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Abstract

Intertemporal price discrimination may be used by a durable-good monopoly under
incomplete information, facing heterogeneous and more impatient consumers. We
solve the self-selection problem in infinite horizon, characterize the optimal price
policy with an ordinary differential equation depending on agents’ patience and
provide a condition for existence and uniqueness of the solution. In the uniform
case, we extend Stokey (1979) by showing that as soon as the firm is not much more
patient than consumers, uniform pricing is preferred to price discrimination. Besides,
linear contracts are optimal if valuations are either uniform or Pareto distributed.
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1 Introduction

Consider a monopolist who produces a durable good in some initial period and sells it
over time to a set of consumers. In the first period, the monopolist is tempted to charge
the static maximizing profits monopoly price. In the second period, the monopoly faces
a residual demand and wishes to sell additional units to the remaining consumers at a
lower price. This process repeats itself and leads to lower the price until it is profitable,
i.e. until the competitive price is reached. The Coase (1972) conjecture states that
consumers anticipate this and will postpone buying until the price falls to this level,
which, in equilibrium, must occur at the beginning. Stokey (1981) has proven this
conjecture by showing that the unique perfect rational expectations equilibrium is such
that the monopoly sells immediately at the competitive price; consumers buy as soon as
they can whenever it is worth purchasing. Rational expectations and the inability of the
monopoly to commit are the key ingredients that drive the result.

Many papers have tried either to rationalize the Coase conjecture (see Gul et al. (1986)
and Güth & Ritzberger (1998) among others) or to explain how its undesirable conse-
quence could be avoided. Solutions may consist in reducing the durability of the good
through renting or leasing (Bulow (1982)); capacity constraints may also be invoked (see
McAfee & Wiseman (2007)). Another way of avoiding the Coase conjecture consists in
assuming that the firm is credible and can commit from the beginning to stick to some
price scheme, which will be the case here. Finding the optimal strategy of the monopoly
is then a standard nonlinear pricing problem under incomplete information about con-
sumer valuations. Stokey (1979) showed that if the monopoly is able to commit then the
static monopoly price is charged in each period, which guarantees positive profits. All
sales occur at the beginning of the game. This result relies, however, on the assumption
that the firm and consumers have the same discount factor. It no longer holds when
agents have different intertemporal preferences. For instance, when the firm is more
patient, it sounds that she should be able to price-discriminate among consumers.

This point was made by Landsberger & Meilijson (1985) who described the optimal
price policy and proved that when the monopolist is more patient, intertemporal price
discrimination becomes profitable in a finite-horizon setting. They tackled this issue by
providing a qualitative description of the optimal sales strategy. First, the difference
between discount factors accounts for non-transferability and generates intertemporal
discrimination as soon as the firm is more patient than consumers. Second, this strategy
turns out to generate higher revenues than uniform pricing. Indeed, a time-decreasing
price schedule makes high-valuation consumers buy relatively early provided that it is
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not profitable for them to wait for a lower price. Imposing such an incentive constraint
is however less costly for a monopoly that is more patient than consumers.

We propose to write down the pricing model in infinite horizon and to compute explicitly
the price policy, which helps in deriving new optimality results. We allow for different
intertemporal preferences: the firm and consumers may have distinct discount factors,
which encompasses several cases treated by the literature. We resort to variational meth-
ods to overcome the issue of non-transferability with respect to money between the firm
and consumers: since agents have distinct intertemporal preferences, they do not value
transfers identically, which complicates the resolution of the model. The framework
considered here contains previous models as special cases; addressing the issue of in-
tertemporal price discrimination versus uniform pricing, it tends to reconcile different
point of views, including numerous papers devoted to the durable-good monopoly and
at least Stokey (1979), Landsberger & Meilijson (1985), Salant (1989).

The next section presents the model in case when the monopoly is strictly more patient
than consumers, though not infinitely patient. Section 3 is examines the case where
valuations are uniformly distributed while Section 4 addresses the general case. Section
5 treats the limits of the model: the case where the monopoly is infinitely patient, as
patient as consumers, or less patient than consumers. Section 6 concludes.

