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Abstract

This paper addresses the issue of workers’ reaction to incentives, the optimality

of simple linear compensation contracts and the importance of asymmetries between

firms and workers. We study linear contracts between the French National Institute

of Statistics and Economics (Insee) and the interviewers it hires to conduct its surveys

in 2001, 2002 and 2003. To derive our results, we exploit an exogenous change in the

contract structure in 2003, the piece rate increasing from 20.2 to 22.9 euros. We argue

that such a change is crucial for a structural analysis. It allows us, in particular, to

identify and recover nonparametrically some information on the cost function of the

interviewers and on the distribution of their types. This information is then used

to select correctly our parametric restrictions. We find that interviewers react to

incentives, their productivity increasing by 5.6% when the piece rate increases by

13.4%. We also show that the loss of using such simple contracts instead of the

optimal ones is no more than 16%, which might explain why linear contracts are so

popular. Finally, we find moderate costs of asymmetric information in our data, the

loss being around 20% of what Insee could achieve under complete information.
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1 Introduction

Over the past three decades, extensive attention has been devoted to asymmetries of in-
formation and their consequences in economics. These asymmetries play, in particular, a
fundamental role in the economics of the firms (see Prendergast, 1999 for a survey). Firms
have to provide the right incentives to their workers, and design appropriate compensation
plans, even when restricting to simple contracts such as piece rate, commissions at quota
or lump-sum bonuses. Indeed, a growing empirical literature shows that overall, incentives
substantially increase workers’ productivity (see, e.g., Lazear, 2000 or Paarsch & Shearer,
2000), and that the form of the payment scheme matters (Ferrall & Shearer, 1999, Chung
et al., 2009 or Copeland & Monnet, 2009). Our paper adds to this empirical personnel lit-
erature by addressing the three following issues: how much do workers react to incentives?
Are simple linear compensation contracts nearly optimal? How important are asymmetries
between firms and workers?

To answer these questions, we use contract data between the French National Institute
of Economics and Statistics (Insee) and its interviewers. Insee is a public institute which
conducts each year between twelve and twenty household surveys on different topics such
as labor force, consumption or health. It hires interviewers to contact the households
and conduct the corresponding interviews. We have data on three successive surveys on
household living conditions (“enquête Permanente sur les Conditions de Vie des Ménages”,
PCV hereafter) which took place in October 2001, 2002 and 2003. For each survey and all
interviewers, we observe their average response rates, defined as the ratio of the number of
respondents to the number of households each interviewer has to interview. These response
rates depend on two factors. First, they vary with the effort the interviewers make to
contact the households and to persuade them to accept the interview. Response rates also
differ from one interviewer to another because of their heterogeneity, which is the reason
why Insee faces an asymmetric information problem. This asymmetry of information is due
to differences between interviewers themselves and to differences between the geographical
areas in which they are working. In response to this asymmetric information problem, and
to give incentives to its interviewers, Insee uses a simple compensation scheme. Interviewers
receive a basic wage (around 4.7 euros in the three surveys), which does not depend on
whether the interview is achieved or not, plus a bonus for each interview they conduct.
The key point of the paper is to exploit the fact that the bonus changed in 2003, increasing
from 20.2 euros in 2001 and 2002 to 22.9 euros in 2003, and that this change was exogenous
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for the interviewers. As detailed in the paper, we have reasons to believe that the bonus
increase in 2003 stems only from a change in Insee’s objective function. In 2003, the focus
of the survey was put on education practices in the family, a topical issue at that time
and for which Insee needed to get more precise results than in 2001 and 2002. In that
respect, the change in the bonus is not related to the interviewers and can be considered
as an instrument that affects the contract without being directly related to the cost of
interviewers’ effort or their heterogeneity. Following this contract change, the productivity
of the interviewers increased by 5.6%, the response rates going from 78.7% in 2001 and
2002 to 83.1% in 2003. As the change is exogenous, only selection and incentive effects
may explain this finding. More efficient interviewers may be attracted by higher wages (the
selection effect), while, at the same time, the bonus increase may push up interviewers’
effort and productivity (the incentive effect). Thanks to the panel structure of our data,
we are able to disentangle both effects by comparing interviewers hired in all three surveys
(the “stayers”) with the “movers” hired only in one of them. Contrary to Lazear (2000)
who estimates the selection effect to explain half of the productivity increase, we do not
find any selection effect in our data. The observed change in the response rate is, in our
application, entirely due to incentive effects. The productivity increasing by 5.6% when
the bonus increases by 13.4%, we thus estimate an elasticity to piece rates around 0.4.
These results are in line with the previous literature. To increase their productivity, firms
provide incentives to their workers through compensation contracts, the main instruments
being piece rates and bonuses. Both types of contracts appear to work well in practice.
Facing such incentives, workers produce higher efforts and increase their productivity.
Lazear (2000), for instance, estimates that the productivity increases by more than 20%

for workers in the car glass industry when introducing a simple piece rate scheme. Similarly,
in a dynamic framework, Copeland & Monnet (2009) find a 12% productivity gain in the
check-clearing industry when changing the payment scheme.1

To address the two remaining questions, namely the efficiency of simple linear compensation
contracts and the importance of asymmetries between firms and workers, we rely on a
structural approach. The main difference with the previous personnel literature is that we
study, in the first place, the nonparametric identification of our model. We do so in a spirit
close to what has been done in the structural auction literature, building on the work of
Guerre et al. (2000). We are able to partially identify the cost function and the distribution

1See also Paarsch & Shearer (2000), Shearer (2004) and recent results in the marketing literature from,
e.g., Steenburgh (2008), Misra & Nair (2008) or Chung et al. (2009).
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of the interviewers’ types. More precisely, we develop a new induction technique that allows
us to point identify both functions of interest on a sequence of points. Elsewhere, we derive
sharp bounds on these functions, using a monotonicity argument.2 An important feature of
our identification procedure is that the information on the functions of interest are recovered
using the interviewers’ program solely. This is convenient because we have reasons to
believe that Insee does not implement the optimal contracts but only optimizes over linear
ones. Beyond identification, we also develop a nonparametric estimation procedure using
our recursive identification method. We thus recover nonparametrically some points on
the cost function and the distribution of interviewers’ type. In a second step, we introduce
parametric specifications in line with the nonparametric estimates for the interviewers
and a parametric specification for the objective function of Insee. As the model is not
point identified nonparametrically, such restrictions are necessary to estimate the effects
we are interested in. However, contrary to most papers in the personnel literature which
adopt directly a parametric framework, our specifications are driven by the nonparametric
analysis. This issue is important to investigate the interviewers’ behavior, the optimality
of contracts or to do policy exercises, because the results are sensitive to the parametric
choices.

It is also worth noting that this identification method has a broader set of applications. As
explained by D’Haultfœuille & Février (2010), it applies to many adverse selection models.
The empirical literature on such models has grown rapidly in recent years. Examples in-
clude auction models (see e.g. Paarsch, 1992 and Guerre et al., 2000), regulatory contracts
(see, among others, Wolak, 1994, Gagnepain & Ivaldi, 2002, Perrigne, 2002, Perrigne &
Vuong, 2004 and Lavergne & Thomas, 2005) or nonlinear pricing / price discrimination
models (see Ivaldi & Martimort, 1994, Miravete, 2002, Leslie, 2004, Miravete & Roller,
2005, Crawford & Shum, 2007, Huang et al., 2007 and Miravete, 2007). All these models
share a common underlying structure for which our procedure is well adapted and can be
useful to study their nonparametric identification and estimation.

Studying Insee and its interviewers, our method allows us, first, to conclude that the loss
of using a simple contract instead of an optimal one is rather small, around 16%. Even
if the theoretical literature concludes that optimal contracts are in general nonlinear (see
Laffont & Martimort, 2002, for a survey),3 simple compensation schemes such as piece rates
and bonuses are usually thought of as the best compromise between efficiency and ease of

2In a related paper, D’Haultfœuille & Février (2010) study the identification of adverse selection models
under more general exogenous changes.

3An exception is the result of Holmstrom & Milgrom (1987).
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implementation (Raju & Srinivasan, 1996). Our result supports this claim and may explain
why simple contracts are so popular and widely used by firms. This idea is also in line
with the theoretical findings of Wilson (1993, Section 6.4), Rogerson (2003), and Chu &
Sappington (2007), who show that simple tariffs can secure more than 70% of the maximal
surplus. Firms can adopt simple compensation systems and still give the right incentives
to workers. Little empirical work has however tried to estimate the loss associated with
the use of simple compensation scheme and the empirical personnel literature mentioned
previously usually abstracts from these issues. An exception is a recent empirical paper by
Miravete (2007) which reports a loss of only 3%. Ferrall & Shearer (1999), on the other
hand, concludes that simple nonlinear compensation plans lead to substantial inefficiencies.

Then, our method allows us to recover what Insee’s surplus would have been under com-
plete information. Independently of the issue of contracts’ optimality, asymmetries create
inefficiencies because of the informational rent captured by the agents. Measuring this
rent is therefore important for the firm. This question is central in the insurance literature
(see Chiappori & Salanié, 2002, for a survey), or in the auction literature (see Perrigne
& Vuong, 1999, for a survey). On the contrary, few empirical works have focused on
quantifying the magnitude of such asymmetries between firms and workers in the person-
nel literature. We find moderate cost of asymmetric information, the estimated expected
surplus under incomplete information being 79% of the full information surplus. This loss
(21%) is in particular smaller than the one reported by Ferrall & Shearer (1999) who found
an efficiency loss of 33%. Overall, in our data, the surplus under asymmetric information
and with a simple linear compensation plan is 66% of what it could be under complete
information. The main part of this loss (62%) is due to incomplete information whereas
the last 38% are associated with the simple payment scheme.

As already mentioned, our method also allows us to select a parametric specification in
line with our nonparametric results. To test the importance of the information recovered
in the nonparametric step, we consider several parametric families for the cost function of
the interviewers and for the distribution of their types. Depending on the specification,
the expected surplus under incomplete information varies between 65% and 83% of the
full information surplus, whereas the loss of using a simple linear compensation plan lies
between 1% and 16%. The results are thus quite sensitive to the parametric choices. It
highlights the importance of having an exogenous change to recover nonparametrically
some information in a first step and to select appropriate parametric restrictions based on
this information in a second one.
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The paper is organized as follows. Section 2 presents institutional details and the data at
our disposal. Section 3 develops the theoretical model of the interviewer and Insee. Section
4 focuses on the identification and estimation of the model. The results are displayed in
Section 5, and Section 6 concludes. All proofs are deferred to the appendix.

2 Institutional details and data description

2.1 Institutional details

The French National Institute of Economics and Statistics (Insee) conducts each year
between twelve and twenty household surveys on different topics such as labor force, con-
sumption or health. To do so, Insee draws, approximately every ten years, a large sample
of housings4 from the exhaustive census database.5 This sample consists of geographical
areas called primary units. All survey samples are then drawn from these primary units.
Given the sampling structure, Insee hires interviewers for a long period taking into ac-
count, among other things, the distance between the primary units and the interviewer’s
own address. Hence, even if the precise set of interviewers may vary from one survey to
another, Insee usually relies on the same pool of interviewers for all its surveys.

