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1 Introduction

The marginal distribution of a stationary time series contains interesting informa-
tion. If one is interested in prediction or value-at-risk evaluation over long horizons,
this is the marginal distribution that matters (see e.g. Cotter, 2007). Numerous
statistical procedures require conditions on the marginal law, such as the existence
of moments. Moreover, statistical inference on the marginal distribution can help
validate or invalidate time series models. For example, a linear model with alpha-
stable innovations entails the same type of distribution for the observations (see
Remark 1 of Proposition 13.3.1 in Brockwell and Davis, 1991).

In principle, the marginal distribution is specified by the time series model.
However, the latter is generally unknown. Moreover, even if the dynamics were
known, the marginal distribution could only be obtained in very particular cases
(essentially in linear models with specific error distributions).

Our aim in this paper is to estimate the parameterized marginal distribution of a
stationary times series (Xt) without specifying its dependence structure. The focus
is on the parameter of the marginal distribution, and the unknown dependence
structure can be considered as a nuisance parameter in our framework. Following
the approach of Cox and Reid (2004), we write the likelihood corresponding to
independent observations, neglecting the dependence structure. As will be seen,
neglecting the dependence may however have important effects on the accuracy of
the estimators. The corresponding estimator will be called Quasi-Marginal MLE
(QMMLE). This estimator is actually widely employed with the name of MLE,
but this estimator is not the MLE in the presence of time dependance. In the
present paper, the asymptotic distribution of this estimator is studied by taking
into account the temporal dependence, but without specifying a particular model.
Our only assumption concerning the dependence structure is a classical mixing
assumption, which is known to hold for an immense collection of time series models.

Our results apply, in particular, to heavy tailed time series, which have at-
tracted a great deal of attention in recent years. Number of fields, in particu-
lar Environment, Insurance and Finance, use data sets which seem compatible
with the assumption of heavy-tailed marginal distributions. For instance it has
been long known that asset returns are not normally distributed. Mandelbrot
(1963) and Fama (1965) pioneered the use of heavy-tailed random variables, with
P (X > x) ∼ Cx−α, for financial returns. Mandelbrot advocated the use of infinite-
variance stable (Pareto-Lévy) distributions. See Rachev and Mittnik (2000) for a
detailed analysis of stable distributions. The use of other heavy tailed distribu-
tions, for instance the Generalized Pareto Distribution (GPD) and the Generalized
Extreme Value distribution (GEV), was advocated by many authors. See Rachev
(2003) for an account of the many applications of heavy-tailed distributions in fi-
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nance. The GPD and GEV play a central role in extreme value theory (EVT) (see
e.g. Beirlant et al. 2005).

Asymptotic theory of estimation for stable distributions has been established
by DuMouchel (1973). He showed that, whenever α < 2, the Maximum Likeli-
hood Estimator (MLE) of the coefficient α has an asymptotic normal distribution.
Asymptotic properties of the MLE of GPD and GEV parameters were obtained by
Smith (1984, 1985). However, a limitation of those results is that their validity re-
quire independent and identically distributed (iid) observations. The independence
assumption is clearly unsatisfied for most of the series to which these distributions
are usually adjusted. This is in particular the case for financial returns. Autocor-
relations of squares and volatility clustering, for instance, have been extensively
documented for such series.

The paper is organized as follows. Section 2 defines the QMMLE and gives gen-
eral regularity conditions for its consistency and asymptotic normality (CAN). The
next section shows that the regularity conditions of Section 2 are satisfied for three
important classes of heavy-tailed distributions. The alpha-stable, the generalized
Pareto and the generalized extreme value distributions are considered respectively
in Section 3.1, Section 3.2 and Section 3.3. Applications to the marginal distri-
bution of financial returns are proposed in Section 4. Section 5 concludes. An
appendix provides additional technical derivations, proofs and complementary nu-
merical illustrations.

2 The Quasi-Marginal MLE

In this section we consider the general problem of estimating the marginal distribu-
tion of a stationary time series X1, . . . ,Xn defined on a probability space (Ω,A, P )
and taking its values in a non empty measurable space (E, E). Assume that Xt ad-
mits a density fθ0 with respect to some σ-finite measure µ on (E, E). We consider
the unknown dependent structure as a nuisance parameter and we concentrate on
the estimation of the parameter θ0 ∈ Θ ⊂ R

q. In similar situations, where depen-
dencies constitute a nuisance, one can use an estimator obtained by maximizing
a quasi-likelihood (also known as pseudo-likelihood or composite likelihood) which
treats the data values as being independent (see Lindsay (1988), Cox and Reid
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(2004)). This leads to define a QMMLE1 as any measurable solution of

θ̂n = arg min
θ∈Θ

ℓn(θ), ℓn(θ) = − 1

n

n
∑

t=1

log fθ(Xt). (2.1)

To guarantee the existence of a solution to this optimization problem, we assume

A1: the set {x ∈ E : fθ(x) > 0} does not depend on θ, the function θ → fθ(x)
is continuous for all x ∈ E and Θ is compact.

Ignoring the time series dependence, the estimator θ̂n is often called MLE. Note
however that, in general, θ̂n does not coincide with the MLE when the observations
are not iid. Standard estimation methods based on the likelihood, or the quasi-
likelihood, cannot be implemented when the conditional distribution of Xt given its
past, or at least when the conditional moments of Xt given its past, are unknown.
The main interest of the QMMLE is to avoid specifying a particular dynamics.

2.1 Consistency and asymptotic normality of the quasi

marginal MLE

The QMMLE θ̂n is CAN under regularity assumptions similar to those made for the
CAN of the MLE (see e.g. Tjøstheim, 1986, Pötscher and Prucha, 1997, Berkes and
Horváth, 2004, McAleer and Ling, 2010). More precisely, the following standard
identifiability and moment assumptions are made:

A2: fθ(X1) = fθ0(X1) almost surely (a.s.) implies θ = θ0.

A3: E |log fθ(X1)| <∞ for all θ ∈ Θ.

For the asymptotic normality, we need additional regularity assumptions.

A4: θ0 belongs to the interior
◦
Θ of Θ, the function θ = (θ1, . . . , θq)

′ → fθ(x)
admits third-order derivatives, for all i, j, k ∈ {1, . . . , q} there exists a neigh-

borhood V (θ0) of θ0 such that E supθ∈V (θ0)

∣

∣

∣

∂3 log fθ(X1)
∂θi∂θj∂θk

∣

∣

∣
<∞, the matrices

I =
∞
∑

h=−∞

E
∂ log fθ0(X1)

∂θ

∂ log fθ0(X1+h)

∂θ′
and J = −E∂

2 log fθ0(X1)

∂θ∂θ′

exist and J is nonsingular.

1We emphasize the difference with the so-called Quasi MLE: in the latter case, the
first two conditional moments are supposed to be correctly specified and the criterion is
written as if the conditional distribution were Gaussian; in the present paper, the marginal
distribution is supposed to be correctly specified but the criterion is written as if the
observations were independent.
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In the iid case, J = I is the Fisher information matrix. In the general case, the
matrix I is a so-called long-run variance. We also have to assume that the serial
dependence is not too strong:

A5: E
∥

∥

∥

∂ log fθ0 (X1)

∂θ

∥

∥

∥

2+ν
<∞ and

∑∞
k=0 {αX(k)} ν

2+ν <∞ for some ν > 0,

where αX(k) , k = 0, 1, . . . , denote the strong mixing coefficients of the process
(Xt) (see e.g. Bradley, 2005, for a review on strong mixing conditions).

Theorem 2.1. If (Xt) is a stationary and ergodic process with marginal density
fθ0, and if A1-A3 hold true, then θ̂n → θ0 a.s. Under the additional assumptions
A4 and A5, we have

√
n
(

θ̂n − θ0

)

d→ N (0,Σ := J−1IJ−1) as n→ ∞.

Proof. First note that

θ̂n = arg min
θ∈Θ

Qn(θ), with Qn(θ) =
1

n

n
∑

t=1

Dt(θ), Dt(θ) = log
fθ0(Xt)

fθ(Xt)
. (2.2)

Let Vk(θ) be the open sphere with center θ and radius 1/k. Assumption A3 and the
ergodic theorem applied to the stationary ergodic process

{

infθ∈Vk(θ1)∩ΘDt(θ)
}

t
show that

lim inf
n→∞

inf
θ∈Vk(θ1)∩Θ

Qn(θ) ≥ E inf
θ∈Vk(θ1)∩Θ

D1(θ). (2.3)

By Beppo Levi’s theorem, E infθ∈Vk(θ1)∩ΘD1(θ) increases to ED1(θ1) as k → ∞.
Moreover, Jensen’s inequality and A2 entail

ED1(θ1) ≥ − logE
fθ1(Xt)

fθ0(Xt)
= − log

∫

E
fθ1(x)dµ(x) = 0

with equality iff θ1 = θ0. It follows that for all θ1 6= θ0, there exists a neighborhood
V (θ1) of θ1 such that

lim inf
n→∞

inf
θ∈V (θ1)∩Θ

Qn(θ) > 0 ≥ lim sup
n→∞

inf
θ∈V (θ0)∩Θ

Qn(θ), (2.4)

where V (θ0) is an arbitrary neighborhood of θ0. The consistency then follows from
a standard compactness argument.

The proof of the asymptotic normality rests on the following standard Taylor
expansion:

0 =
√
n
∂ℓn(θ0)

∂θ
+
∂2ℓn(θ

∗
n)

∂θ∂θ′
√
n
(

θ̂n − θ0

)

, with ‖θ∗n − θ0‖ ≤ ‖θ̂n − θ0‖. (2.5)
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The central limit theorem of Herrndorf (1984) and A5 entail

√
n
∂ℓn(θ0)

∂θ

d→ N (0, 4I) as n→ ∞.

A new Taylor expansion, Assumption A4, the consistency of θ̂n and the ergodic

theorem show that ∂2ℓn(θ∗n)
∂θ∂θ′ → −2J a.s. 2

In the iid case, we have I = J . The following example shows that, for time
series, Σ may be quite different from J−1.

