q̂I = 1− qE rather than qI > 1− qE from the incumbent. This is
because she saves γ(qE+qI−1) in terms of disposal costs and loses no more than
the same amount in terms of price subsidy.17 The change from qI to q̂I does not
decrease the total surplus. On the contrary, it avoids inefficient production and
disposal costs:

W (qE, q̂I) = V (qE, q̂I)− cEqE − cI q̂I ≥ V (qE, qI)− cEqE − cIqI = W (qE, qI).

In sum, the change from T to T̂ does not alter the competitor’s profit and does
not decrease the total surplus. We conclude from (5) that the change does
not decrease the expected payoff of the buyer-incumbent coalition, and that
qI ≤ 1− qE for any (cE, θE).

Lemma B.2. Starting from any tariff T , we can find a tariff T̃ such that the
marginal price T̃ ′ is lower than or equal to vI and the surplus of the buyer-
incumbent pair is not lower under T̃ than under T . We conclude that the buyer
never purchases less than her total requirements: qI(qE; θE) ≥ 1−qE for any qE.

Proof. The proof is very similar to that of Lemma B.1. See Appendix F.

Taken together, Lemmas B.1 and B.2 yield ex post efficiency: qI = q∗I (qE; θE) =

1− qE for all cE, θE.

C Elasticity of entry and distribution of uncer-

tainty

In this section, we prove Lemma 2. The elasticity of entry varies with sE in the
same way as the hazard rate h given by

h(ωE|sE) =
f(ωE|sE)

1− F (ωE|sE)
.

17If the tariff is affine with slope −γ in the corresponding region, the buyer is actually
indifferent between purchasing qI and 1− qE from the incumbent. To break the indifference,
we use T̂ (qI) = infq≥qI T (q) + γ′(q − qI), for γ′ slightly lower than γ. The buyer then strictly
prefers 1− qE to qI > 1− qE , for any (cE , θE).
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We have ∫ ωE

ωE

h(x|sE) dx = − ln[1− F (ωE|sE)].

If the elasticity of entry does not depend on (increases with, decreases with) sE,
the same is true for the hazard rate, and hence also for the cdf F (ωE|sE), which
yields the results.18

D Derivation of the optimal quantity function

Proposition D.1. Assume that one of the following conditions hold:

1. The conditional density f(ωE|sE) is nondecreasing in ωE;

2. The hazard rate, f/(1−F ), is nondecreasing in ωE and β, ε and ε̄ satisfy

β ≤ 4εε̄/(∆ε)2; (D.1)

3. The elasticity of entry is nondecreasing in ωE (Assumption 1) and and β,
ε and ε̄ satisfy

β ≤ ε̄

1 + (1 + ∆ε)2/4ε
. (D.2)

Then the complete problem can be solved separately for each ωE. The optimal
boundary line Ψ lies above the ERT line, Ψ ≥ ω̂E, and can be constructed from
the following properties:

1. Ψ(1) = ω̂E(1);

2. Its non-increasing parts coincide with the ERT line;

3. Its increasing parts are defined by equation (18).

Proof. See Appendix H.

18The variable ωE first-order stochastically decreases (increases) with sE if and only if
F (ωE |sE) increases (decreases) with sE .
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Supplementary material, for online publication

E Complete information

Lemma E.1 (Marx and Shaffer, 2004). Under complete information, the buyer
purchases the efficient quantities q∗E and q∗I from both suppliers. If the tariff is
allowed to depend on both quantities, then all the surplus is extracted from the
rival: ΠE = 0. If the tariff is function of qI only, then the rival earns

ΠE = β lim
q̂I→+∞

max
qE

[V (qE, q̂I)− cEqE − V (0, q̂I) ] ≥ 0. (E.1)

As a preliminary observation, notice that, for any q̂I , the value of the max-
imum term in (E.1) is nonnegative by construction. Moreover, this maximum
value is non-increasing in q̂I . Indeed its derivative, given by the envelope theo-
rem, satisfies:

d

dq̂I
max
qE

[V (qE, q̂I)− cEqE − V (0, q̂I) ] = VqI (qE, q̂I)− VqI (0, q̂I) ≤ 0. (E.2)

The limit in (E.1) is therefore the lower bound of the maximum term as q̂I varies.
The rival earns a positive profit under complete information if and only if this
lower bound is positive. This is the case with the utility function introduced in
Section 4.1 and a super-efficient rival. Indeed, in this circumstance, the maxi-
mum term in (E.1) is constant and equal to (ωE−vI−γ)sE for any q̂I ≤ 1. It fol-
lows that super-efficient rivals earn a positive profit, ΠE = β(ωE−vI−γ)sE > 0,
at the second-best optimum under complete information.