2 Model

A monopolist (Principal) produces a good that does not depreciate over time. It is
durable in the sense that consumers may purchase it at most once. Time is continuously
measured on [0; +∞]. The marginal cost to produce the good is constant and normalized
to zero. The firm discounts time t with a factor ρ by e−ρ t.

The asymmetric information issue arises from the fact that the monopolist does not
know consumers’ private valuation for the good θ. The distribution of θ is assumed to be
common knowledge. Its density function f(.) is continuously differentiable and strictly
positive almost everywhere over its support [0, θ] = Θ ⊂ R+. Since the lowest reservation
value is 0, at any positive price, including the best single price, i.e. the static monopoly
price, not all consumers buy and thus the market is not covered. We assume that the
static monopoly price is well-defined: ∃ pm ∈ (0,+∞) such that pm = 1−F (pm)

f(pm) .

The problem of the firm consists in designing a direct truthful mechanism that imple-
ments the trade of one unit of the good. For this purpose, the monopoly offers a menu of
contracts made up of a price and a time of purchase {p(θ), τ(θ)}. Consumer θ reporting
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θ̃ gets the utility:
U(θ, θ̃) = e−rτ(θ̃)[θ − p(θ̃)].

The surplus θ − p(θ̃) is discounted by e−rτ(θ̃), where r is the consumer’s discount rate.
We assume for now that the monopolist is more patient than consumers, i.e. ρ < r. In
Section 5, we discuss the cases ρ = +∞, ρ = r and ρ > r.

Consumers with valuation below a threshold θ0 are excluded from the market, where θ0
corresponds to the marginal consumer who is indifferent between purchasing or not:

p(θ0) = θ0 (1)

The physical constraint that the time of purchase is necessarily nonnegative imposes:

τ(θ) ≥ 0 ∀θ (2)

In a finite-horizon setting, this constraint would write τ(θ) ∈ [0, T ] ∀θ.

The individual rationality of consumer θ imposes that the price is no higher than θ;
similarly, the firm offers nonnegative prices, hence we restrict our attention to price
schedules for which:

p(θ) ∈ [0, θ] ∀θ ∈ [θ; θ] (IRθ) (3)

The mechanism is incentive-compatible if and only if:

θ = arg max
θ̃

U(θ, θ̃) ∀θ ∈ [θ; θ] (ICθ)

The first–order condition writes: ∂U
∂θ̃

∣∣∣
θ̃=θ

= 0, i.e.:

ṗ(θ)− r τ̇(θ) p(θ) = −r τ̇(θ) θ ∀θ ∈ [θ; θ] (4)

Given τ(θ), this incentive constraint looks like a differential equation in p(.) with the
initial condition (1). We can solve it to obtain an explicit relationship between p(θ) and
τ(θ):

p(θ) = θ −
∫ θ

θ0

er[τ(θ)−τ(u)]du (5)

The firm’s program writes:

max
(p(θ),τ(θ),θ0)

∫ θ

θ0

e−ρτ(θ)p(θ)f(θ)dθ s.t. (2), (3), (5)
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which reduces to:

max
(τ(θ),θ0)

∫ θ

θ0

e−ρτ(θ)
[
θ −

∫ θ

θ0

er[τ(θ)−τ(u)]du

]
f(θ)dθ s.t. (2)

Note that the firm fixes the level of the marginal consumer type θ0. It may thus decide
not to sell to all consumers by choosing θ0 > 0. Using the above maximization program
in a finite horizon,1 Landsberger & Meilijson (1985) show that intertemporal price dis-
crimination achieves higher profits than uniform pricing when the firm is strictly more
patient than consumers and when not all consumers buy at the best single price.

