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Shock on Variable or Shock on Distribution with
Application to Stress-Tests

Abstract

The shocks on a stochastic system can be defined by means of either distribution, or

variable. We relate these approaches and provide the link between the global and local

effects of both types of shocks. These methodologies are used to perform stress-tests on

the portfolio of financial institutions by means of shocks on systematic factors, for which

we distinguish the cases of crystallized and optimally updated portfolios. The approach

is illustrated by an analysis of the risk of sovereign bonds of the Eurozone.

Keywords : Shock, Copula, Extreme Risk, Stress-Test, Factor Model, Systemic Risk, Port-

folio Management, Sovereign Bonds.
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1 Introduction

The comparison of risks or the analysis of the effects of shocks on a risky portfolio value

are problems concerning a comparison of two distributions. However, these questions are

often presented in the economic and finance literature in terms of stochastic variables.

This is an abuse of language. It is likely introduced to facilitate the understanding of the

notion by the standard reader, but it can also imply misleading interpretations and errors

in implementing the notion.

To illustrate this practice, let us consider the notion of second-order stochastic dominance.

Rothschild, Stiglitz (1970), Theorem 2, have proposed three equivalent characterizations of

this notion. Loosely speaking they consider two variables Y0, Y1 with respective cumulative

distributions F0 and F1. For expository purpose, let us interpret Y0 and Y1 as the prices

of two assets 0 and 1, or equivalently, as the value of two portfolios completely invested

in asset 0 and 1, respectively. The investment Y0 in asset 0 dominates the investment Y1

in asset 1 at the second-order if one of the following equivalent conditions i)-iii) is satisfied :

i)
∫K

0 [1− F0(y)] dy ≥
∫K

0 [1− F1(y)] dy, ∀ K.

Let us consider the price, under the historical distribution3, of a European call option

written on the investment Y0 with strike K, that is, the price of a derivative with payoff

equal to Y0 −K, if Y0 ≥ K, equal to 0, otherwise. We have :

E
(
[Y0 −K]+

)
=

∫ +∞

K
(y −K)f0(y)dy

= −
∫ +∞

K
(y −K)d[1− F0(y)]

= − [(y −K)(1− F0(y))]+∞K +

∫ +∞

K
[1− F0(y)]dy

=

∫ +∞

K
[1− F0(y)]dy

= E(Y0)−
∫ K

0
[1− F0(y)]dy, since Y0 > 0.

Thus, condition i) means that, for a given strike K, a European call option contract writ-

ten on the price of asset 0 is always cheaper than the similar contract written on asset

3Equivalently, this is the price for a risk-neutral investor.
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1, whenever Y0 and Y1 have the same mean. Therefore, the investment Y0 dominates Y1

under i), since the price of the insurance against a drop in investment’s value is lower for

asset 0.

ii) E [U (Y0)] ≥ E [U (Y1)], for any bounded concave function U .

Condition ii) means that any risk-averse agent, i.e. with concave utility function, would

prefer asset 0 to asset 1.

iii) There exists a variable Z such that : Y1 = Y0 + Z, with E [Z|Y0] = 0.

The first and second characterizations show clearly that the concept of stochastic dom-

inance concerns the distributions. The third characterization seems to be of a different

type. It says that we can pass from Y0 to Y1 by adding a stochastic shock with zero

conditional mean. It concerns variables themselves, but on an extended space, since the

comparison of the marginal distributions of Y0 and Y1 implicit in i) and ii) is now replaced

by a condition, which involves the joint distribution of (Y0, Y1) on the product space. As

seen from the proof in Rothschild, Stiglitz (1970), the third characterization can only be

obtained after having constructed an artificial product space [see also Strassen (1965),

Armbruster (2011)].

In Section 2, we consider a parametric family of cumulative distribution functions (Fδ, δ ∈ I),

and we show that they can always be considered as the marginal distributions of a fam-

ily of variable Yδ defined by a stochastic equation Yδ = h (Y0, ε; δ), where ε is a variable

independent of Y0. As in Rothschild, Stiglitz, the result requires the construction of an

artificial product space. The “equivalent” representation of the family of distributions

allows to understand why shocks can be defined in terms of either parameter, or distribu-

tion, or variable.

The effect of a small change of δ on the distribution is usually studied by considering

a Taylor expansion of distribution Fδ with respect to δ. In Section 3 we show how an

equivalent expansion can be performed in terms of variables and relate the two types of

expansions. Some examples of specification of shocks are given in Section 4. While com-

mon practices usually perform stress-testing exercises by considering deterministic shock

on crystallized portfolio value, we show that our results allow for much richer exercises.
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As an illustration, the stress-test methodology is applied in Section 5 to portfolios of

sovereign bonds. We consider sovereign bonds for different countries on period 2001-2011,

and extract the underlying factors by a principal component analysis. The distribution of

these factors on periods 2001-2007 and 2007-2011 shows a significant change due to the

recent financial crisis. Then we consider period 2001-2007 as a benchmark and shock the

first factor by contaminating the benchmark distribution with crisis specific distribution.

We analyze the effects of this contamination on a crystallized portfolio and an optimally

updated portfolio, both for shocks in distribution and in variable. Section 6 concludes.

The technical proofs are gathered in Appendices.
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2 Family of Distributions or Family of Variables

The aim of this section is to relate a parametric modeling written in terms of distributions

and a parametric modeling written in terms of stochastic variables. For expository pur-

pose, we consider continuous distributions on R and a scalar parameter δ (the extension

to multivariate distributions is given in Appendix 1 i)).

The first type of modeling defines a family of distributions {Fδ, δ ∈ I}, where I denotes an

interval of R and Fδ the cumulative distribution function. The second modeling is based

on some relationship between variables : Yδ = h (Y0, ε; δ) , δ ∈ I, say, where Y0 and ε are

independent variables with Y0 following F0 and ε following the uniform distribution on

[0, 1]. The questions solved in this section are the following ones :

i) Given the parametric family {Fδ, δ ∈ I}, is it always possible to find a variable ε and a

function h such that the marginal distribution of Yδ is Fδ, for any δ ∈ I?

ii) Is such a function h unique, if it exists?

2.1 Copula

Whereas the modeling in distribution involves the one-dimensional space (R,B (R)), the

modeling in variable involves a two dimensional space
(
R2,B

(
R2
))

. Thus, we have first to

introduce such a bidimensional artificial space. Let us denote by (U, V ) a pair of variables

on this space with marginal distributions which are uniform on [0, 1], and a joint c.d.f.

C(u, v) = P [U < u, V < v] , u, v ∈ [0, 1]. The variables are usually called rank variables

and function C is the copula cumulative function.

Let us first consider two values, 0 and 1, say, of parameter δ, and the associated distribu-

tions F0 and F1. By Sklar theorem [Sklar (1959)], the variables :

Y0 = F−1
0 (U), Y1 = F−1

1 (V ), (2.1)

have the joint c.d.f. :

P [Y0 < y0, Y1 < y1] = C [F0(y0), F1(y1)] . (2.2)

In particular the marginal distribution of Y0 (resp. Y1) is F0 (resp. F1).
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Let us now consider the conditional c.d.f. of Y1 given Y0. We have [see Joe (1997), p.245] :

F1|0 (y1|Y0) ≡ P [Y1 < y1|Y0] =
∂C

∂u
[F0 (Y0) , F1 (y1)] . (2.3)

Thus, by using the inverse transform method, the variable :

ε = F1|0 (Y1|Y0) =
∂C

∂u
[F0 (Y0) , F1 (Y1)] , (2.4)

follows a uniform distribution on [0, 1] and is independent of Y0. We deduce the expected

expression in terms of variables :

Y1 =
(
F1|0 (•|Y0)

)−1
(ε)

=

(
∂C

∂u
[F0 (Y0) , F1 (•)]

)−1

(ε)

= h (Y0, ε; 1) , say. (2.5)

Thus we have shown the existence of function h. Moreover, by increasing the dimension

of the space, we allow for a variety of choices of copula C and then of function h. Finally,

equation (2.4) can also be written as :

ε =
∂C

∂u
(U, V ) ,

which shows how the uniform variable ε depends on the basic uniform variables U and V

in a complicated nonlinear way.

2.2 Extension to families

The result of Section 2.1 can be applied to any pair of parameter values (0, δ), associated

distributions (F0, Fδ), and variables (Y0, Yδ). We get :

εδ =
∂Cδ
∂u

[F0 (Y0) , Fδ (Yδ)] , δ ∈ (0, 1),

and

Yδ =

(
∂Cδ
∂u

[F0 (Y0) , Fδ (•)]
)−1

(εδ), δ ∈ (0, 1), (2.6)

where the copula is now indexed by parameter δ. All variables εδ are uniformly distributed

on [0, 1] and independent of Y0. In practice the shock defined in terms of variable involves
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an innovation ε, which is independent of δ. This is easily derived if we consider equality

in distribution. Indeed, equation (2.6) implies the equality in distribution

Yδ
d
=h (Y0, ε; δ) , δ ∈ [0, 1], (2.7)

where

h (Y0, ε; δ) =

(
∂Cδ
∂u

[F0 (Y0) , Fδ (•)]
)−1

(ε), (2.8)

ε is independent of δ, of Y0, and uniformly distributed on [0,1].