There are at least three reasons for this policy. First, Insee avoids sunk costs stemming
from the recruitment of new interviewers. This sunk cost includes the recruitment pro-
cedure itself, as well as a three-days training period received by interviewers before they
conduct their first survey. Second, experience matters for this job. It is well documented
that interviewers may influence households and bias their responses (see, e.g, Mensh &
Kandel, 1988 or O’Muircheartaigh & Campanelli, 1998). It seems, however, that experi-
enced interviewers are less prone to this so-called interviewer’s effet (see, e.g., Cleary et al.,
1981, Singer et al., 1983 or Campanelli et al., 1991). Finally, most surveys are repeated
over time. As interviewers receive a specific training corresponding to each survey, relying
on the same pool of interviewers from one edition to another also allows Insee to avoid the
duplication of these training costs. Table 1 shows that, as a result of this organization,
the average experience of interviewers is 6.8 years at the beginning of 2001. Moreover, out

4As in many countries, Insee draws samples of housings rather than of households as it only has an
exhaustive database of housings at its disposal.

5The introduction of an annual census in 2004 has modified the way this large sample is constituted.
Apart from that, the rest of our description still applies today.
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of the 12 surveys conducted by Insee in 2001 and for which we have informations about
interviewers, a typical interviewer conducts more than 5 surveys a year in his designated
area.

Table 1 also displays some socio-demographic characteristics for interviewers hired by Insee
in 2001 in these 12 surveys. The typical interviewer is a middle-aged woman who is out of
the labour market. Conversations with them reveal that their job at Insee is usually not the
main source of income for the household. It is a flexible job that allows them to complement
the revenue of the family. Even if there is a large variability among interviewers, the annual
income of 4095 euros earned on average by the interviewers corresponds to the minimum
wage for a third time job.

Variable Average Std dev Min Max

Experience at Insee (in years) 6.8 8.2 0 42
Number of surveys done in 2001 5.2 3.6 1 12
Income in 2001 euros 4,095 3,262 71 21,119
Woman 80.5% 0.40 0 1
Married 54.8% 0.50 0 1
Other professional activity (Yes=0, No=1) 64.3% 0.48 0 1
Age 43.1 11.7 18 77

Source : Insee

Table 1: Descriptive statistics on Insee interviewers in 2001.

Interviewers’ work is similar for almost all surveys. First, Insee gives them a list of sampled
households to interview in their designated area, as well as some characteristics of the
housings and households, as described in the census database. Interviewers then have to
locate precisely the housings of their sample (in order, for instance, to identify unoccupied
or destroyed housings). After that, they try to contact the households. This stage is the
main part of their job and usually takes several days. Usually, interviewers have to go to
the housings several times and leave phone messages before coming in contact with the
household. Finally, once contacted, interviewers have to convince the households to accept
the survey. In theory, it is mandatory to answer Insee questionnaires. In practice, more
than 90% of households indeed participate. In a typical household survey, it takes around
one hour to go through all the questions. In compensation, interviewers are paid in a
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similar way for all household surveys. They receive a basic wage for each household they
have to interview, plus a bonus for each interview they achieve. They are also reimbursed
for all their expenses, such as the travel costs or the meals they have to take during their
work.

2.2 Data

We have data on three successive surveys on household living conditions (“enquête Perma-
nente sur les Conditions de Vie des Ménages”, PCV hereafter) which took place in October
2001, 2002 and 2003. Each survey comprises a fixed part, which is identical for each edition
(representing more than half of the questions), and a complementary part, which changes
every year. In 2001, 2002, and 2003, the focus of the survey was put respectively on the
use of new technologies, participation in associations and education practices in the family.

For each survey, our dataset consists of the list of all housings in the survey sample (ex-
cluding secondary, unoccupied and destroyed housings). For each housing, we have its
characteristics in the 1999 census (namely, the number of rooms, the household size and
the age of the reference person), the identification number of the interviewer in charge of
interviewing the corresponding household and a dummy indicating whether the interview
was conducted or not. Table 2 summarizes the main information about the three surveys,
on the whole sample of households. There were between 379 and 478 interviewers in each
survey. On average, each interviewer was assigned around 16 households in 2001 and 2002,
and 28 in 2003.

The 2001 and 2002 surveys display very similar patterns. In particular, their average
response rates, defined as the ratio of the number of respondents to the number of hous-
ings, are not significantly different at the 5% level (78.5 and 77.7% respectively). Their
distribution functions are also very close (see Figure 1), with a p-value of the two-sided
Kolmogorov-Smirnov test equal to 0.87. On the other hand, the average response rate
is significantly higher in 2003 (80.7%), and the distribution function of the 2003 survey
stochastically dominates the one of 2001-20026 (see Figure 1), with a p-value of the one-
sided Kolmogorov-Smirnov test equal to 0.003. We also note that the distribution functions
displayed in Figure 1 exhibit several jumps, especially at 0.5, 0.67 and 1. These jumps
are due to the fact that the response rates are ratios of two integers, and the number of

6The average response rate on 2001-2002 is defined as the ratio between the total number of interviews
and the total number of households, where the 2001 and 2002 data are pooled.
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households to inverview is rather small.7

Year Number of Number of Average
interviewers households response rate

2001 379 17.3 78.5%
2002 478 15.4 77.7%
2003 453 28.0 80.7%

Table 2: Descriptive statistics on the full sample.
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Figure 1: Distribution functions of the response rates on all interviewers, for
all households.

There are two main differences between the 2003 and the other two surveys. The first one
is related to its sampling design, and the second to its payment scheme. As previously
mentioned, the PCV surveys are drawn from primary units. This was the case for the
three surveys we consider. However, the sample was approximately twice larger in 2003
than in 2001 and 2002. Besides, because the 2003 survey focused on families, housings
in which a family lived at the time of the census were overrepresented in 2003. As a
result of this overrepresentation, housings in which a family lived at the time of the census
represent 54.5% of the housings in 2003, as opposed to 44.4% and 48.3% in 2001 and 2002.

7Because of this small numbers of households, it is logical, from a pure statistical point of view, to
observe more jumps at 0.5 or 0.67 as more integers can be divided by 2 or 3.
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Because families are on average easier to contact than, for instance, single persons, this
difference may partly explain why response rates were higher in 2003. To control for this
sampling effect and make comparisons possible for the three surveys, we restrict hereafter
our attention to such housings occupied by families. These were the only differences in the
survey designs of the three surveys. In particular, the corresponding subsample of families
were drawn similarly.

Table 3 shows that, as expected, the average response rates for families are higher than in
the population in general (respectively 79.0%, 79.8% and 83.1% versus 78.5%, 77.7% and
80.7%). Comparing the statistics of the three surveys, we find, however, the same patterns
as the one found in Table 2. There is no significant difference between the 2001 and 2002
surveys (79.0% and 79.8% respectively) whereas interviewers achieve significantly higher
response rates in 2003 (83.1%).

Number of Number of Average Payment per household Average income

Year interviewers families response rate Basic Bonus Basic Bonus Total

2001 377 8.35 79.0% 4.7 20.3 39.3 135.0 174.3

2002 471 6.85 79.8% 4.7 20.2 32.2 111.9 144.1

2003 453 15.24 83.1% 4.6 22.9 70.1 289.7 359.8

Table 3: Descriptive statistics on the subsample of families.

There is also a second difference in the three surveys, namely their payment schemes.
Whereas the basic wage is nearly constant the three years, at a low level (4.7 euros in
2001, 4.6 euros in 2002 and 2003),8 the bonus for achieving an interview with a family
was 22.9 euros in 2003, compared to 20.3 and 20.2 euros in 2001 and 2002. To summarize,
interviewers were paid respectively 25, 24.8 and 27.5 euros for each successful interview and
4.7, 4.6 and 4.6 euros for an unsuccessful one. As interviewers achieved higher response
rates in the 2003 survey for which the bonus was higher, incentive effects may be at stake.
However, the 2003 increase may also stem from other changes in the survey or from the
interviewers themselves. We now explain the reasons underlying this change and why we
believe it to be exogenous.

8All figures are in 2002 euros.

10



2.3 An exogenous change

Insee is a public institute whose surveys are analyzed by researchers and used in policy
debates. Surveys may thus differ in the “social value” of the information that can be
recovered from it. In our case, we believe that the change in 2003 stems from a modification
of these values. In 2001 and 2002, the focus of the survey was put respectively on the use
of new technologies and participation in associations, while in 2003, the survey studied
education practices in the family. The 2003 survey on education may have been considered
by Insee more important than the other ones, as there was much debate at that time in
France on the relationship between families, education and the emergence of inequalities
(see for instance the report of the Haut Conseil de l’Education in 2007 on this topic). More
formally, more publications from Insee and other institutions were based on this survey
and the questionnaire was slightly longer in 2003. Given these elements, it is possible that
the social value of an interview was higher in 2003, which may explain why Insee decided
to increase the bonus and to double the size of the sample. Insee needed the number of
respondents to be high in order to get more precise results on this important topic.

Related to this, Insee might have modified its bonus because of the change in the sample
size. This would be the case for instance if it were harder to achieve a given response rate
for larger sample sizes. To investigate this issue, we regress the response rate zij for an
interviewer i in the survey j on the number of households nij assigned to interviewer i,
controlling for interviewer and survey fixed effects:

zij = βnij + ui + vj + εij. (2.1)

Within estimates are presented in Table 4. We find that the coefficient β is not significantly
different from 0 at a 5% level, which indicates that there is no effect of the sample size
on interviewers’ response rate. The coefficient is actually negative, indicating that there
might be some economies of scale in interviewers’ work. According to our estimates, these
economies of scale seem nevertheless to be very small. This is not surprising as housings,
even at the interviewer level, can be quite far away from each other in these surveys.
Consequently, the change in the sample size can not explain the higher response rate
observed in 2003. It only affects the accuracy of the estimates obtained from this survey.
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Coefficients Estimate

Constant 0.80∗∗ (0.013)

Subsample size -0.0022 (0.0013)

Year 2002 0.11 (0.11)

Year 2003 0.61∗∗ (0.15)

Significativity levels: ∗∗1%,∗ 5%.

Table 4: Effect of the subsample size on response rates.

One might also suspect that good interviewers receive more households to survey, in order
for the Insee to increase the total number of respondents. In this case, the number of
households interviewers receive would be correlated with their fixed effect, so that

nij = γui + v′j + ηij,

where v′j is a survey fixed effect different from vj. Fixing β to zero in (2.1) as it is not
significant, and replacing ui by its expression, we obtain

nij = γzij + wj + (ηij − γεij),

where wj = v′j − γvj. zij is endogenous in this equation because of its correlation with
εij, but we can instrument it by zij−1. The results in Table 5 indicate that there is no
relationship between the subsample size and productivity of the interviewers. This result
is reassuring. Indeed, as explained previously, the sample is drawn at the national level and
each interviewer receives the sample that corresponds to his geographic area. Our result
suggests that Insee is limited by these geographical constraints and cannot allocate freely
the households to its interviewers. It is defined exogenously by the draw of the sample and
the location of the corresponding households.9

9This point is not directly related to the exogeneity of the contract change in 2003, but still will be
important for identification (see our Assumption 2 below).
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Coefficients Estimate

Constant 2.95 (2.51)

Subsample size 5.76 (3.07)

Year 2003 7.76∗∗ (0.49)

Significativity levels: ∗∗1%,∗ 5%.