The proof of Lemma E.1 proceeds in two steps. First, we derive a lower bound
for the rival’s profit. Second, we find a tariff such that the chosen quantities are
efficient and the lower bound for the rival’s profit is attained.

Step 1.- Let T be any price schedule. Let (qE, qI) be the chosen quantities under
tariff T , as defined in (1). We also set q̂I = qI(0), where the function qI(.) is
defined by (2), and T̂ = T (0). For any q̂E, we have

SBE(q̂E) = V (q̂E, qI(q̂E))− cE q̂E − T (qI(q̂E)) ≥ V (q̂E, q̂I)− cE q̂E − T̂ ,
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hence, using the definition of SBE(qE):

SBE(qE) ≥ max
q̂E

V (q̂E, q̂I)− cE q̂E − T̂ .

and

ΠE = β(SBE(qE)− SBE(0)) ≥ βmax
q̂E

V (q̂E, q̂I)− cE q̂E − V (0, q̂I).

We have seen above that the value of the maximum term is non-increasing in
q̂I . We conclude that: ΠE ≥ βL. We have thus found an upper bound for the
buyer-incumbent pair’s profit:

ΠBI ≤ W (qE, qI)− ΠE ≤ W (q∗E, q
∗
I )− βL.

Step 2.- We now show that we can find a tariff such that the chosen quantities
are q∗E and q∗I and the rival’s profit equals or is arbitrarily close to βL.

Let q̂I be such that the maximum term in (E.1) equals or is arbitrarily to L.
Let q̂E be such that V (q̂E, q̂I)− cE q̂E is maximal and V (q̂E, q̂I)− cE q̂E−V (0, q̂I)

equals or is arbitrarily close to L. We have: VqE(q̂E, q̂I)− cE ≤ 0, with equality
when q̂E > 0.

First we observe that q̂I > q∗I and q̂E ≤ q∗E. Indeed, the derivative in (E.2)
evaluated at q∗I is given by VqI (q

∗
E, q

∗
I ) − VqI (0, q

∗
I ) which is negative because

q∗E > 0 by assumption. This shows that q̂I > q∗I . It follows that

0 ≤ VqE(q̂E, q̂I)− cE ≤ VqE(q̂E, q
∗
I )− cE,

which yields q̂E ≤ q∗E.

We now define a tariff T up to an additive constant by the following prop-
erties: T is linear on the interval [0, q̂I) with slope cI and the difference T (q̂I)−
T (q∗I ) is given by

V (q∗E, q
∗
I )− T (q∗I )− cEq∗E = V (q̂E, q̂I)− T (q̂I)− cE q̂E. (E.3)

Using the definition of (q∗E, q
∗
I ) and q̂I > q∗I , we get

T (q̂I)− T (q∗I ) = cI(q̂I − q∗I )

+ {[V (q̂E, q̂I)− cI q̂I − cE q̂E]− [V (q∗E, q
∗
I )− cEq∗E − cIq∗I ]}

< cI(q̂I − q∗I ).
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We conclude that the above-defined tariff T jumps downwards at q̂I .
Now we check that the buyer, having purchased q∗E from the rival, strictly

prefers purchasing q∗I than q̂I from the incumbent:

V (q∗E, q
∗
I )− T (q∗I ) > V (q∗E, q̂I)− T (q̂I). (E.4)

Indeed, the inequality (E.4) is equivalent, after replacing T (q̂I)− T (q∗I ) with its
value from (E.3), to

V (q∗E, q̂I)− V (q̂E, q̂I) < cE(q∗E − q̂E),

which follows from the concavity of V in qE and VqE(q̂E, q̂I) ≤ cE. Next, we check
that the buyer, having purchased q̂E from the rival, strictly prefers purchasing
q̂I than q∗I from the incumbent:

V (q̂E, q̂I)− T (q̂I) > V (q̂E, q
∗
I )− T (q∗I ). (E.5)

Indeed the inequality (E.5) is equivalent to

V (q∗E, q
∗
I )− V (q̂E, q

∗
I ) > cE(q∗E − q̂E),

which follows from the concavity of V in qE and VqE(q∗E, q
∗
I ) = cE. It follows

that there exists q̄E ∈ (q̂E, q
∗
E) such that the buyer, having purchased qE from

the rival, purchases qI from the incumbent with

qI = qI(qE) =

{
q̂I if qE ≤ q̄E

q∗I (qE) if qE ≥ q̄E,

where q∗I (qE) is given by
VqI (qE, q

∗
I (qE)) = cI . (E.6)

The surplus function SBE(qE) = V (qE, q̂I)−cEqE−T (q̂I) is concave on [0, q̄E)

with a local maximum at q̂E. It has a local minimum and a convex kink at q̄E,
because

S ′BE((q̄E)−) = VqE(q̄E, q̂I)− cE < VqE(q̄E, q
∗
I )− cE = S ′BE((q̄E)+).

For qE > q̄E, the surplus function is given by SBE(qE) = V (qE, q
∗
I (qE))− cEqE −

T (q∗I (qE)). Its the first derivative is given by the envelope theorem:

S ′BE(qE) = VqE(qE, q
∗
I (qE))− cE.
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Differentiating (E.6) yields the first derivative of q∗I (qE). We then derive the
second derivative of SBE for qE > q̂E

S ′′BE(qE) = VqE ,qE − (VqE ,qI )
2 /VqI ,qI ,

which is negative by concavity of V . It follows that SBE is concave for qE > q̄E.
The function has another local maximum at q∗E. Thanks to (E.3), the values of
the two local maxima of the function SBE(.) are equal. The difference between
this common maximal value and SBE(0) is equal to L by construction, which
achieves the proof of the lemma.

F Proof of Lemma B.2

We start from any price schedule T . Let T̃ be defined by

T̃ (qI) = inf
q≤qI

T (q) + vI(qI − q). (F.1)

The tariff T̃ is derived from the tariff T as follows. When the incumbent offer q
units at price T (q), he also offers to sell more units than q, say qI > q, at price
T (q) + vI(qI − q). The additional units are offered at the monopoly price vI . By
construction, the slope of T̃ is lower than or equal to vI .

Let ŨB(qE) denote the buyer’s net utility after she has purchased qE units
from the competitor under the price schedule T̃

ŨB(qE) = max
qI

V (qE, qI)− T̃ (qI). (F.2)

As T̃ ≤ T , we have: ŨB ≥ UB. Suppose that, under T̃ , it is optimal for the buyer
to purchase q̃I from the incumbent if she has purchased qE from the competitor.
By construction of T̃ , there exists qI ≤ q̃I such that T̃ (q̃I) equals or is arbitrarily
close to T (qI) + vI(q̃I − qI). We have:

ŨB(qE) = V (qE, q̃I)− T̃ (q̃I) = V (qE, q̃I)− T (qI)− vI(q̃I − qI)

= V (qE, qI)− T (qI), (F.3)

which implies ŨB(qE) ≤ UB(qE), and hence ŨB(qE) = UB(qE) for all qE. As the
problem of the buyer-competitor pair depends only on the functions UB(.) and
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ŨB(.), they agree on the same quantity qE and the competitor earns the same
profit, β∆SBE, under T and T̃ for all (cE, sE, vE).

We now examine the quantity purchased from the incumbent. Suppose that
the buyer, having purchased qE from the competitor, chooses to purchase qI
from the incumbent under the original price schedule T . As T̃ (qI) ≤ T (qI), the
buyer may choose to purchase the same quantity from the incumbent under the
new tariff T̃ :

UB(qE) = ŨB(qE) = V (qE, qI)− T (qI) ≤ V (qE, qI)− T̃ (qI).