2.3 Shocks

Let us now discuss the introduction of shocks.

i) The shock can be defined by means of parameter δ. For instance, the parameter can

pass from value 0 to value δ, say.

ii) The corresponding effect on distribution will be the change from F0 to Fδ.

iii) Let us finally consider the variable interpretation. Equality (2.7) in distribution has

to be replaced by an equality in terms of variables. In fact, we can define

Yδ = h (Y0, ε; δ) ,

with h satisfying (2.8), whenever the following coherency condition is satisfied :

Y0 = h (Y0, ε; 0) . (2.9)

Then the shock on variables is Yδ −Y0 = h (Y0, ε; δ)−Y0. For a given Y0, this is in general

a stochastic shock due to the effect of the uniform stochastic variable ε.

The coherency condition (2.9) implies restrictions on the choice of copula in (2.8). Let

us for instance consider the Gaussian copula with correlation parameter ρ(δ), and vari-

ables Y0, Yδ, whose marginal distributions are F (y; 0), F (y; δ), respectively. We have (see

Appendix 4 i)) :

ε = Φ

(
Φ−1 [F (Yδ; δ)]− ρ(δ)Φ−1 [F (Y0; 0)]√

1− ρ2(δ)

)
,
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where Φ is the standard Gaussian c.d.f. Thus :

Φ−1 [F (Yδ; δ)] = ρ(δ)Φ−1 [F (Y0; 0)] +
√

1− ρ2(δ)Φ−1 (ε) . (2.10)

Equation (2.10) shows that the coherency condition restricts the Gaussian copula to be

such that ρ(0) = 1.

Finally note that the definition of the direction of the shock is more accurate with the

specification in variable. Indeed, it specifies Yδ − Y0 with respect to Y0. Thus it requires

the specification of the joint distribution of Y0 and Yδ, whereas the specification in terms

of distribution demands the unconditional distributions only. This explains why different

specifications of shocks in terms of variable can lead to a same specification in terms of

distribution.
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3 Local Analysis

We have seen in Section 2 how to link the approaches in distributions and in variables in a

global analysis of shocks. However, extreme effects can result from small shocks when the

system is nonlinear. In applications to finance, these nonlinearities are due to derivatives

(call options, credit derivatives) included in the portfolio as well as the nonlinear portfolio

management strategies. This explains why a global analysis has to be completed by a

local analysis.

The effect of a small change4 in δ is usually treated by considering appropriate Taylor

expansions. These expansions can be done from the distributions themselves, or from the

interpretation in terms of variables. We consider below these expansions in a neighborhood

of δ = 0.

3.1 Expansion of the distribution

Let us denote f(y; δ) the density function corresponding to Fδ. Under standard regularity

conditions, we get the Taylor expansion at order p :

f(y; δ) = f(y; 0) +

p∑
j=1

δj

j!

∂jf(y; 0)

∂δj
+ o (δp) , (3.1)

where o(.) denotes a deterministic negligible term.

In particular, we get at second-order :

f(y; δ) = f(y; 0) + δ ∂f(y;0)
∂δ + δ2

2
∂2f(y;0)
∂δ2

+ o
(
δ2
)

= f(y; 0)

{
1 + δ ∂ log f(y;0)

∂δ + δ2

2

[
∂2 log f(y;0)

∂δ2
+
(
∂ log f(y;0)

∂δ

)2
]}

+ o
(
δ2
)
,

[see Chesher (1983), (1984) for an application of this expansion for testing neglected het-

erogeneity].

4A small change in δ implies a large change on variable Y0, if the stochastic direction of the shock

concerns extreme risks (see Section 5).
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3.2 Expansion in terms of variable

Let us now consider the model :

Yδ = h (Y0, ε; δ) .

We could apply a Taylor expansion at order p to get :

Yδ = Y0 +

p∑
j=1

(
δj

j!

∂jh (Y0, ε; 0)

∂δj

)
+ oP (δp) , (3.2)

where oP(.) denotes a negligible term in probability.

However, such an expansion would be difficult to interpret in terms of distributions. In-

stead, we consider below the approximate computation of an expectation E [g(Yδ)], where

g is an infinitely differentiable function with compact support. We get :

E [g(Yδ)] = E [g(h (Y0, ε; δ))]

= E [g(Y0)] +

p∑
j=1

{
δj

j!
E
[
∂j

∂δj
g(h (Y0, ε; δ))

]
δ=0

}
+ o (δp) .

Then, we can apply Faa di Bruno’s formula [see Faa di Bruno (1855), Johnson (2002),

Spindler (2005)], which provides the j-th derivative of a composite function.

Lemma 1 : Faa di Bruno’s formula

dn

dtn
g [h(t)] =

∑
Dion

n!

k1!k2!...kn!
g(k) [h(t)]

(
h(1)(t)

1!

)k1 (
h(2)(t)

2!

)k2
...

(
h(n)(t)

n!

)kn
,

where g(k) denotes the kth derivative of function g, and where the sum is over all nonneg-

ative integer solutions of the Diophantine equation : k1 + 2k2 + ...+ nkn = n, and where

k = k1 + ...+ kn.

We deduce that :

E [g(Yδ)] = E [g(Y0)] +

p∑
j=1

{
δj

j!

j∑
k=1

E
[
g(k)(Y0)Aj,k(Y0, ε)

]}
+ o (δp) ,
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where

Aj,k (Y0, ε) =
∑

Dioj,k

{
j!

k1!k2!...kj !

(
1

1!

∂h(Y0, ε, 0)

∂δ

)k1
...

(
1

j!

∂jh(Y0, ε, 0)

∂δj

)kj}
, (3.3)

and the sum is over k1, ..., kj such that k1 + 2k2 + ...+ jkj = j and k1 + ...+ kj = k.

We can also write by the Iterated Expectation Theorem :

E [g(Yδ)] = E [g(Y0)] +

p∑
j=1

{
δj

j!

j∑
k=1

E
[
g(k)(Y0)aj,k(Y0)

]}
+ o (δp) , (3.4)

where

aj,k(Y0) = E [Aj,k (Y0, ε) |Y0] . (3.5)

Finally the following Lemma is proved in Appendix 2.

Lemma 2 : We have

E
[
g(k)(Y0)a(Y0)

]
= (−1)kE

[
g(Y0)

f(Y0; 0)

dk

dyk
[a(Y0)f(Y0; 0)]

]
,

for any k and function a.

Thus, we can rewrite equation (3.4) as :

E [g(Yδ)] = E [g(Y0)] +

p∑
j=1

{
δj

j!

j∑
k=1

(−1)kE
[
g(Y0)

f(Y0; 0)

dk

dyk
[aj,k(Y0)f(Y0; 0)]

]}
+ o (δp) .

(3.6)

The knowledge of the expectation E [g(Yδ)] for all infinitely differentiable functions with

compact support characterizes the distribution of Yδ. Thus, by comparing expansions (3.1)

and (3.6), we see how the Taylor expansion in terms of distribution can be interpreted in

terms of variable.

Proposition 1 : We have

∂j

∂δj
[f(y; 0)] =

j∑
k=1

(−1)k
∂k

∂yk
[aj,k(y)f(y; 0)] ,
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where aj,k is given in (3.5) and (3.3).

For instance, the first and second-order derivatives of a composite function are :

d
dtg[h(t)] = g(1)[h(t)]h(1)(t),

d2

dt2
g[h(t)] = g(2)[h(t)]

(
h(1)(t)

)2
+ g(1) [h(t)]h(2)(t).

Thus we get :

E [g(Yδ)] = E [g(Y0)]− δE
[
g(1)(Y0)∂h(Y0,ε,0)

∂δ

]
+ δ2

2 E
[
g(2)(Y0)

(
∂h(Y0,ε,0)

∂δ

)2
+ g(1)(Y0)∂

2h(Y0,ε,0)
∂δ2

]
+ o

(
δ2
)
.

We deduce the following second-order expansion of the p.d.f :

f(y; δ) = f(y; 0)− δ d
dy

[
f(y; 0)E

[
∂h (Y0, ε, 0)

∂δ
|Y0 = y

]]
(3.7)

+
δ2

2

{
d2

dy2

[
f(y; 0)E

[(
∂h (Y0, ε, 0)

∂δ

)2

|Y0 = y

]]
− d

dy

[
f(y; 0)E

[
∂2h (Y0, ε, 0)

∂δ2
|Y0 = y

]]}
+ o

(
δ2
)
.