Example 2.1. Consider the simplistic example of an AR(1) of the form

Xt = a0Xt−1 + ηt, ηt iid N (0, σ20), a0 ∈ (−1, 1), σ0 > 0

and assume that the parameter of interest is θ0 = VarXt = σ20/(1 − a20). We have

∂ log fθ0(x)

∂θ
=
x2 − θ0
2θ20

.

Therefore we have

J =
1

2θ20
, I =

1

4θ40

∞
∑

h=−∞

Cov
(

X2
1 ,X

2
1+h

)

=
1

4θ40
Var(X2

1 )

(

1 + a20
1− a20

)

with Var(X2
1 ) = 2θ20. The QMMLE is thus θ̂n = n−1

∑n
t=1X

2
t and it satisfies

√
n
(

θ̂n − θ0

)

d→ N
(

0,Σ = 2θ20
1 + a20
1− a20

)

as n→ ∞.

Figure 1 shows that the dynamics is crucial for the asymptotic distribution of the
QMMLE, in the sense that Σ is much greater than J−1 when a0 is far from 0.

It is well known that the MLE ϑ̂MLE of ϑ0 = (a0, σ
2
0)

′ satisfies

√
n
(

ϑ̂MLE − ϑ0

)

d→ N
{

0,

(

1− a20 0
0 2σ4

0

)}

as n → ∞.

By the delta method, the MLE θ̂MLE of θ0 thus satisfies
√
n
(

θ̂MLE − θ0

)

d→
N (0, σ2

MLE) , with

σ2
MLE =

(

2a0σ2
0

(1−a20)
2

1
1−a20

)

(

1− a20 0
0 2σ4

0

)

(

2a0σ2
0

(1−a20)
2

1
1−a20

)

=
2σ4

0(1 + a20)

(1− a20)
3

.

Note that Σ = σ2
MLE . Thus, for this particular example, the QMMLE and

the MLE have the same asymptotic distribution.
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Figure 1: Asymptotic variances Σ of the

QMMLE and J−1 of the iid MLE, for the

AR(1) of Example 2.1 with σ2
0 = 1.
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Figure 2: As in Figure 1 for the AR(1) of

Example 2.2, with the asymptotic vari-
ance σ2

MLE of the MLE.

In the previous example, the QMMLE was as efficient as the MLE. The following
example shows that, as expected, we may have an efficiency loss of the QMMLE
with respect to the MLE, which can be considered as the price to pay for not having
to specify the dynamics.

Example 2.2. Consider another example of an AR(1) of the form

Xt = a0Xt−1 + ηt, a0 ∈ (−1, 1), ηt iid N (0, 1),

and assume that the parameter of interest is θ0 = VarXt = (1 − a20)
−1. Using the

computation of the previous example, the QMMLE θ̂n = n−1
∑n

t=1X
2
t satisfies

√
n
(

θ̂n − θ0

)

d→ N
{

0,Σ = 2θ20(2θ0 − 1)
}

as n→ ∞.

It is known that the MLE of a0 satisfies

√
n(ân − a0)

d→ N
{

0, 1 − a20
}

.

Since θ′(a) = 2a/(1 − a2)2, the delta method shows that the MLE of θ0 satisfies

√
n
(

θ̂MLE − θ0

)

d→ N
{

0, σ2MLE = 4(θ0 − 1)θ20
}

as n→ ∞.

Figure 2 shows that, for this very particular model, the MLE always clearly out-
performs the QMMLE. Indeed, if we know that the observations are generated by
an AR(1) with standard Gaussian innovations, than the marginal variance θ0 is
entirely defined by the AR coefficient. Thus it is not surprising that the estimator
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of θ0 based on the MLE of a be more efficient than a simple empirical moment.
Figure 2 also shows that J−1, which is the asymptotical variance of the MLE of
θ0 in the iid case, is very far from the asymptotic variance of the MLE or of the
QMMLE in the time series case.

Note that Theorem 2.1 does not allow to treat interesting cases where the support
of the density depends on θ and/or cases where θ → fθ(x) is not differentiable for
all x. The GEV density is an example of such densities, that we would like to fit
with QMMLE. To this purpose, consider the alternative assumptions.

A1∗: for Pθ0 almost all x, the function θ → fθ(x) is continuous and Θ is
compact.

A3∗: E |log fθ0(X1)| <∞ and E log+ fθ(X1) <∞ for all θ ∈ Θ.

A4∗: there exists X ∈ E such that P (Xt ∈ X ) = 1, for all x ∈ X the function
θ → fθ(x) admits third-order derivatives at θ0, and all the other requirements
of A4 are satisfied.

Theorem 2.2. If (Xt) is a stationary and ergodic process with marginal density
fθ0, and if A1∗, A2 and A3∗ hold true, then θ̂n → θ0 a.s. Under the additional
assumptions A4∗ and A5, we have

√
n
(

θ̂n − θ0

)

d→ N (0,Σ = J−1IJ−1) as n→ ∞.

Proof. We maintain the notation introduced in the proof of Theorem 2.1. Note
that, with probability one, fθ0(Xt) > 0 for all t. Using A1∗ and the standard
convention Dt(θ) = +∞ when fθ(Xt) = 0, almost surely the criterion Qn(θ) is
a continuous function valued in (−∞,∞], taking a finite value at θ0. Therefore
arg minθ∈ΘQn(θ) exists (but is not necessarily unique) with probability one. Thus

θ̂n is still defined as a measurable solution of (2.2). Now A3∗ entails that EDt(θ0) =
0 and EDt(θ) ∈ (−∞,∞] for all θ ∈ Θ. Applying the ergodic theorem to the
stationary ergodic process

{

infθ∈Vk(θ1)∩ΘDt(θ)
}

t
whose expectation is defined in

(−∞,∞] (see Billingsley 1995, pages 284 and 495) we still have (2.3), where the
expectation of the right-hand side can be equal to +∞. Finally (2.4) continues to
hold, and the consistency follows.

The asymptotic normality is shown as in the proof of Theorem 2.1, on the set
of probability one ∩∞

t=1 (Xt ∈ X ). 2

As illustrated by Examples 2.1–2.2, it is essential to estimate consistently the stan-
dard Fisher information matrix J and the long-run variance I. This problem is
considered in the following section.

7



2.2 Estimation of the asymptotic variance

Since J is equal to the variance of the pseudo score St := ∂ log fθ0(X1)/∂θ, a
natural estimator of that matrix is

Ĵ =
1

n

n
∑

t=1

ŜtŜ
′
t where Ŝt =

∂ log fθ̂n(Xt)

∂θ
.

Now note that, up to the factor 2π, the long-run matrix I is the spectral density at
frequency zero of the process (St). Estimators of such matrices are available in the
literature (see e.g. den Haan and Levin (1997) for a comparison of the most used
estimators). For the numerical illustrations presented in this paper we used a VAR
spectral estimator consisting in: i) fitting VAR(r) models for r = 0, . . . , rmax to
the series Ŝt, t = 1, . . . , n; ii) selecting the order r which minimizes an information
criterion and estimating I by the matrix Î defined as 2π times the spectral density
at frequency zero of the estimated VAR(p) model. For the numerical illustrations
presented in this paper, we used the AIC model selection criterion with rmax = 25.

We now give a more precise description of the method and its asymptotic
properties. The stationary process (St) admits the Wold decomposition St =
ut +

∑∞
i=1Biut−i, where (ut) is a q-variate weak white noise with covariance

matrix Σu. Assume that Σu is non singular, that
∑∞

i=1 ‖Bi‖ < ∞, and that
det
(

Iq +
∑∞

i=1Biz
i
)

6= 0 when |z| ≤ 1. Then (St) admits a VAR(∞) representa-
tion of the form

A(B)St := St −
∞
∑

i=1

AiSt−i = ut, (2.6)

such that
∑∞

i=1 ‖Ai‖ <∞ and det {A(z)} 6= 0 for all |z| ≤ 1, and we obtain

I = A−1(1)ΣuA
′−1(1). (2.7)

Consider the regression of St on St−1, . . . , St−r defined by

St =

r
∑

i=1

Ar,iSt−i + ur,t, ur,t ⊥{St−1 · · ·St−r} . (2.8)

The least squares estimators of Ar = (Ar,1 · · ·Ar,r) and Σur = Var(ur,t) are defined
by

Âr = Σ̂Ŝ,Ŝr
Σ̂−1

Ŝr

and Σ̂ur =
1

n

n
∑

t=1

(

Ŝt − ÂrŜr,t

)(

Ŝt − ÂrŜr,t

)′

where Ŝr,t = (Ŝ′
t−1 · · · Ŝ′

t−r)
′,

Σ̂Ŝ,Ŝr
=

1

n

n
∑

t=1

ŜtŜ
′
r,t, Σ̂Ŝr

=
1

n

n
∑

t=1

Ŝr,tŜ
′
r,t,

8



with by convention Ŝt = 0 when t ≤ 0, and assuming Σ̂Ŝr
is non singular (which

holds true asymptotically). We are now in a position to give conditions ensuring
the consistency of Î and Ĵ . The proof, which is based on Berk (1974), is provided
in Appendix B.

Theorem 2.3. Let the assumptions of Theorem 2.1 be satisfied. We have Ĵ → J
a.s. as n → ∞. Assume in addition that the process (St) admits the VAR(∞)
representation (2.6), where ‖Ai‖ = o

(

i−2
)

as i → ∞, the roots of det(A(z)) = 0
are outside the unit disk, and Σu is non singular. We also need to complement
Assumption A4 by assuming that, with the same notation,

A4’: E supθ∈V (θ0)

∣

∣

∣

∂
∂θi

{

∂ log fθ(X1)
∂θj

∂ log fθ(X1)
∂θk

}∣

∣

∣ <∞,

and to reinforce Assumption A5 by assuming that, for some ν > 0,

A5’: E
∥

∥

∥

∂ log fθ0 (X1)

∂θ

∥

∥

∥

4+2ν
<∞ and

∑∞
k=0 {αX(k)} ν

2+ν <∞.