Yet, under the tariff T̃ , if qI < 1− qE, the buyer may as well choose to purchase
1 − qE from the incumbent. Indeed, by definition of T̃ , we have T̃ (1 − qE) ≤
T (qI) + vI(1− qE − qI) and hence

UB(qE) = ŨB(qE) = V (qE, qI)− T (qI)

≤ V (qE, qI) + vI(1− qE − qI)− T̃ (1− qE)

= V (qE, 1− qE)− T̃ (1− qE). (F.4)

As vI > cI , the change from qI to 1− qE > qI increases the total surplus:

W (qE, 1− qE) = V (qE, 1− qE)− cEqE − cI(1− qE)

= V (qE, qI)− cEqE − cIqI + (vI − cI)(1− qE − qI) (F.5)

≥ W (qE, qI).

In sum, the change from T to T̃ does not alter the rival’s profit and does not
decrease the total surplus. We conclude from (5) that the change does not
decrease the expected payoff of the buyer-incumbent coalition.

G Implementable quantity functions

G.1 From the boundary line to the quantity function

Because the quantity function qE(sE, ωE) is nondecreasing in sE and constant
below the boundary, we have:

qE(sE, ωE) =

{
min{ x ≤ sE | Ψ(y) ≥ ωE for all y ∈ [x, sE]} if Ψ(sE) > ωE,

sE if Ψ(sE) ≤ ωE.

(G.1)
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For type A (resp. B) on Figure 4, we have Ψ(sE) < ωE (resp. Ψ(sE) > ωE) and
the solution of the problem (13) is unique and equal to s2

E. In contrast, type
C is indifferent between s2

E and s3
E and, by convention, is assumed to choose

s3
E. In other words, when (13) has multiple solutions, equation (G.1) selects the
highest.

Lemma G.1. A quantity function qE(., .) is implementable if and only if there
exists a boundary function Ψ(.) defined on [0, 1] such that (G.1) holds.

We prove here the sufficient part of Lemma G.1. Starting from any bound-
ary function Ψ defined on [0, 1], we define the quantity function qE(sE, ωE) by
equation (G.1), and the surplus gain ∆SBE(sE, ωE) by

∆SBE(sE, ωE) =

∫ ωE

ωE

qE(sE, x) dx.

We observe that the functions thus defined qE(sE, ωE) and ∆SBE(sE, ωE), are
nondecreasing in both arguments, and the latter function is convex in ωE. Next,
we notice that the expression (ωE − vI)qE(sE, ωE) − ∆SBE(sE, ωE) is constant
on qE-isolines. Indeed, both qE(., ωE) and ∆SBE(., ωE) are constant on hori-
zontal isolines (located below the boundary Ψ). On vertical isolines (above the
boundary), ∆SBE(sE, .) is linear with slope sE, guaranteing, again, that the
above expression is constant. We may therefore define T (q), up to an additive
constant, by

T (1)− T (1− q) = (vI − ωE)q + ∆SBE(sE, ωE), (G.2)

for any (sE, ωE) such that q = qE(sE, ωE). Equation (G.2) unambiguously de-
fines T (1)− T (1− q) on the range of the quantity function qE(., .). This range
contains zero, but may have holes when ω̄E is finite and Ψ is above ω̄E on
some intervals. Specifically, if Ψ is above ω̄E on the interval I = [s1

E, s
2
E], then

qE does not take any value between s1
E and s2

E. In this case, we define T by
imposing that it is linear with slope vI − ω̄E on the corresponding interval:
T (1− s1

E)− T (1− q) = (vI − ω̄E)(q − s1
E) for q ∈ I.

We now prove that the buyer and the competitor, facing the above defined
tariff T , agree on the quantity qE(sE, ωE). We thus have to check that

∆SBE(sE, ωE) ≥ (ωE − vI)q′ + T (1)− T (1− q′) (G.3)
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for any q′ ≤ sE. When q′ is the range of the quantity function, we can write
q′ = qE(s′E, ω

′
E) for some (s′E, ω

′
E), with q′ ≤ s′E. Observing that q′ = qE(q′, ω′E)

and using successively the monotonicity of ∆SBE in sE and its convexity in ωE,
we get:

∆SBE(sE, ωE) ≥ ∆SBE(q′, ωE)

≥ ∆SBE(q′, ω′E) + (ωE − ω′E)q′,

which, after replacing T (1) − T (1 − q′) with its value from (G.2), yields (G.3).
To check (G.3) when q′ is not in the range of the quantity function (q′ belongs
to a hole [s1

E, s
2
E] as explained above), use (G.3) at s1

E and the linearity of the
tariff between s1

E and q′.