The expansion in terms of variable is greatly simplified when the shock in variable is linear

in δ.

Corollary 1 : Let us assume that Yδ = Y0 + δZ (Y0, ε), say, and denote µp (Y0) =

E [Zp (Y0, ε) |Y0] the conditional power moments of the stochastic shock Z. We get :

f(y; δ) = f(y; 0) +

p∑
j=1

[
δj

j!
(−1)j

dj

dyj
[f(y; 0)µj(y)]

]
+ o (δp) .

This specific expansion has been first derived in the literature by Martin, Wilde (2002),

Theorem C, based on the analysis of the moment generating function of variable Yδ.

For instance, let us assume that Z(Y0, ε) = a(Y0)U , with U = Φ−1(ε) and Φ is the c.d.f.

of the standard normal. Then, we get :

µp(Y0) = ap(Y0)E(Up) = ap(Y0)2−p/2
p!

(p/2)!
, for p = 2n, n ∈ N− {0} , 0, otherwise.
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We deduce that :

f(y; δ) = f(y; 0) +

p∑
j=1

[
δ2j

2j(j!)

d2j

dy2j

[
f(y; 0)a2j(y)

]]
+ o

(
δ2p
)
.

The expansion of the p.d.f for a shock in terms of variable has been derived above in an

indirect way. In special cases, it is possible to get it in a direct way, but the computation

is rather cumbersome (see Appendix 3).
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4 Systematic Shock

Stress-tests are regularly performed to check the resistance of the financial system. They

consist in applying shocks to the balance sheets of the financial institutions (assimilated

to risky portfolios). The aim of this section is to discuss the notion of shock by means of

a systematic factor.

4.1 Shocks on tails

The calibration of the shocks is an important stage in the implementation of stress-test

exercises. In practice, the shocks are calibrated to be extreme, that is, they lead to re-

alizations that can deviate significantly from the usual observations of the variables of

interest5. The simplest form of shock is obtained through a translation of variable of in-

terest, or equivalently thanks to a shift on its distribution (see Figure 1 in the univariate

case). For instance, in its 2011 stress-testing exercise on European banks, the European

Banking Authority studied an increase of +1% on the average default rate of loans, equal

to about +1.5%, in banks’ portfolios (see the EBA 2011 Aggregate Report)6.

With this definition of shock the approaches in terms of variable and distribution look

similar. However this definition shows some deficiencies: the shock is deterministic, and

concerns the mean of the distribution, not the higher moments generally used to capture

risk.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

Figure 1: Shift of a distribution. The solid line stands for the baseline univariate distribution.

5However, as noted above, small shocks may imply large effects in a nonlinear framework. Thus, it is

important to consider the effects as a function of δ, that is, the impulse response function [see the discussion

in Section 4.2.3].
6Such an increase is rather extreme, and should rather be fixed taking into account the quality of the

loans in the balance-sheet of each bank. Typically an increase of +1% corresponds to a downgrade from

AAA to BB, but only from BB to B, and can lead to a stable C rating.
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In this Section, we investigate more sophisticated forms of shocks that have been considered

in the literature, in terms of either variable, or distribution. We present the link between

both approaches in the final part of this Section.

4.1.1 Shocks on tails in terms of variable

Richer formulations of the shocks are conceivable. Let us first consider a variable based

interpretation, where the shock on Y0 is denoted Yδ−Y0 = h (Y0, ε; δ)−Y0. Different forms

of shocks on tails are obtained from various dependence structure between the shock and

the baseline variable Y0. Let us consider a shock such that :

Yδ = h(Y0, ε; δ) = Y0 + δa(Y0)b(ε), (4.1)

where a (a larger than 0) and b are given functions.

We focus on risks in tails by selecting a function a taking large values in the left and/or

right tails of Y0. The symmetry or asymmetry of extreme shocks can be managed by

an appropriate choice of function b. As an illustration, we consider below the following

specification :

h(Y0, ε; δ) = Y0 + δY 2
0 exp [−ζyY0] Φ−1 (ε) exp

[
−ζεΦ−1 (ε)

]
, (4.2)

where ε is an independent variable with Uniform distribution (see Section 2), Φ is the

c.d.f. of the standard Gaussian distribution, and ζy, ζε are two positive scalars.

Four variants are presented in Figure 2 : symmetric extreme shock on both tails of Y0

(ζy = 0 and ζε = 0, top left panel in Figure 2), symmetric extreme shock concentrated on

the left tail of Y0 (ζy = 0.5 and ζε = 0, bottom left panel), and asymmetric shocks on both

tails (ζy = 0 and ζε = 2.5, top right panel), or on the left tail of Y0 (ζy = 0.5 and ζε = 2.5,

bottom right panel). The corresponding unconditional distributions of Yδ = h(Y0, ε; δ) are

given in Figure 3, which emphasizes the impact of the shock on the thickness of the tails

of the distributions, its asymmetry, or its number of modes.

The expansion of the unconditional p.d.f. of Yδ in (4.2) is derived by Corollary 1. At
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Figure 2: Conditional distributions of the shocked variable h (Y0, ε; δ) with respect to Y0

for different a and b functions in (4.2). The solid line stands for h (Y0, ε; 0) = Y0, and

Φ−1 (ε) has a standard Gaussian distribution.

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

ζ
y
 = 0, ζε=0 

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

ζ
y
 = 0, ζε>0

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

ζ
y
 > 0, ζε=0

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

ζ
y
 > 0, ζε>0

Figure 3: Unconditional distributions of the shocked variable h (Y0, ε; δ) for different a and

b functions in (4.2), where Y0 and Φ−1 (ε) have standard independent Gaussian distribu-

tions.

second-order in δ, we get :

f(y; δ) = φ(y) + δζε exp
[
ζ2
ε

] (
2y − y3 − ζyy

)
exp [−ζyy]φ(y)

+
δ2

2

(
1 + 4ζ2

ε

)
exp

[
2ζ2
ε

](
2y3 − y5

2
− ζyy4

)
exp [−2ζyy]φ(y),
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under the assumption of a standard normal variable Y0, where φ(y) is the p.d.f. of the

standard normal distribution. The first and second-order moments of U exp [−ζεU ], where

U = Φ−1(ε), are derived by considering the first and second-order derivatives of the

Laplace transform of the standard Gaussian variable.

4.1.2 Shocks on tails in terms of distribution

Such shocks have been introduced in the literature on robust statistics, which studies the

contamination of a baseline distribution by “outliers”.

i) Contamination

A standard specification, introduced in Huber (1964), presents the contaminated distri-

bution as a mixture of a baseline c.d.f. F (y; 0) and a contaminating c.d.f. Ξ(y) :

F (y; δ) = (1− δ)F (y; 0) + δΞ(y), with 0 ≤ δ ≤ 1. (4.3)

This specification is a special case of shocks in terms of distribution, for which the first-

order expansion in δ is exact : f(y; δ) = f(y; 0) + δ [ξ(y)− f(y; 0)], where ξ(y) is the p.d.f.

of the contaminating distribution. A left tail contamination is illustrated in Figure 4, with

Gaussian distributions, with different means and the same variance for F (•; 0) and Ξ(•).
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Figure 4: Left tail contaminated distribution. The solid line stands for the baseline dis-

tribution, the dashed line for the contaminated distribution.

ii) Contamination in terms of variable
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The conversion of contaminated distribution in terms of variable relies on the general link

between families of distributions and families of variables presented in Section 2. Let us

for instance apply the Gaussian copula of Section 2.3 to the specification (4.3), where the

baseline and contaminated variables are denoted Y0 and Yδ, respectively. We have (see

Appendix 4 ii)) :

Φ
(√

1− ρ2(δ)U + F0(Y0)
)

= (1− δ)F0(Yδ) + δΞ(Yδ), (4.4)

where U is standard normal and ρ(0) = 1 to ensure the coherency condition, that is,

Yδ = Y0, when δ = 0.

4.1.3 How to reconcile shocks on tails in terms of variable and distribution

Let us focus on the previous example of contaminated distribution. Several forms of

correlation parameter ρ(δ), and thus several Gaussian copulas, are consistent with con-

taminated distribution (4.3), once they satisfy the coherency condition ρ(0) = 1. This

example stresses the difficulty in identifying a unique variable-based specification of a

shock on tails expressed in terms of distribution.

Besides, the linearity in δ of shocks in terms of variable as considered in Section 5.1.1 do

not necessarily imply the linearity in δ of the shocks in terms of distributions as in (4.3).