Table 5: Relationship between the subsample size and interviewers’ fixed
effects.

The bonus could also have changed because the sample was different in 2003. For example,
Insee may have increased its bonus if households were known ex ante to be harder to
contact. However, as explained previously, the three subsamples of families we consider
are drawn in the same way. Hence, it cannot explain any change in the payment scheme.

The observed change may also be related to the interviewers themselves. First, any global
shock on the interviewers market may explain the observed increase. This could have been
the case, for instance, if, because of a decrease of unemployment, the outside options of
interviewers had increased substantially in 2003. Nevertheless, if such effects were at play,
the bonus of other 2003 surveys would also have been affected in a similar way. As we
do not observe any increase in the bonus of other 2003 surveys, such an explanation is
implausible.10

As previously explained, the time spent to try to contact the households either by phone
or by coming to their house represents the main part of interviewer’s cost. Any change in
this cost might explain the bonus increase. However, the surveys were drawn in the same
way, conducted during the same period and had identical rules for the fieldwork. There is
thus no obvious reason why this cost should have changed from one year to another. The
only explanation would be that the acceptance rates has changed because of the topic of
the survey. However, the acceptance rates are rather constant over time, around 95% in
the PCV surveys (Le Lan, 2008). These rates are very high as these surveys are mandatory
and done by a public institute. Moreover, they do not vary much over time because the
willingness to participate in a survey is mainly related to the time households have at their
disposal (Le Lan, 2008). Hence, the topic of the survey does not seem to play a crucial role

10For instance, the compensation schemes of the two regular surveys (namely the labor force survey and
the survey on rents and service charges) which took place at the same time were not modified.
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in the participation decision. This is reinforced by the fact that the questionnaires of PCV
surveys contains a fixed part, always identical for all October editions, which represents
more than half of the questions.

Finally, an indirect test of the assumption than nothing changes for the interviewers from
one survey to another is to compare the outcome in 2001 and 2002. The payment rules
were similar, as well as the way the surveys were drawn and conducted. The fact that the
response rates were very similar (see Figure 1) should thus be seen as an evidence that, for
a given payment rule, nothing modifies the response rates and the interviewers behavior
from one year to another.

For all these reasons, we believe that the 2003 change is exogenous in the sense that it
came exclusively from a change in the objective function of Insee, independently of the
interviewers.11 This does not mean, however, that incentive effects entirely explain the
pattern observed in Figure 1. The 2003 compensation scheme may indeed have attracted
more efficient interviewers, inducing a so-called selection effect. To separate both effects, we
compare the interviewers that participated in all three surveys (the “stayers” subsequently)
with those who participate in only one survey (the “movers”). Table 6 displays the average
response rates for both movers and stayers. Actually, in 2003, stayers obtained an average
response rate slightly above the one of the movers (83.8% versus 83.1%), a result which
is not compatible with an interviewer selection effect. We were indeed expecting new
interviewers to be more productive. Actually, stayers perform slightly better in all surveys
(79.6% versus 78.5% in 2001, 80.4% versus 79.6% in 2002), probably reflecting positive
returns to experience in this job, although differences in average response rates between
stayers and movers are not significant at 5%. As a result, the previous conclusion still
applies when restricting ourselves to stayers. As depicted in Figure 2 and formally tested by
Kolmogorov-Smirnov tests, the distribution functions on stayers do not differ significantly
at 5% in 2001 and 2002, while the 2003 one still stochastically dominates the one of
2001-2002. Hence, contrary to Lazear (2000) who estimates the selection effect to explain
half of the productivity increase in his application, we find that the observed change in
the response rate is entirely due to incentive effects. This difference may stem from the
pattern in workers’ turnover. Whereas new workers were hired by the car glass company in
Lazear’s application, Insee always relies on the same pool of interviewers. Thus, selection

11This conclusion is consistent with our own experience. We both worked at Insee in the household
survey methodology unit between 2000 and 2003. We are not aware of any particular change related to
the interviewers at this time.
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effects could only occur through a reallocation of interviewers among this pool. Our result
suggests that such reallocations are not related to interviewers’ productivity.12

Year Number of Number of Average response rate T-test of
Interviewers movers Stayers Movers the difference

2001 377 137 79.6% 78.5% 0.41
2002 471 101 80.4% 76.6% 0.51
2003 453 79 83.8% 80.4% 0.72

Table 6: Comparison between stayers and movers.
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Figure 2: Distribution functions of the response rates on stayers.

2.4 Incentive effects

To sum up, our results strongly suggest that the change in the response rate observed in
2003 comes from the reactions of interviewers to the bonus increase, and from no other
reason. It can thus be considered a pure incentive effect. We find that, when increasing the
bonus by 13.4% (from 20.2 to 22.9 euros), the response rates increase by 5.6%, going from
78.7% in 2001-2002 to 83.1% in 2003. This effect is similar when restricting ourselves to
the stayers, with an increase of 5.1%, from 79.8% to 83.8%. Interviewers have thus reacted

12It is nevertheless important to note that, as explained in D’Haultfœuille & Février (2010), the method
developed in Section 4 still applies in the presence of selection effects.
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to the change in the payment scheme, with an elasticity to the bonus around 0.4.

These results contribute to the personnel literature, which has repeatedly put forwards the
positive effects of incentives. Using variations in piece rates given to tree planters in British
Columbia, Paarsch & Shearer (1999) actually report larger elasticities, ranging from 0.77
to 2.14. Rather than computing such elasticities, other papers focus on the comparison
between piece rates and fixed wages. Using respectively a structural approach and a field
experiment, Paarsch & Shearer (2000) and Shearer (2004) show that the productivity of
tree planters is around 20% higher with piece rate than with fixed wages. This result is of
similar magnitude as those of Lazear (2000) and Copeland & Monnet (2009) on workers
in car glass and check-clearing industries, respectively. More generally, in the marketing
literature, Steenburgh (2008), Misra & Nair (2008) and Chung et al. (2009) highlight the
idea that both the shape and the timing of the compensation schemes matter for firms.
Chung et al. (2009), for instance, show that annual bonuses should be combined with
quarterly bonuses to increase their impact on productivity.

Figure 3 also displays the density and cumulative distribution function of the difference
between response rates in 2001-2002 and in 2003 for stayers. Most of the stayers (57.6%)
achieve a better response rate in 2003. However, consistently with the literature, we observe
an important heterogeneity in workers’ reactions. While the first decile of interviewers
encounters a decrease of more than 15%, the last one displays an increase of more than
23%.

−0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Figure 3: Density and cumulative distribution function of the difference in
2001-2002 and 2003 response rates on stayers
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3 The Model

To analyze further the interviewers’ behavior and the issue of contracts optimality, we need
to rely on a structural approach. We first model interviewers’ decision and then turn to
Insee’s program.

3.1 The interviewers’ program

At an individual level, households are heterogenous and may be easy or difficult to contact,
depending on their characteristics. It is, for instance, difficult to contact a single person
in a urban area. Indeed, single persons living in urban areas spend relatively little time
at home, and digital locks for instance make a direct contact more difficult to establish.
Interviewers do not face such barriers in the countryside, and families are on average more
at home. Once we restrict our attention to an interviewer’s area and to the housings in
which a family was living in 1999, however, households appear to be almost homogenous
ex ante. To support this claim, we regress the response rates zij of interviewer i in survey
j on the mean of the 1999 census characteristics Xij of his sample. More precisely, we
regress the response rates on the mean size of the household, the mean number of rooms
of the housing and the mean age of the reference person in the samples, controlling for
interviewers and years fixed effects:

zij = Xijβ + ui + vj + εij.

Table 7, Column I (resp. Column II), presents the results on the whole sample (resp. on
families). In both cases, the 2003 fixed effect is significantly positive whereas the 2002
fixed effect is not significantly different from zero. As previously noticed, higher response
rates correspond to higher bonuses. Column I also shows that the response rates increase
with the size of the households. This reflects the idea that families are easier to contact.
However, when restricting ourselves to families, none of the census variables are significantly
different from zero anymore. As each interviewer works in a small and specific geographic
area, this result does not really come as a surprise. In each restricted area, housings in
which a family was living are, ex ante, quite similar and homogenous for the interviewers.
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Coefficients Column I Column II

Constant 0.71∗∗ (0.046) 0.67∗∗ (0.077)

Household size 0.027∗ (0.013) 0.018 (0.017)

Number of rooms 0.003 (0.012) 0.011 (0.012)

Age of the reference person -0.0002 (0.0002) 0.0000 (0.0001)
Year 2002 -0.008 (0.007) 0.012 (0.011)

Year 2003 0.018∗ (0.008) 0.044∗∗ (0.012)

Table 7: Fixed effect linear regression of response rates on average housing
characteristics at the 1999 census.

To sum up, a given interviewer exogenously receives a sample of homogenous families that
he has to survey. We have also seen (see Table 4 above) that the size of the subsample does
not play any role in his decision. These results support the idea that he decides which effort
to exert household by household. Because families are homogenous in terms of contact ease,
he treats them similarly and takes the same decision for all of them. Heterogeneity in the
response rates achieved by different interviewers only arises because of intrinsic differences
between them or their designated area.

An interviewer has thus to decide, for each household, with which probability y he wants to
survey each of his household and has to produce his effort accordingly. The probability y
thus corresponds to the response rate an interviewer wants to achieve on his sample.13 The
expectation of the cost for interviewer i to obtain a probability y in survey j is denoted by
Cij(y). It represents the expected cost to contact an household and convince him to accept
the interview with probability y. As mentioned in Subsection 2.3, there is no obvious reason
why this cost should have changed from one year to another, once we restrict ourselves
to families. The interviewers population was very similar in the three surveys, as well
as the sampling procedure. The surveys were drawn in the same way, conducted during
the same period and had identical rules for the fieldwork. The change in the bonus was
exogenous and not related with any change on the interviewers’ side. We thus suppose that
the cost Cij does not depend on j. We summarize the heterogeneity of the interviewers
and their associated area by a parameter θi ∈ R+ and denote by Fθ(.) its cumulative
distribution function. We finally assume that the cost is separable. Basically, this cost

13As detailed below, the probability chosen by the interviewer differs however from the observed response
rate zij .
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separability assumption is a restriction that reduces the dimensionality of the problem and
is necessary to identify the model (see D’Haultfœuille & Février, 2010, for a discussion on
this assumption). Such an assumption is quite common in the theoretical literature (see
e. g. Wilson, 1993, or Laffont & Tirole, 1993) as well as in empirical works (see Wolak,
1994, Ferrall & Shearer, 1999 or Lavergne & Thomas, 2005). Under our assumptions, the
cost function satisfies:

Cij(y) = Ci(y) = θiC(y).