The program of the firm consists in optimizing with respect to a function; hence, we use
variational calculus to solve this problem. Contrary to many problems in mechanism
design, like Mirrlees (1971) for instance, agents have different intertemporal preferences;
this property can be called non-transferability. Indeed, each trade of one unit at time
t is valued e−ρt by the firm but e−rt by consumers. It requires especially to relax the
usual assumption of quasi-linear preferences with respect to transfers, where transfers
have respective coefficients −1 and +1 for the Principal and the Agent.

Letting λ = ρ
r ∈ (0, 1), y(θ) =

∫ θ
θ0
e−rτ(u)du and ẏ(θ) = e−rτ(θ), the previous program

can be rewritten:

max
(y(θ),θ0)

∫ θ

θ0

ẏ(θ)λ
[
θ − y

ẏ
(θ)

]
f(θ)dθ s.t.

{
ẏ(θ) ∈ (0, 1)
y
ẏ (θ) ∈ [0, θ]

(6)

To solve this constrained program, we will first solve the relaxed program and then check
whether constraints are verified or not. The relaxed program can be written as:

max
θ0

max
y(θ)

∫ θ

θ0

L(θ, y(θ), ẏ(θ)) dθ (7)

where

L(θ, y(θ), ẏ(θ)) = ẏ(θ)λ
[
θ − y(θ)

ẏ(θ)

]
f(θ). (8)

To make the resolution easier, the crucial point is to define z(θ) = y
ẏ (θ) ∈ [0, θ] which is

simply consumer θ’s value of his surplus θ − p(θ).2

Proposition 1 The solution z(.) verifies:

0 = ḟ(θ) [λθ + (1− λ)z(θ)] + f(θ)

[
2− (1− λ)[1− ż(θ)][2− λ+ λ

θ

z(θ)
]

]
(9)

1that is, considering τ(θ) ∈ [0, T ] ∀θ instead of constraint (2)
2From Equation (5) one has p(θ) = θ − y(θ)

ẏ(θ)
.
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with the initial condition z(θ0) = 0 stating that consumer θ0’s surplus is zero.

Proof The stationary solutions of the Lagrangian (8) are given by the Euler-Lagrange
equation, which boils down to the simple first-order differential Equation (9). The exis-
tence and the uniqueness of the function z(.) follow from the Cauchy-Lipschitz theorem.
This characterizes completely y(.) up to y(1), or equivalently τ(1) that will be set to 0

by the impatient monopoly. Details are given in Appendix. �

We study first the case when the distribution of valuations is uniform (Section 3), and
then we analyze the general case (Section 4). Although we obtain explicitly the solution
in the first case only, the variational approach used here allows us to characterize further
the general case.

3 The uniform distribution

Consider the case where θ is uniformly distributed on [0, 1]. Then we can state:

Proposition 2 The linear contract p(θ) = (1 − Kλ)θ, with the corresponding schedule

of purchases τ(θ) =
1− 1

Kλ
r log θ, and θ0 = 0 = θ, maximizes the problem of the Principal

with Kλ =
(√

λ
2−λ − λ

)
1

1−λ . Three situations may occur: indeed, ∃ 0 < λ < λ < 1, such
that:

• λ ∈ (0, λ]: the firm chooses to price discriminate, which is optimal

• λ ∈ (λ, λ): the firm chooses to price discriminate, which is sub-optimal

• λ ∈ [λ, 1): the firm chooses uniform pricing, which is optimal

Moreover, intertemporal price discrimination can be implemented by committing to charge
the following price schedule:

p(t) = (1−Kλ)e
− Kλrt

1−Kλ .