Then, when r = r(n) → ∞ and r3/n → 0 as n→ ∞,

Î := Â−1
r (1)Σ̂urÂ

′−1
r (1) → I in probability.

3 Application to heavy-tailed distributions

We now apply the general results of the previous section to three important classes
of distributions.

3.1 Estimating stable marginal distributions

Assume that (Xt) has a univariate stable distribution S(θ), θ = (α, β, σ, µ), with
tail exponent α ∈ (0, 2], parameter of symmetry (or skewness) β ∈ [−1, 1], scale
parameter σ ∈ (0,∞), and location parameter µ ∈ R. This class of density co-
incides with all the possible non degenerated limit distributions for standardized
sums of iid random variables of the form a−1

n

∑n
i=1 Zi− bn, where (an) and (bn) are

sequences of constants with an > 0. The location and scale parameters are such
that Y = σX + µ, σ > 0, follows a stable distribution of parameter (α, β, σ, µ)
when X follows a stable distribution of parameter (α, β, 1, 0). In general, the den-
sity fθ(x) of a stable distribution is not known explicitly, but the characteristic
function φ(s) = φα,β(s) of a stable distribution of parameter (α, β, 1, 0) is defined
by

log φ(s) = −|s|α
{

1 + iβ (sign s) tan
(πα

2

)(

|s|1−α − 1
)}

9



if α 6= 1 and

log φ(s) = −|s|
{

1 + iβ (sign s)
2

π
log |s|

}

if α = 1. There exist other parameterizations for the stable characteristic function,
but this parameterization presents the advantage that

fθ(x) := (2π)−1

∫

R

exp {−is(x− µ)}φα,β(σs)ds

is differentiable with respect to both x ∈ R and θ ∈ Λ := (0, 2)×(−1, 1)×(0,∞)×R

(see Nolan, 2003). Let fα,β be the stable density of parameter θ = (α, β, 1, 0).

Because fα,β(x) is real and φ(−s) = φ(s), we have

fα,β(x) =
1

π

∫ ∞

0
e−sα cos

{

sx+ β tan
(πα

2

)

(s− sα)
}

ds (3.1)

for α 6= 1, and

fα,β(x) =
1

π

∫ ∞

0
e−s cos

(

sx+ sβ
2

π
log s

)

ds (3.2)

for α = 1. From these expressions and the elementary series expansion (1 −
sα−1) tan

(

πα
2

)

= 2
π log s+ o(α− 1), the continuity at α = 1 is clear.

Note that fθ(x) = σ−1fα,β
{

σ−1(x− µ)
}

can be numerically evaluated from
(3.1)-(3.2), or alternatively using the function dstable() of the R package fBasics.

A stable distribution with exponent α = 2 is a Gaussian distribution, a stable
distribution with α < 2 has infinite variance. The parameter α determines the tail
of the distribution of X ∼ S(θ) in the sense that, when α < 2, Fθ(−x) := P (X <
−x) and 1−Fθ(x) are equivalent to Cα(1−β)x−α and Cα(1+β)x

−α, respectively,
as x→ ∞, with Cα > 0. Moreover, still when X ∼ S(θ) with α < 2,

E|X|p <∞ if and only if p < α. (3.3)

Theorem 3.1. Assume that Θ is a compact subset of Λ and that θ0 ∈ Θ. If (Xt) is
a stationary and ergodic process whose marginal follows a stable distribution S(θ0),

then the QMMLE defined by (2.1) is such that θ̂n → θ0 a.s. If, in addition, θ0 ∈
◦
Θ

and there exists ε ∈ (0, 1) such that
∑∞

k=0 {αX(k)}1−ε <∞, then

√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I and J are defined in A4.
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Proof. DuMouchel (1973) showed the CAN of the MLE for stable iid variables.
Note that DuMouchel used a parametrization with a discontinuity at α = 1. With
the chosen parameterization, fθ(x) is continuous with respect to θ ∈ Λ for all x
and its support is R (see Nolan, 2003). Assumption A1 is thus satisfied with
E = R. The identifiability assumption A2 follows from the identifiability of the
characteristic function (see Condition 5 in DuMouchel, 1973). Since

fθ0(x) ∼ cθ0 |x|−(α0+1) as |x| → ∞ (3.4)

(see for example Feller, 1975), | log fθ0(x)|fθ0(x) ∼ (α0 + 1)cθ0 |x|−(α0+1) log |x|
as |x| → ∞. It follows that

∫

|x|>A | log fθ0(x)|fθ0(x)dx < ∞ for A large enough.

Moreover fθ0(x) is bounded and bounded away from zero on any compact: 0 < m ≤
fθ0(x) ≤ M < ∞ for all x ∈ [−A,A]. It follows that

∫

|x|≤A | log fθ0(x)|fθ0(x)dx <
∞, and eventually A3 holds true. The consistency then follows from Theorem 2.1.

From asymptotic expansions in DuMouchel (1973) (see also equations (2.5)-
(2.10) in Andrews, Calder and Davis (2009)), there exists a neighborhood V (θ0) of
θ0 such that

sup
θ∈V (θ0)

∣

∣

∣

∣

∂k log fθ(x)

∂θi1∂θik

∣

∣

∣

∣

= O
(

[log |x|]k
)

, (3.5)

as |x| → ∞, for k ∈ {1, 2, 3} and i1, . . . , ik ∈ {1, . . . , 4}. From (3.1)-(3.2), it is
clear that fθ(x) admits derivatives of any order with respect to the components of
θ, and that these derivatives can be obtained by differentiation under the integral
sign. By continuity arguments and the compactness of Θ, the function fθ(x), its
derivatives and its inverse are bounded uniformly on θ ∈ Θ and x ∈ [−A,A] for all
A ∈ R. We thus have

∫ A

−A
sup
θ∈Θ

∣

∣

∣

∣

∂ log fθ(x)

∂θi

∣

∣

∣

∣

τ

fθ0(x)dx <∞

for all τ ≥ 0 and all A ≥ 0. The same bound holds when the first-order derivative
is replaced by higher-order derivatives. In view of (3.5) with k = 1 and (3.4), we
also have

∫

(−∞,−A)∪(A,∞)
sup
θ∈Θ

∣

∣

∣

∣

∂ log fθ(x)

∂θi

∣

∣

∣

∣

τ

fθ(x)dx <∞

for all τ ≥ 0. By (3.5) with k = 2, 3 the same holds true with second and third
order derivatives. It follows that the moments conditions of A4 are satisfied, in
particular the existence of J is established. The invertibility of J is proved by
Condition 6 in DuMouchel (1973). By Davydov’s inequality (1968), the existence
of I is a consequence of the mixing condition and of the fact that ‖∂ log fθ0(X1)/∂θ‖
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admits moment of any order τ . Assumptions A4 and A5 are thus satisfied, and
the conclusion follows from Theorem 2.1. 2

We now show how to use the estimators Î and Ĵ defined in Theorem 2.3
in the alpha-stable case. Since the alpha-stable densities and their derivatives
are not explicit, we need to define a way to compute Ŝt. By continuity, set
gα(s) = tan (πα/2) (s− sα) when α 6= 1 and gα(s) = (2s/π) log s when α = 1.
Let ψα,β(x, s) = sx+βgα(s). By the arguments given in the proof of Theorem 3.1,
differentiations of (3.1) under the integral sign yield

∂fθ(x)

∂α
=

−1

σπ

∫ ∞

0
sαe−sαϕα,β

(

x− µ

σ

)

ds,

∂fθ(x)

∂β
=

−1

σπ

∫ ∞

0
e−sα sinψα,β

(

x− µ

σ

)

gα(s)ds,

∂fθ(x)

∂σ
=

−1

σ
fθ(x) +

1

σ3π

∫ ∞

0
s(x− µ)e−sα sinψα,β

(

x− µ

σ

)

ds,

∂fθ(x)

∂µ
=

1

σ2π

∫ ∞

0
se−sα sinψα,β

(

x− µ

σ

)

ds,

with ϕα,β (x) is equal to

(log s) cosψα,β(x, s)− β sinψα,β(x, s)

{

(log s) tan
(πα

2

)

− π
(

s1−α − 1
)

2 cos2(πα2 )

}

when α 6= 1 and equal to (log s) cosψ1,β(x, s) − (β/π)(log s)2 sinψ1,β(x, s) when

α = 1. These derivatives allow to compute the Ŝt’s required for the estimators of
I and J .

Proposition 3.1. Under the assumptions of Theorem 3.1, Assumptions A4’ and
A5’ are satisfied. Thus the consistency of Î and Ĵ holds under the other assump-
tions of Theorem 2.3.

Proof. By the arguments used to show A4, in particular (3.4)-(3.5). 2

3.2 Estimating generalized Pareto distributions

It is tempting to try to test for α0 = 2 against α0 < 2. This would require extending
the results of the previous section at the boundary of the parameter space (since
α0 = 2 is the maximum permissible value for a stable distribution). Unfortunately,
even in the iid case, the asymptotic distribution of the MLE is unknown when
the true underlying distribution is gaussian, that is, when α0 = 2. DuMouchel

12



(1983) noted that the asymptotic behavior of α̂n is not regular in this case. He
proved that P (α̂n = 2) → 1 and conjectured that P (α̂n < 2) ∼ K/ log n as n tends
to infinity. In the same paper, DuMouchel (1983) suggested to model the tail
behavior (rather than the complete distribution) by using the Generalized Pareto
Distribution (GPD).