The heterogeneity θi is known by the interviewers. Indeed, they work for Insee in the
same area and usually for a very long time (the average experience was around 6.8 years in
2001). Thus, it seems reasonable to assume that they anticipate correctly the difficulties
they will face.

Insee compensates this cost and gives incentives to the interviewer through the following
scheme. We denote by δj and wj the bonus and basic wage for survey j. The interviewer
thus receives wj + δj from Insee when the interview is achieved and wj otherwise. Hence, if
he implements a probability y of conducting the survey for each household in his sample,
the interviewer obtains on average a total wage of δjy + wj. We suppose hereafter that
interviewers are risk-neutral and have a quasi-linear utility function. In this case, they
solve

max
y

δjy − θiC(y). (3.1)

We also impose the following mild regularity condition.

Assumption 1 C(.) is twice continuously differentiable, C(0) = C ′(0) = 0 and C ′′(y) > 0

for all y ∈ (0, 1). Fθ(.) is continuously differentiable with density fθ(.) and support R+.

Under this assumption, Program (3.1) admits for all θ a unique solution yj(θ) which satisfies
the first order condition δj = θC ′(yj(θ)). Moreover, differentiating this condition shows
that θ 7→ yj(θ) is strictly decreasing.

Finally, it is important to remember that we do not observe directly the probability yij ≡
yj(θi) chosen by interviewer i for survey j but only the number of respondents rij among the
nij households that he has to interview. In general, the observed response rate zij = rij/nij

is different from yij. In particular, the fact that nij is finite and small explains why we
observe jumps in the distribution functions of zij (see Figures 1 and 2), whereas the one of
yij is continuous under Assumption 1. To model the theoretical link between yij, rij and
nij, we first impose Assumption 2.
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Assumption 2 nij is independent of θi ant its support is the set of natural integers.

Independence between nij and θi was established above, as we show that the interviewer’
fixed effect (which corresponds to θi here) is unrelated with the number of household he
receives. Besides, because the interviewer contacts each of his households with probability
yij, the number of respondents rij satisfies, provided that each household reacts indepen-
dently from each other,

rij|nij, yij ∼ Binomial(nij, yij).

Independence between households seems very likely here, as the households to interview
are not neighbors in general, contrary to what happens in labor force surveys for instance.

3.2 Insee’s program

To complete the model, we have to describe how Insee chooses the contract it proposes to
the interviewers. We have reasons to believe that Insee’s contracts are suboptimal. This
is confirmed by two facts. The first is the violation of the Informativeness Principle which
states that all factors correlated with performance should be included in the contracts
(Prendergast, 1999). Here, for instance, the bonus does not depend on the type of area
in which interviewers are working, even if the average response rate in large urban areas
(79.8%) is well below the one elsewhere (85.1%). Similarly, the average response rate of
Paris area (74.7% in 2003) is significantly lower than the one of the rest of France (84.3%).
The second is the fact that Insee uses linear contracts for all its household surveys, not
only the PCV ones. This feature seems too peculiar to assume that Insee maximizes his
objective function among all contracts. Instead, we suppose that it maximizes his objective
function only in the class of linear contracts.

Let Sj(y) denote Insee’s objective function in survey j if the response rate is y, and y(θ, δ)

be the response rate chosen by an interviewer of type θ when the bonus is δ. We have, by
the optimality of the observed payment scheme among linear contracts,14

δj = arg max
δ
E [Sj(y(θ, δ))− δy(θ, δ)] .

14We do not mention the maximization on the basic wage wj . It is simply set such that the worse type
interviewer obtains his outside utility.
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Hence, δj satisfies15

−E [y(θ, δj)] + E

[
∂y

∂δ
(θ, δj)(S

′
j(y(θ, δj))− δj)

]
= 0. (3.2)

3.3 Policy analysis

Given its policy, Insee’s surplus is

Πj = E [Sj(yj(θ))− δjyj(θ)] .

This surplus is not the optimal one since Insee restricts itself to linear contracts only. To
derive the optimal contract, we impose the following standard regularity condition.

Assumption 3 θ 7→ θ + Fθ(θ)/fθ(θ) is increasing.

Under Assumption 3, the optimal contracts are defined (see, e.g., Laffont & Martimort,
2002) by the following system of equations:

S ′j(y
I
j (θ) =

[
θ +

Fθ(θ)

fθ(θ)

]
C ′(yIj (θ)),

tIj
′(yIj (θ)) = θC ′(yIj (θ),

where yIj (θ) corresponds to the response rate chosen by an interviewer of type θ, facing the
optimal payment scheme tIj ′(.). Under this optimal contract, Insee’s surplus satisfies

ΠI
j = E

[
Sj(y

I
j (θ))− tIj (yIj (θ))

]
.

We can then compare the previous surpluses with the one Insee would obtain without
asymmetric information, i.e. observing the type of each interviewer. Under complete
information, Insee is able to fix the response rate interviewer by interviewer. These optimal
response rates are given by

S ′j(y
C
j (θ)) = θC ′(yCj (θ)).

Moreover, Insee recovers all the rent from the interviewers. As a result, the optimal transfer
function tCj (.) is defined by

15Given the restriction we impose hereafter (namely, Sj(y) = λjy), one can show that the first order
condition of the program is necessary and sufficient.
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tCj (yCj (θ)) = θC(yCj (θ)),

and the expected surplus under complete information satisfies

ΠC
j = E

[
Sj(y

C
j (θ))− tCj (yCj (θ))

]
.

Finally, to analyze further the role of asymmetric information, it is possible to compare
these surpluses with the ones that Insee would obtain if it incorporated some information at
its disposal. Still relying on simple linear contracts, Insee could offer, for instance, different
contracts in large urban areas versus other areas. Such contracts are given by Equation
(3.2), where the expectations are taken on the considered populations of interviewers.

4 Inference on the model

4.1 Identification

We now turn to the empirical content of the model. We consider an ideal framework where
the number of interviewers in the 2001-200216 and 2003 surveys (indexed by j = 1 and
j = 2 respectively) is supposed to be infinite. In this case, the distribution function Frj ,nj

(.)

of the number of respondents rj and subsample size nj of an interviewer can be supposed
to be known for both surveys.17 The question is whether the marginal cost functions C ′(.),
the distribution of types Fθ(.) and the objective functions Sj(.) can be recovered from these
functions and the model.

We first show that it is possible to recover the distribution of yj from the one of (nj, rj).
We have

P (rj = n|nj = n) = E [P (rj = n|nj = n, yj)]

= E
[
ynj |nj = n

]
= E

[
ynj
]
,

where the second equality follows from the binomial distribution assumption and the third
from Assumption 2. As a result, all moments of yj are identified since, by Assumption 2,

16From now on, we aggregate the 2001 and 2002 surveys, as they are identical. The number of respon-
dents and subsample sizes on 2001-2002 are thus the sums of these two variables over the two surveys.

17We omit subscript i for simplicity here.

22



the support of nj is the set of natural integers.18 Because yj is bounded, this identifies the
distribution Fyj(.) of yj (see, e.g., Gut, 2005).

Second, we investigate the identification of C ′(.) and Fθ(.). Before turning to our results,
note that a normalization is necessary since for any α > 0, we can replace (θ, C ′(.)) by
(αθ, C ′(.)/α) and leave the model unchanged. Indeed, the economic model is not completely
specified. All models with the same total cost will be equivalent and one can always increase
θ and decrease C ′(.) accordingly without modifying the economic model. Hence, for a given
θ0 > 0, we can choose any y0 in (0, 1) such that θ1(y0) = θ0.19

We also introduce two types of transforms that are at the basis of our identification method
in the presence of an exogenous change. First, let us consider an interviewer of type θ̃.
His theoretical response rate is y1(θ̃) in survey 1 and y2(θ̃) in survey 2. Because these
theoretical response rates are decreasing with θ, their rank in the distributions Fy1(.) and
Fy2(.) are identical:

Fy1(y1(θ̃)) = P(y1(θ) ≤ y1(θ̃)) = P(θ ≥ θ̃) = Fy2(y2(θ̃)). (4.1)

Introducing the horizontal transform Hjk(.) defined by Hjk(y) = F−1yk

[
Fyj(y)

]
, we get

yk(θ̃) = Hjk(yj(θ̃)). (4.2)

As the distribution functions Fyj(.) are identified, Hjk(.) also is, and the knowledge of yj(θ̃)
implies the knowledge of yk(θ̃). From an economic perspective, this equality simply states
that it is possible to recover the theoretical response rate of an interviewer of type θ̃ in
survey k if we know which production he chooses in survey j. To do so, even if his type θ̃
is unobserved, it is sufficient to pick the quantile of Fyk corresponding to Fyj(yj(θ̃)).

We also rely on the agent’s program by using his first order condition. Letting θj(.) denote
the inverse function of yj(.), we have

δj = θj(y)C ′(y). (4.3)

Hence, defining the vertical transform Vjk(.) by Vjk(θ) = δk
δj
θ, we obtain, for all y ∈ (0, 1),

θk(y) = Vjk(θj(y)). (4.4)
18In the data, maxi ni1 = 50 and maxi ni2 = 53, which ensures the identification of more than 50

moments of the distribution.
19Once a normalization has been done on θ1(.), no other normalization on θ2(.) is needed. This is because

the normalization on θ1(y0) induces a normalization on C ′(.) (see Equation (4.3) below), which in turn
applies to θ2(y0).
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Vjk(.) is identified, so that the knowledge of θj(y) implies the knowledge of θk(y). Contrary
to the horizontal transform which links different response rates that similar interviewers
choose in both surveys, the vertical transform links different types of interviewer who
chooses the same level of response rate in both surveys. Knowing the type of an interviewer
with an optimal response rate of y in survey k, it is possible to recover the type of the
interviewer that chooses the same level y in survey j.

Figure 4 illustrates our identification strategy. We can recover point (1) if we know point
(0) through the horizontal transform. Similarly, starting from point (1), we can identify
point (2) through the vertical transform. Hence, starting from (y0, θ1(y0)), we can identify
(y1, θ1(y1)) where y1 = H12(y0) and θ1(y1) = V21(θ1(y0)). By induction, we identify all the
black points in Figure 4.

y 0

(0) (1)

(2)

θk (y)

θ 1

θ 0

y
y 1

θ1 (.)
θ2 (.)

Η12 ( y0 )

V21 (θ0, y1 )

Figure 4: The horizontal and vertical transforms.

Formally, let Hn
12(y) = H12 ◦ ... ◦H12(y) if n > 0, y if n = 0 and H21 ◦ ... ◦H21(y) if n < 0.