Under uniform pricing, the monopoly charges pm = 1
2 and earns Πm = 1

4 . Half of
consumers buy immediately since it is not worth waiting: τ(θ) = 0, and half of the market
is excluded, consumers with a valuation less than 1

2 . Profits achieved with discrimination
turn out to be Πd(λ) = 1−Kλ

2+λ( 1
Kλ
−1) . Furthermore, θ0 = 0 and τ(θ) > 0 as soon as θ > θ0,

which means that everybody buys, though not immediately. This trade-off between
impatience and rent extraction is depicted by Figure (1a) that compares Πd(.) with Πm:
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it is easy to check that Πd(.) decreases with λ since the higher λ, the less patient the
firm is with respect to consumers and thus she has less market power over them. There
exists a threshold λ ≈ 0.27 such that if the firm is patient enough (λ < λ), she will
price discriminate and earn Πd(λ), while she will charge a uniform price and earn Πm

otherwise. The latter case extends Stokey (1979) where the firm and consumers are
equally patient (λ = 1) and in which the price stays at pm forever, purchases occurring
immediately. This result holds in an infinite horizon even if the firm is strictly more
patient than consumers, as soon as she is not too much patient. On the one hand, she
can sell immediately to half of the market. On the other hand, she can extract more
surplus to more consumers later on, and in an infinite horizon, the time of purchase can
be very late, which is not in favor of price discrimination, contrary to what happens in
finite horizon where price discrimination is profitable as soon as λ < 1.

0.2 0.4 0.6 0.8 1.0
Λ

0.1

0.2

0.3

0.4

0.5
Π

d

(a) profits
0.2 0.4 0.6 0.8 1.0

Λ

0.1

0.2

0.3

0.4

0.5
Wd

(b) welfare

Figure 1: Intertemporal price discrimination versus uniform pricing

Furthermore, the consumer surplus is always lower under discrimination,3 though the
market is covered, contrary to what happens with uniform pricing. Indeed, the infinite
horizon enables the firm to exploit as much as possible the fact that she may be just a
little more patient than consumers, and to extract their rent. This phenomenon is large
enough to compensate the gain incurred by the inclusion of half of the market.

Finally, comparing welfare under uniform pricing (Wm = 3
8) and price discrimination in

Figure (1b) leads to determine a threshold of relative impatiences λ ≈ 0.06 above which
uniform pricing does better than discrimination in terms of welfare. As a result, in the
absence of costs, there is a range of impatiences (λ, λ) for which the monopoly chooses
to price discriminate over time while uniform pricing is welfare-maximizing.

3∀λ ∈ (0, 1) Sd(λ) < Sm(λ) = 1
8
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This specific example is helpful for obtaining results even in the case when distributions
are not uniformly distributed. This is what we are going to study now.

4 General distributions

When the distribution of valuations is unknown, the solution is still characterized by (9)
even though there is not always a closed-form solution.

First, we discuss the existence and the uniqueness of the solution to Equation (9).

Proposition 3 Sufficient conditions for the existence and the uniqueness of an ex-
tremum of the Lagrangian are given by ḟ(0) = 0 and ∃M > 0 such that || ḟf ||∞ ≤M .

Proof These conditions guarantee that the Cauchy-Lipschitz theorem applies and im-
plies that Equation (9) admits a unique solution. By the strong Legendre condition, this
extremum is a maximum. More details are given in Appendix. �

Note that since the support of f(.) must be contained in a compact of [0; +∞), or by
extension [0; +∞), possible distribution functions are for instance the uniform, chi-square,
Weibull, power, Gamma, Beta, Pareto or log-normal distributions. The condition ḟ(0) =

0 rules out exponential distributions for which f(θ) = λ exp(−λθ), ḟ(θ) = −λ2 exp(−λθ)
and thus ḟ(0) = −λ2 < 0. Similarly, it can easily be checked that a Weibull law meets
this criterion if and only if it has a scale parameter strictly larger than 2; the same holds
for Gamma and Beta distributions with shape parameters strictly larger than 2, and for
a chi-square distribution with at least 2 degrees of freedom. Power distributions must
also have a parameter strictly larger than 2.

Second, we find that linear contracts correspond either to uniform or Pareto distributions
of valuations, when allowing by extension for the support Θ to be [θ; +∞) with θ > 0.

Proposition 4 Linear contracts are optimal either if valuations are uniformly distributed
over [θ; θ] or Pareto-distributed with shape parameter smaller than 1 over [θ; +∞). The
market is covered: θ0 = 0 ≤ θ.