Indeed, let us consider the following approximation of the correlation parameter :

ρ(δ) = 1− δ2r, where r = − ∂ρ(δ)

∂δ

∣∣∣∣
δ=0

,

where the first term in the expansion of ρ is of order δ2 to ensure the constraint ρ(δ) ≤ 1,

∀δ. We prove in Appendix 4 iii) that :

Yδ = Y0 + δZ + o(δ), say, (4.5)

where the variable Z is given by :

Z ≈
√

2rφ
(
Φ−1(F (Y0; 0))

)
U + F (Y0; 0)− Ξ(Y0)

f(Y0; 0)
. (4.6)

The expansion (4.5)-(4.6) highlights the double effect of the contamination of a distribution

in terms of variable: i) a drift effect F (Y0;0)−Ξ(Y0)
f(Y0;0) , and ii) a conditionally heteroscedatic

effect
√

2rφ(Φ−1(F (Y0;0)))U
f(Y0;0) similar to the effects in (4.1), that will impact the tails of the

distribution of the contaminated variable. This heteroscedastic effect depends on the
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curvature of function ρ(•) in the neighborhood of δ = 0, while the drift effect is negative

whenever the contaminating distribution Ξ stochastically dominates at order 1 the baseline

distribution F (Y0; 0). We still have the multiplicity of interpretations of the shock in terms

of variable, since the curvature effect r is unconstrained. In terms of variable, larger is

this curvature, larger is the weight on the volatility with respect to the drift.

The comparison of (4.6) with the linear interpretation of the shock in the variable-based

approach in (4.1), for which drift effects are missing, emphasizes the differences in both

specifications, in spite of their common linear in δ formulation.

4.2 Shocks on a systematic factor

For a vast majority of asset classes, statistical analyses of the price dynamics reveal a

limited number of linear, or nonlinear, latent factors, which explain most of the variation in

asset prices, or asset returns. In a linear dynamic framework, it is known for instance that

one factor drives most of the returns on US Treasury bonds [see e.g. Cochrane, Piazzesi

(2005)], while the literature identifies few common linear factors for equity returns [see

e.g. Fama, French (1992)].

These systematic factors represent the common dynamic patterns among multiple asset

prices, and characterize the dependence structure between assets. For regulators, the

identification of linear or nonlinear systematic factors is of crucial importance, since their

variations have the biggest impact on institutions’ portfolios, as opposed to idiosyncratic

factors, whose risk can be diversified away by the holding of a large number of assets. As

an illustration, let us consider the Basel 2 credit risk model. Inspired from the Value-of-

the-Firm model [Merton (1974)], it decomposes in a linear way the log asset/liability Y ∗j
of a firm j in common factor X and specific (or idiosyncratic) components ηj :

Y ∗j =
√
ρX +

√
1− ρηj ,

with positive asset correlation ρ, and deduces the default indicator as :

Yj = 1Y ∗
j <0 = 1√ρX<−

√
1−ρηj .

In the basic model, this default indicator is directly related to the payoff of a Credit

Default Swap (CDS) written on firm j. Thus, the probability of very large cumulated

losses on the institution’s portfolio of CDS highly depends in a nonlinear way on the share

of common/systematic factors in the distribution of firm’s log asset/liability.
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We present below the local expansion of the distribution of variables of interest with

respect to ”systematic shocks”, that are shocks on the distribution of systematic factors,

both in terms of distribution and variable.

4.2.1 Local analysis of systematic shock in terms of distribution

Let us decompose the joint distribution of variables of interest f(y; δ) into two parts:

one corresponding to the marginal distribution of the common factors, and the other one

referring to the distribution of the variables of interest, conditional on the common factors.

A systematic shock would hit the marginal distribution of the common factor X without

modifying the conditional distribution of Y given X. Thus we get :

f(y; δ) =

∫
f1(y|x)f2(x; δ)dx. (4.7)

A direct application of the results in Section 3.1 gives the following local expansion of the

distribution of the variable of interest :

f(y; δ) = f(y; 0) +

p∑
j=1

δj

j!

∫
f1(y|x)

∂jf2(x; 0)

∂δj
dx+ o(δp). (4.8)

In particular, at second-order, we get :

f(y; δ) = f(y; 0) + δ

∫
f1(y|x)

∂f2(x; 0)

∂δ
dx+

δ2

2

∫
f1(y|x)

∂2f2(x; 0)

∂δ2
dx+ o(δ2).

4.2.2 Local analysis of systematic shock in terms of variable

Let us now consider the (vector of) variables of interest Yδ as a function of common factors

Xδ, and independent variables η :

Yδ = b(Xδ, η), (4.9)

where the common factors are such that :

Xδ = h(X0, ε; δ). (4.10)

The model involves two types of basic impulses, that are the variable η representing

the idiosyncratic component and the variable ε used to define shock on the systematic

factor. Equation (4.9) is compatible with nonlinear effects of both types of components
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and possibly cross-effects of systematic and idiosyncratic components.

From Proposition 1, we get at second-order :

f(y; δ) = f(y; 0)− δ
∫
f1(y|x)

∂

∂x

[
f2(x; 0)E

[
∂h(X0, ε; δ)

∂δ
|X0 = x

]]
dx

+
δ2

2

∫
f1(y|x)

{
∂2

∂x2

[
f2(x; 0)E

[(
∂h (X0, ε, 0)

∂δ

)2

|X0 = x

]]

− ∂

∂x

[
f2(x; 0)E

[
∂2h (X0, ε, 0)

∂δ2
|X0 = x

]]}
dx+ o

(
δ2
)
.

For instance, let us consider a Value-of-the-Firm model for an homogeneous population of

N different firms, where Y ∗δ is the vector of firms’ log asset/liability :

Y ∗δ =
√
ρ1′Xδ +

√
1− ρη,

where 1 is a Nx1 vector of ones, and η has a standard multivariate normal distribution.

Let us assume that the single common factor is such that :

Xδ = X0 + δa(X0)U,

where U is a random variable independent from X0, whose second-order moments exists.

We get at second-order :

f2(x; δ) = f2(x; 0)− δE (U)
d

dx
[a(x)f2(x; 0)] +

δ2

2
E
(
U2
) d

dx

[
a2(x)f2(x; 0)

]
+ o(δ2),

f(y∗; δ) = f(y∗; 0)− δE (U)

∫
f1(y∗|x)

(
a(1)(x)f2(x; 0) + a(x)f

(1)
2 (x; 0)

)
dx

+
δ2

2
E
(
U2
) ∫

f1(y∗|x)
(

2a(x)a(1)(x)f2(x; 0) + a2(x)f
(1)
2 (x; 0)

)
dx+ o(δ2).

Then this expansion can be used to deduce the expansion of the distribution of the default

indicators.

4.2.3 Systematic shock with extreme effects

This section helps to precise the notion of extreme shock, which remains rather vague in

the literature, and calls for richer specifications of shock than the “shock-in-mean” usu-

ally considered in stress-test exercises. When performing stress-tests, we are interested in
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shocks on a systematic factor with extreme impacts on asset portfolio values.

i) Linear dynamic factor model

In a linear dynamic framework, large effects on the tail of the distribution of variable of

interest Y are obtained by introducing shocks on the tails of the factor distribution. This

is why the literature usually focus on factor tails (see e.g. Section 4.1).

ii) Nonlinear dynamic factor model

The situation is very different in the nonlinear framework encountered for portfolios of

derivative assets (see e.g. the example of CDS portfolio), or for portfolios managed in

some optimal way, for which the relevance of the chosen shocks depends on the nonlinear

link between the distribution of portfolio’s value and the distribution of the systematic

factor.

In such nonlinear factor model, a rather small shock on a factor value can sometimes have a

large impact on the portfolio. As an illustration, let us consider an investor, who allocates

her/his wealth among two assets, when the asset prices are almost perfectly correlated.

Such a large correlation would incite her/him to lever up her/his wealth by selling the

less profitable asset to buy the other one. Let us now consider a shock on the joint asset

distribution changing the asset correlation to a negative value close to -1, whereas keeping

the expected returns and volatilities at the same level. Under a Gaussian assumption on

returns, the joint Gaussian distribution is modified much more in its central part than in

its tails. However, the portfolio allocation crystallized at its previous level will be very

sensitive to this change, since now the risks lie in the same direction, and the leverage

effect is exactly at the opposite of what has to be done. This is exactly the situation

encountered by N. Leeson that implied the failure of the Barings, or in the LTCM default.

This example shows that a shock on even a central part of the distribution can have

extreme consequences. Therefore, it is important to detect the type of shock on the factor

with such huge consequences. For this purpose, it is recommended to define a direction

of the shock in terms of either variable, or distribution, and to measure the consequences

for different levels of δ, that is, to consider an impulse response function [see e.g. Koop,

Pesaran, Potter (1996), and Gourieroux, Jasiak (2005)].
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5 Stress-testing the European Sovereign Bond Market

The aim of this section is to avoid the limitations of the current implementation of stress-

tests, in which the shocks are assumed deterministic and the portfolio is crystallized. In

the application presented below, we stress the portfolio of a financial institution invested in

European sovereign bonds. We propose a direction of the shock in terms of distribution and

variable and show how the riskiness of investor’s portfolio, either crystallized or optimally

updated, evolves with the size of the shock on the distribution of excess gains.