We identify θ1(.) on the increasing sequence (yn)n∈Z defined by yn = Hn
12(y0).20 Elsewhere,

θ1(.) can be bounded, using the property that it is a decreasing function. Finally, using
Equation (4.1) and the first order condition (4.3), we obtain bounds on Fθ(.) and C ′(.).
Theorem 4.1 makes these bounds explicit and show that they are sharp.21

20That (yn)n∈Z is increasing follows from the fact that H12(y) > y for all y ∈ (0, 1) (since y1(.) < y2(.)).
21Note that the bounds are pointwise sharp but not functionally sharp.
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Theorem 4.1 Suppose that Assumptions 1 and 2 hold. Then, for all y ∈ (0, 1) and all
θ > 0, C ′(y) ∈ [C ′(y), C ′(y)] and Fθ(θ) ∈ [F θ(θ), F θ(θ)], with

C ′(y) =
δ1

infn∈Z: yn≤y θ1(yn)
, C ′(y) =

δ1
supn∈Z: yn≥y θ1(yn)

, (4.5)

Fθ(θ) = 1− Fy1
(

inf
n∈Z: θ1(yn)≤θ

yn

)
, Fθ(θ) = 1− Fy1

(
sup

n∈Z: θ1(yn)≥θ
yn

)
. (4.6)

These bounds are identified and sharp. Finally, for all n ∈ Z, C ′(yn) = C ′(yn) and
F θ(θ1(yn)) = F θ(θ1(yn))). Thus, C ′(.) and Fθ(.) are point identified respectively on the
sequences (yn)n∈Z and (θ1(yn))n∈Z.

Theorem 4.1 provides the best nonparametric bounds on the agents’ cost function and
distribution of heterogeneity. Our identification result strongly relies on the use of an
exogenous change. In particular, without variations in the contracts (i.e., when we observe
data from only one menu of contract or if the change is endogenous), one can prove that
the model is not identified.22 Any increasing marginal cost function C ′(.) (and similarly,
any distribution function Fθ(.)) can be rationalized by the data. Similar results have also
been obtained in the auction literature. Guerre et al. (2009) show that exogenous changes
are needed to identify first-price auction models with risk averse bidders. More generally,
exogenous changes are necessary, and sometimes sufficient, to completely identify any basic
adverse selection model (see D’Haultfœuille & Février, 2010). This framework includes
regulation, nonlinear pricing / price discrimination models, financial contracts or simple
insurance settings. All these models share a common underlying structure (see Laffont &
Martimort, 2002 for a survey) and the method proposed here applies similarly for all these
applications.

Our result also implies that standard parametric models on C ′(.) and Fθ(.) are identified
with an exogenous change. For instance, the parameters of a lognormal, weibull or gamma
distribution are identified thanks to the knowledge of Fθ(.) on the sequence (θ1(yn))n∈Z.
Actually, because we retrieve an infinite sequence of points on C ′(.) and Fθ(.), such standard
parametric models are overidentified. The sequences (C ′(yn))n∈Z and (Fθ(θ1(yn)))n∈Z may
thus serve as a guidance for choosing appropriate parametric restrictions, as will be the
case in Section 5.

Investigating the identification of Sj(.), it is clear that Equation (3.2) does not allow to
identify nonparametrically the whole function of interest. Even if we supposed Fθ(.) and

22The formal proof of non-identification is established in Appendix A.
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C ′(.) (and consequently ∂y
∂δ

(., .)) to be known, we would recover only one parameter, namely
the mean of its derivative. We thus restrict ourselves to the class of linear functions of the
form Sj(y) = λjy. Under this specification, λj represents the “price” of the information
contained in a household’s answers, i.e. the social value of an interview in survey j. In our
framework, λ1 < λ2 as Insee values more the 2003 answers than those of 2001 or 2002. For
given Fθ(.) and C ′(.), λj is just identified and satisfies

λ2 = δ2 +
E(y2)

E
(
∂y
∂δ

(θ, δ2)
) .

4.2 Estimation

We now turn to the estimation of C ′(.), Fθ(.) and Sj(.). We let Sj denote the sample of
interviewers participating to survey j, Nj the corresponding sample size and S = S1 ∪ S2.
For ease of notation, we let rij = nij = 0 if an interviewer i does not participate to survey
j. We study the behavior of our estimators when N = min(N1, N2) → ∞ and under the
following standard assumption of independent sampling.

Assumption 4 (independent sampling) (θi, ri1, ni1, ri2, ni2)i∈S are i.i.d.

We address first the nonparametric estimation of bounds on C ′(.) and Fθ(.). We consider
then the parametric estimation of both functions, as well as the parametric estimation of
Sj(.).

4.2.1 Nonparametric estimation

Our nonparametric estimation method follows closely the identification strategy and may
be decomposed into two steps. We first estimate the distributions Fy1(.) and Fy2(.) of
the unobserved probabilities y1(θ) and y2(θ). We then estimate bounds on the primitive
functions C ′(.) and Fθ(.).

For the first step, we use a sieve maximum likelihood estimator (see, e.g., Chen, 2006, for
a survey on sieve estimation). More precisely, we choose to approximate the densities23

fy1(.) and fy2(.) by functions of the sieve space

FN =

{
f(.) : 0 ≤ f(.) ≤M lnKN ,

∫ 1

0

f(x)dx = 1 and
√
f(.) ∈ PKN

}
,

23Assumption 1 and Equation (4.1) ensure that the densities of y1 and y2 do exist.
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where PJ denotes the space of polynomials of order at most J ,M is a constant and (KN)N∈N

is an increasing sequence which tends to infinity. We thus approximate the density fyj(.)
by squares of polynomials which integrate to one. Squares of polynomials are convenient
because they ensure that the estimated density is positive, are easy to integrate and lead
to a simple likelihood.24 Indeed, let us consider f(.; a) ∈ FN defined by:

f(x; a) =

(
KN∑
k=0

akx
k

)2

≡
2KN∑
k=0

bk(a)xk,

where a = (a0, ..., aKN
) and bk(a) =

∑min(k,KN )
l=max(0,k−KN ) alak−l. The likelihood of an observation

corresponding to f(.; a) is, by independence between yj and nj,

P (rj = r|nj = n) = E [P (rj = r|nj = n, yj)]

=

(
r

n

)
E
[
yrj (1− yj)n−r

]
=

(
r

n

)∫ 1

0

2KN∑
k=0

bk(a)yr+k(1− y)n−rdy

=

(
r

n

) 2KN∑
k=0

bk(a)B(r + k + 1, n− r + 1),

where B(., .) denotes the beta function. We let f̂yj(.) denote the maximum likelihood
estimator (over FN) of fyj(.). We then estimate Fyj(.) and F−1yj

(.) by F̂yj(x) =
∫ x
0
f̂yj(u)du

and F̂−1yj
(u) = F̂−1yj

(x).

We now turn to the estimation of C ′(.) and Fθ(.). First, letting Ĥjk(x) = F̂−1yk
◦ F̂yj(x), we

estimate yn by ŷn = Ĥn
12(y0). Note that because V21(θ) = δ1/δ2×θ, θn = θ1(yn) = (δ1/δ2)

nθ0

and does not need to be estimated. Then, relying on (4.5) and (4.6), the bounds on C ′(.)
and Fθ(.) are estimated by

Ĉ ′(y) =
δ1

infn∈Z: ŷn≤y θn
, Ĉ ′(y) =

δ1
supn∈Z: ŷn≥y θn

,

F̂θ(θ) = 1− F̂y1
(

inf
n∈Z: θn≤θ

ŷn

)
, F̂θ(θ) = 1− F̂y1

(
sup

n∈Z: θn≥θ
ŷn

)
.

To ensure the consistency of our estimators, we impose the following conditions on the cost
function and on the distribution of the subsample size nj.

24We also restrict ourselves to bounded polynomials. This ensures that FN is compact and simplifies
the consistency proof.
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Assumption 5 limθ→∞ θ
2f(θ) = 0 and limy→1

C′′(y)
C′(y)2

exists and is finite. For all u > 0

and j ∈ {1, 2}, E(unj) <∞.

The first condition is very mild and is satisfied for all standard densities with finite ex-
pectation. The second condition rules out cases where the function 1/C ′(y) converges too
fast to zero as y → 1. Finally, the third condition imposes light tails for nj. Theorem 4.2
shows that these conditions are sufficient for the consistency of the estimated bounds.

Theorem 4.2 Suppose that Assumptions 1, 2, 4 and 5 hold, KN →∞ andK2
N lnKN/N →

0. Then F̂ θ(θ) and F̂ θ(θ) are consistent for all θ > 0. Ĉ ′(y) and Ĉ ′(y) are consistent on
every y 6∈ {yn, n ∈ Z\{0}}. Moreover, for all n ∈ Z,(

ŷn, Ĉ ′(ŷn) = Ĉ ′(ŷn)
)

P−→ (yn, C
′(yn)).

Theorem 4.2 has three parts. The first establishes consistency of the bounds of Fθ(.) on its
whole support. The second shows the convergence of C ′(.) and C ′(.) outside the sequence
(yn)n∈Z. Even if consistency fails in general on this sequence, the last part of the theorem
shows point consistency in R2 of the estimated sequence

(
ŷn, Ĉ ′(ŷn)

)
. As a consequence

C ′(.) and Fθ(.) are well estimated on the sequences where they are point identified, while
sharp bounds are consistently recovered anywhere else.

4.2.2 Parametric estimation

The nonparametric estimation is not sufficient to conduct the policy analysis detailed in
Subsection 3.3. Both Fθ(.) and C ′(.) have to be known on their full support. Hence, we
also consider parametric restrictions on Fθ(.) and C ′(.). We write these functions as Fθ(.|η)

and C ′(.|η), for an unknown finite dimensional parameter η. In this case,

yj(θ|η) = C ′−1
(
δj
θ

∣∣η) . (4.7)

Hence, the probability of observing (r1, r2) conditional on (n1, n2) satisfies

P (r1, r2|n1, n2, η) =

(
r1

n1

)(
r2

n2

)
E
[
y1(θ|η)r1(1− y1(θ|η))n1−r1y2(θ|η)r2(1− y2(θ|η))n2−r2

]
=

(
r1

n1

)(
r2

n2

)∫
y1(θ|η)r1(1− y1(θ|η))n1−r1y2(θ|η)r2(1− y2(θ|η))n2−r2fθ(θ|η)dθ,

and η can then be estimated by maximum likelihood on S.
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Finally, concerning the estimation of Insee’s objective functions, we estimate λj by

λ̂j = δj +

∫
yj(θ|η̂)fθ(θ|η̂)dθ∫

∂y
∂δ

(θ, δj|η̂)fθ(θ|η̂)dθ
,

where, using Equation (4.7),

∂y

∂δ
(θ, δj|η̂) =

1

θC ′′
(
C ′−1

(
δj
θ

∣∣η̂)) .
Similarly, for the policy analysis, all surpluses defined in Subsection 3.3 are estimated using
the parametric restriction we consider and the estimated parameter η̂.25

5 Results

5.1 Estimation of C ′(.), Fθ(.) and λj.

We first estimate nonparametrically the sharp bounds on Fθ(.) and C ′(.). For that pur-
pose, we estimate in a first step Fy1(.) and Fy2(.) by the sieve MLE proposed above. As
usually, there is a trade-off between bias and variance in the choice of KN . Empirically,
the estimates do not seem to be too smooth or too erratic for KN between 3 and 6. Results
are quite similar in this range, and we choose KN = 4. The corresponding estimates are
displayed in Figure 5. As predicted by the theory, the distribution function of y on the
2003 survey dominates stochastically the one of 2001-2002 on most part of (0, 1).