Several papers in the empirical taxation literature have found that income follows a
distribution close to a Pareto distribution, which means that such an heterogeneity of
valuations is a quite reasonable hypothesis in practice.

Third, it is possible to solve Equation (9) numerically for any given distribution satisfying
|| ḟf ||∞ bounded and ḟ(0) = 0, and to compute the solution, which cannot be linear
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unless f(.) is uniform or Pareto. The literature has already documented that the loss
of using linear contracts as an approximation should not be large: as a matter of fact,
D’Haultfoeuille & Février (2011) find that this loss does not exceed 16% in a structural
estimation. Indeed, Figure 2 shows that the optimal contract is not far from being linear.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

Figure 2: Optimal contract for a χ2(2) distribution

Valuation (plain), price (dashed) and rent (dots) as functions of θ

5 Extensions

Finally, we provide some insight on two limit cases of the model: λ = 0 or λ = 1. We
discuss informally the case when λ > 1.

5.1 An infinitely patient monopoly: λ = 0

Proposition 1 can still be used to solve the case when the firm is infinitely patient,
i.e. when λ = ρ

r = 0. Regardless of how valuations are distributed, perfect price
discrimination achieves full extraction of consumer surplus Eθ at infinity. The contract
(p(θ) = θ, τ(θ) = +∞) is the unique solution to Equation (9), that rewrites ḟ(θ) z(θ) +

2f(θ) ż(θ) = 0, since the unique function verifying (9) with the initial condition z(θ0) = 0

is z(θ) = 0.
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5.2 Equally patient agents: λ = 1

The method used here can also be useful to understand the case when the firm and
consumers are equally patient: λ = ρ

r = 1. Stokey (1979) has proved that the price
is constant and equal to pm, such that sales occur immediately. Formally, the optimal
contract involves (p(θ) = pm, τ(θ) = 0) ∀θ ≥ pm while τ(θ) = +∞ ∀θ < pm, these con-
sumers being excluded from the market. This contract corresponds to a corner solution
where the constraint ẏ(θ) ∈ (0, 1) is binding. The Euler-Lagrange equation writes here:
−f(θ) = d

dθ [θf(θ)] and, by integration, depending on the sign of 1−F (θ)− θf(θ), might
imply either that ẏ = 0 or ẏ = 1. To be precise, ẏ = 1[1−F (θ) ≤ θf(θ)], which leads to
uniform pricing at pm for high valuation consumers whose θ ≥ pm and which excludes
low valuation consumers with θ < pm. On the one hand, high valuation consumers buy
immediately: τ(θ) = 0, which corresponds to ẏ(θ) = 1 and y(θ) = θ − pm. On the other
hand, consumers whose valuation is smaller than pm never buy, ẏ(θ) = y(θ) = 0.

5.3 A more impatient monopoly: λ > 1

When the firm is less patient than consumers, she cannot do better than in the previous
case: she is losing market power as time goes by, and prefers purchases to happen imme-
diately. Thus, the outcome will be uniform pricing as previously, and formally, the same
corner solution as before.

6 Concluding remarks

This note studies a common problem in the mechanism design literature, in which there
is non-transferability in a dynamic setting stemming from the fact that agents may have
different intertemporal preferences and thus discount the future differently. We provide
a framework for price discrimination in infinite horizon that contains all cases evoked in
the literature, when the firm is more/less (resp. as) patient than (resp. as) consumers,
and that reconciles different points of views. First, we characterize the solution of the
monopoly’s problem through a simple differential equation; we provide a condition under
which this equation admits a unique solution in the general case, i.e. for any distribution
of valuations. Second, we find that optimal contracts are linear if and only if valuations
are uniformly or Pareto-distributed. Third, when valuations are uniformly distributed, we
show that, for intertemporal price discrimination to be profitable with respect to uniform
pricing, the firm must be much more patient than consumers, not just more patient,
which extends Stokey (1979); we quantify the corresponding threshold of patience that
results from the trade-off between impatience and rent extraction.
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Appendix: proofs