G.2 From the boundary function to the price schedule

Lemma G.2. The shape of the boundary function Ψ and the curvature of the
price schedule T are linked in the following way:

1. If Ψ is increasing (resp. constant) around sE, then the tariff is strictly
convex (resp. linear) around 1− sE.

2. If Ψ decreases and is concave around sE, then the tariff is concave around
1− sE.

3. If Ψ decreases and is convex around sE and sE is close to a local minimum
of Ψ, then the tariff is convex around 1− sE.

4. If Ψ has a local maximum at sE, then the tariff has an inflection point at
1− sE.

Proof. First, suppose that Ψ is nondecreasing on a neighborhood of sE. Let s′E
slightly above sE. Then qE = sE is an interior solution of the buyer-rival pair’s
problem (13) for s′E and ωE = Ψ(sE). It follows that the first order condition
Ψ(sE) − vI + T ′(1 − sE) = 0 holds, implying property 1 of the lemma. The
property holds when Ψ has an upward discontinuity at sE, in which case the
tariff has a convex kink at 1− sE. To illustrate, Figures 9a and 9b consider the
case where the boundary line is a nondecreasing step function with two pieces.
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Figure 9a: Convex kink in the price
schedule

Figure 9b: Two-step increasing
boundary line

Next, suppose that the boundary line decreases around sE. Here we assume
that Ψ is twice differentiable. We denote by [σ(sE), sE] the set of value s′E
such that qE(s′E, ωE) = σ(sE), where ωE = Ψ(sE). The buyer-rival surplus
∆SBE(sE, ωE) is convex and hence continuous in ωE. It can be computed slightly
below or above Ψ(sE). At (sE,Ψ(sE)), the buyer and the rival are indifferent
between quantities sE and σ(sE):

∆SBE(sE,Ψ(sE)) = [Ψ(sE)−vI ]σ(sE)−T (1−σ(sE)) = [Ψ(sE)−vI ]sE−T (1−sE).

Differentiating and using the first-order condition at σ(sE) yields

T ′(1− sE) = −Ψ′(sE)[sE − σ(sE)]−Ψ(sE) + vI .

Differentiating again yields

T ′′(1− sE) = Ψ′′(sE)[sE − σ(sE)] + Ψ′(sE)[2− σ′(sE)]. (G.4)

In the above equation, the two bracketed terms are nonnegative (use σ′ ≤ 0),
and the slope Ψ′ is negative by assumption, which yields item 2 of the lemma.
Around a local minimum of Ψ, Ψ′ is small, and the first term is positive, hence
property 3. Property 4 follows from items 1 and 2.
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H Proof of Proposition D.1

In Section H.1, we offer a convenient parametrization of horizontal bunching
intervals. In Section H.2, we state and prove a one-dimensional optimization
result, which serves to maximize the expected virtual surplus for a given level
of ωE. In Section H.3, we rewrite the complete problem as the maximization
of the expected virtual surplus under monotonicity constraints. In Section H.4,
we show that these constraints are not binding under fairly mild conditions. In
Section H.5, we address the case where the monotonicity constraint are binding
and two-dimensional bunching occurs.

H.1 Parameterizing horizontal bunching intervals

Consider an implementable quantity function qE. For any ωE, the function of
one variable qE(., ωE) is nondecreasing on [0, 1], being either constant or equal to
the identity map: qE = sE. By convention, we call regions where it is constant
“odd intervals”, and regions where qE = sE “even intervals”.

We are thus led to consider any partition of the interval [0, 1] into “even inter-
vals” [s2i, s2i+1) and “odd intervals” [s2i+1, s2i+2), where (si) is a finite, increasing
sequence with first term zero and last term one.19 We associate to any such
partition the function of one variable that coincides with the identity map on
even intervals, is constant on odd intervals, and is continuous at odd extremities.
We denote by K the set of the functions thus obtained.

For any implementable quantity function qE, the functions of one variable,
qE(., ωE), belong to K for all ωE. Conversely, any quantity function such that
qE(., ωE) belong to K for all ωE is implementable if and only if even (odd) ex-
tremities do not increase (decrease) as ωE rises. Hereafter, we call the conditions
on the extremities the “monotonicity constraints”.