25The estimators defined here can be obtained either by using closed-form formulas for the integrals or
by simulations, depending on the parametric choice of C ′(.) and Fθ(.).
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Figure 5: Sieve MLE Estimates of Fy1(.) and Fy2(.).

In the second step, we estimate the bounds on Fθ(.) and C ′(.). We choose a starting
value y0 close to the median of F̂y1(.), namely y0 = 0.8, in order to get more precise
estimates for central values of Fθ(.) and C ′(.).26 For that y0, we impose the normalization
θ1(y0) = 1. Figure 6 displays the estimates of the bounds on Fθ(.) and C ′(.), and their 95%
confidence interval obtained by bootstrap. The bounds on both functions are close and
we are able to correctly retrieve their shape. The highly convex form of the cost function
shows in particular that incentives are relatively large for small values of the production but
significantly lower for higher ones. This may explain the small average effect of incentives
that we have found compared to the previous results of the literature. Finally, the width
of the confidence intervals on the bounds of Fθ(.) (resp. C ′(.)) increases with |θ− 1| (resp.
|y − 0.8|), reflecting the fact that, as expected, the estimation error increases with |n|.

26We have checked that other values of y0 do not modify the choice of the parametric families that is
made using our nonparametric estimates.
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Figure 6: Estimated bounds on Fθ(.) and C ′(.).

The nonparametric approach is appealing as it reveals what can be identified when impos-
ing only the exogeneity of the change. Yet, it does not allow us to compute parameters
of interest such as surpluses under optimal contracts or symmetric information. Thus, we
also consider a parametric estimation of Fθ(.) and C ′(.). For this purpose, we use the non-
parametric estimates (C ′(yn), Fθ(θn))n∈Z to investigate which parametric family fits best.
We compare three standard family of distributions on R+ for Fθ(.), namely the Fréchet,
for which Fθ(θ) = exp(−aθ−b) (a, b > 0), the lognormal, for which Fθ(θ) = Φ((ln θ − a)/b)

(where Φ(.) denotes the cumulative distribution function of a standard normal variable
and b > 0) and the Weibull, for which Fθ(θ) = 1 − exp(−aθb) (a, b > 0). These families
differ in their tail behavior: the first has heavy tails (power ones), the second medium tails
(between power and exponential ones) and the third light tails (exponential ones). To dis-
criminate between these three families, we plot respectively ln (− lnFθ(θn)), Φ−1 (Fθ(θn))

and ln (− ln(1− Fθ(θn))) against ln θn. Points should be aligned if the parametric family
is the true one. Similarly, we consider families of marginal cost functions tending to 0 at
0 and to ∞ at 1, but which differ in their behavior at infinity. More precisely, we consider
C ′(y) = αφ(y/(1 − y))β, with φ(x) = ln(1 + x), x or exp(x) − 1. Once more, we plot
lnC ′(yn) against lnφ(y/(1− y)) in the three cases.

Figures 7 and 8 display the three corresponding plots. They indicate that the lognormal
distribution and φ(x) = ln(1 + x) have the best fits. Even if the likelihood ratio tests
of nonnested hypotheses (see Vuong, 1989) for the nine corresponding parametric models
lead to similar conclusions (the lognormal distribution with φ(x) = ln(1+x) or x being the
preferred specifications), it is important to note that such parametric tests only compare
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models against each others. On the contrary, our procedure allows to test the validity of
a parametric family alone, and to choose separately the best parametric family for C ′(.)
and Fθ(.). Thanks to our nonparametric analysis, we do not only learn that the lognormal
distribution and φ(x) = ln(1 + x) is the best specification among the nine tested, but also
that they fit the data correctly. Maximum likelihood estimates of the parameters for this
specification are displayed in Table 8. We obtain in a second step λ̂1 = 84.4 and λ̂2 = 104.1,
the higher value of λ̂2 reflecting the higher importance for Insee of the 2003 survey.
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Figure 7: Choice of the parametric family for Fθ(.).

−1 −0.5 0 0.5 1 1.5
1.5

2

2.5

3

3.5

4

4.5
Fit for φ(x) = ln(1 +x)

−1 0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5
Fit for φ(x) = x

0 10 20 30 40
1.5

2

2.5

3

3.5

4

4.5
Fit for φ(x) = exp(x)− 1

Figure 8: Choice of the parametric family for C ′(.).
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Parameter Estimate

a -0.03 (0.04)

b 0.45 (0.13)

α 11.57 (1.64)

β 1.17 (0.34)

λ1 84.4 (29.3)

λ2 104.1 (22.5)

Table 8: Maximum likelihood estimates of the parameters of C ′(y) =

α [ln(1 + y/(1− y))]β and Fθ(θ) = Φ((ln θ − a)/b).

5.2 The cost of using inefficient contracts

We now turn to the results on surpluses. We focus on the 2003 survey, the results being
very similar for 2001-2002. Table 9 summarizes our results. We find that the surplus loss
associated with the use of linear contracts is around 16% (62.3 versus 74.4) and that the
response rate decreases by 10% compared to optimal contracts (83% versus 93%). This
result contrasts with the idea that simple contracts can be quite inefficient. Ferrall and
Shearer (1999), for instance, evaluate the loss of using such simple contracts to be around
50%. Our results point out on the contrary that the cost is quite small and that optimal
contracts are not highly nonlinear. This may explain why firms widely use linear contracts
compared to nonlinear ones: they are less costly to implement and almost efficient. A
recent empirical paper of Miravete (2007), which reports a loss of only 3%, also supports
this claim. These empirical results are in line with the theoretical findings of Wilson (1993,
Section 6.4), Rogerson (2003) and Chu & Sappington (2007), who show that simple tariffs
secure at least 89%, 75% and 74% of the maximal surplus, respectively. Studying auctions,
Neeman (2003) also proves that simple English auctions generates an expected price that
is more than 80% of the value of the object to the bidder with the highest valuation.
Finally, studying mixed bundling, Chu et al. (2008) show that simple pricing strategies
are often nearly optimal. With surprisingly few prices a firm can obtain 99% of the profit
that would be earned by mixed bundling. We also find, in our context, that Insee can use
simple contracts and still give the right incentives to its interviewers.

We find moderate cost of incomplete information, the optimal surplus under asymmetric
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Environment Pay method E[surplus] Relative E[response rate]

Full information Optimal contract 93.9 (19.8) 1.00 (0) 99% (0.01)

Incomplete information Optimal contract 74.4 (19.7) 0.79 (0.03) 93% (0.01)

Incomplete information Linear contract 62.3 (18.3) 0.66 (0.04) 83% (0.01)

Table 9: Surplus and response rates under alternative compensation schemes.

information being 79% of the optimal one under full information. This loss of 21% is in
particular smaller than the one reported by Ferrall and Shearer (33%). Moreover, the
surplus under asymmetric information and with the linear contract is 66% of what it could
be under complete information. The main part of this loss (62%) is due to incomplete
information whereas 38% is associated with the simple tarification.

Ratio of surplus E[response rate]
Fθ φ(x) λ2 Optimal Linear Lin/Opt Full info. Optimal Linear

ln(1 + x) 108.0 0.83 0.71 0.85 0.99 0.91 0.82
Fréchet x 103.0 0.80 0.70 0.88 0.98 0.90 0.82

exp(x)− 1 115.6 0.77 0.72 0.94 0.94 0.86 0.82

ln(1 + x) 104.1 0.79 0.66 0.84 0.99 0.93 0.83
Lognormal x 100.3 0.76 0.66 0.87 0.99 0.92 0.83

exp(x)− 1 112.1 0.75 0.70 0.94 0.94 0.88 0.82

ln(1 + x) 101.7 0.68 0.64 0.95 1.00 0.83 0.82
Weibull x 98.7 0.65 0.65 0.99 0.99 0.88 0.83

exp(x)− 1 110.5 0.71 0.70 0.98 0.94 0.88 0.83

Table 10: Robustness of the results with respect to the parametric families.

The rather mild degree of asymmetric information between Insee and its interviewers may
explain why Insee chooses not to use some information at its disposal. To confirm this
intuition, we investigate what Insee would obtained if it distinguished, for instance, between
interviewers in large urban areas and other interviewers.27 Instead of offering the same
linear contract with a bonus of 22.9 euros to all interviewers, it would propose in this
case a bonus of 24.3 euros in large urban areas and a bonus of 22.1 euros elsewhere. The
expected surplus would remain however nearly constant (62.5 instead of 62.3). The cost

27There are 167 interviewers in large urbain areas defined as towns larger than 100,000 inhabitants and
286 interviewer in other areas.
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of discriminating between interviewers is thus likely to exceed these expected gains. In
addition to implementation costs mentioned by Ferrall & Shearer (1999), Insee faces social
costs due to quite strong unions opposed to such discriminations.

To conclude, we assess the importance of using the exogenous change and our nonpara-
metric analysis in the choice of the parametric specification. To do so, we compute the
surplus and average response rates under nine parametric families. As previously, we use
the Fréchet, lognormal and Weibull distributions for the types and φ(x) = ln(1 + x), x or
exp(x)−1 for the marginal cost. The results, displayed in Table 10, appear to be stable for
the Fréchet or lognormal combined with φ(x) = ln(1+x) or x. For these specifications, the
cost of asymmetric information is moderate, around 20% (between 17 and 24%), while the
cost of using simple contracts is small, between 12 and 16%. The pattern is however quite
different when we choose either the Weibull distribution or φ(x) = exp(x)−1. For instance,
with the Weibull distribution and φ(x) = x, the cost of asymmetric information increases
to 35%, whereas there is almost no loss of using linear contracts (1% only). These results
are in line with the plots displayed in Figures 7 and 8, where the Fréchet and the lognormal
distributions on the one hand, and φ(x) = ln(1+x) and x on the other hand display correct
fits, while the Weibull distributions and φ(x) = exp(x) − 1 seem less appropriate. This
analysis emphasizes the importance of avoiding any parametric misspecification, which can
be achieved only through exogenous changes and our nonparametric method.

6 Conclusion

This work contributes to the empirical personnel literature by showing, in a context of
moderate asymmetric information, that interviewers react to incentives and that the sim-
ple contracts proposed by Insee are nearly optimal. Beyond these empirical results, we
also propose a new approach that extensively uses the exogenous change in 2003 in the
compensation scheme, the piece rate increasing from 20.2 to 22.9 euros. This change al-
lows us, in particular, to identify and recover nonparametrically some information on the
cost function of the interviewers and on the distribution of their types. This information
is used to select correctly the parametric restrictions that we need to impose to derive
our results. More generally, we believe that such an exogenous change, associated with a
nonparametric estimation in a first step, is essential to estimate and test the optimality of
contracts or the presence of asymmetries.
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Appendix A: proofs

Proof of Theorem 4.1

It follows from the discussion before Theorem 4.1 that θ1(.) is point identified on (yn)n∈Z.
For other y, we get, by monotonicity of θ1(.),

sup
n∈Z: yn≥y

θ1(yn) ≤ θ1(y) ≤ inf
n∈Z: yn≤y

θ1(yn).