The GPD(γ0, σ0) with shape parameter γ0 ∈ R and scale parameter σ0 > 0,
has the probability distribution function

Fγ0,σ0(x) =







1−
(

1 + γ0
x
σ0

)−1/γ0
, γ0 6= 0,

1− exp
(

− x
σ0

)

, γ0 = 0,

where for γ0 ≥ 0 the range is x ≥ 0, while for γ0 < 0 the range is 0 ≤ x ≤ −σ0/γ0.
One attractive feature of the GPD is that it is stable with respect to "excess

over threshold operations": if X ∼ GPD(γ0, σ0), then the distribution of X − u
conditional on X > u is the GPD(γ0, σ0 + γ0u). Moreover, when γ0 > 0 the
upper tail probability P (X > x) of the GPD(γ0, σ0) behaves like kx−α for large
x, with α = 1/γ0, so that 1/γ0 is the tail index, comparable to α of the stable
distribution. Note also that E(Xs) < ∞ for s < 1/γ0. However, unlike the
Pareto distribution, the GPD permits Paretian tail behavior with α ≥ 2. The
GPD plays an important role in EVT. Indeed, it has been shown by Balkema
and de Haan (1974) and Pickands (1975) that, for any random variable X whose
distribution belongs to the maximum domain of attraction of an extreme value
distribution, the law of the excess X −u over a high threshold u, often called Peak
Over Threshold (POT), is well approximated by a GPD(γ0, σ0(u)) (see Theorem
3.4.13 in Embrechts, Klüppelberg and Mikosch, 1997).

Many approaches have been proposed to estimate the GPD (see the review by de
Zea Bermudez and Kotz (2010a, 2010b)). Let θ0 = (γ0, σ0) be the true parameter
value of the GPD(γ0, σ0), where γ0, σ0 > 0. Let Θ denote a compact subset of
(0,∞)2. The QMMLE is any measurable solution of (2.1) with, for θ = (γ, σ) ∈ Θ,

ℓn(θ) = log σ2 +
1

n

(

1

γ
+ 1

) n
∑

t=1

log

(

γXt

σ
+ 1

)2

.

Theorem 3.2. If (Xt) is a stationary and ergodic process whose marginal follows
a GPD(θ0), then the QMMLE defined by (2.1) is such that θ̂n → θ0 a.s. If, in

addition, θ0 ∈
◦
Θ and there exists ε ∈ (0, 1) such that

∑∞
k=0 {αX(k)}1−ε <∞, then

√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I is defined in A4 and

J−1 =

(

(1 + γ0)
2 −σ0(1 + γ0)

−σ0(1 + γ0) 2σ20(1 + γ0)

)

.
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Proof. The theorem is a consequence of Theorem 2.1. Assumption A1 is thus
satisfied with E = R

+. Assumptions A2 and A3 are clearly satisfied, with the
density of the GPD(θ) given, for γ, σ > 0, by

fθ(z) =
σ1/γ

(γz + σ)1+1/γ
, z ≥ 0. (3.6)

From the second- and third-order derivatives, derived in the appendix, we have

sup
θ∈V (θ0)

∣

∣

∣

∣

∂ log fθ(x)

∂θi

∣

∣

∣

∣

= O (log |x|) , sup
θ∈V (θ0)

∣

∣

∣

∣

∂2 log fθ(x)

∂θi∂θj

∣

∣

∣

∣

= O (log |x|) ,

as |x| → ∞, for all i, j ∈ {1, . . . , 4}. It can be seen that the third-order
derivatives are of the same order, from which Assumption A4 follows. Finally,
‖∂ log fθ(X1)/∂θ‖ admits moment of any order, and Assumption A5 is thus satis-
fied. The formula for J−1 is derived in the appendix. 2

A drawback of the GPD, for instance in the aim of modeling log-returns dis-
tributions, is that its density is not positive over the real line. A simple extension
of the GPD(γ0, σ0) is defined by the following density, which we can call double
GPD(τ, γ1, σ1, γ2, σ2):

fθ0(z) = τ
σ
1/γ1
1

(−γ1z + σ1)1+1/γ1
1lz<0 + (1− τ)

σ
1/γ2
2

(γ2z + σ2)1+1/γ2
1lz≥0 (3.7)

where θ0 = (τ, γ1, σ1, γ2, σ2)
′ ∈ Θ where Θ denotes a compact subset of [0, 1] ×

(0,∞)4. A straightforward extension of Theorem 3.2, whose proof is omitted, is
the following.

Theorem 3.3. If (Xt) is a stationary and ergodic process whose marginal follows
a double GPD(θ0), then the QMMLE defined by (2.1) is such that θ̂n → θ0 a.s. If,

in addition, θ0 ∈
◦
Θ and there exists ε ∈ (0, 1) such that

∑∞
k=0 {αX(k)}1−ε < ∞,

then √
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I is defined in A4 and for i = 1, 2,

J−1 =





τ(1− τ) 0 0

0 τ−1J−1
1 0

0 0 (1− τ)−1J−1
2



 , J−1
i =

(

(1 + γi)
2 −σi(1 + γi)

−σi(1 + γi) 2σ2i (1 + γi)

)

,
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3.3 Estimating generalized extreme value distributions

We now consider another class of densities which is widely used in EVT. It is
known (see e.g. Beirlant et al. 2005) that the possible limiting distributions for
the maximum X(n) of a sample X1, . . . ,Xn are given by the class of the GEV whose
densities are of the form

fθ(x) =
1

σ

{

1 + γ

(

x− µ

σ

)}−1/γ−1

e−{1+γ( x−µ
σ )}−1/γ

1l{1+γ(x−µ)/σ>0},

with θ = (µ, σ, γ) ∈ R× R
+ × R. Taking the limit, when γ = 0 the density is

fθ(x) = σ−1e−(x−µ)/σe−e−(x−µ)/σ
.

The density is called Weilbull, Gumbel or Fréchet when the shape parameter γ is
respectively negative, null or positive. When the Xi’s have Pareto tails of index
α > 0, the limiting distribution of X(n) as n → ∞ is a Fréchet distribution with
shape parameter γ = 1/α. Let θ0 = (µ0, σ0, γ0) be the true parameter value of
the GEV(θ0), where θ0 belongs to a compact subset Θ of R × R

+ × (γ,∞). We
impose the constraint γ0 > γ because, as shown by Smith (1985) in the iid case,
the information matrix J does not exist when γ0 ≤ −1/2.

Theorem 3.4. If (Xt) is a stationary and ergodic process whose marginal follows
a GEV(θ0), and if γ ≥ −1 then the QMMLE defined by (2.1) is such that θ̂n →
θ0 a.s. If, in addition, θ0 ∈

◦
Θ, γ ≥ −1/2 and there exists ε ∈ (0, 1) such that

∑∞
k=0 {αX(k)}1−ε <∞, then

√
n
(

θ̂n − θ0

)

d→ N (0, J−1IJ−1) as n→ ∞,

where I and J are defined in A4.

Proof. Note that Theorem 2.1 does not apply here because the support of fθ de-
pends on θ. We will therefore apply Theorem 2.2. Note that fθ(x) ∼ σ−1y−1/γ−1

when y := 1 + γ (x− µ) /σ → 0+ and γ < 0. Because γ > γ ≥ −1, the con-
tinuity assumption A1∗ holds true. Moreover, when γ > −1 the function fθ(·)
is bounded. The condition E log+ fθ(X1) < ∞ of A3∗ is thus satisfied. Now
note that as y → +∞, we have |log fθ(x)| fθ(x) = O(y−1/γ−1 log y) when γ > 0
and |log fθ(x)| fθ(x) = O

(

exp(y−1/γ)
)

when γ < 0. Note also that as y → 0+,
|log fθ(x)| fθ(x) tends to zero at an exponential rate when γ > 0 and tends to zero
like a positive power of y when −1 < γ < 0. This shows that E| log fθ0(X1)| < ∞
when γ0 6= 0. When γ0 = 0, the function x → |log fθ0(x)| fθ0(x) is bounded
away from zero on any compact set and tends to zero at an exponential rate when
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x → ±∞, which shows that E| log fθ0(X1)| < ∞ also when γ0 = 0. Finally As-
sumption A3∗ is satisfied and the consistency follows from Theorem 2.2.

Now observe that θ̂n and θ0 necessarily belong to

Θn :=
{

θ : 1 + γ
(

X(1) − µ
)

/σ > 0 and 1 + γ
(

X(n) − µ
)

/σ > 0
}

where X(1) and X(n) denote the minimum and maximum of the observations. In-
deed, ℓn(θ) = +∞ when θ 6∈ Θn. Moreover, n−1ℓn(θ) → −E log fθ(X1) which is
finite at θ0, and thus also finite in a neighborhood of θ0 by A1∗. This entails that
ℓn(θ) is finite, and admits derivatives of any order, on this neighborhood for n large
enough. The Taylor expansion (2.5) thus holds. The existence and invertibility of
J does not depend on the dynamics, and has already been proven by Smith (1985)
in the iid case under the condition γ0 > −1/2. Explicit expressions for the deriva-
tives of log fθ(x) can be found in Beirlant et al. (2005). From these expressions,
it can be seen that, for γ < 0, ‖∂fθ(x)/∂θ‖2fθ(x) tends to zero at the exponential
rate when y → −∞ and is equivalent to a constant multiplied by y−3−1/γ when
y → 0+. It follows that, when γ0 > −1/2, we have E‖∂fθ0(X1)/∂θ‖2+ε for some
ε > 0. The existence of I then follows from the mixing condition, using Davydov’s
inequality (1968). The conclusion follows. 2

4 Modeling the unconditional distribution of

daily returns

In this section, we consider an application to the marginal density of financial
returns. We focus on two aspects of the shape of daily returns distributions, both
widely discussed in the empirical finance literature, the asymmetry and the tail
thickness.

Daily returns distribution are generally considered as approximately symmetric
(see e.g. Taylor, 2007) but several studies documented the fact that they can be
positively skewed (see e.g. Kon (1984)). Symmetry tests are generally based on
the skewness coefficient, and the critical value is routinely obtained by assuming a
sample from a normal distribution. In the symmetry test proposed by Premaratne
and Bera (2005), the normality is replaced by a distribution that takes into account
leptokurtosis explicitely, but the iid assumption is maintained. In the framework
of this paper, we can test for asymmetry under general distributional assumptions,
and taking into account the dynamics.