Even (odd) extremities constitute decreasing (increasing) parts of the bound-
ary line. Odd intervals, [s2i+1, s2i+2), constitute horizontal bunching segments,
or, more precisely, the horizontal portions of the L-shaped bunching regions.

19 For notational consistency, we denote the first term of the sequence by s0 = 0 if the first
interval is even and by s1 = 0 if the first interval is odd. Similarly, we denote the last term by
s2n = 1 if the last interval is odd and by s2n+1 = 1 if the last interval is even.
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H.2 A one-dimensional optimization result

In this section, we maximize a linear integral functional on the above-defined
set K.

Lemma H.1. Let a(.) be a continuous function on [0, 1]. Then the problem

max
r∈K

∫ 1

0

a(s)r(s) ds

admits a unique solution r∗ characterized as follows. For any interior even
extremity s2i

E , the function a equals zero at s2i
E and is negative (positive) at the

left (right) of s2i
E . For any interior odd extremity s2i+1

E , the function a is positive
at s2i+1

E and satisfies ∫ s2i+2
E

s2i+1
E

a(s) ds = 0. (H.1)

If a(1) > 0, then r∗(s) = s at the top of the interval [0, 1]. If a(1) < 0, then r∗

is constant at the top of the interval.

Proof. Letting I(r) =
∫ 1

0
a(x)r(x) dx, we have

I(r) =
∑
i

∫ x2i+1

x2i

xa(x) dx+
∑
i

x2i+1

∫ x2i+2

x2i+1

a(x) dx,

where the index i in the two sums goes from either i = 0 or i = 1 to either
i = n− 1 or i = n, in accordance with the conventions exposed in Footnote 19.
Differentiating with respect to an interior even extremity yields

∂I

∂x2i

= a(x2i).[x2i−1 − x2i].

The first-order condition therefore imposes a(x∗2i) = 0. The second-order condi-
tion for a maximum shows that a must be negative (positive) at the left (right)
of x∗2i.

Differentiating with respect to an interior odd extremity yields

∂I

∂x2i+1

=

∫ x2i+2

x2i+1

a(x) dx.

The first-order condition therefore imposes
∫ x∗2i+2

x∗2i+1
a(x) dx. The second-order

condition for a maximum imposes that a is nonnegative at x∗2i+1.
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If a(1) > 0, then it is easy to check that r∗(x) = x at the top, namely on
the interval [x∗2n, x

∗
2n+1] with x∗2n being the highest zero of the function a and

x∗2n+1 = 1. If the function a admits no zero, it is everywhere positive and hence
r∗(x) = x on the whole interval [0, 1].

If a(1) < 0, then r∗ is constant at the top, namely on the interval [x∗2n−1, x
∗
2n],

with x∗2n = 1 and
∫ 1

x∗2n−1
a(x) dx = 0. If the integral

∫ 1

y
a(x) dx remains negative

for all y, then r∗ is constant and equal to zero on the whole interval [0, 1].

H.3 Solving the complete problem

The complete problem consists in maximizing the expected virtual surplus sub-
ject to the even (odd) extremities being nonincreasing (nondecreasing). The
latter conditions are called hereafter the “monotonicity constraints”.

Applying Lemma H.1 with a(sE) = sv(sE, ωE) for any given ωE, we find that
the virtual surplus is zero at candidate even extremities: sv(x2i(ωE), ωE) = 0

and is negative (positive) at the left (right) of these extremities. In other words,
candidate even extremities belong to decreasing parts of the ERT line. Thus, as
regards even extremities, the monotonicity constraints are never binding.