Similarly,
sup

n∈Z: θ1(yn)≥θ
yn ≤ y1(θ) ≤ inf

n∈Z: θ1(yn)≤θ
yn.

By Equations (4.1) and (4.3), Inequalities (4.5) and (4.6) hold. The last point of the
theorem follows directly from the definitions of the bounds on θ1(y) and y1(θ).

We now show that for all y ∈ (0, 1) (y 6∈ (yn)n∈Z) and θ > 0 (θ 6∈ (θ1(yn))n∈Z), the bounds
on C ′(y) and Fθ(θ) are sharp. We focus, for a given y, on C ′(y) as the proof is similar for
C ′(y), F θ(θ) and F θ(θ). More precisely, we want to construct a function C̃ ′(.) such that
C̃ ′(y) is arbitrarily close to C ′(y), and which satisfies all the restrictions given by the data
and the model.

The proof is in two step. First, fixing ε > 0, we construct a continuously differentiable
function θ̃1(.) that satisfies θ̃1(yn) = θ1(yn) for all n ∈ Z and θ̃1(y) = δ1/(C ′(y)− ε). In a
second step, we study the function C̃ ′(.) = δ1/θ̃1(.).

For the first step, letting k ∈ Z denote the integer such that yk < y < yk+1, we first define
θ̃1(.) on [yk, yk+1[. To do so, we consider any strictly decreasing continuously differentiable
function θ̃1(.) such that θ̃1(yk) = θk, θ̃1(y) = δ1/(C ′(y) − ε) and limy→y−k+1

θ̃1(y) = θk+1.
Moreover, we impose that

lim
y→y−k+1

θ̃′1(y) =
δ1θ̃
′
1(yk)

δ2H ′12(yk)
. (6.1)

Such a function always exists. We then extend it on (0, 1) through the vertical and hori-
zontal transforms. For instance, θ̃1(.) is defined on [yk+1, yk+2[= [H12(yk), H12(yk+1)[ by

θ̃1(y) =
δ1
δ2
θ̃1(H

−1
12 (y)).

Moreover, because H12(.) is continuously differentiable, θ̃1(.) admits a right derivative at
yk+1 given by
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lim
y→y+k+1

θ̃′1(y) =
δ1θ̃
′
1(yk)

δ2H ′12(yk)
,

and Equation (6.1) ensures that θ̃1(.) is differentiable at yk+1. By induction, using either
H12(.) orH21(.), it is possible to extend θ̃1(.) on (0, 1) to obtain a continuously differentiable
function on the whole interval. This function will also be strictly decreasing as both H12(.)

or H21(.) are increasing.

We now consider the function C̃ ′(.) = δ1/θ̃1(.). By construction, the first order condition
θ̃1(.)C̃

′(.) = δ1 and the equality C̃ ′(y) = C ′(y) − ε are satisfied. That C̃ ′(.) is strictly
positive and strictly increasing follows from its definition and the fact that θ̃1(.) is strictly
decreasing. C̃ ′(.) is also continuously differentiable as θ̃1(.) is. Finally, by definition,

0 = θ̃′1(y)C̃ ′(y) + θ̃1(y)C̃ ′′(y).

Because θ̃′1(y)C̃ ′(y) < 0, we get
−θ̃1(y)C̃ ′′(y) < 0,

and the second order condition is satisfied.28 �

Non-identification with one menu of contracts

Let us consider a strictly increasing and differentiable function C̃ ′(.), different from the
true one C ′. Define then θ̃(.) by

θ̃(y) =
δ1

C̃ ′(y)
.

θ̃(.) is strictly decreasing and admits an inverse function ỹ(.). Then define F̃θ(.) by

F̃θ(θ) = Fy1(ỹ(θ)).

By construction C̃ ′(.) and F̃θ(.) are consistent with the first and second order conditions
and the identified distribution Fy1(.). As a result, C ′(.) and Fθ(.) are not identified. �

28Theoretically, we should also check that, in association with the considered C̃ ′(.), there exists a function
Fθ(.) satisfying all the constraints. It is easy to see that Fθ̃(.) = 1− Fy1(ỹ1(.)), where ỹ1(.) is the inverse
of θ̃(.), works.
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Proof of Theorem 4.2

The proof proceeds in four steps. We first prove that F̂yk is uniformly consistent. We then
prove that Ĥjk is uniformly consistent on each compact set included in (0, 1). Thirdly, we
prove that for all n ∈ Z, ŷn is consistent. Finally, we show that the estimated bounds of
C ′ and Fθ are consistent.

1. Uniform consistency of F̂yj .

For any continuous function g on [0, 1] let ‖g‖ = supx∈[0,1] |g(x)|. We actually prove the
stronger result that for j ∈ {1, 2}, ∥∥∥f̂yj − fyj∥∥∥ P−→ 0. (6.2)

First, note that for all y ∈ (0, 1), fyj(y) = θ′j(y)fθ(θj(y)), so that fyj is thus continuous on
(0, 1). Moreover, differentiating the first order condition, we obtain

θ′j(y) = −θj(y)C ′′(y)

C ′(y)
= −δjC

′′(y)

C ′2(y)
. (6.3)

Thus, by Assumption 5, limy→1 fyj(y) exists and is finite. The same holds at 0. Thus, we
can extend fyj(.) by continuity on [0, 1].

Let F denote the space of continuous density functions on [0, 1]. For f ∈ F , n ∈ N and
r ∈ {0, ..., n}, let

l(f, r, n) = ln

(∫ 1

0

yr(1− y)n−rf(y)dy

)
,

let Qj(f) = E(l(f, rj, nj)) denote the expectation of l(f, r, n) with respect to (rj, nj) and

QNj ,j(f) =
1

Nj

Nj∑
i=1

l(f, rij, nij).

By definition of f̂yj , f̂yj = arg maxf∈FN
QNj ,j(f) is a sieve M-estimator. We use Theorem

3.1 of Chen (2006) and its associated Remark 3.2 to prove (6.2). To this end, we check the
following conditions:
a. Qj is uniquely maximized at fyj and Qj(fyj) > −∞.
b. For all N , FN ⊂ FN+1 and for all f ∈ F , there exists fN ∈ FN such that ‖fN − f‖ → 0.
c. Qj is continuous for ‖.‖.
d. FN is compact.
e. E

[
supf∈FN

|l(f, rj, nj)|
]
<∞.

f. There exists U(., .) such that E(U(rj, nj)) < ∞ and for all (f, g) ∈ F2
N , |l(f, rj, nj) −
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l(g, rj, nj)| ≤ ‖f − g‖U(rj, nj).
g. The minimal number of δ-balls that cover FN , denotedNb(δ,FN , ‖.‖), satisfies lnNb(δ,FN , ‖.‖) =

o(N).

a. First, for all g ∈ F ,

E

[
exp l(g, rj, nj)

exp l(fyj , rj, nj)

∣∣∣∣nj = n

]
=

n∑
k=0

P (rj = k|n)

(
k

n

)∫ 1

0
yk(1− y)n−kg(y)dy

P (rj = k|n)

=

∫ 1

0

(
n∑
k=0

(
k

n

)
yk(1− y)n−k

)
g(y)dy

=

∫ 1

0

g(y)dy

= 1.

Thus,

E

[
exp l(g, rj, nj)

exp l(fyj , rj, nj)

]
= 1.

Besides, because fyj is identified, we have l(g, rj, nj) 6= l(fyj , rj, nj) with a strictly positive
probability for all g 6= fyj . Thus, by Jensen’s inequality,

E

[
ln

(
exp l(g, rj, nj)

exp l(fyj , rj, nj)

)]
< lnE

[
exp l(g, rj, nj)

exp l(fyj , rj, nj)

]
= 0.

This proves that Qj is uniquely maximized at fyj . Moreover, let u1 ∈ (0, 1) be such that∫ 1−u1
u1

fyj(y)dy ≥ 1/2. We have∫ 1

0

yr(1− y)n−rfyj(y)dy ≥
∫ 1−u1

u1

yr(1− y)n−rfyj(y)dy

≥ un1

∫ 1−u1

u1

(
y

u1

)r (
1− y
u1

)n−r
fyj(y)dy

≥ un1

∫ 1−u1

u1

fyj(y)dy

≥ un1
2
. (6.4)

As a result, Qj(fyj) ≥ E(n) lnu1 − ln 2. By Assumption 5, E(n) < ∞, so that Qj(fyj) >

−∞.

b. First, FN ⊂ FN+1 for all N since KN is increasing. Now fix f ∈ F and ε > 0. Because
√
f is continuous on [0, 1], there exists, by Weierstrass theorem, a polynomial P of order
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J such that
∥∥√f − P∥∥ ≤ ε. Then,∥∥f − P 2

∥∥ ≤ ∥∥∥√f − P
∥∥∥× ∥∥∥√f + P

∥∥∥
≤

∥∥∥√f − P
∥∥∥× (2

∥∥∥√f
∥∥∥+

∥∥∥P −√f
∥∥∥)

≤ ε
(
ε+ 2

∥∥∥√f
∥∥∥) .

Now let N be such that KN ≥ 2J and

M lnKN ≥
ε
(
ε+ 2

∥∥√f∥∥)+
∥∥√f∥∥

1− ε
(
ε+ 2

∥∥√f∥∥) .

We have∫ 1

0

P 2(y)dy ≥
∫ 1

0

f(y)dy −
∫ 1

0

|f(y)− P 2(y)|dy ≥ 1− ε
(
ε+ 2

∥∥∥√f
∥∥∥) .

Thus, defining fN = P 2/
(∫ 1

0
P 2(y)dy

)
, we get

‖fN‖ ≤
‖P 2‖

1− ε
(
ε+ 2

∥∥√f∥∥)
≤ ‖P 2 − f‖+ ‖f‖

1− ε
(
ε+ 2

∥∥√f∥∥)
≤ ε

(
ε+ 2

∥∥√f∥∥)+
∥∥√f∥∥

1− ε
(
ε+ 2

∥∥√f∥∥)
≤ M lnKN ,

so that fN ∈ FN . Moreover,

‖f − fN‖ ≤
∥∥f − P 2

∥∥+
∥∥P 2

∥∥ ∣∣∣∣∣1− 1∫ 1

0
P 2(u)du

∣∣∣∣∣
≤ ε

(
ε+ 2

∥∥∥√f
∥∥∥)+

(
‖f‖+ ε

(
ε+ 2

∥∥∥√f
∥∥∥))( 1

1− ε
(
ε+ 2

∥∥√f∥∥) − 1

)
.