By graphical methods, Mandelbrot (1963) showed that daily price changes in
cotton have heavy tails with α ≈ 1.7, so that the mean exists but the variance is
infinite. To mention only a few more recent studies, Jansen and de Vries (1991)
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found estimated values of α between 3 and 5 using the order statistics, for daily
data of ten stocks from the S&P100 list and two indices. With the same estimator,
Loretan and Phillips (1994) found estimated values of α between 2 and 4, for a daily
and monthly returns from numerous stock indices and exchange rates, indicating
that the variance of the price returns are finite but the fourth-order moments are
not. Using a MLE approach, McCulloch (1996) reestimated the coefficient α on the
same data as Jansen and de Vries (1991) and Loretan and Phillips (1994), and found
values between 1.5 and 2. By the same technique, using fast Fourier transforms to
approximate the α-stable density, Rachev and Mittnik (2000) obtained values of α
between 1 and 2, for a variety of stocks, stock indices and exchange rates.

The above-mentioned references show that the debate concerning the tail index
α of the financial returns is not over. The estimated value of α seems to be very
sensitive to the estimation method.2

In this paper, we participate in the debate on the typical value of α and the
possible asymmetry of the marginal distribution of financial returns, by fitting
alpha-stable, GPD and GEV distributions to daily returns of stock indices, using
the QMMLE. We consider nine major world stock indices: CAC (Paris), DAX
(Frankfurt), FTSE (London), Nikkei (Tokyo), NSE (Bombay), SMI (Switzerland),
SP500 (New York), SPTSX (Toronto), and SSE (Shanghai). The observations cover
the period from January, 2 1991 to August, 26 2011 (except for the NSE, SPTSX
and SSE whose first observations are posterior to 1991). The period includes
the recent sovereign-debt crises in Europe and US. We checked that the results
presented below are not changed much by withdrawing this recent turbulent period
(see the Appendix).

4.1 Fitting alpha-stable distributions

4.1.1 To the series

Table 1 shows that the tail index estimated when fitting alpha-stable distributions
is always between 1.5 and 1.7, for all the series, which is comparable with the val-
ues found by Mandelbrot (1963), Leitch and Paulson (1975), McCulloch (1996) or
Rachev and Mittnik (2000). It is interesting to note that all distributions are neg-
atively skewed (β < 0). Table 2 shows that, for all but one returns the distribution
is significantly asymmetric. Table 3 shows that the estimated value µ̂ of the posi-
tion parameter is often significantly positive. It should be however underlined that

2Several methods based on EVT have been proposed for the sole estimation of the tail
parameter α, mainly in the iid case (see Beirlant, Vynckier and Teugels (1996), Einmahl,
Li and Liu (2009) and the references therein). See also Wang and Tsai (2009) for tail index
estimation by regression techniques.
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Table 1: Stable distributions fitted by QMMLE on daily stock market returns. The
estimated standard deviation are displayed into brackets.

Index α̂ β̂ σ̂ µ̂
CAC 1.72 (0.07) -0.19 (0.05) 0.81 (0.03) 0.07 (0.02)
DAX 1.64 (0.07) -0.17 (0.05) 0.79 (0.04) 0.09 (0.02)
FTSE 1.70 (0.06) -0.19 (0.04) 0.62 (0.02) 0.07 (0.01)
Nikkei 1.65 (0.05) -0.14 (0.03) 0.79 (0.03) 0.05 (0.02)
NSE 1.60 (0.09) -0.21 (0.07) 0.87 (0.05) 0.17 (0.04)
SMI 1.66 (0.06) -0.22 (0.05) 0.64 (0.02) 0.09 (0.02)
SP500 1.62 (0.05) -0.10 (0.03) 0.50 (0.01) 0.05 (0.01)
SPTSX 1.55 (0.11) -0.25 (0.05) 0.60 (0.03) 0.11 (0.02)
SSE 1.54 (0.06) -0.12 (0.07) 0.83 (0.03) 0.09 (0.04)

Table 2: p-values for the t-test of H0 : β = 0 against β 6= 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.080

these results are valid under the assumption that the marginal distribution belongs
to the class of the alpha-stable distributions. Figure 3 shows that the estimated
stable distributions actually resemble the non parametric kernel density estimator
of the marginal distributions. Other numerical experiments, not presented here,
reveal however that the fit is not completely satisfactory.

4.1.2 To the aggregated series

Table 4 displays the alpha stable distributions fitted on the aggregated series
Xt =

∑m
i=1 r5t+i of each series of returns (rt), for m = 5. Note that if

Table 3: p-values for the t-test of H0 : µ = 0 against µ > 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.012
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Figure 3: Comparison between the estimated stable density (full line) and the kernel
density estimate (dashed line) of the marginal distribution of the returns of 4 stock market
indices.
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the series rt was iid, with a distribution which is not necessary stable but
belongs to the domain of attraction of a stable distribution with tail index α,
then, in view of the generalized CLT (see e.g. Feller, 1975), the distribution
of Xt should be close to a stable distribution with tail index α for large
m. To illustrate this point, let S̃t = St + Nt, where (St) and (Nt) are two
independent iid sequences, St ∼ S(α, β, σ, µ) and Nt ∼ N (m, s). Figure 4
shows that, according to the asymptotic theory, the distribution of

∑m
i=1 S̃5t+i

tends to the stable distribution of
∑m

i=1 S5t+i when m increases. For this
figure, we took α = 0.8, β = µ = m = 0 and σ = s = 1. This simple
illustration highlights that there exist obviously situations where a stable
distribution is more plausible after temporal aggregation, and that the tail
index is not changed by this transformation. Interestingly, Table 4 shows
that the tail index estimated on the aggregated series is similar to that of the
initial series of returns. Surprisingly the estimated standard deviation of the
estimator of α is not deteriorated by the aggregation (although the number of
observations is obviously divided by m = 5). A possible explanation is that
the temporal dependencies should decrease as m → ∞, which could facilitate
the estimation of that parameter. Another surprising output of Table 4 is
that the asymmetry parameter β is much more negative for m = 5 than for
m = 1. This is certainly due to the presence of clusters of negative returns.
Table 5 display the estimated tail index α for different values of m. The main
output of that table is that α̂ is always greater than 1.5 and less than 2, for
all indices and any m, leading to the conclusion that the moments of order
1 should exist, whereas those of order 2 should not.

4.2 Fitting double GPD to double POT

It is worth studying the sensitivity of the results to a change of distribution.
According to the EVT, the tail index of a series of returns rt should also be
well estimated by fitting a GPD to the POT’s {rt − u : rt > u}. In order
to estimate indices for both the positive and negative tails, we fitted double
GPD distributions to {rt − u : rt > u} ∪ {rt + u : rt < −u}, for the different
series rt of returns considered in Table 1. The choice of the threshold u is
crucial. If u is chosen too small, estimation biases may occur due to the
inadequacy of the GPD distribution for the whole data set. If u is chosen
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Table 4: Stable distributions fitted by QMMLE on rolling sums of m = 5 consecutive
daily stock market returns.

Index α̂ β̂ σ̂ µ̂
CAC 1.81 (0.06) -0.48 (0.10) 1.95 (0.10) 0.28 (0.08)
DAX 1.74 (0.07) -0.47 (0.11) 1.86 (0.17) 0.44 (0.12)
FTSE 1.74 (0.08) -0.29 (0.11) 1.40 (0.06) 0.28 (0.07)
Nikkei 1.75 (0.05) -0.44 (0.11) 1.82 (0.08) 0.24 (0.09)
NSE 1.61 (0.11) -0.50 (0.20) 2.25 (0.17) 0.90 (0.20)
SMI 1.65 (0.08) -0.45 (0.09) 1.47 (0.10) 0.44 (0.08)
SP500 1.77 (0.05) -0.32 (0.09) 1.29 (0.05) 0.27 (0.04)
SPTSX 1.55 (0.15) -0.47 (0.13) 1.33 (0.13) 0.42 (0.08)
SSE 1.78 (0.09) -0.26 (0.32) 2.34 (0.16) 0.32 (0.32)

too large, the variance of the estimates is likely to be too large because of
the small number of tail observations.

In order to propose a practical choice for the threshold, we conducted
the following experiment. Let k be a positive integer, and let (ηt) be an iid
sequence of alpha-stable distribution S(θk). Assume θk = (α, 0, k−1/α, 0), i.e.

the location parameter is µ = 0, the symmetry parameter is β = 0 and the
scale parameter is σ = k−1/α. For any k ≥ 1, the moving average process

Xt =

k
∑

i=1

ηt+1−i (4.1)

has the marginal distribution S(θ), with θ = (α, 0, 1, 0). For the numerical
illustrations we took α = 1.6, which is a value close to the estimated values in
Table 1. Even if the marginal distribution does not vary with k, the dynamics
of the k-dependent process (Xt) strongly depends on k (Figure 5).

We simulated 1, 000 independent realizations of length n = 4, 000 of
Model (4.1). The sample size n = 4, 000 is a typical sample size for the
daily series considered in Table 1. On each series, we fitted a double GPD,
whose density is displayed in (3.7), to the proportion π of the data with
largest absolute values. Figure 6 shows, in function of π, the bias and root
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Table 5: Estimated tail index α when stable distributions are fitted by QMMLE on
rolling sums of m consecutive daily stock market returns.