5.1 Stress-test

A stress-test requires the application of the different notions introduced in Sections 2, 3,

and 4 along the lines of scheme 1.

Define the 

systematic/idiosyncratic 

factors to be stressed 

Define the direction of the shock to 

be applied to this factor (in terms of 

either distribution, or variable) 

Compute the global and/or local effects of 

the shock on future asset prices for 

different shock’s magnitudes 

Distinguish in the impulse 

response function of the 

portfolio value the part due to 

portfolio adjustment 

Compute the global and/or local 

effect of the shock on the future 

value  of the crystallized portfolio for 

different shock’s magnitudes 

Compute the global and/or local effect 

of the shock on the future value  of the 

optimal portfolio for different shock’s 

magnitudes 

Scheme 1: A stress-test

In the following parts of the section, we apply these different steps to a portfolio of Euro-

pean sovereign bonds.
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5.2 Excess gains on the European sovereign bond market

As an illustration, let us consider an investor with mean-variance objective function, who

invests her/his wealth in the European sovereign bond market. For simplicity, we consider

zero-coupon bonds, with face value 1, and maturities 10 years. We restrict our sample

to six countries representing the variety of the euro area sovereign bond market, that are

Germany, France, Italy, Spain, Ireland and Greece. The sample covers the period from

July 2001 to June 2011. We assume that the investor has a monthly horizon, and has

access to a risk-free asset, which pays the 1M Eonia swap rate7 after a one-month holding

period. The corresponding monthly excess gains in euros8 are plotted in Figure 5.

We identify from principal components analysis one systematic factor, which explains
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Figure 5: Montly excess gains on 10Y European sovereign bonds.

7The Eonia swap rate is the fixed rate in a swap contract, whose variable leg is pegged to the Euro

OverNight Index Average.
8We did not take into account the 1-month maturity effect on bond prices in the computation of excess

gains.
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about 95% of the variance of the historical excess gains. The first factor weights uniformly

the 10Y rates of all countries (see Appendix 6). Loosely speaking, this factor is a kind of

Eurozone systematic risk. We will shock this “Euro factor”9 .

As put forward in Figure 6, the first factor has different distributions before and after

2000 2002 2005 2007 2010 2012
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0.2
Historical Dynamics of the Systematic Factor

−0.15 −0.1 −0.05 0 0.05 0.1
0
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June 01−July 07
August 07−June 11

Figure 6: Historical dynamics and histograms of the first systematic factor on periods

2001-2007, and 2007-2011.

July 2007: it features fatter tails, becomes bimodal and seems less asymmetric. We rely

on this change to define a systematic shock by contamination.

5.3 Contamination on the systematic factor

More precisely, we identify the distribution on the 2001-2007 period of the systematic

factor X as our baseline distribution, denoted F (x; 0), while the distribution on 2007-2011

plays the role of the contaminating distribution Ξ(x).

Then we consider a specification of the shock on the factor’s distribution as in Section

4.1.2 :

F (x; δ) = (1− δ)F (x; 0) + δΞ(x), with 0 ≤ δ ≤ 1. (5.1)

Let us now consider the contamination in terms of variable. We know that there exists

an infinite number of specifications in terms of variable providing the specification (5.1)

9It would also be possible to consider specific shocks, for instance on the value of the Greek sovereign

debt.
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of the unconditional distribution of Yδ. Instead of selecting one of these specifications,

we consider a linear specification providing locally the equivalence. As shown in Section

4.1.3, equation (4.6), we can express at first-order the empirical contaminated distribution

in terms of variable as :

Xδ = X0 + δZ + o(δ), (5.2)

where X0 and Xδ are the baseline and contaminated factors, with

Z ≈
√

2rφ
(
Φ−1(F (X0; 0))

)
U + F (X0; 0)− Ξ(X0)

f(X0; 0)
, (5.3)

U is standard Gaussian, and the curvature parameter r is set to r = 2.

We take advantage of representation (5.3) to simulate a set of 1000 contaminated variables,

by drawing independently 1000 times X0 in the set of realized X0 and U in the standard

normal distribution, and by taking f(•; 0), F (•; 0), and Ξ(•) at their empirical counter-

parts f̂(•; 0), F̂ (•; 0), and Ξ̂(•). The corresponding c.d.f. of the simulated contaminated

variables are plotted in Figure 7 for different δ values. Even if the contamination models

in distribution and variable are equivalent in a neighborhood of δ = 0, the comparison

of Figures 7 and 16 shows that the two specifications imply different types of stochastic

shocks for larger values of δ. In particular, the effect on tails is more important with the

contamination approach (5.2) written in terms of variable.

5.4 Impact of the systematic shock on portfolio characteristics

i) Simulation of contaminated excess-gains

Let us consider a simple factor model for the vector of excess gains :

Pδ = µ+ β′Xδ + Σ1/2η, (5.4)

where Σ is diagonal, η is a standard zero-mean vector, and β collects the systematic factor

loadings for each bond’s excess gain.

The parameters µ, β, Σ are estimated from the Seemingly Unrelated Regression (SUR) of

excess gains Pt on the first factor deduced from the principal component analysis. Then

the distribution of η is approximated by the historical distribution of the residuals :

η̂t = Σ̂−1/2
(
Pt − µ̂− β̂′X̂t

)
.
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Figure 7: Empirical c.d.f. and p.d.f. of 1000 simulated contaminated factor values Xδ in

terms of variable for various δ. The solid line stands for the c.d.f. of the baseline factor

X0, while dashed, dotted, and dash-dotted lines represent the contaminated empirical

distribution for δ = 0.1, 0.5, 1.

The simulation of contaminated excess gains is based on model (5.4) after replacement of

the parameters by their estimates. Let us consider a contamination in terms of variable

(the contamination in terms of distribution is presented with the corresponding results

in Appendix 6). We draw independently a value ηs in the empirical distribution of the

residuals η̂t, and a value Xs
δ in terms of variable as described in Section 5.3. Then the

simulated contaminated excess gain is :

P sδ = µ̂+ β̂′Xs
δ + Σ̂1/2ηs.

This procedure is repeated S = 1000 times. The empirical distribution of the simulated

contaminated variables P sδ , s = 1, ..., S, provides an estimate of the theoretical distribu-

tion of the contaminated excess-gains.

ii) The contaminated mean-variance allocation

We can now derive the mean-variance allocation for an investor, who adjusts herself/himself

to the contaminated excess gain distribution. From the estimated distribution of the con-
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taminated excess-gains derived in 5.4 i), we deduce for each magnitude δ of the shock the

mean and variance/covariance matrix of contaminated excess gains, from which we deduce

the optimal mean-variance allocation, denoted α∗(δ)10. The optimal portfolio allocation

as a function of the magnitude of the shock δ is given in Figure 8. This figure highlights

the nonlinear effects of δ on the optimal allocation.

This nonlinearity is a direct consequence of the specification of the stochastic shock and

of the mean-variance portfolio management. Indeed, we deduce from (5.2)-(5.4) that:

E (Pδ) = µ+ β′E (Xδ) = µ+ β′E (X0) + β′E (Z) ,

V (Pδ) = β′V (Xδ)β + Σ = β′
[
V (X0) + δCov(X0, Z) + δCov(Z,X0) + δ2V (Z)

]
β + Σ.

Therefore the mean-variance allocation: α∗(δ) = γ−1V (Pδ)
−1 E (Pδ), has components,

which are ratios of polynomials in δ of degree 12.

Despite this nonlinear pattern, we observe that these optimal portfolios are short in Ger-

man, French, Italian and Greek bonds [resp. long in Irish, Spanish bonds] for any value

of δ.

iii) Impulse responses for crystallized and optimally adjusted portfolios

Let us finally compare the properties of the portfolio value under the systematic shock. We

consider two portfolio managements, that are i) the mean-variance portfolio crystallized

at its optimal level before contamination, and ii) the mean-variance portfolio adjusted for

contamination11. The properties of the risky part of these portfolios are represented in

Figures 9-12 by their mean, variance (volatility), Sharpe performance, VaR and expected

shortfall (at the 1%, 5% and 10% levels for the two last summaries).

Figures 9-12 emphasize the significant impact of the portfolio management on the charac-

teristic of the portfolio. The performance of the optimal portfolio significantly dominates

the crystallized portfolio (see the Sharpe ratio of both portfolios in Figure 9). In this

example, the risky part of the crystallized portfolio becomes more volatile and features

higher VaR and expected shortfall than the optimal portfolio.