Proof of Proposition 1

A necessary condition for optimization w.r.t. a function is given by the Euler-Lagrange
equation:

∂L
∂y

=
d

dθ

∂L
∂ẏ

This equation defines the set of functions that are stationary points of the Lagrangian.
Here, this equation boils down to a second-order nonlinear differential equation in y(.):

0 = ḟ(θ)

[
λθ + (1− λ)

y(θ)
˙y(θ)

]
+ f(θ)

[
2− (1− λ)[(2− λ)

y(θ)

ẏ(θ)

ÿ(θ)

ẏ(θ)
+ λθ

ÿ(θ)

ẏ(θ)
]

]

A sufficient condition for y(.) to be a maximum of Program (6) is given by the strong
Legendre–Clebsch condition. This condition is the analogue of the second-order condition
in a maximization problem w.r.t. a variable. It requires that the second derivative of
the Lagrangian w.r.t. ẏ(.) be strictly negative: ∂2L

∂ẏ2
< 0. Here, this condition is always

satisfied since:

∂2L
∂ẏ2

= −(1− λ)f(θ)ẏ(θ)λ−3[λθẏ(θ) + (2− λ)y(θ)] < 0

because λ ∈ (0, 1), f(.) is strictly positive almost everywhere on its support, ẏ(θ) ∈ (0, 1)

and y(θ) ∈ [0, θ].

Proof of Proposition 2

In case when f(θ) = 1, Equation (9) rewrites:

2 = (1− λ)[1− ż(θ)]
(

2− λ+ λ
θ

z(θ)

)
,

which is a differential equation of the form z = θf(ż), i.e., a homogeneous Lagrange
equation. A singular solution to equation (9) is given by z(θ) = Kθ – with K ∈ [0, 1]

since by (4), z(θ) ∈ [0, θ]. However, there could exist other regular solutions to this
equation but this is ruled out by the Cauchy-Lipschitz theorem which guarantees the
existence and the uniqueness of the solution. To that purpose, let us show that conditions
for Cauchy-Lipschitz are met.

First, we consider Equation (9) with the initial condition z(θ0) = 0 coming from y(θ0) = 0

and ẏ(θ0) > 0, which defines a proper ordinary differential equation that can be rewritten
as a Lagrange equation ż(θ) = g

(
z(θ)
θ

)
= h(z, θ).
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Second, the solution z(.) must evolve in [0, 1] because of individual rationality (3):

z(θ) = θ − p(θ) ∈ [0, θ] ⊂ [0, 1]

and then h(., .) is continuous over its compact definition set:

h : [0, 1]× [θ0, 1] −→ R

(z, θ) 7−→ 1−
2

1−λ
λ θ
z
+2−λ

Third, a sufficient condition for h(., .) being Lipschitz is to have its first derivative hz(., .)
being continuous and therefore bounded. One has:

hz(z, θ) = − 2

1− λ
λ θ
z2

[λ θz + 2− λ]2
= − 2λθ

1− λ
1

[λθ + (2− λ)z]2
.

This expression can be bounded when θ > 0:

|hz(z, θ)| ≤
2

(1− λ)λθ
.

Finally, if θ = 0, hz(z, 0) = 0.

As a result, the Cauchy-Lipschitz theorem states that there is a unique solution to Equa-
tion (9) that makes the profit extremal: z(θ) = Kθ.

This extremum is a maximum by the strong Legendre-Clebsch condition already men-
tioned.