Index m = 1 m = 2 m = 4 m = 8 m = 16 m = 32
CAC 1.72 (0.07) 1.73 (0.08) 1.83 (0.06) 1.86 (0.05) 1.82 (0.08) 1.73 (0.14)
DAX 1.64 (0.07) 1.66 (0.06) 1.75 (0.07) 1.71 (0.09) 1.65 (0.13) 1.63 (0.23)
FTSE 1.70 (0.06) 1.73 (0.06) 1.79 (0.06) 1.79 (0.07) 1.70 (0.11) 1.80 (0.19)
Nikkei 1.65 (0.05) 1.70 (0.06) 1.80 (0.06) 1.77 (0.06) 1.80 (0.13) 1.85 (0.18)
NSE 1.60 (0.09) 1.64 (0.08) 1.63 (0.11) 1.76 (0.10) 1.66 (0.14) 1.68 (0.14)
SMI 1.66 (0.06) 1.67 (0.07) 1.68 (0.07) 1.74 (0.07) 1.61 (0.11) 1.76 (0.12)
SP500 1.62 (0.05) 1.73 (0.05) 1.77 (0.04) 1.80 (0.05) 1.82 (0.05) 1.82 (0.11)
SPTSX 1.55 (0.11) 1.64 (0.12) 1.52 (0.09) 1.64 (0.09) 1.62 (0.10) 1.68 (0.20)
SSE 1.54 (0.06) 1.71 (0.05) 1.73 (0.07) 1.81 (0.07) 1.97 (0.03) 1.91 (0.06)

mean squared error (RMSE) of estimation of the tail parameter α2 := 1/γ2 of
the positive tail. We do not present the graph of the RMSE of estimation of
α1 := 1/γ1, which is obviously very similar to that of Figure 6. For computing
these RMSE’s we used 5%- trimmed means, which eliminate few simulations
for which the estimate of γ2 is close to zero (and thus the estimate of α is
clearly not compatible with that of a stable distribution). It can be seen
that the bias and RMSE’s tend to increase with the degree k of dependence.
Interestingly, the shapes of the curves are however similar for the different
values of k, with a minimum corresponding to π of about 12.5%. We thus
decided to define the threshold u as being the quantile of order 87.5% of the
absolute values of the returns. We then adjusted double GPD’s on the subset
of the returns with absolute value greater than u. Table 6 displays the values
of the QMMLE for the nine series of returns. The most noticeable output
is that the estimated standard deviations of α̂1, and to a lesser extent α̂2,
are very high, ruling out any clear conclusion concerning the tail index pa-
rameters. We tried other values of the threshold, but even for much smaller
values of u the estimated standard deviations remained very large.

The POT approach seems difficult to apply to get an accurate estimate of
α for typical sample sizes of daily series of returns. A very small proportion
of the most extreme observations is required to get a negligible bias, but the
RMSE is then relatively large. The estimated values of the other parame-
ters give more conclusive information. Note that if the marginal distribution
of the returns was symmetric, one should have τ = 1/2 and σ1 = σ2. Ta-
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ble 7 shows that this assumption is often rejected, confirming the outputs of
Tables 2 and 3.

From this study, based two large classes of distributions for the daily
returns, one can conclude that for general volatility models (i.e. GARCH,
stochastic volatility ...) of the form rt = σtηt with ηt iid, centered and in-
dependent of σt, an asymmetric distribution can be recommended for ηt.
Indeed, a symmetric distribution for ηt would entail a symmetric distribu-
tion for rt. The commonly used Gaussian, Student distributions, or GED
(Generalized Error Distribution), should thus be avoided for ηt.

Table 6: Generalized Pareto distributions fitted by QMMLE on 12.5% of the most
extreme daily stock market returns. The estimated standard deviation are displayed into
brackets. The estimate of the tail index is NA (not available) when the estimate of GPD
parameter γ is not positive.

Index τ̂ α̂1 = 1/γ̂1 σ̂1 α̂2 = 1/γ̂2 σ̂2
CAC 0.53 (0.02) 11.16 (13.65) 0.97 (0.13) 3.69 (1.13) 0.73 (0.1)
DAX 0.51 (0.02) 24.72 (51.39) 1.14 (0.12) 3.96 (1.34) 0.76 (0.08)
FTSE 0.52 (0.02) 4.72 (2.33) 0.72 (0.08) 5.5 (2.23) 0.68 (0.08)
Nikkei 0.54 (0.02) 4.57 (1.38) 0.83 (0.07) 6.29 (2.35) 0.91 (0.08)
NSE 0.54 (0.03) 6.68 (4.26) 1.21 (0.15) 5.65 (2.96) 1.1 (0.15)
SMI 0.52 (0.02) 22.09 (45.77) 0.98 (0.12) 3.8 (1.24) 0.66 (0.08)
SP500 0.5 (0.01) 3.81 (0.79) 0.57 (0.05) 5.11 (1.55) 0.59 (0.05)
SPTSX 0.56 (0.03) 5.21 (2.74) 0.93 (0.27) 7 (6.51) 0.87 (0.19)
SSE 0.52 (0.03) 184 (3301.67) 1.3 (0.13) 4.28 (2.22) 0.88 (0.12)

Table 7: p-value for the Wald test of H0 : τ = 0.5 and σ1 = σ2.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.008 0.007 0.163 0.011 0.395 0.016 0.916 0.01 0.049
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4.3 Fitting GEV to block maxima

Table 8 displays the estimated tail indices obtained by fitting a GEV on the
maxima of blocks of m consecutive returns. The main result of that table
is that the estimated tail indices are around 3, which is much higher than
what was obtained by fitting stable distributions. This is not very surprising
since, under the Pareto-tail assumption, α is only a tail parameter of the
asymptotic distribution of the maxima. Observe that when m increases, the
estimation of α decreases for all assets and tends to be closer to what was
obtained for the stable distribution (in particular for the SMI, 1.89 with the
GEV against 1.66 with the stable law). Note also that the estimated standard
deviation are large, but do not increase much when m increases (although
the number of observations [n/m] decreases). This is certainly due to the fact
that, roughly speaking, the dependence of the observations decreases when
the size m of the blocks increases.

Table 8: Estimated tail index α when GEV distributions are fitted by QMMLE on
maxima of m consecutive daily stock market returns.

Index m = 8 m = 16 m = 24 m = 32 m = 40 m = 48
CAC 5.75 (1.39) 4.11 (1.23) 3.63 (1.02) 3.54 (1.22) 3.22 (1.06) 3.26 (1.31)
DAX 5.69 (1.60) 4.60 (1.52) 3.97 (1.38) 3.75 (1.50) 3.68 (1.67) 3.23 (1.53)
FTSE 5.73 (1.12) 3.84 (0.89) 3.65 (0.94) 3.04 (0.94) 2.81 (0.79) 3.30 (1.05)
Nikkei 6.11 (1.26) 4.73 (1.08) 4.67 (1.15) 5.12 (1.44) 5.08 (1.64) 5.10 (1.77)
NSE 6.52 (1.53) 3.09 (0.77) 3.03 (0.85) 2.32 (0.60) 1.76 (0.19) 2.71 (0.16)
SMI 6.81 (1.48) 2.96 (0.71) 3.11 (0.71) 2.89 (0.84) 2.94 (0.78) 1.89 (0.65)
SP500 5.61 (1.19) 4.94 (1.15) 4.10 (1.10) 4.84 (1.45) 5.40 (1.82) 4.88 (1.87)
SPTSX 4.88 (1.94) 3.13 (1.28) 2.57 (1.11) 3.17 (1.45) 3.17 (0.42) 2.78 (1.18)
SSE 9.28 (3.32) 4.73 (1.66) 3.96 (1.44) 3.06 (1.32) 3.41 (1.68) 3.57 (3.07)

5 Conclusion

It is often of interest to have information about the marginal distribution of a
time series. A typical example is provided by financial series, for which recur-
rent debates concerning the shape of the distributions exist in the literature.
In particular, a large literature has been devoted to testing for the presence
of heavy tails, and the asymmetry of marginal distributions of stock returns.

24



However, tests developed in the iid framework are abusively applied, without
taking into account the dynamics. In this paper we proposed a method for
estimating a parametric specification of the marginal distribution, without
specifying the dynamics. We showed that the consistency holds under mild
conditions. The dynamic plays an important role, however, in the asymptotic
distribution of estimators.
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S̃5t+i (full blue line) to that of a stable
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Appendix

A Matrix J−1 for the GPD

The first-order derivatives of log fθ with respect to (γ, σ) are

∂ log fθ(z)

∂γ
=

1

γ2
log
(

1 + γ
z

σ

)

− (1 + γ)
z

γ(γz + σ)
,

∂ log fθ(z)

∂σ
=

z − σ

σ(γz + σ)
,

and the second-order derivatives are

∂2 log fθ(z)

∂γ2
=

−2

γ3
log
(

1 + γ
z

σ

)

+
2

γ2

z

γz + σ
+

(

1 +
1

γ

)

z2

(γz + σ)2
,

∂2 log fθ(z)

∂γ∂σ
=

−(z − σ)z

σ(γz + σ)2
,

∂2 log fθ(z)

∂σ2
=

(z − σ)2 − z2(1 + γ)

σ2(γz + σ)2
.

Now let

mk,j = E

{

Zk

(γZ + σ)j

}

, 0 ≤ k ≤ j +
1

γ
.

We have, by integration by part,

mk,j =
k

1 + γj
mk−1,j−1, 1 ≤ k ≤ j +

1

γ
.

By direct integration we have m0,j =
1

σj (1+jγ)
. It follows that

m1,1 =
1

1 + γ
, m1,2 =

1

σ(1 + γ)(1 + 2γ)
, m2,2 =

2

(1 + γ)(1 + 2γ)
.

We also have

E

{

log

(

1 + γ
Z

σ

)}

= γ.
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It follows that

E

{

−∂2 log fθ(z)

∂γ2

}

=
2

(1 + γ)(1 + 2γ)
,

E

{

−∂2 log fθ(z)

∂γ∂σ

}

=
1

σ(1 + γ)(1 + 2γ)
,

E

{

−∂2 log fθ(z)

∂σ2

}

=
1

σ2(1 + 2γ)
.

The matrix J−1, as given in Theorem 3.2, follows.

B Proof of Theorem 2.3

The proof is based on a series of lemmas. Similar proofs can be found in
the supplementary files of Francq, Roy and Zakoïan (2005) and Boubacar,
Carbon and Francq (2011). We begin by proving that Ĵ is a consistent
estimator of J . It will be convenient to introduce the notation Σ̂Ŝ = Ĵ ,

Σ̂S = n−1
∑n

t=1 StS
′
t and ΣS = J = EStS

′
t.