10We set investor’s wealth at 100, and the level of her/his risk aversion, γ = 2.
11As usual in such stress-tests, we assume that the portfolio updating, that is the demand updating by

the banks, has no effect on the asset price dynamics.
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Figure 8: Contaminated mean-variance allocation as a function of δ.
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Figure 9: Impulse response of the Sharpe ra-

tio of crystallized and Mean-Variance portfo-

lios (contamination in variable).
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Figure 10: Impulse response of the Mean and

Variance of crystallized and Mean-Variance

portfolios (contamination in variable).
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The local behavior of the VaR for the crystallized and mean-variance portfolios is easily

analyzed. The shock in variable is :

Pδ = P0 + δβ′Z + o(δ).

The mean-variance allocation can be expanded as :

α∗(δ) = [V (Pδ)]
−1 E (Pδ)

=
[
V
(
P0 + δβ′Z

)]−1 E
(
P0 + δβ′Z

)
+ o(δ)

=
{
V (P0) + δ

[
Cov(P0, β

′Z) + Cov(β′Z,P0)
]}−1 [E (P0) + δE

(
β′Z

)]
+ o(δ)

=
{

[V (P0)]−1 − δ [V (P0)]−1 [Cov(P0, β
′Z) + Cov(β′Z,P0)

]
[V (P0)]−1

} [
E (P0) + δE

(
β′Z

)]
+ o(δ)

= [V (P0)]−1 E (P0) + δ
{

[V (P0)]−1 E
(
β′Z

)
− [V (P0)]−1 [Cov(P0, β

′Z) + Cov(β′Z,P0)
]

[V (P0)]−1 E (P0)
}

+ o(δ)

= α0 + δα1, say.
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Figure 11: Impulse response of the VaR

of crystallized and Mean-Variance portfolios

(contamination in variable).
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Figure 12: Impulse response of the Expected-

shortfall of crystallized and Mean-Variance

portfolios (contamination in variable).

The local behavior of the VaR for the crystallized and mean-variance portfolios is easily

analyzed. The shock in variable is :

Pδ = P0 + δβ′Z + o(δ).



31

The mean-variance allocation can be expanded as :

α∗(δ) = [V (Pδ)]
−1 E (Pδ)

=
[
V
(
P0 + δβ′Z

)]−1 E
(
P0 + δβ′Z

)
+ o(δ)

=
{
V (P0) + δ

[
Cov(P0, β

′Z) + Cov(β′Z,P0)
]}−1 [E (P0) + δE

(
β′Z

)]
+ o(δ)

=
{

[V (P0)]−1 − δ [V (P0)]−1 [Cov(P0, β
′Z) + Cov(β′Z,P0)

]
[V (P0)]−1

} [
E (P0) + δE

(
β′Z

)]
+ o(δ)

= [V (P0)]−1 E (P0) + δ
{

[V (P0)]−1 E
(
β′Z

)
− [V (P0)]−1 [Cov(P0, β

′Z) + Cov(β′Z,P0)
]

[V (P0)]−1 E (P0)
}

+ o(δ)

= α0 + δα1, say.

The value of the mean-variance portfolio is :

Y ∗δ = α∗(δ)′Pδ = α′0P0 + δ
(
α′0P1 + α′1P0

)
+ o(δ),

whereas the value of the crystallized portfolio is equal to :

Ỹδ = α′0 (P0 + δP1) + o(δ).

We deduce the expansion of the VaR of the mean-variance portfolio :

V aRq (Y ∗δ ) = V aRq (Y ∗0 ) + δE
[
α′0P1 + α′1P0|Y ∗0 = V aRq (Y ∗0 )

]
+ o(δ)

= V aRq

(
Ỹδ

)
+ δα′1E [P0|Y ∗0 = V aRq (Y ∗0 )] + o(δ),

by using the expression of the derivative of the VaR [Gourieroux, Laurent, Scaillet (2000)].

Therefore, the difference between the two VaR’s is equivalent to :

1

δ

[
V aRq (Y ∗δ )− V aRq

(
Ỹδ

)]
≈ E [P0|Y ∗0 = V aRq (Y ∗0 )]′ [V (P0)]−1 β′E (Z)

− E [P0|Y ∗0 = V aRq (Y ∗0 )]′ [V (P0)]−1Cov(P0, Z)β [V (P0)]−1 E (P0)

− E [P0|Y ∗0 = V aRq (Y ∗0 )]′ [V (P0)]−1 β′Cov(Z,P0) [V (P0)]−1 E (P0) .

This difference can be of any sign, especially in our framework in which Z and Y0 are

dependent [see equation (5.3)].

Finally, we present in Figures 13-14 the conditional distribution of the contaminated port-

folio value Yδ with respect to its initial/non-contaminated value Y0, which can only be
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derived from a specification of shock in terms of variable. Figures 13-14 emphasize the

heteroscedasticity of the shock considered in this exercise: the main effect is concentrated

on the central part of the initial distribution. Moreover, the comparison of Figures 13-14

highlights how the optimization of the portfolio allocation circumscribes the shock’s im-

pact on the portfolio value, even for large shock’s magnitude. This feature is consistent

with the low sensitivity to the shock of several risk measures for the optimally adjusted

portfolio in this example (see Figures 10-12).
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Figure 13: Impulse response of the condi-

tional distribution of the crystallized portfo-

lio Yδ|Y0 (contamination in variable).
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Figure 14: Impulse response of the condi-

tional distribution of the optimally adjusted

portfolioYδ|Y0 (contamination in variable).
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6 Concluding Remarks

We have discussed the links between a modeling of shocks in terms of distribution and

variable, both for global and local shocks. Such shocks can be introduced on systematic

factors to perform stress-tests. This methodology of systematic shock has been illustrated

for portfolios of European sovereign bonds. This highlights the different sensitivity to

systematic shock of crystallized and optimally updated portfolios.

The main message of our paper is the following : we have seen that a multiplicity of

specifications of the shock in terms of variable can lead to a same specification of the

shock in terms of distribution. Moreover, the link between these specifications is not

obvious: for instance, a linear shock in terms of distribution does not imply a linear shock

in terms of variable. Therefore, a prudential approach may consist in considering carefully

joint interpretations of a shock, both in terms of distribution and variable.
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Appendix 1

Shocks to Multivariate Distribution

i) Multivariate Gaussian copula for bidimensional variables

Definition a.1 : The Gaussian copula for bidimensional variables is the function defined

on [0, 1]4 by :

C(u1, u2, v1, v2) = Ψ
[
Φ−1(u1),Φ−1(u2),Φ−1(v1),Φ−1(v2), R

]
, (6.1)

where Ψ(x1, x2, y1, y2, R) is the joint c.d.f. of the four-dimensional Gaussian distribution

N

(
0 ,

(
Id2 R

R Id2

))
. The block matrix R is such that R =

(
ρ11 ρ12

ρ21 ρ22

)
, and 0 is

a 4x1 vector of zeros.

The block correlation matrix is constrained by the positive definiteness of the variance-

covariance matrix, which imposes that :

det

 1 0 ρ11

0 1 ρ21

ρ11 ρ21 1

 = 1− ρ2
11 − ρ2

21 > 0,

and

det


1 0 ρ11 ρ12

0 1 ρ21 ρ22

ρ11 ρ21 1 0

ρ12 ρ22 0 1

 = det (Id) det
(
Id−R′R

)

= det
(
Id−R′R

)
=

(
1− ρ2

11 − ρ2
21

) (
1− ρ2

12 − ρ2
22

)
−
(
ρ2

11ρ
2
12 + ρ2

21ρ
2
22

)2
> 0,

by the block description of the determinant [see e.g. Gourieroux, Monfort (1995), property

A.5].

This copula defines a joint c.d.f. for the bivariate vectors: U =
(
U1 , U2

)′
and

V =
(
V1 , V2

)′
, which have the same marginal uniform distribution on [0, 1]2.
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ii) Derivation of the recursive form

We have now to derive the conditional c.d.f. of V =

(
V1

V2

)
given U =

(
U1

U2

)
cor-

responding to this copula, in order to get interpretations in terms of variables. For this

purpose, let us consider two standard Gaussian bivariate variables Y0 and Y1 :

Y0 =

(
Y01

Y02

)
, Y1 =

(
Y11

Y12

)
,

such that Cov(Y0, Y1) = R.