To fully characterize the solution, we find Kλ by plugging z(θ) = Kλθ into Equation (9).
Kλ is the unique positive root of (1− λ)(2− λ)X2 + 2λ(2− λ)X − λ(1− λ) = 0, which
gives Kλ =

(√
λ

2−λ − λ
)

1
1−λ ·

Next, from z(θ) = Kλθ = y(θ)
ẏ(θ) , and since ẏ(θ) = e−rτ(θ), we have:

• y(θ) = y(1) θ
1
Kλ

• p(θ) = (1−Kλ)θ

• ẏ(θ) = y(1)
Kλ

θ
1
Kλ
−1

• τ(θ) = log Kλ−log y(1)
r +

1− 1
Kλ
r log θ

All functions of interest are known up to τ(1) = − log ẏ(1)
r = −

log
y(1)
Kλ
r ·
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To see why τ(1) = 0, note that the firm’s objective can be rewritten as:

max
τ(1),θ0

∫ 1

θ0

[e−rτ(1)θ
1
Kλ
−1

]λ(1−Kλ)θ dθ

The solution is τ(1) = 0 and θ0 = 0 since λ ∈ (0, 1).

To conclude,

• y(θ) = Kλ θ
1
Kλ is equal to the ex-post utility of θ reporting his true type

• ẏ(θ) = θ
1
Kλ
−1 ∈ (0, 1) almost everywhere; y(θ)ẏ(θ) = Kλθ ∈ [0, θ]

• p(θ) = (1−Kλ)θ

• τ(θ) =
1− 1

Kλ
r log θ

Profits are given by: Πd(λ) = 1−Kλ
2+λ( 1

Kλ
−1) ·

τ(.) being a one-to-one mapping, the corresponding pattern of prices over time is:

p(t) = (1−Kλ)e
− rt

1
Kλ

−1
.

Proof of Proposition 3

Considering again Equation (9), the proof for existence and uniqueness is similar to the
previous one but the function h(., .) writes more generally:

h : [0, 1]× [θ0, θ] −→ R

(z, θ) 7−→ 1− 1
1−λ

2+
ḟ(θ)
f(θ)

[λθ+(1−λ)z]
λ θ
z
+2−λ

We have:

hz(z, θ) = − 1

1− λ
1

[(2− λ)z + λθ]2

[
2λθ +

ḟ(θ)

f(θ)

{
(1− λ)z + [λθ + (1− λ)z]2

}]
.

The absolute of this term is smaller than 2
(1−λ)λ2θ2

(
1 + || ḟf ||∞

)
that is bounded as soon

as θ 6= 0 if || ḟf ||∞ is bounded. If θ = 0,

hz(z, 0) = − ḟ(0)

f(0)

1

(2− λ)2

(
1− λ+

1

z

)
that remains unbounded as z approaches 0 unless ḟ(0) = 0.
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Proof of Proposition 4

The sufficiency can be checked by replacing f(θ) in Equation (9) with 1
θ−θ (uniform) or

with ε θε θ−1−ε, ε ∈ (0, 1) (Pareto). The former case yields Kλ of Proposition 2 while the
latter case yields:

Kλε =

√
λ(ε− 1)[λ(ε+ 1)− 2(2− λ)]− λ(ε+ 1− 2(2− λ))

2(1− λ)(λ+ ε− 1)

• ε ≥ 22−λ
λ − 1: Kλε < 0

• ε ∈ (1, 22−λ
λ − 1): Kλε 6∈ R

• ε = 1: Kλε = 1

• ε ∈ (0, 1): Kλε ∈ (0;Kε] with Kε ∈ (14 , 1) that is reached in λε ∈ (13 ,
1
2), both of

them increasing with ε

It follows that linear contrats for which Kλε ∈ (0, 1) are optimal for a Pareto distribution
only if ε ∈ (0, 1).

The necessity stems from the fact that plugging z(θ) = Kθ into Equation (9) gives
appropriate restrictions on f(.): indeed, one has Aθḟ(θ)+B f(θ) = 0 ∀θ, which imposes
that f(θ) = f0θ

−µ with µ ≡ ε+ 1 and f0 such that f(.) is a density over [θ,+∞), which
yields the Pareto density.

The case when B ≡ ε ≡ 0 corresponds to f(.) being constant, thus to uniformly dis-
tributed valuations. In that case, B = 0 ⇐⇒ 2 = (1 − λ)(1 −K)(2 − λ + λ/K), which
leads to Kλ of Proposition 2.
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