Lemma B.1. Under the assumptions of Theorem 2.1, Σ̂Ŝ → ΣS a.s. when

n → ∞.

Proof of Lemma B.1. A Taylor expansion yields

Σ̂Ŝ(i, j) = Σ̂S(i, j) + (θ̂n − θ0)
′ 1

n

n
∑

t=1

∂

∂θ

{

∂ log fθ(Xt)

∂θi

∂ log fθ(Xt)

∂θj

}

(θ∗)

(B.1)
for some θ∗ between θ̂n and θ0. The consistency of Ĵ then follows from
Assumption A4’, the consistency of θ̂n and the ergodic theorem. 2

We use the multiplicative matrix norm ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ̺1/2(A′A),

where A is a d1×d2 matrix, ‖x‖ is the Euclidean norm of the vector x ∈ R
d2 ,

and ̺(·) denotes the spectral radius. This choice of the norm is crucial for
the following lemma to hold (with e.g. the Euclidean norm, this result is not
valid). Let Sr,t =

(

S ′
t−1, . . . , S

′
t−r

)′
and

ΣS,Sr
= EStS

′
r,t, ΣSr

= ESr,tS
′
r,t.

In the sequel, K and ρ denote generic constant such as K > 0 and ρ ∈ (0, 1),
whose exact values are unimportant.
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Lemma B.2. Under the assumptions of Theorem 2.3,

sup
r≥1

max
{

∥

∥ΣS,Sr

∥

∥ ,
∥

∥ΣSr

∥

∥ ,
∥

∥

∥
Σ−1

Sr

∥

∥

∥

}

≤ ∞.

Proof. We readily have

‖ΣSr
x‖ ≤ ‖ΣSr+1

(x′, 0′q)
′‖ and ‖ΣS,Sr

x‖ ≤ ‖ΣSr+1
(0′q, x

′)′‖

for any x ∈ R
qr. Therefore

0 < ‖Var (St)‖ =
∥

∥ΣS1

∥

∥ ≤
∥

∥ΣS2

∥

∥ ≤ · · ·

and
∥

∥ΣS,Sr

∥

∥ ≤
∥

∥ΣSr+1

∥

∥ .

Let f(λ) be the spectral density of St. Because the autocovariance function
of St is absolutely summable, ‖f(λ)‖ is bounded by a finite constant K, say.
Denoting by δ = (δ′1, . . . , δ

′
r)

′ an eigenvector of ΣSr
associated with its largest

eigenvalue, such that ‖δ‖ = 1 and δi ∈ R
q for i = 1, . . . , r, we have

∥

∥ΣSr

∥

∥ = ̺1/2(Σ2
Sr
) = ̺(ΣSr

) = δ′ΣSr
δ

=

r
∑

j,k=1

δ′j

∫ π

−π

ei(k−j)λf(λ)d(λ)δk ≤ 2πK.

By similar arguments, the smallest eigenvalue of ΣSr
is greater than a positive

constant independent of r. Using the fact that ‖Σ−1
Sr
‖ is equal to the inverse

of the smallest eigenvalue of ΣSr
, the proof is completed. 2

Denote by St(i) the i-th element of St.

Lemma B.3. Under A5’, there exits a finite constant K1 such that for

m1, m2 = 1, . . . , q

sup
s∈Z

∞
∑

h=−∞

|Cov {S1(m1)S1+s(m2), S1+h(m1)S1+s+h(m2)}| < K1.

Proof. See for instance Corollary A.3 in Francq and Zakoïan (2010). 2

Let Σ̂Sr
, Σ̂S and Σ̂S,Sr

be the matrices obtained by replacing Ŝt by St in Σ̂Ŝr
,

Σ̂Ŝ and Σ̂Ŝ,Ŝr
.
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Lemma B.4. Under the assumptions of Theorem 2.3,
√
r‖Σ̂Sr

− ΣSr
‖,√

r‖Σ̂S − ΣS‖, and
√
r‖Σ̂S,Sr

− ΣS,Sr
‖ tend to zero in probability as n → ∞

when r = o(n1/3).

Proof. For 1 ≤ m1, m2 ≤ q and 1 ≤ r1, r2 ≤ r, the element of the
{(r1 − 1)q +m1}-th row and {(r2 − 1)q +m2}-th column of Σ̂Sr

is of the
form n−1

∑n
t=1 Zt where Zt = St−r1(m1)St−r2(m2). By stationarity of (Zt),

we have

Var

(

1

n

n
∑

t=1

Zt

)

=
1

n2

n−1
∑

h=−n+1

(n− |h|)Cov (Zt, Zt−h) ≤
K1

n
, (B.2)

where, by Lemma B.3, K1 is a constant independent of r1, r2, m1, m2 and
r, n. Note that the sup-norm satisfies

‖A‖2 ≤
∑

i,j

a2i,j (B.3)

with obvious notations.
In view of (B.3) and (B.2), using arguments of the proof of Lemma B.2,

we have

E
{

r‖Σ̂S − ΣS‖2
}

≤ E
{

r‖Σ̂S,Sr
− ΣS,Sr

‖2
}

≤ E
{

r‖Σ̂Sr
− ΣSr

‖2
}

≤ K1q
2r3

n
= o(1)

as n → ∞ when r = o(n1/3). The result follows. 2

We now show that the previous lemma applies when St is replaced by Ŝt.

Lemma B.5. Under the assumptions of Theorem 2.3,
√
r‖Σ̂Ŝr

− ΣSr
‖,

√
r‖Σ̂Ŝ − ΣS‖, and

√
r‖Σ̂Ŝ,Ŝr

− ΣS,Sr
‖ tend to zero in probability as n → ∞

when r = o(n1/3).

Proof. Similarly to (B.1), for 1 ≤ m1, m2 ≤ q and 1 ≤ r1, r2 ≤ r, the
element of the {(r1 − 1)q +m1}-th row and {(r2 − 1)q +m2}-th column of
Σ̂Ŝr

− Σ̂Sr
is of the form

(θ̂n − θ0)
′ 1

n

n
∑

t=1

∂

∂θ

{

∂ log fθ(Xt−r1)

∂θm1

∂ log fθ(Xt−r2)

∂θm2

}

(θ∗)

34



for some θ∗ between θ̂n and θ0. By Assumption A4’, the expectation of
the absolute value of the latter empirical mean is bounded by a constant K
independent of n, r1, r2, m1 and m2. Thus, using again (B.3),

‖Σ̂Ŝr
− Σ̂Sr

‖2 ≤ r2
∥

∥

∥
θ̂n − θ0

∥

∥

∥

2

OP (1).

Since
∥

∥

∥
θ̂n − θ0

∥

∥

∥
= OP

(

n−1/2
)

, we obtain for r = o(n1/3)

√
r‖Σ̂Ŝr

− Σ̂Sr
‖ = oP (1). (B.4)

By Lemma B.4 , (B.4) shows that
√
r‖Σ̂Ŝr

−ΣSr
‖ = oP (1). The other results

are obtained similarly. 2

Write A∗
r = (A1 · · ·Ar) where the Ai’s are defined by (2.6).

Lemma B.6. Under the assumptions of Theorem 2.3,

√
r ‖A∗

r − Ar‖ → 0,

as r → ∞.

Proof. Recall that by (2.6) and (2.8)

St = ArSr,t + ur,t = A∗
rSr,t +

∞
∑

i=r+1

AiSt−i + ut := A∗
rSr,t + u∗

r,t.

Hence, using the orthogonality conditions in (2.6) and (2.8)

A∗
r − Ar = −Σu∗

r ,Sr
Σ−1

Sr
(B.5)

where Σu∗

r ,Sr
= Eu∗

r,tS
′
r,t. By Assumption A4, there exists a constant K2

independent of s and m1, m2 such that

E |S1(m1)S1+s(m2)| ≤ K2.

By (B.3), we then have

∥

∥Cov
(

St−r−h, Sr,t

)∥

∥ ≤ K2r
1/2q.
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Thus,

‖Σu∗

r ,Sr
‖ = ‖

∞
∑

i=r+1

AiESt−iS
′
r,t‖ ≤

∞
∑

h=1

‖Ar+h‖
∥

∥Cov
(

St−r−h, Sr,t

)∥

∥

= O(1)r1/2
∞
∑

h=1

‖Ar+h‖. (B.6)

Note that the assumption ‖Ai‖ = o (i−2) entails r
∑∞

h=1 ‖Ar+h‖ = o(1) as
r → ∞. The lemma therefore follows from (B.5), (B.6) and Lemma B.2. 2

The following lemma is similar to Lemma 3 in Berk (1974).

Lemma B.7. Under the assumptions of Theorem 2.3,
√
r‖Σ̂−1

Ŝr

− Σ−1
Sr
‖ = oP (1)

as n → ∞ when r = o(n1/3) and r → ∞.

Proof. We have
∥

∥

∥
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Ŝr
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∥
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∥

∥

{

Σ̂−1

Ŝr
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Σ−1

Sr
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.

Iterating this inequality, we obtain
∥

∥

∥
Σ̂−1
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− Σ−1
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∥
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Thus, for every ε > 0,
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by Lemmas B.4 and B.2. This establishes Lemma B.7. 2

Lemma B.8. Under the assumptions of Theorem 2.3,

√
r
∥

∥

∥Âr − Ar

∥

∥

∥ = oP (1)

as r → ∞ and r = o(n1/3).

Proof. By the triangle inequality and Lemmas B.2 and B.7, we have
∥

∥

∥
Σ̂−1

Ŝr

∥

∥

∥
≤
∥

∥

∥
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Ŝr

− Σ−1
Sr

∥

∥

∥
+
∥

∥

∥
Σ−1

Sr

∥

∥

∥
= OP (1). (B.7)

Note that the orthogonality conditions in (2.8) entail that Ar = ΣS,Sr
Σ−1

Sr
.