Lemma H.1 also implies that the virtual surplus is positive at odd extrem-
ities. These extremities therefore lie above the ERT line. By the first-order
condition (H.1), the expected virtual surplus is zero on horizontal bunching in-
tervals:

E(sv|H) = 0, (H.2)

where H is a horizontal bunching interval with extremities s2i+1
E and s2i+2

E . The
virtual surplus on a bunching interval is first positive, then negative as sE rises,
and its mean on the interval is zero. The segment [AB] on Figure 5b is an
example of horizontal bunching interval (in fact the horizontal part of an “L”-
shaped bunching set). Unfortunately, the first-order condition (H.2) does not
imply that candidate odd extremities x2i+1(ωE) are nondecreasing in ωE: odd
extremities might decrease with ωE in some regions, generating two-dimensional
bunching.
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H.4 Sufficient conditions

We now check that each of the three conditions mentioned in Proposition D.1 is
sufficient for the odd extremities s2i+1

E (ωE) to be nondecreasing in ωE.
We can restrict attention to efficient rivals, ωE ≥ ωI .20 We rewrite equa-

tion (H.2) as A(s2i+1
E , ωE) = 0 with

A(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

sv(s, ωE)f(ωE|s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f(ωE|s)− β(1− F (ωE|s))] g(s) ds.

The function A is nonincreasing in s2i+1
E , as the virtual surplus is nonnegative

at this point:
∂A

∂s2i+1
E

(s2i+1
E , ωE) = −sv(s2i+1

E , ωE)f(ωE|s2i+1
E )g(s2i+1

E ) ≤ 0.

Differentiating with respect to ωE, we get

∂A

∂ωE
(s2i+1
E , ωE) =

∫ s2i+2
E

s2i+1
E

[(ωE − ωI)f ′(ωE|s) + f(ωE|s) + βf(ωE|s)] g(s) ds,

where we denote by f ′ the derivative of f in ωE.

When f is nondecreasing in ωE, or f ′ ≥ 0, we have ∂A/∂ωE ≥ 0, and hence
the odd extremities are nondecreasing in ωE. We now examine successively the
cases where the hazard rate is nondecreasing in ωE (a weaker condition than
f ′ ≥ 0) and the elasticity of entry is nondecreasing in ωE (an even weaker
condition).

H.4.1 Assuming that the hazard rate does not decrease in ωE

We now assume that the hazard rate, f/(1− F ), is nondecreasing in ωE, which
can be expressed as f ′ ≥ −εf/ωE. Using ωE ≥ ωI , we find that

∂A

∂ωE
≥

∫ s2i+2
E

s2i+1
E

[
−(ωE − ωI)

ε

ωE
+ 1 + β

]
f(ωE|s)g(s) ds

=

∫ s2i+2
E

s2i+1
E

{
ε

[
ωI
ωE
− 1 +

β

ε

]
+ 1

}
f(ωE|s)g(s) ds.

20For ωE < ωI , the virtual surplus is negative for all sE and the solution is qE = 0 for all
sE .
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On a horizontal interval H, the variable ωE is constant, and only the elasticity
ε may vary. Hence, the first order condition (H.2) yields: E(1 − β/ε |H) =

ωI/ωE. The right-hand side of the above inequality is equal, up to a positive
multiplicative constant, to

1− cov
(
ε, 1− β

ε

∣∣∣∣H) .
We now look for a sufficient condition for this expression to be nonnegative
for any distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the
condition can be rewritten as

E
[
(ε−m)

(
1− β

ε

)∣∣∣∣H] ≤ 1.

The function (ε−m)(1−β/ε) is convex in ε. We denote by [ε, ε̄] the support of
the distribution of ε. For given values of ε, ε̄ andm = E(ε|H), the expectation of
this convex function is maximal when the distribution of ε has two mass points
at ε and ε̄, associated with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need

to make sure that

(ε̄−m)(ε−m)

(
1− β

ε

)
+ (m− ε)(ε̄−m)

(
1− β

ε̄

)
≤ ε̄− ε,

for any m ∈ [ε, ε̄]. The left-hand side of the above inequality is maximal for
m = (ε + ε̄)/2. It follows that the inequality holds for all m ∈ [ε, ε̄] if and only
if the condition (D.1) is satisfied.

H.4.2 Assuming that the elasticity of entry does not decrease in ωE

We now assume that the ε(ωE|sE) is nondecreasing in ωE, as stated in Assump-
tion 1. We have:

∂ε(ωE|sE)

∂ωE
(s2i+1
E , ωE) =

∂

∂ωE

[
ωEf(ωE|sE)

1− F (ωE|sE)

]
≥ 0

which can be rewritten as f ′ ≥ −(1 + ε)f/ωE. Using ωE ≥ ωI , we find that

∂A

∂ωE
≥
∫ s2i+2

E

s2i+1
E

[
ωI
ωE
− ε

(
1− β

ε
− ωI
ωE

)]
f(ωE|s)g(s) ds.