Then the variables ε1 = F (Y11|Y0) and ε2 = F (Y12|Y0, Y11) follow uniform distributions

on [0, 1], are independent of each other, and independent of Y0. By computing directly

the conditional c.d.f., we get:

ε1 = Φ

(
Y11 − E (Y11|Y0)

V1/2 (Y11|Y0)

)
(6.2)

ε2 = Φ

(
Y12 − E (Y12|Y0, Y11)

V1/2 (Y12|Y0, Y11)

)
. (6.3)

The conditional means and variances can be computed explicitly. We get:

E (Y11|Y0) = ρ11Y01 + ρ12Y02 ≡ a1Y01 + a2Y02, (6.4)

V (Y11|Y0) = 1− ρ2
11 − ρ2

12 ≡ σ2
1, (6.5)

E (Y12|Y0, Y11) = Cov

[
Y12,

(
Y0

Y11

)][
V

(
Y0

Y11

)]−1(
Y0

Y11

)

=
(
ρ12 ρ22

)[
Id−

(
ρ11

ρ21

)(
ρ11 ρ21

)]−1(
Y0

Y11

)
≡ b1Y01 + b2Y02 + +b3Y11, (6.6)

by applying the block inversion formula [see e.g. Gourieroux, Monfort (1995) Property

A.4]. Moreover :

V (Y12|Y0, Y11) = 1−
(
ρ12 ρ22

)[
Id−

(
ρ11

ρ21

)(
ρ11 ρ21

)]−1(
ρ12

ρ22

)
≡ σ2

2, (6.7)
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by applying the block inversion formula.

We deduce that: {
Y11 = a1Y01 + a2Y02 + σ1Φ−1(ε1),

Y12 = b1Y01 + b2Y02 + b3Y11 + σ2Φ−1(ε2),

or equivalently the conditional distribution of V given U is such that we get the recursive

system of equations:{
Φ−1(V1) = a1Φ−1(U1) + a2Φ−1(U2) + σ1Φ−1(ε1),

Φ−1(V2) = b1Φ−1(U1) + b2Φ−1(U2) + b3Φ−1(V1) + σ2Φ−1(ε2),

where ε1, ε2 are independent uniform variables independent of U =

(
U1

U2

)
.

Let us finally consider a bivariate vectors Y0 =

(
Y01

Y02

)
, Y1 =

(
Y11

Y12

)
with marginal dis-

tributions F0(y0), F1(y1), say. The marginal distribution of the bivariate vector Y0 can be

decomposed into the marginal distribution of Y01 with c.d.f. F01(y01) and the conditional

distribution of Y02 given Y01 with conditional c.d.f. F02|01(y02|y01). Similar notations are

introduced for the second bivariate vector, that are F11(y11) and F12|11(y12|y11).

The basic uniform variable U1, U2, V1, V2 can be chosen such that:

U1 = F01(Y01), U2 = F02|01(Y02|Y01),

V1 = F11(Y11), V2 = F12|11(Y12|Y11).

Then the two bidimensional stochastic variables Y0 and Y1 can be linked by a Gaussian

copula (6.1).

Proposition a.2 : Let us consider a pair of bidimensional stochastic variables Y0 =(
Y01

Y02

)
, Y1 =

(
Y11

Y12

)
, such that the marginal c.d.f of Y01 is F01(y01) and the conditional

distribution of Y02 given Y01 is F02|01(y02|y01) [resp. F11(y11) and F12|11(y12|y11)].

Let us denote:
U1 = F01(Y01), U2 = F02|01(Y02|Y01),

V1 = F11(Y11), V2 = F12|11(Y12|Y11).
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Vectors Y0 and Y1 admit a Gaussian copula if and only if the conditional distribution of

Y1 given Y0 can be represented by the system of equations:

Φ−1[F11(Y11)] = a1Φ−1[F01(Y01)] + a2Φ−1[F02|01(Y02|Y01)] + σ1Φ−1(ε1)

Φ−1[F12|11(Y12|Y11)] = b1Φ−1[F01(Y01)] + b2Φ−1[F02|01(Y02|Y01)] + b3Φ−1[F11(Y11)] + σ2Φ−1(ε2),

where ε1, ε2 are independent uniform variables, independent of Y0, and the coefficients a1,

a2, b1, b2, b3, σ1, σ2 are function of R given in (6.4)-(6.7).

The extension to parametric families of bivariate variables Yδ is obtained by making the

matrix R(δ) function of δ. The coherency condition (2.9) then implies R(0) = Id2.

ii) Local analysis for multivariate distribution

Let us consider a multivariate variable Yδ = h(Y0, ε; δ), where Yδ, Y0, ε are vectors of

dimension N , h(Y0, ε; δ) = (h1(•), ..., hN (•))′, and the expectation E (g[Yδ]), where g is a

function of dimension 1. Thus,

E (g[Yδ]) = E (g[h(Y0, ε; δ)])

= E (g(Y0)) + δE
(
∂g(Y0)

∂y′
∂h(Y0, ε; 0)

∂δ

)
+

δ2

2
E
(
∂h′(Y0, ε; 0)

∂δ

∂2g(Y0)

∂y∂y′
∂h′(Y0, ε; 0)

∂δ

)
+
δ2

2
E
(
∂g(Y0)

∂y′
∂2h(Y0, ε; 0)

∂δ2

)
+ o(δ2)

= E (g(Y0)) + δE
(
∂g(Y0)

∂y′
E
(
∂h(Y0, ε; 0)

∂δ
|Y0

))
+

δ2

2
E
(
Tr

[
∂2g(Y0)

∂y∂y′
E
(
∂h′(Y0, ε; 0)

∂δ

∂h′(Y0, ε; 0)

∂δ
|Y0

)])
+

δ2

2
E
(
∂g(Y0)

∂y′
E
(
∂2h(Y0, ε; 0)

∂δ2
|Y0

))
+ o(δ2)

Then, we have :

E
(
∂g(Y0)

∂y′
E
(
∂h(Y0, ε; 0)

∂δ
|Y0

))
=

N∑
j=1

E
[
∂g(Y0)

∂yj
E
(
∂hj(Y0, ε; 0)

∂δ

)]

= −
N∑
j=1

E
[
g(Y0)

f(Y0; 0)

d

dyj

[
E
(
∂hj(Y0, ε; 0)

∂δ
|Y0 = y

)
f(y; 0)

]]
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Similarly, we have :

E
(
∂g(Y0)

∂y′
E
(
∂2h(Y0, ε; 0)

∂δ2
|Y0

))
= −

N∑
j=1

E
(

g(Y0)

f(Y0; 0)

d

dyj

[
E
(
∂2hj(Y0, ε; 0)

∂δ2
|Y0 = y

)
f(y; 0)

])
,

and

E
(
Tr

[
∂2g[Y0]

∂y∂y′
E
(
∂h′(Y0, ε; 0)

∂δ

∂h′(Y0, ε; 0)

∂δ
|Y0 = y

)])
=

N∑
j=1

N∑
k=1

d

dyjdyk
E
(

g(Y0)

f(Y0; 0)

[
E
(
∂hj(Y0, ε; 0)

∂δ

∂hk(Y0, ε; 0)

∂δ
|Y0 = y

)
f(y; 0)

])
Thus the multivariate equivalent of Proposition 1 is :

∂

∂δ
[f(y; 0)] = −

N∑
j=1

d

dyj

[
E
(
∂hj(Y0, ε; 0)

∂δ
|Y0 = y

)
f(y; 0)

]

∂2

∂δ2
[f(y; 0)] =

N∑
j=1

N∑
k=1

d

dyjdyk

[
E
(
∂hj(Y0, ε; 0)

∂δ

∂hk(Y0, ε; 0)

∂δ
|Y0 = y

)
f(y; 0)

]

−
N∑
j=1

d

dyj

[
E
(
∂2hj(Y0, ε; 0)

∂δ2
|Y0 = y

)
f(y; 0)

]
.

Appendix 2

Proof of Lemma 2

The result is obtained by a sequence of integration by part. Let us denote (y, y) the

support of the function g. We get :

E
[
g(k)(Y0)a(Y0)

]
=

∫ y
y g

(k)(y)a(y)f(y; 0)dy

=
[
g(k−1)(y)a(y)f(y; 0)

]y
y
−
∫ y
y g

(k−1)(y) ddy [a(y)f(y; 0)] dy

= −
∫ y
y g

(k−1)(y) ddy [a(y)f(y; 0)] dy (since g(y) = g(y) = 0)

= (−1)k
∫ y
y g(y) d

k

dyk
[a(y)f(y; 0)] dy (by applying recursively the same argument)

= (−1)kE
[
g(Y0)
f(Y0;0)

dk

dyk
[a(Y0)f(Y0; 0)]

]
.
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Appendix 3

An alternative derivation of the expansion in Corollary 1

Let us consider the specification Yδ = h(Y0, U ; δ) = Y0 + δa(Y0)U , where U is a variable

independent of Y0 with p.d.f. g(u), δ ≥ 0, a(•) > 0. We assume that :

Assumption A1 : Given Y0 and δ, there is an increasing bijective relationship between

U and Yδ;

Assumption A2 : Given Yδ and δ, there is an increasing bijective relationship between

U and Y0.

Under Assumption A1, we can write :

u =
y − y0

δa(y0)
,

Then the p.d.f. of Yδ conditional to Y0 is :

f(y|y0; δ) =
1

δa(y0)
g(
y − y0

δa(y0)
),

and the unconditional p.d.f of Yδ is :

f(y; δ) =

∫
[δa(y0)]−1 g

(
y − y0

δa(y0)

)
f(y0; 0)dy0. (6.8)

Under Assumption A2, we have :

y = y0 + δa(Y0)u⇔ y0 = c(y, u; δ), say.