By Lemmas B.2, B.4, B.7, and (B.7), we then have

√
r
∥

∥

∥
Âr − Ar
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∥

∥
=
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∥

∥
= oP (1).

2

Proof of Theorem 2.3. In view of (2.7), it suffices to show that Âr(1) →
A(1) and Σ̂ur → Σu in probability. Let the r × 1 vector 1r = (1, . . . , 1)′

and the rq × q matrix Er = Iq ⊗ 1r, where ⊗ denotes the matrix Kronecker
product and Id the d× d identity matrix. Using (B.3), and Lemmas B.6 and
B.8, we obtain
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∥
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Now note that
Σ̂ur = Σ̂Ŝ − ÂrΣ̂

′
Ŝ,Ŝr
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and, by (2.6)

Σu = Eutu
′
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′
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. (B.8)

In the right-hand side of this inequality, the first norm is oP (1) by Lemma
B.4. By Lemmas B.6 and B.8, we have ‖Âr − A∗

r‖ = op(r
−1/2) = op(1),

and by Lemma B.4, ‖Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

‖ = op(r
−1/2) = op(1). Therefore the

second norm in the right-hand side of (B.8) tends to zero in probability. The
third norm tends to zero in probability because ‖Âr − A∗

r‖ = op(1) and, by
Lemma B.2, ‖Σ′

S,Sr
‖ = O(1). The fourth norm tends to zero in probability

because, in view of Lemma B.4, ‖Σ̂′
Ŝ,Ŝr

− Σ′
S,Sr

‖ = op(1), and, in view of

(B.3), ‖A∗
r‖2 ≤ ∑∞

i=1 Tr(AiA
′
i) < ∞. Clearly, the last norm tends to zero,

which completes the proof. 2

C Complementary numerical illustrations

C.1 Fitting α-stable distributions for a different period

We now replicate the numerical illustrations of Section 4 on a sub-period
which does not include the recent crisis. More precisely, we consider the nine
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Table 9: Stable distributions fitted by QMMLE on daily stock market returns. The
estimated standard deviation are displayed into brackets.

Index α̂ β̂ σ̂ µ̂
CAC 1.70 (0.08) -0.16 (0.05) 0.80 (0.04) 0.07 (0.02)
DAX 1.62 (0.08) -0.16 (0.05) 0.78 (0.05) 0.09 (0.02)
FTSE 1.64 (0.08) -0.10 (0.04) 0.62 (0.03) 0.05 (0.01)
Nikkei 1.74 (0.06) -0.09 (0.06) 0.90 (0.03) 0.01 (0.02)
NSE 1.55 (0.08) -0.24 (0.07) 0.90 (0.05) 0.22 (0.04)
SMI 1.66 (0.07) -0.22 (0.05) 0.65 (0.03) 0.09 (0.02)
SP500 1.55 (0.10) -0.11 (0.05) 0.58 (0.04) 0.06 (0.01)
SPTSX 1.52 (0.12) -0.23 (0.06) 0.61 (0.04) 0.11 (0.02)
SSE 1.49 (0.06) -0.16 (0.06) 0.81 (0.03) 0.08 (0.04)

Table 10: p-values for the t-test of H0 : β = 0 against β 6= 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.002 0.001 0.023 0.095 0.001 0.000 0.021 0.000 0.321

stock returns during the period from January, 2 1991 to July, 3 2009 (except,
of course, for the series whose first observations are posterior to 1991). The
results of Tables 9-13 are similar to those displayed in Tables 1-3 and 6-7.

C.2 Infering the tail index from empirical moments

with increasing sample size

In order to further assess the previous assumptions on the marginal moments,
we draw the empirical moments Mr,n = n−1

∑n
t=1 |rt|r as function of n, for

r = 1 (Figure 7) and r = 2 (Figure 8). The ergodic theorem entails that, if the

Table 11: p-values for the t-test of H0 : µ = 0 against µ > 0.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.001 0.000 0.001 0.342 0.000 0.000 0.000 0.000 0.033
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Table 12: Generalized Pareto distributions fitted by QMMLE on 12.5% of the most
extreme daily stock market returns. The estimated standard deviation are displayed into
brackets. The estimate of the tail index is NA (not available) when the estimate of GPD
parameter γ is not positive.

Index τ̂ α̂1 = 1/γ̂1 σ̂1 α̂2 = 1/γ̂2 σ̂2
CAC 0.53 (0.02) 10.69 (13.26) 0.99 (0.14) 4.51 (1.87) 0.81 (0.11)
DAX 0.50 (0.02) 89.15 (672.28) 1.22 (0.13) 3.74 (1.32) 0.77 (0.08)
FTSE 0.51 (0.02) 9.18 (9.30) 0.87 (0.12) 6.70 (5.90) 0.78 (0.14)
Nikkei 0.53 (0.01) 4.95 (3.64) 0.86 (0.11) 7.48 (4.82) 0.94 (0.11)
NSE 0.54 (0.03) 11.36 (12.28) 1.39 (0.20) 5.60 (3.37) 1.19 (0.18)
SMI 0.51 (0.02) 24.17 (58.24) 1.01 (0.13) 3.79 (1.27) 0.68 (0.08)
SP500 0.52 (0.02) 4.57 (2.28) 0.78 (0.14) 5.34 (2.96) 0.81 (0.14)
SPTSX 0.57 (0.03) 5.79 (4.36) 1.03 (0.33) 12.25 (17.05) 1.04 (0.22)
SSE 0.49 (0.03) NA (NA) 1.38 (0.17) 3.72 (1.89) 0.88 (0.12)

Table 13: p-value for the Wald test of H0 : τ = 0.5 and σ1 = σ2.

CAC DAX FTSE Nikkei NSE SMI SP500 SPTSX SSE
0.065 0.004 0.227 0.005 0.334 0.024 0.343 0.016 0.049

40



tail indices are correctly estimated, M1,n should converge and M2,n should
diverge. The main output of these figures is that the empirical moments
Mr,n of the returns do not resemble those of iid sequences with the stable
distribution fitted on the returns by QMMLE. An obvious explanation for
that is that the returns rt are not independent. This is not the sole reason
because if the marginal distribution where the estimated stable distribution,
by the ergodic theorem Mr,n should however converge to the corresponding
moment, which does not seem to be the case. Indeed, the empirical moments
Mr,n computed on the real series rt are always smaller that those computed
on the simulations of stable distribution. We draw the conclusion that the
marginal distribution of the returns are not be well approximated by a stable
distribution. It is a much more difficult to infer if the sequence Mr,n converge
or not, and thus to assess if the estimated tail indices are plausible, by simple
inspection of the graphs. By the previous arguments based on generalized
CLT, the marginal distribution of rolling sums of m consecutive returns are
expected to be closer to a stable distribution, at least for m large enough.
Figures 9 and 10 confirm that the empirical moments are indeed closest to
those of the estimated stable distributions, but these average are still smaller
that expected. We thus have a serious doubt on the adequacy the class of
the stable distributions for modeling the marginal distribution of the returns
or even of aggregates of r returns, at least for moderate values of r.

Figures 11 and 12 indicate that the behavior of the empirical moments
Mr,n are in accordance with the assumption of a marginal GEV for the block
maxima, but the size m of the blocks must be large.
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Figure 7: Empirical moment M1,n = n−1
∑

t=1
|rt| (full line) as function of n, for the

returns rt of 4 stock market indices. The dotted lines are the 1% and 99% empirical
quantiles of 1000 trajectories of n−1

∑

t=1
|Xt| where Xt is an iid sequence of the stable

distribution fitted by QMMLE.
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Figure 8: As Figure 8, but for the empirical moment M2,n = n−1
∑

t=1
r2t (the 99%

upper bound is outside the frame).
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Figure 9: As Figure 7, but for rolling sums of 5 consecutive returns.
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Figure 10: As Figure 8, but for rolling sums of 5 consecutive returns.
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Figure 11: As Figure 7, but rt is replaced by the maximum max{rmt+1, . . . , rmt+m} of
m = 16 consecutive returns, and the dotted lines are the 1% and 99% confidence bounds
for n−1

∑

t=1
|Xt| when Xt is iid with GEV distribution.
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Figure 12: As Figure 11, but M1,n is replaced by M4,n.
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Table 14: Estimated tail index α of the stable MA(k) (4.1) by fitting GEV distributions
on block maxima of size m.

MA order k m = 8 m = 16 m = 24
1 3.35 (0.55) 2.33 (0.38) 2.00 (0.35)
2 5.03 (1.42) 3.16 (0.77) 2.57 (0.60)
3 2011.57 (44698.62) 4.09 (1.59) 3.15 (1.02)
4 15012.88 (121611.7) 5.12 (2.95) 3.81 (1.75)

MA order k m = 32 m = 40 m = 48
1 1.83 (0.36) 1.74 (0.37) 1.71 (0.40)
2 2.28 (0.56) 2.08 (0.52) 2.00 (0.59)
3 2.75 (0.92) 2.52 (1.25) 2.32 (0.85)
4 3.21 (1.25) 2.86 (1.02) 2.64 (0.98)

C.3 Retrieving the tail index from GEV fitted to block

maxima: a simulation study

To have an idea on how large should be the size m of the blocks, we made
a last experiment. We fitted GEV to block maxima of 1, 000 independent
realizations of length n = 4, 000 of the moving average Model (4.1) whose
marginal is the stable distribution of parameter α = 1.6, β = 0, σ = 1
and µ = 0. Table 14 gives the estimated value of the tail index α. The
main output is that the size m needs to be dramatically large. Even for
m = 48, the estimation of α is still largely positively biased. The numbers
between the brackets are the observed standard deviations of the estimates
over the 1, 000 replications. Surprisingly, these standard deviations do not
systematically increase with m (although the number of observation [1000/m]
decreases). This is in accordance with the estimated standard deviations
that we obtained in Table 8. This can be explained by the fact that the time
dependence decreases when m increases. The effect of the time dependence
is indeed clear, because the estimation results worsen when the order of the
dependence parameter k increases.
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