On a horizontal interval H, the variable ωE is constant, and only the elasticity
ε may vary. Hence, the first order condition (H.2) yields: E(1 − β/ε |H) =
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ωI/ωE. The right-hand side of the above inequality is equal, up to a positive
multiplicative constant, to

E
(

1− β

ε

∣∣∣∣H)− cov
(
ε, 1− β

ε

∣∣∣∣H) .
We now look for a sufficient condition for this expression to be nonnegative
for any distribution of ε. Noting m = E(ε|H) the expectation of ε on H, the
condition can be rewritten as

E
[
(ε−m− 1)

(
1− β

ε

)∣∣∣∣H] ≤ 0.

The function (ε−m−1)(1−β/ε) is convex in ε. We denote by [ε, ε̄] the support
of the distribution of ε. For given values of ε, ε̄ andm = E(ε|H), the expectation
of this convex function is maximal when the distribution of ε has two mass points
at ε and ε̄, associated with the respective weights ε̄−m

ε̄−ε and m−ε
ε̄−ε . We thus need

to make sure that

(ε̄−m)(ε−m− 1)

(
1− β

ε

)
+ (m− ε)(ε̄−m− 1)

(
1− β

ε̄

)
≤ 0, (H.3)

for any m ∈ [ε, ε̄]. The above function is the sum of two quadratic functions of
m. The first is convex with roots ε− 1 and ε̄; the second is concave with roots
ε and ε̄− 1. Both quadratic functions have zero derivative at m = (ε+ ε̄− 1)/2.
The sum of the two functions is concave as ε < ε̄.

When ε̄ ≤ ε + 1, the concave quadratic function is negative on the interval
[ε, ε̄], and hence the inequality (H.3) holds on that interval. When ε̄ > ε+ 1, we
need to make sure that the maximum value of the concave quadratic function is
lower than the minimum value of the convex quadratic function. This is is the
case if and only if (

1− β

ε̄

)
(∆ε− 1)2 ≤

(
1− β

ε

)
(∆ε+ 1)2.

which is equivalent to (D.2).

H.5 Two-dimensional bunching

When none of the above sufficient conditions holds, it may happen that solv-
ing the problem separately for each ωE yields odd extremities (left extremities
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Figure 10a: ERT line (dashed). Non-
monotonic odd extremities (solid line)

Figure 10b: Two-dimensional bunch-
ing area: qE = ŝ on D.

of horizontal bunching segments) that are non-monotonic with ωE, as repre-
sented on Figure 10a. Such a line does not define a boundary function Ψ(sE).
This means that the monotonicity constraints are binding and that the optimal
boundary line has an increasing vertical portion, generating a two-dimensional
pooling area. An example of such an area is the shaded region D pictured on
Figure 10b, on which the quantity is constant. The value of the constant (ŝ on
the picture) is determined by the first-order condition

E(sv|D) = 0.

This example has been constructed by assuming that (i) ωE follows a Pareto
distribution conditionally on sE, for all sE; (ii) the elasticity of entry takes two
values, ε and ε̄, with a large difference ε̄− ε; (iii) small rivals are very sensitive
to the competitive pressure placed by the incumbent (their elasticity is ε̄) and
large rivals are much less sensitive (their elasticity is ε). Hence the increasing
ERT line with two pieces.
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I Finite disposal costs

Assume that Ψ(sE) ≤ vI + γ, and define the quantity function by (G.1), the
surplus gain from trade between the buyer and the rival by

∆SBE(sE, ωE) =

∫ ωE

ωE

qE(x, sE) dx,

and the tariff T by (G.2). Differentiating the latter equation with respect to ωE
below the boundary line, a region where qE increases with ωE, yields

T ′(q)
∂q

∂ωE
= (vI − ωE)

∂q

∂ωE
− q + q,

and hence T ′(q) = vI−ωE ≥ −γ. Differentiating (G.2) with respect to sE above
the boundary line but below vI + γ, a region where qE = sE, yields

T ′(sE) = vI − ωE +
∂∆SBE
∂sE

≥ vI − ωE ≥ −γ,

because ∆SBE is nondecreasing in sE.
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