Let us now consider the change of variable y0 → u in integral (6.8). We get :

f(y; δ) =

∫
[δa(c(y, u; δ))]−1 g(u)f(c(y, u; δ); 0)

∣∣∣∣∂c(y, u; δ)

∂u

∣∣∣∣ du. (6.9)

At first-order in δ we get : c(y, u; δ) ≈ y − δa(y)u. Thus, (6.9) becomes :

f(y; δ) ≈
∫

a(y)

a(y − δa(y)u)
g(u)f(y − δa(y)u; 0)du

≈
∫ [

1− δa(1)(y)u
]−1

g(u)
[
f(y; 0)− δf (1)(y; 0)a(y)u

]
du

≈
∫ [

1 + δa(1)(y)u
]
g(u)

[
f(y; 0)− δf (1)(y; 0)a(y)u

]
du

≈
∫
g(u)f(y; 0)du− δ

∫ [
f (1)(y; 0)a(y)u− a(1)(y)uf(y; 0)

]
g(u)du, (6.10)
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,which is the first term in expansion of Corollary 1.

Appendix 4

From a distribution-based to a variable-based approach

with Gaussian copula

The Gaussian copula is given by :

C(u, v) = Ψ
[
Φ−1(u),Φ−1(v), ρ

]
,

where Ψ(x, y, ρ) is the joint c.d.f. of the bivariate Gaussian distributionN

((
0

0

)
,

(
1 ρ

ρ 1

))
.

i) Derivatives of equation (2.4)

Let us consider a Gaussian copula with correlation parameter ρ and two variables Y0, Y1,

whose marginal distributions are standard normal. We have from (2.4) :

ε = F1|0 (Y1|Y0)

=
∂C

∂u
[F0 (Y0) , F1 (Y1)]

= Φ

(
Φ−1(V )− ρΦ−1(U)√

1− ρ2

)
,

where :

V = Φ(Y1), U = Φ(Y0).

Therefore :

Φ−1(V ) = ρΦ−1(U) +
√

1− ρ2Φ−1(ε), (6.11)

where ε has a uniform distribution on [0;1]. The result is easily extended to families of

distribution by taking Gaussian copulas with correlation parameter ρ(δ) indexed by δ.

ii) Contamination
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Let us now consider the contamination of Section 4.1.2 in the Gaussian copula case :

F (y; δ) = (1− δ)F (y; 0) + δΞ(y).

Thus :

ε = Φ

(
Φ−1(F (Yδ; δ))− ρ(δ)Φ−1(F (Y0; 0))√

1− ρ2(δ)

)

= Φ

(
Φ−1((1− δ)F (Yδ; 0) + δΞ(Yδ))− ρ(δ)Φ−1(F (Y0; 0))√

1− ρ2(δ)

)
,

which gives :

Φ
(√

1− ρ2(δ)U + ρ(δ)Φ−1(F (Y0; 0))
)

= (1− δ)F (Yδ; 0) + δΞ(Yδ), (6.12)

where U = Φ−1(ε) is a standard Gaussian variable.

iii) First-order expansion

Let us now assume that ρ(δ) = 1 − δ2r + o(δ2), where r = − ∂ρ(δ)
∂δ

∣∣∣
δ=0

, and approximate

Yδ at first-order :

Yδ = Y0 + δZ + o(δ).

More precisely, let us consider the two sides of equation (6.12). We get for the left hand

side :

Φ
(√

1− ρ2(δ)U + ρ(δ)Φ−1(F (Y0; 0))
)
≈ Φ

(√
2rδ2U + Φ−1(F (Y0; 0))

)
≈ F (Y0; 0) + δ

√
2rφ

(
Φ−1(F (Y0; 0)

)
U,(6.13)

and

(1− δ)F (Yδ; 0) + δΞ(Yδ) = F (Yδ; 0) + δ (Ξ(Yδ)− F (Yδ; 0))

≈ F (Y0; 0) + δZf(Y0; 0) + δ (Ξ(Y0)− F (Y0; 0)) , for the right hand side.

This provides the expression of variable Z, that is (4.6), by identification.
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Appendix 5

Application: contamination in terms of variable

GE FR IT SP IR GR

−0.9668 −0.8860 −0.9037 −0.7851 −0.9293 −0.7971

Table 1: Mean of excess gains on 2001-2007. All numbers must be divided by 1000.

GE FR IT SP IR GR

0.9759 0.3775 −1.2251 −2.1459 −7.3262 −8.9894

Table 2: Mean of excess gains on 2007-2011. All numbers must be divided by 1000.

GE FR IT SP IR GR

GE 0.1253 0.1164 0.1206 0.1195 0.1247 0.1131

FR 0.1164 0.1252 0.1196 0.1235 0.1292 0.1173

IT 0.1206 0.1196 0.1278 0.1215 0.1263 0.1153

SP 0.1195 0.1235 0.1215 0.1274 0.1306 0.1201

IR 0.1247 0.1292 0.1263 0.1306 0.1386 0.1238

GR 0.1131 0.1173 0.1153 0.1201 0.1238 0.1166

Table 3: Covariance matrix of excess gains on 2001-2007. All numbers must be divided

by 1000.

GE FR IT SP IR GR

GE 0.2838 0.2346 0.1140 0.1370 0.1491 0.0496

FR 0.2346 0.2224 0.1253 0.1673 0.2023 0.1023

IT 0.1140 0.1253 0.1567 0.1838 0.2239 0.1436

SP 0.1370 0.1673 0.1838 0.2923 0.3545 0.2524

IR 0.1491 0.2023 0.2239 0.3545 0.6431 0.3645

GR 0.0496 0.1023 0.1436 0.2524 0.3645 0.8449

Table 4: Covariance matrix of excess gains on 2007-2011. All numbers must be divided

by 1000.



45

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8
x 10

−4 Eigenvalues

GE FR IT SP IR GR
−0.5

0

0.5

1
Factor Loadings

 

 

First Factor
Second Factor

Figure 15: Eigenvalues and factor loadings from the principal components analysis of the

2001-2011 excess gains covariance matrix

Appendix 6

Application: contamination in terms of distribution

Let us perform the same application as in Section 6, when the contamination of the system-

atic factor is expressed in terms of distribution. In this case, we rely on the specification

(4.3) to simulate the contaminated factors from a mixture of the baseline distribution of

the factor with c.d.f. F (x; 0), which is estimated on the 2001-2007 sample, and a contam-

inating distribution with c.d.f. Ξ(x) inferred from the 2007-2011 period :

F (x; δ) = (1− δ)F (x; 0) + δΞ(x), with 0 ≤ δ ≤ 1.

More precisely, we proceed in three steps :

1. We draw a set of S = 1000 uniform independent variables (ωs)s=1...S on [0,1], and two

sets of S = 1000 non-contaminated and contaminated factors [(Xs
0)s=1...S and (Xs

1)s=1...S ,

respectively] from the realized factors on 2001-2007, and 2007-2011.
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2. For a given δ we compute the variable :{
Zsδ =

1, when ωs ≤ δ,
0, otherwise.

3. Finally, we compute the contaminated factor :

Xs
δ = (1− Zsδ )Xs

0 + ZsδX
s
1 .

The empirical distribution of the simulated factor is presented in Figure 16 for δ = 0, 0.1,

0.5, and 1, while the properties of the crystallized and optimally adjusted mean-variance

portfolios are plotted in Figures 16-20. As in the contamination in terms of variable, the

characteristics of the optimal mean-variance portfolio deviates significantly from the crys-

tallized portfolio’s ones. As expected the analysis in terms of variable and distribution

look similar for small δ, but they can deviate significantly when δ becomes larger.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
c.d.f.

Xδ

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

5

10

15

20
p.d.f.

Xδ

Figure 16: Empirical c.d.f and p.d.f. of 1000 simulated factor Xδ, contaminated in terms

of distribution for various δ. The solid line stands for the c.d.f. of the baseline factor

X0, while dashed, dotted, and dash-dotted lines represent the contaminated empirical

distribution for δ = 0.1, 0.5, 1.
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Figure 17: Contaminated mean-variance allocation as a function of δ.
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Figure 18: Impulse response of the Sharpe

ratio of crystallized and Mean-Variance port-

folios (contamination in distribution).
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Figure 19: Impulse response of the Mean and

Variance of crystallized and Mean-Variance

portfolios (contamination in distribution).
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Figure 20: Impulse response of the VaR

of crystallized and Mean-Variance portfolios

(contamination in distribution).
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Figure 21: Impulse response of the Expected-

shortfall of crystallized and Mean-Variance

portfolios (contamination in distribution).
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