This establishes b, since the right-hand side tends to zero with ε.

c. Fix ε > 0 and f ∈ F and let g ∈ F be such that ‖f − g‖ ≤ ε. For all n ∈ N and
r ∈ {0, ..., n},∣∣∣∣∫ 1

0

yr(1− y)n−rf(y)dy −
∫ 1

0

yr(1− y)n−rg(y)dy

∣∣∣∣ ≤ ‖f − g‖ ≤ ε. (6.5)

Moreover, there exists u2 ∈ (0, 1) such that∫ 1−u2

u2

f(y)dy ∧
∫ 1−u2

u2

g(y)dy ≥ 1

2
.
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Hence, reasoning as in (6.4), we get∫ 1

0

yr(1− y)n−rf(y)dy ∧
∫ 1

0

yr(1− y)n−rg(y)dy ≥ un2
2
. (6.6)

Besides, for all a, b > 0, | ln b− ln a| ≤ |b− a|/a ∧ b. Hence, using (6.5) and (6.6), we get,
for all n ∈ N and r ∈ {0, ..., n},

|l(f, r, n)− l(g, r, n)| =

∣∣∣∣ln(∫ 1

0

yr(1− y)n−rf(y)dy

)
− ln

(∫ 1

0

yr(1− y)n−rg(y)dy

)∣∣∣∣
≤

∣∣∣∫ 1

0
yr(1− y)n−rf(y)dy −

∫ 1

0
yr(1− y)n−rg(y)dy

∣∣∣(∫ 1

0
yr(1− y)n−rf(y)dy

)
∧
(∫ 1

0
yr(1− y)n−rg(y)dy

)
≤ 2ε

un2
. (6.7)

As a result,

|Qj(f)−Qj(g)| ≤ E |l(f, rj, nj)− l(g, rj, nj)| ≤ 2εE

(
1

un2

)
.

The expectation is finite by Assumption 5. Hence, Qj(.) is continuous for ‖.‖.

d. FN is closed, bounded and belongs to a finite dimensional space. FN is thus compact.

e. Because |g(x)| ≤ M lnKN for all g ∈ FN , there exists u3 ∈ (0, 1/2) such that for all
g ∈ FN ,

∫ 1−u3
u3

g(y)dy ≥ 1/2. Reasoning as previously, we have

m(n, r) = inf
g∈FN

∫ 1

0

yr(1− y)n−rg(y)dy ≥ un3
2
. (6.8)

Besides, for all f ∈ FN , n ∈ N and r ∈ {0, ..., n},

|l(f, r, n)| =

∣∣∣∣ln∫ 1

0

yr(1− y)n−rf(y)dy

∣∣∣∣
≤

∣∣∣∣ln( inf
g∈FN

∫ 1

0

yr(1− y)n−rg(y)dy

)∣∣∣∣ .
Thus,

E

[
sup
f∈FN

|l(f, rj, nj)|
]
≤ E [| lnm(nj, rj)|]

≤ E [| ln 2|+ n| lnu3|] ,

and E(n) <∞ implies that E
[
supf∈FN

|l(f, rj, nj)|
]
<∞.
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f. Using (6.8) and a similar argument as in (6.7), we get, for all (f, g) ∈ FN ,

|l(f, rj, nj)− l(g, rj, nj)| ≤
2 ‖f − g‖

u
nj

3

.

Thus, by Assumption 5, Point f is satisfied with U(r, n) = 2/un3 .

g. For all f ∈ FN by Markov’s inequality on polynomials (see, e.g., Borwein & Erdélyi,
1995, Theorem 5.1.8),

‖f ′‖ ≤ 2(2KN)2 ‖f‖ ≤ 8MK2
N lnKN .

FN is thus included in the set

GN = {f(.) : ∀(x, y) ∈ [0, 1]2, |f(x)| ≤M lnKN , |f(x)− f(y)| ≤ 8MK2
N lnKN}.

This set is a particular case of a more general class considered by van der Vaart & Wellner
(1996, Theorem 2.7.1). They prove that there exists a constant C0 > 0 such that

lnNb(δ,GN , ‖.‖) ≤ C0K
2
N lnKN .

Because lnNb(δ,FN , ‖.‖) ≤ lnNb(δ,GN , ‖.‖) and K2
N lnKN/N → 0, lnNb(δ,FN , ‖.‖) =

o(N), which ends the proof of (6.2).

2. Uniform consistency of Hkj.

We now establish that for all (j, k) ∈ {1, 2}2 and all 0 < x < x < 1,

sup
x∈[x,x]

|Ĥkj(x)−Hkj(x)| P−→ 0.

We first prove that for any compact K strictly included in (0, 1),

sup
y∈K
|F̂−1yk

(y)− F−1yk
(y)| P−→ 0 (6.9)

By Assumption 1, θ′k(y) < 0 and fθ(θk(y)) > 0 for all y ∈ (0, 1). Hence, by continuity of
fθ and θ′(.), for all compact K included in (0, 1),

min
y∈K

fyk(y) = min
y∈K

[−fθ(θk(y))θ′k(y)] > 0. (6.10)

If ε > 0 is such that E = {x ∈ R : ∃y ∈ F−1y1
(K) : |x− y| ≤ ε} is a subset of (0, 1), (6.10)

implies that C1 = miny∈E fyk(y) > 0. Moreover, by the mean value theorem, for all y ∈ K,

Fy1(F
−1
y1

(y)− ε) + C1ε ≤ Fy1(F
−1
y1

(y)) ≤ Fy1(F
−1
y1

(y) + ε)− C1ε.
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Consequently,

P

(
sup
y∈K
|F̂−1y1 (y)− F−1y1 (y)| > ε

)
= P

(
∃y ∈ K : F̂−1y1 (y) > F−1y1 (y) + ε or F̂−1y1 (y) < F−1y1 (y)− ε

)
= P

(
∃y ∈ K : F̂y1(F̂

−1
y1 (y)) = Fy1(F

−1
y1 (y)) > F̂y1(F

−1
y1 (y) + ε) or Fy1(F

−1
y1 (y)) < F̂y1(F

−1
y1 (y)− ε)

)
≤ P

(
∃y ∈ K : Fy1(F

−1
y1 (y) + ε)− F̂y1(F−1y1 (y) + ε) > C1ε or F̂y1(F

−1
y1 (y)− ε)− Fy1(F−1y1 (y)− ε) > C1ε

)
≤ P

(∥∥∥F̂y1 − Fy1∥∥∥ > C1ε
)
.

Because F̂y1(.) converges uniformly to Fy1(.), (6.9) holds.

Now, fix ε > 0 and ζ > 0 such that Fyk(x) > ζ and Fyk(x) < 1− ζ. For all N large enough,

P
(∥∥∥F̂yk − Fyk∥∥∥ > ζ

)
≤ ε/2. (6.11)

If
∥∥∥F̂yk − Fyk∥∥∥ ≤ ζ, we get, for all x ∈ [x, x], noting K = [Fyk(x)− ζ, Fyk(x) + ζ],

|Ĥkj(x)−Hkj(x)| ≤ |F̂−1yj
(F̂yk(x))− F−1yj

(F̂yk(x))|+ |F−1yj
(F̂yk(x))− F−1yj

(Fyk(x))|
≤ sup

u∈K
|F̂−1yj

(u)− F−1yj
(u)|+ C2

∥∥∥F̂yk − Fyk∥∥∥ , (6.12)

where C2 = supu∈K F
−1
yj
′(u) < ∞ by (6.10). Fix δ > 0. By uniform convergence of F̂y1(.)

and (6.9), for all N large enough,

P

(
sup
u∈K
|F̂−1yj

(u)− F−1yj
(u)|+ C2

∥∥∥F̂yk − Fyk∥∥∥ > δ

)
<
ε

2
. (6.13)

Then, for all N large enough,

P

(
sup
x∈[x,x]

|Ĥkj(x)−Hkj(x)| > δ

)
≤ P

(
sup
x∈[x,x]

|Ĥkj(x)−Hkj(x)| > δ,
∥∥∥F̂yk − Fyk∥∥∥ ≤ ζ

)
+P

(∥∥∥F̂yk − Fyk∥∥∥ > ζ
)

≤ P

(
sup
u∈K
|F̂−1yj (u)− F−1yj (u)|+ C2

∥∥∥F̂yk − Fyk∥∥∥ > δ

)
+
ε

2

≤ ε,

where the second inequality stems from (6.11) and (6.12), and the third from (6.13). The
result follows since ε and δ were arbitrary.

3. Consistency of ŷn, for all n ∈ Z.

We now prove that for all n ∈ Z and for all ε > 0, as N →∞,

P (|ŷn − yn| ≤ ε)→ 1 (6.14)
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Let us proceed by induction on n. The proposition is true when n = 0. Suppose that it
holds for n − 1 ≥ 0 and let us prove that it holds for n (the proof is similar for negative
values). By definition of yn and ŷn, it suffices to prove that for all ε > 0,

P (|Ĥ12(ŷn−1)−H12(yn−1)| ≤ ε)→ 1 (6.15)

Without loss of generality, we can focus only on ε > 0 such that B(yn−1, ε) ⊂ (0, 1), where
B(x, r) is the closed ball of center x and radius r. Because

H ′12(x) =
fy1(x)

fy2 (Fy1(x))
,

it follows, by (6.10), that C3 = 1∨ supx∈B(yn−1,ε) |H ′12|(x) <∞. Moreover, by the induction
hypothesis and the uniform convergence of Ĥ12(.), for all N large enough, the event

E0 =

{
|ŷn−1 − yn−1| < ε/2C3, sup

x∈B(yn−1,ε)

|Ĥ12(x)−H12(x)| < ε/2

}
holds with an arbitrarily large probability. Under E0,

|Ĥ12(ŷn−1)−H12(yn−1)| ≤ |Ĥ12(ŷn−1)−H12(ŷn−1)|+ |H12(ŷn−1)−H12(yn−1)|
≤ sup

x∈B(yn−1,ε)

|Ĥ12(x)−H12(x)|+ C3|ŷn−1 − yn−1|

≤ ε.

This proves (6.15) and concludes the induction step. Thus, (6.14) holds for all n ∈ Z.

4. Consistency of the estimated bounds of C ′(.) and Fθ(.).

We focus on C ′(.) and F θ(.), the reasoning being similar for the lower bounds. Let θ̂1(y) =

supn∈Z: ŷn≥y θn and ŷ
1
(θ) = supn∈Z: θn≥θ ŷn. By definition of Ĉ ′(.), it suffices to prove that

θ̂1(.) is consistent for all y 6∈ {yn, n ∈ Z}. Similarly, by definition of F̂θ(.) and uniform
consistency of F̂yk(.), it suffices to prove that ŷ

1
(.) is consistent for all θ > 0.

Let us begin with θ̂1(y). Because (θn)n∈Z is decreasing,

θ1(y) = θn1(y)
,

where n1(y) = min{n ∈ Z : yn ≥ y}. Moreover, because y /∈ {yn, n ∈ Z},

yn1(y)−1 < y < yn1(y)
.

Let us consider the event
E1 =

{
ŷn1(y)−1 < y < ŷn1(y)

}
.
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By convergence of ŷn1(y)−1 and ŷn1(y)
, P (E1) → 1. This proves the convergence in proba-

bility of θ̂1(y), since under E1, θ̂1(y) = θ1(y).

We now turn to ŷ
1
(.). Because (yn)n∈Z is increasing, y

1
(θ) = yn1(θ), where n1(θ) = max{n ∈

Z : θn ≥ θ}. Similarly, ŷ
1
(θ) = ŷn1(θ). By convergence of ŷn1(θ), ŷ1(θ) converges to y

1
(θ).

�
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